URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [strconv/] [extfloat.go] - Rev 747
Compare with Previous | Blame | View Log
// Copyright 2011 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package strconvimport "math"// An extFloat represents an extended floating-point number, with more// precision than a float64. It does not try to save bits: the// number represented by the structure is mant*(2^exp), with a negative// sign if neg is true.type extFloat struct {mant uint64exp intneg bool}// Powers of ten taken from double-conversion library.// http://code.google.com/p/double-conversion/const (firstPowerOfTen = -348stepPowerOfTen = 8)var smallPowersOfTen = [...]extFloat{{1 << 63, -63, false}, // 1{0xa << 60, -60, false}, // 1e1{0x64 << 57, -57, false}, // 1e2{0x3e8 << 54, -54, false}, // 1e3{0x2710 << 50, -50, false}, // 1e4{0x186a0 << 47, -47, false}, // 1e5{0xf4240 << 44, -44, false}, // 1e6{0x989680 << 40, -40, false}, // 1e7}var powersOfTen = [...]extFloat{{0xfa8fd5a0081c0288, -1220, false}, // 10^-348{0xbaaee17fa23ebf76, -1193, false}, // 10^-340{0x8b16fb203055ac76, -1166, false}, // 10^-332{0xcf42894a5dce35ea, -1140, false}, // 10^-324{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316{0xe61acf033d1a45df, -1087, false}, // 10^-308{0xab70fe17c79ac6ca, -1060, false}, // 10^-300{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292{0xbe5691ef416bd60c, -1007, false}, // 10^-284{0x8dd01fad907ffc3c, -980, false}, // 10^-276{0xd3515c2831559a83, -954, false}, // 10^-268{0x9d71ac8fada6c9b5, -927, false}, // 10^-260{0xea9c227723ee8bcb, -901, false}, // 10^-252{0xaecc49914078536d, -874, false}, // 10^-244{0x823c12795db6ce57, -847, false}, // 10^-236{0xc21094364dfb5637, -821, false}, // 10^-228{0x9096ea6f3848984f, -794, false}, // 10^-220{0xd77485cb25823ac7, -768, false}, // 10^-212{0xa086cfcd97bf97f4, -741, false}, // 10^-204{0xef340a98172aace5, -715, false}, // 10^-196{0xb23867fb2a35b28e, -688, false}, // 10^-188{0x84c8d4dfd2c63f3b, -661, false}, // 10^-180{0xc5dd44271ad3cdba, -635, false}, // 10^-172{0x936b9fcebb25c996, -608, false}, // 10^-164{0xdbac6c247d62a584, -582, false}, // 10^-156{0xa3ab66580d5fdaf6, -555, false}, // 10^-148{0xf3e2f893dec3f126, -529, false}, // 10^-140{0xb5b5ada8aaff80b8, -502, false}, // 10^-132{0x87625f056c7c4a8b, -475, false}, // 10^-124{0xc9bcff6034c13053, -449, false}, // 10^-116{0x964e858c91ba2655, -422, false}, // 10^-108{0xdff9772470297ebd, -396, false}, // 10^-100{0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92{0xf8a95fcf88747d94, -343, false}, // 10^-84{0xb94470938fa89bcf, -316, false}, // 10^-76{0x8a08f0f8bf0f156b, -289, false}, // 10^-68{0xcdb02555653131b6, -263, false}, // 10^-60{0x993fe2c6d07b7fac, -236, false}, // 10^-52{0xe45c10c42a2b3b06, -210, false}, // 10^-44{0xaa242499697392d3, -183, false}, // 10^-36{0xfd87b5f28300ca0e, -157, false}, // 10^-28{0xbce5086492111aeb, -130, false}, // 10^-20{0x8cbccc096f5088cc, -103, false}, // 10^-12{0xd1b71758e219652c, -77, false}, // 10^-4{0x9c40000000000000, -50, false}, // 10^4{0xe8d4a51000000000, -24, false}, // 10^12{0xad78ebc5ac620000, 3, false}, // 10^20{0x813f3978f8940984, 30, false}, // 10^28{0xc097ce7bc90715b3, 56, false}, // 10^36{0x8f7e32ce7bea5c70, 83, false}, // 10^44{0xd5d238a4abe98068, 109, false}, // 10^52{0x9f4f2726179a2245, 136, false}, // 10^60{0xed63a231d4c4fb27, 162, false}, // 10^68{0xb0de65388cc8ada8, 189, false}, // 10^76{0x83c7088e1aab65db, 216, false}, // 10^84{0xc45d1df942711d9a, 242, false}, // 10^92{0x924d692ca61be758, 269, false}, // 10^100{0xda01ee641a708dea, 295, false}, // 