URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [strconv/] [atof.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// Package strconv implements conversions to and from string representations// of basic data types.package strconv// decimal to binary floating point conversion.// Algorithm:// 1) Store input in multiprecision decimal.// 2) Multiply/divide decimal by powers of two until in range [0.5, 1)// 3) Multiply by 2^precision and round to get mantissa.import "math"var optimize = true // can change for testingfunc equalIgnoreCase(s1, s2 string) bool {if len(s1) != len(s2) {return false}for i := 0; i < len(s1); i++ {c1 := s1[i]if 'A' <= c1 && c1 <= 'Z' {c1 += 'a' - 'A'}c2 := s2[i]if 'A' <= c2 && c2 <= 'Z' {c2 += 'a' - 'A'}if c1 != c2 {return false}}return true}func special(s string) (f float64, ok bool) {switch {case equalIgnoreCase(s, "nan"):return math.NaN(), truecase equalIgnoreCase(s, "-inf"),equalIgnoreCase(s, "-infinity"):return math.Inf(-1), truecase equalIgnoreCase(s, "+inf"),equalIgnoreCase(s, "+infinity"),equalIgnoreCase(s, "inf"),equalIgnoreCase(s, "infinity"):return math.Inf(1), true}return}// TODO(rsc): Better truncation handling.func (b *decimal) set(s string) (ok bool) {i := 0b.neg = false// optional signif i >= len(s) {return}switch {case s[i] == '+':i++case s[i] == '-':b.neg = truei++}// digitssawdot := falsesawdigits := falsefor ; i < len(s); i++ {switch {case s[i] == '.':if sawdot {return}sawdot = trueb.dp = b.ndcontinuecase '0' <= s[i] && s[i] <= '9':sawdigits = trueif s[i] == '0' && b.nd == 0 { // ignore leading zerosb.dp--continue}b.d[b.nd] = s[i]b.nd++continue}break}if !sawdigits {return}if !sawdot {b.dp = b.nd}// optional exponent moves decimal point.// if we read a very large, very long number,// just be sure to move the decimal point by// a lot (say, 100000). it doesn't matter if it's// not the exact number.if i < len(s) && (s[i] == 'e' || s[i] == 'E') {i++if i >= len(s) {return}esign := 1if s[i] == '+' {i++} else if s[i] == '-' {i++esign = -1}if i >= len(s) || s[i] < '0' || s[i] > '9' {return}e := 0for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ {if e < 10000 {e = e*10 + int(s[i]) - '0'}}b.dp += e * esign}if i != len(s) {return}ok = truereturn}// decimal power of ten to binary power of two.var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26}func (d *decimal) floatBits(flt *floatInfo) (b uint64, overflow bool) {var exp intvar mant uint64// Zero is always a special case.if d.nd == 0 {mant = 0exp = flt.biasgoto out}// Obvious overflow/underflow.// These bounds are for 64-bit floats.// Will have to change if we want to support 80-bit floats in the future.if d.dp > 310 {goto overflow}if d.dp < -330 {// zeromant = 0exp = flt.biasgoto out}// Scale by powers of two until in range [0.5, 1.0)exp = 0for d.dp > 0 {var n intif d.dp >= len(powtab) {n = 27} else {n = powtab[d.dp]}d.Shift(-n)exp += n}for d.dp < 0 || d.dp == 0 && d.d[0] < '5' {var n intif -d.dp >= len(powtab) {n = 27} else {n = powtab[-d.dp]}d.Shift(n)exp -= n}// Our range is [0.5,1) but floating point range is [1,2).exp--// Minimum representable exponent is flt.bias+1.// If the exponent is smaller, move it up and// adjust d accordingly.if exp < flt.bias+1 {n := flt.bias + 1 - expd.Shift(-n)exp += n}if exp-flt.bias >= 1<<flt.expbits-1 {goto overflow}// Extract 1+flt.mantbits bits.d.Shift(int(1 + flt.mantbits))mant = d.RoundedInteger()// Rounding might have added a bit; shift down.if mant == 2<<flt.mantbits {mant >>= 1exp++if exp-flt.bias >= 1<<flt.expbits-1 {goto overflow}}// Denormalized?if mant&(1<<flt.mantbits) == 0 {exp = flt.bias}goto outoverflow:// ±Infmant = 0exp = 1<<flt.expbits - 1 + flt.biasoverflow = trueout:// Assemble bits.bits := mant & (uint64(1)<<flt.mantbits - 1)bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbitsif d.neg {bits |= 1 << flt.mantbits << flt.expbits}return bits, overflow}// Compute exact floating-point integer from d's digits.