URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [regexp/] [exec.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2011 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package regexpimport ("io""regexp/syntax")// A queue is a 'sparse array' holding pending threads of execution.// See http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.htmltype queue struct {sparse []uint32dense []entry}// A entry is an entry on a queue.// It holds both the instruction pc and the actual thread.// Some queue entries are just place holders so that the machine// knows it has considered that pc. Such entries have t == nil.type entry struct {pc uint32t *thread}// A thread is the state of a single path through the machine:// an instruction and a corresponding capture array.// See http://swtch.com/~rsc/regexp/regexp2.htmltype thread struct {inst *syntax.Instcap []int}// A machine holds all the state during an NFA simulation for p.type machine struct {re *Regexp // corresponding Regexpp *syntax.Prog // compiled programq0, q1 queue // two queues for runq, nextqpool []*thread // pool of available threadsmatched bool // whether a match was foundmatchcap []int // capture information for the match// cached inputs, to avoid allocationinputBytes inputBytesinputString inputStringinputReader inputReader}func (m *machine) newInputBytes(b []byte) input {m.inputBytes.str = breturn &m.inputBytes}func (m *machine) newInputString(s string) input {m.inputString.str = sreturn &m.inputString}func (m *machine) newInputReader(r io.RuneReader) input {m.inputReader.r = rm.inputReader.atEOT = falsem.inputReader.pos = 0return &m.inputReader}// progMachine returns a new machine running the prog p.func progMachine(p *syntax.Prog) *machine {m := &machine{p: p}n := len(m.p.Inst)m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}ncap := p.NumCapif ncap < 2 {ncap = 2}m.matchcap = make([]int, ncap)return m}func (m *machine) init(ncap int) {for _, t := range m.pool {t.cap = t.cap[:ncap]}m.matchcap = m.matchcap[:ncap]}// alloc allocates a new thread with the given instruction.// It uses the free pool if possible.func (m *machine) alloc(i *syntax.Inst) *thread {var t *threadif n := len(m.pool); n > 0 {t = m.pool[n-1]m.pool = m.pool[:n-1]} else {t = new(thread)t.cap = make([]int, len(m.matchcap), cap(m.matchcap))}t.inst = ireturn t}// free returns t to the free pool.func (m *machine) free(t *thread) {m.inputBytes.str = nilm.inputString.str = ""m.inputReader.r = nilm.pool = append(m.pool, t)}// match runs the machine over the input starting at pos.// It reports whether a match was found.// If so, m.matchcap holds the submatch information.func (m *machine) match(i input, pos int) bool {startCond := m.re.condif startCond == ^syntax.EmptyOp(0) { // impossiblereturn false}m.matched = falsefor i := range m.matchcap {m.matchcap[i] = -1}runq, nextq := &m.q0, &m.q1r, r1 := endOfText, endOfTextwidth, width1 := 0, 0r, width = i.step(pos)if r != endOfText {r1, width1 = i.step(pos + width)}var flag syntax.EmptyOpif pos == 0 {flag = syntax.EmptyOpContext(-1, r)} else {flag = i.context(pos)}for {if len(runq.dense) == 0 {if startCond&syntax.EmptyBeginText != 0 && pos != 0 {// Anchored match, past beginning of text.break}if m.matched {// Have match; finished exploring alternatives.break}if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {// Match requires literal prefix; fast search for it.advance := i.index(m.re, pos)if advance < 0 {break}pos += advancer, width = i.step(pos)r1, width1 = i.step(pos + width)}}if !m.matched {if len(m.matchcap) > 0 {m.matchcap[0] = pos}m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag, nil)}flag = syntax.EmptyOpContext(r, r1)m.step(runq, nextq, pos, pos+width, r, flag)if width == 0 {break}if len(m.matchcap) == 0 && m.matched {// Found a match and not paying attention// to where it is, so any match will do.break}pos += widthr, width = r1, width1if r != endOfText {r1, width1 = i.step(pos + width)}runq, nextq = nextq, runq}m.clear(nextq)return m.matched}// clear frees all threads on the thread queue.func (m *machine) clear(q *queue) {for _, d := range q.dense {if d.t != nil {// m.free(d.t)m.pool = append(m.pool, d.t)}}q.dense = q.dense[:0]}// step executes one step of the machine, running each of the threads// on runq and appending new threads to nextq.// The step processes the rune c (which may be endOfText),// which starts at position pos and ends at nextPos.// nextCond gives the setting for the empty-width flags after c.func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond syntax.EmptyOp) {longest := m.re.longestfor j := 0; j < len(runq.dense); j++ {d := &runq.dense[j]t := d.tif t == nil {continue}if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {// m.free(t)m.pool = append(m.pool, t)continue}i := t.instadd := falseswitch i.Op {default:panic("bad inst")case syntax.InstMatch:if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) {t.cap[1] = poscopy(m.matchcap, t.cap)}if !longest {// First-match mode: cut off all lower-priority threads.for _, d := range runq.dense[j+1:] {if d.t != nil {// m.free(d.t)m.pool = append(m.pool, d.t)}}runq.dense = runq.dense[:0]}m.matched = truecase syntax.InstRune:add = i.MatchRune(c)case syntax.InstRune1:add = c == i.Rune[0]case syntax.InstRuneAny:add = truecase syntax.InstRuneAnyNotNL:add = c != '\n'}if add {t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)}if t != nil {// m.free(t)m.pool = append(m.pool, t)}}runq.dense = runq.dense[:0]}// add adds an entry to q for pc, unless the q already has such an entry.// It also recursively adds an entry for all instructions reachable from pc by following// empty-width conditions satisfied by cond. pos gives the current position// in the input.func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond syntax.EmptyOp, t *thread) *thread {if pc == 0 {return t}if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc {return t}j := len(q.dense)q.dense = q.dense[:j+1]d := &q.dense[j]d.t = nild.pc = pcq.sparse[pc] = uint32(j)i := &m.p.Inst[pc]switch i.Op {default:panic("unhandled")case syntax.InstFail:// nothingcase syntax.InstAlt, syntax.InstAltMatch:t = m.add(q, i.Out, pos, cap, cond, t)t = m.add(q, i.Arg, pos, cap, cond, t)case syntax.InstEmptyWidth:if syntax.EmptyOp(i.Arg)&^cond == 0 {t = m.add(q, i.Out, pos, cap, cond, t)}case syntax.InstNop:t = m.add(q, i.Out, pos, cap, cond, t)case syntax.InstCapture:if int(i.Arg) < len(cap) {opos := cap[i.Arg]cap[i.Arg] = posm.add(q, i.Out, pos, cap, cond, nil)cap[i.Arg] = opos} else {t = m.add(q, i.Out, pos, cap, cond, t)}case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:if t == nil {t = m.alloc(i)} else {t.inst = i}if len(cap) > 0 && &t.cap[0] != &cap[0] {copy(t.cap, cap)}d.t = tt = nil}return t}// empty is a non-nil 0-element slice,// so doExecute can avoid an allocation// when 0 captures are requested from a successful match.var empty = make([]int, 0)// doExecute finds the leftmost match in the input and returns// the position of its subexpressions.func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int) []int {m := re.get()var i inputif r != nil {i = m.newInputReader(r)} else if b != nil {i = m.newInputBytes(b)} else {i = m.newInputString(s)}m.init(ncap)if !m.match(i, pos) {re.put(m)return nil}if ncap == 0 {re.put(m)return empty // empty but not nil}cap := make([]int, ncap)copy(cap, m.matchcap)re.put(m)return cap}