10^108{0xa26da3999aef774a, 322, false}, // 10^116{0xf209787bb47d6b85, 348, false}, // 10^124{0xb454e4a179dd1877, 375, false}, // 10^132{0x865b86925b9bc5c2, 402, false}, // 10^140{0xc83553c5c8965d3d, 428, false}, // 10^148{0x952ab45cfa97a0b3, 455, false}, // 10^156{0xde469fbd99a05fe3, 481, false}, // 10^164{0xa59bc234db398c25, 508, false}, // 10^172{0xf6c69a72a3989f5c, 534, false}, // 10^180{0xb7dcbf5354e9bece, 561, false}, // 10^188{0x88fcf317f22241e2, 588, false}, // 10^196{0xcc20ce9bd35c78a5, 614, false}, // 10^204{0x98165af37b2153df, 641, false}, // 10^212{0xe2a0b5dc971f303a, 667, false}, // 10^220{0xa8d9d1535ce3b396, 694, false}, // 10^228{0xfb9b7cd9a4a7443c, 720, false}, // 10^236{0xbb764c4ca7a44410, 747, false}, // 10^244{0x8bab8eefb6409c1a, 774, false}, // 10^252{0xd01fef10a657842c, 800, false}, // 10^260{0x9b10a4e5e9913129, 827, false}, // 10^268{0xe7109bfba19c0c9d, 853, false}, // 10^276{0xac2820d9623bf429, 880, false}, // 10^284{0x80444b5e7aa7cf85, 907, false}, // 10^292{0xbf21e44003acdd2d, 933, false}, // 10^300{0x8e679c2f5e44ff8f, 960, false}, // 10^308{0xd433179d9c8cb841, 986, false}, // 10^316{0x9e19db92b4e31ba9, 1013, false}, // 10^324{0xeb96bf6ebadf77d9, 1039, false}, // 10^332{0xaf87023b9bf0ee6b, 1066, false}, // 10^340}// floatBits returns the bits of the float64 that best approximates// the extFloat passed as receiver. Overflow is set to true if// the resulting float64 is ±Inf.func (f *extFloat) floatBits() (bits uint64, overflow bool) {flt := &float64infof.Normalize()exp := f.exp + 63// Exponent too small.if exp < flt.bias+1 {n := flt.bias + 1 - expf.mant >>= uint(n)exp += n}// Extract 1+flt.mantbits bits.mant := f.mant >> (63 - flt.mantbits)if f.mant&(1<<(62-flt.mantbits)) != 0 {// Round up.mant += 1}// Rounding might have added a bit; shift down.if mant == 2<<flt.mantbits {mant >>= 1exp++}// Infinities.if exp-flt.bias >= 1<<flt.expbits-1 {goto overflow}// Denormalized?if mant&(1<<flt.mantbits) == 0 {exp = flt.bias}goto outoverflow:// ±Infmant = 0exp = 1<<flt.expbits - 1 + flt.biasoverflow = trueout:// Assemble bits.bits = mant & (uint64(1)<<flt.mantbits - 1)bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbitsif f.neg {bits |= 1 << (flt.mantbits + flt.expbits)}return}// Assign sets f to the value of x.func (f *extFloat) Assign(x float64) {if x < 0 {x = -xf.neg = true}x, f.exp = math.Frexp(x)f.mant = uint64(x * float64(1<<64))f.exp -= 64}// AssignComputeBounds sets f to the value of x and returns// lower, upper such that any number in the closed interval// [lower, upper] is converted back to x.func (f *extFloat) AssignComputeBounds(x float64) (lower, upper extFloat) {// Special cases.bits := math.Float64bits(x)flt := &float64infoneg := bits>>(flt.expbits+flt.mantbits) != 0expBiased := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)mant := bits & (uint64(1)<<flt.mantbits - 1)if expBiased == 0 {// denormalized.f.mant = mantf.exp = 1 + flt.bias - int(flt.mantbits)} else {f.mant = mant | 1<<flt.mantbitsf.exp = expBiased + flt.bias - int(flt.mantbits)}f.neg = negupper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}if mant != 0 || expBiased == 1 {lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}} else {lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}}return}// Normalize normalizes f so that the highest bit of the mantissa is// set, and returns the number by which the mantissa was left-shifted.func (f *extFloat) Normalize() uint {if f.mant == 0 {return 0}exp_before := f.expfor f.mant < (1 << 55) {f.mant <<= 8f.exp -= 8}for f.mant < (1 << 63) {f.mant <<= 1f.exp -= 1}return uint(exp_before - f.exp)}// Multiply sets f to the product f*g: the result is correctly rounded,// but not normalized.func (f *extFloat) Multiply(g extFloat) {fhi, flo := f.mant>>32, uint64(uint32(f.mant))ghi, glo := g.mant>>32, uint64(uint32(g.mant))// Cross products.cross1 := fhi * glocross2 := flo * ghi// f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glof.