URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [sort/] [sort.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// Package sort provides primitives for sorting slices and user-defined// collections.package sortimport "math"// A type, typically a collection, that satisfies sort.Interface can be// sorted by the routines in this package. The methods require that the// elements of the collection be enumerated by an integer index.type Interface interface {// Len is the number of elements in the collection.Len() int// Less returns whether the element with index i should sort// before the element with index j.Less(i, j int) bool// Swap swaps the elements with indexes i and j.Swap(i, j int)}func min(a, b int) int {if a < b {return a}return b}// Insertion sortfunc insertionSort(data Interface, a, b int) {for i := a + 1; i < b; i++ {for j := i; j > a && data.Less(j, j-1); j-- {data.Swap(j, j-1)}}}// siftDown implements the heap property on data[lo, hi).// first is an offset into the array where the root of the heap lies.func siftDown(data Interface, lo, hi, first int) {root := lofor {child := 2*root + 1if child >= hi {break}if child+1 < hi && data.Less(first+child, first+child+1) {child++}if !data.Less(first+root, first+child) {return}data.Swap(first+root, first+child)root = child}}func heapSort(data Interface, a, b int) {first := alo := 0hi := b - a// Build heap with greatest element at top.for i := (hi - 1) / 2; i >= 0; i-- {siftDown(data, i, hi, first)}// Pop elements, largest first, into end of data.for i := hi - 1; i >= 0; i-- {data.Swap(first, first+i)siftDown(data, lo, i, first)}}// Quicksort, following Bentley and McIlroy,// ``Engineering a Sort Function,'' SP&E November 1993.// medianOfThree moves the median of the three values data[a], data[b], data[c] into data[a].func medianOfThree(data Interface, a, b, c int) {m0 := bm1 := am2 := c// bubble sort on 3 elementsif data.Less(m1, m0) {data.Swap(m1, m0)}if data.Less(m2, m1) {data.Swap(m2, m1)}if data.Less(m1, m0) {data.Swap(m1, m0)}// now data[m0] <= data[m1] <= data[m2]}func swapRange(data Interface, a, b, n int) {for i := 0; i < n; i++ {data.Swap(a+i, b+i)}}func doPivot(data Interface, lo, hi int) (midlo, midhi int) {m := lo + (hi-lo)/2 // Written like this to avoid integer overflow.if hi-lo > 40 {// Tukey's ``Ninther,'' median of three medians of three.s := (hi - lo) / 8medianOfThree(data, lo, lo+s, lo+2*s)medianOfThree(data, m, m-s, m+s)medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)}medianOfThree(data, lo, m, hi-1)// Invariants are:// data[lo] = pivot (set up by ChoosePivot)// data[lo <= i < a] = pivot// data[a <= i < b] < pivot// data[b <= i < c] is unexamined// data[c <= i < d] > pivot// data[d <= i < hi] = pivot//// Once b meets c, can swap the "= pivot" sections// into the middle of the slice.pivot := loa, b, c, d := lo+1, lo+1, hi, hifor b < c {if data.Less(b, pivot) { // data[b] < pivotb++continue}if !data.Less(pivot, b) { // data[b] = pivotdata.Swap(a, b)a++b++continue}if data.Less(pivot, c-1) { // data[c-1] > pivotc--continue}if !data.Less(c-1, pivot) { // data[c-1] = pivotdata.Swap(c-1, d-1)c--d--continue}// data[b] > pivot; data[c-1] < pivotdata.Swap(b, c-1)b++c--}n := min(b-a, a-lo)swapRange(data, lo, b-n, n)n = min(hi-d, d-c)swapRange(data, c, hi-n, n)return lo + b - a, hi - (d - c)}func quickSort(data Interface, a, b, maxDepth int) {for b-a > 7 {if maxDepth == 0 {heapSort(data, a, b)return}maxDepth--mlo, mhi := doPivot(data, a, b)// Avoiding recursion on the larger subproblem guarantees// a stack depth of at most lg(b-a).if mlo-a < b-mhi {quickSort(data, a, mlo, maxDepth)a = mhi // i.e., quickSort(data, mhi, b)} else {quickSort(data, mhi, b, maxDepth)b = mlo // i.e., quickSort(data, a, mlo)}}if b-a > 1 {insertionSort(data, a, b)}}func Sort(data Interface) {// Switch to heapsort if depth of 2*ceil(lg(n)) is reached.n := data.Len()maxDepth := 0for 1<<uint(maxDepth) < n {maxDepth++}maxDepth *= 2quickSort(data, 0, n, maxDepth)}func IsSorted(data Interface) bool {n := data.Len()for i := n - 1; i > 0; i-- {if data.Less(i, i-1) {return false}}return true}// Convenience types for common cases// IntSlice attaches the methods of Interface to []int, sorting in increasing order.type IntSlice []intfunc (p IntSlice) Len() int { return len(p) }func (p IntSlice) Less(i, j int) bool { return p[i] < p[j] }func (p IntSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }// Sort is a convenience method.func (p IntSlice) Sort() { Sort(p) }// Float64Slice attaches the methods of Interface to []float64, sorting in increasing order.type Float64Slice []float64func (p Float64Slice) Len() int { return len(p) }func (p Float64Slice) Less(i, j int) bool { return p[i] < p[j] || math.IsNaN(p[i]) && !math.IsNaN(p[j]) }func (p Float64Slice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }// Sort is a convenience method.func (p Float64Slice) Sort() { Sort(p) }// StringSlice attaches the methods of Interface to []string, sorting in increasing order.type StringSlice []stringfunc (p StringSlice) Len() int { return len(p) }func (p StringSlice) Less(i, j int) bool { return p[i] < p[j] }func (p StringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }// Sort is a convenience method.func (p StringSlice) Sort() { Sort(p) }// Convenience wrappers for common cases// Ints sorts a slice of ints in increasing order.func Ints(a []int) { Sort(IntSlice(a)) }// Float64s sorts a slice of float64s in increasing order.func Float64s(a []float64) { Sort(Float64Slice(a)) }// Strings sorts a slice of strings in increasing order.func Strings(a []string) { Sort(StringSlice(a)) }// IntsAreSorted tests whether a slice of ints is sorted in increasing order.func IntsAreSorted(a []int) bool { return IsSorted(IntSlice(a)) }// Float64sAreSorted tests whether a slice of float64s is sorted in increasing order.func Float64sAreSorted(a []float64) bool { return IsSorted(Float64Slice(a)) }// StringsAreSorted tests whether a slice of strings is sorted in increasing order.func StringsAreSorted(a []string) bool { return IsSorted(StringSlice(a)) }