// Caller is responsible for avoiding overflow.func (d *decimal) atof64int() float64 {f := 0.0for i := 0; i < d.nd; i++ {f = f*10 + float64(d.d[i]-'0')}if d.neg {f = -f}return f}func (d *decimal) atof32int() float32 {f := float32(0)for i := 0; i < d.nd; i++ {f = f*10 + float32(d.d[i]-'0')}if d.neg {f = -f}return f}// Reads a uint64 decimal mantissa, which might be truncated.func (d *decimal) atou64() (mant uint64, digits int) {const uint64digits = 19for i, c := range d.d[:d.nd] {if i == uint64digits {return mant, i}mant = 10*mant + uint64(c-'0')}return mant, d.nd}// Exact powers of 10.var float64pow10 = []float64{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,1e20, 1e21, 1e22,}var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}// If possible to convert decimal d to 64-bit float f exactly,// entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits.// Three common cases:// value is exact integer// value is exact integer * exact power of ten// value is exact integer / exact power of ten// These all produce potentially inexact but correctly rounded answers.func (d *decimal) atof64() (f float64, ok bool) {// Exact integers are <= 10^15.// Exact powers of ten are <= 10^22.if d.nd > 15 {return}switch {case d.dp == d.nd: // intf := d.atof64int()return f, truecase d.dp > d.nd && d.dp <= 15+22: // int * 10^kf := d.atof64int()k := d.dp - d.nd// If exponent is big but number of digits is not,// can move a few zeros into the integer part.if k > 22 {f *= float64pow10[k-22]k = 22}return f * float64pow10[k], truecase d.dp < d.nd && d.nd-d.dp <= 22: // int / 10^kf := d.atof64int()return f / float64pow10[d.nd-d.dp], true}return}// If possible to convert decimal d to 32-bit float f exactly,// entirely in floating-point math, do so, avoiding the machinery above.func (d *decimal) atof32() (f float32, ok bool) {// Exact integers are <= 10^7.// Exact powers of ten are <= 10^10.if d.nd > 7 {return}switch {case d.dp == d.nd: // intf := d.atof32int()return f, truecase d.dp > d.nd && d.dp <= 7+10: // int * 10^kf := d.atof32int()k := d.dp - d.nd// If exponent is big but number of digits is not,// can move a few zeros into the integer part.if k > 10 {f *= float32pow10[k-10]k = 10}return f * float32pow10[k], truecase d.dp < d.nd && d.nd-d.dp <= 10: // int / 10^kf := d.atof32int()return f / float32pow10[d.nd-d.dp], true}return}const fnParseFloat = "ParseFloat"func atof32(s string) (f float32, err error) {if val, ok := special(s); ok {return float32(val), nil}var d decimalif !d.set(s) {return 0, syntaxError(fnParseFloat, s)}if optimize {if f, ok := d.atof32(); ok {return f, nil}}b, ovf := d.floatBits(&float32info)f = math.Float32frombits(uint32(b))if ovf {err = rangeError(fnParseFloat, s)}return f, err}func atof64(s string) (f float64, err error) {if val, ok := special(s); ok {return val, nil}var d decimalif !d.set(s) {return 0, syntaxError(fnParseFloat, s)}if optimize {if f, ok := d.atof64(); ok {return f, nil}// Try another fast path.ext := new(extFloat)if ok := ext.AssignDecimal(&d); ok {b, ovf := ext.floatBits()f = math.Float64frombits(b)if ovf {err = rangeError(fnParseFloat, s)}return f, err}}b, ovf := d.floatBits(&float64info)f = math.Float64frombits(b)if ovf {err = rangeError(fnParseFloat, s)}return f, err}// ParseFloat converts the string s to a floating-point number// with the precision specified by bitSize: 32 for float32, or 64 for float64.// When bitSize=32, the result still has type float64, but it will be// convertible to float32 without changing its value.//// If s is well-formed and near a valid floating point number,// ParseFloat returns the nearest floating point number rounded// using IEEE754 unbiased rounding.//// The errors that ParseFloat returns have concrete type *NumError// and include err.Num = s.//// If s is not syntactically well-formed, ParseFloat returns err.Error = ErrSyntax.//// If s is syntactically well-formed but is more than 1/2 ULP// away from the largest floating point number of the given size,// ParseFloat returns f = ±Inf, err.Error = ErrRange.func ParseFloat(s string, bitSize int) (f float64, err error) {if bitSize == 32 {f1, err1 := atof32(s)return float64(f1), err1}f1, err1 := atof64(s)return f1, err1}