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)// Round up.rem += (1 << 31)f.mant += (rem >> 32)f.exp = f.exp + g.exp + 64}var uint64pow10 = [...]uint64{1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,}// AssignDecimal sets f to an approximate value of the decimal d. It// returns true if the value represented by f is guaranteed to be the// best approximation of d after being rounded to a float64.func (f *extFloat) AssignDecimal(d *decimal) (ok bool) {const uint64digits = 19const errorscale = 8mant10, digits := d.atou64()exp10 := d.dp - digitserrors := 0 // An upper bound for error, computed in errorscale*ulp.if digits < d.nd {// the decimal number was truncated.errors += errorscale / 2}f.mant = mant10f.exp = 0f.neg = d.neg// Multiply by powers of ten.i := (exp10 - firstPowerOfTen) / stepPowerOfTenif exp10 < firstPowerOfTen || i >= len(powersOfTen) {return false}adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen// We multiply by exp%stepif digits+adjExp <= uint64digits {// We can multiply the mantissaf.mant *= uint64(float64pow10[adjExp])f.Normalize()} else {f.Normalize()f.Multiply(smallPowersOfTen[adjExp])errors += errorscale / 2}// We multiply by 10 to the exp - exp%step.f.Multiply(powersOfTen[i])if errors > 0 {errors += 1}errors += errorscale / 2// Normalizeshift := f.Normalize()errors <<= shift// Now f is a good approximation of the decimal.// Check whether the error is too large: that is, if the mantissa// is perturbated by the error, the resulting float64 will change.// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.//// In many cases the approximation will be good enough.const denormalExp = -1023 - 63flt := &float64infovar extrabits uintif f.exp <= denormalExp {extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))} else {extrabits = uint(63 - flt.mantbits)}halfway := uint64(1) << (extrabits - 1)mant_extra := f.mant & (1<<extrabits - 1)// Do a signed comparison here! If the error estimate could make// the mantissa round differently for the conversion to double,// then we can't give a definite answer.if int64(halfway)-int64(errors) < int64(mant_extra) &&int64(mant_extra) < int64(halfway)+int64(errors) {return false}return true}// Frexp10 is an analogue of math.Frexp for decimal powers. It scales// f by an approximate power of ten 10^-exp, and returns exp10, so// that f*10^exp10 has the same value as the old f, up to an ulp,// as well as the index of 10^-exp in the powersOfTen table.// The arguments expMin and expMax constrain the final value of the// binary exponent of f.func (f *extFloat) frexp10(expMin, expMax int) (exp10, index int) {// it is illegal to call this function with a too restrictive exponent range.if expMax-expMin <= 25 {panic("strconv: invalid exponent range")}// Find power of ten such that x * 10^n has a binary exponent// between expMin and expMaxapproxExp10 := -(f.exp + 100) * 28 / 93 // log(10)/log(2) is close to 93/28.i := (approxExp10 - firstPowerOfTen) / stepPowerOfTenLoop:for {exp := f.exp + powersOfTen[i].exp + 64switch {case exp < expMin:i++case exp > expMax:i--default:break Loop}}// Apply the desired decimal shift on f. It will have exponent// in the desired range. This is multiplication by 10^-exp10.f.Multiply(powersOfTen[i])return -(firstPowerOfTen + i*stepPowerOfTen), i}// frexp10Many applies a common shift by a power of ten to a, b, c.func frexp10Many(expMin, expMax int, a, b, c *extFloat) (exp10 int) {exp10, i := c.frexp10(expMin, expMax)a.Multiply(powersOfTen[i])b.Multiply(powersOfTen[i])return}// ShortestDecimal stores in d the shortest decimal representation of f// which belongs to the open interval (lower, upper), where f is supposed// to lie. It returns false whenever the result is unsure. The implementation// uses the Grisu3 algorithm.func (f *extFloat) ShortestDecimal(d *decimal, lower, upper *extFloat) bool {if f.mant == 0 {d.d[0] = '0'd.nd = 1d.dp = 0d.neg = f.neg}const minExp = -60const maxExp = -32upper.Normalize()// Uniformize exponents.if f.exp > upper.exp {f.mant <<= uint(f.exp - upper.exp)f.exp = upper.exp}if lower.exp > upper.exp {lower.mant <<= uint(lower.exp - upper.exp)lower.exp = upper.exp}exp10 := frexp10Many(minExp, maxExp, lower, f, upper)// Take a safety margin due to rounding in frexp10Many, but we lose precision.upper.mant++lower.mant--// The shortest representation of f is either rounded up or down, but// in any case, it is a truncation of upper.shift := uint(-upper.exp)integer := uint32(upper.mant >> shift)fraction := upper.mant - (uint64(integer) << shift)// How far we can go down from upper until the result is wrong.allowance := upper.mant - lower.mant// How far we should go to get a very precise result.targetDiff := upper.mant - f.mant// Count integral digits: there are at most 10.var integerDigits intfor i, pow := range uint64pow10 {if uint64(integer) >= pow {integerDigits = i + 1}}for i := 0; i < integerDigits; i++ {pow := uint64pow10[integerDigits-i-1]digit := integer / uint32(pow)d.d[i] = byte(digit + '0')integer -= digit * uint32(pow)// evaluate whether we should stop.if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {d.nd = i + 1d.dp = integerDigits + exp10d.neg = f.neg// Sometimes allowance is so large the last digit might need to be// decremented to get closer to f.return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)}}d.nd = integerDigitsd.dp = d.nd + exp10d.neg = f.neg// Compute digits of the fractional part. At each step fraction does not// overflow. The choice of minExp implies that fraction is less than 2^60.var digit intmultiplier := uint64(1)for {fraction *= 10multiplier *= 10digit = int(fraction >> shift)d.d[d.nd] = byte(digit + '0')d.nd++fraction -= uint64(digit) << shiftif fraction < allowance*multiplier {// We are in the admissible range. Note that if allowance is about to// overflow, that is, allowance > 2^64/10, the condition is automatically// true due to the limited range of fraction.return adjustLastDigit(d,fraction, targetDiff*multiplier, allowance*multiplier,1<<shift, multiplier*2)}}return false}// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.// It assumes that a decimal digit is worth ulpDecimal*ε, and that// all data is known with a error estimate of ulpBinary*ε.func adjustLastDigit(d *decimal, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {if ulpDecimal < 2*ulpBinary {// Appromixation is too wide.return false}for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {d.d[d.nd-1]--currentDiff += ulpDecimal}if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {// we have two choices, and don't know what to do.return false}if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {// we went too farreturn false}if d.nd == 1 && d.d[0] == '0' {// the number has actually reached zero.d.nd = 0d.dp = 0}return true}
