URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [runtime/] [go-reflect-call.c] - Rev 774
Go to most recent revision | Compare with Previous | Blame | View Log
/* go-reflect-call.c -- call reflection support for Go. Copyright 2009 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include "config.h" #include "go-alloc.h" #include "go-assert.h" #include "go-type.h" #include "runtime.h" #ifdef USE_LIBFFI #include "ffi.h" /* The functions in this file are only called from reflect_call. As reflect_call calls a libffi function, which will be compiled without -fsplit-stack, it will always run with a large stack. */ static ffi_type *go_array_to_ffi (const struct __go_array_type *) __attribute__ ((no_split_stack)); static ffi_type *go_slice_to_ffi (const struct __go_slice_type *) __attribute__ ((no_split_stack)); static ffi_type *go_struct_to_ffi (const struct __go_struct_type *) __attribute__ ((no_split_stack)); static ffi_type *go_string_to_ffi (void) __attribute__ ((no_split_stack)); static ffi_type *go_interface_to_ffi (void) __attribute__ ((no_split_stack)); static ffi_type *go_complex_to_ffi (ffi_type *) __attribute__ ((no_split_stack)); static ffi_type *go_type_to_ffi (const struct __go_type_descriptor *) __attribute__ ((no_split_stack)); static ffi_type *go_func_return_ffi (const struct __go_func_type *) __attribute__ ((no_split_stack)); static void go_func_to_cif (const struct __go_func_type *, _Bool, _Bool, ffi_cif *) __attribute__ ((no_split_stack)); static size_t go_results_size (const struct __go_func_type *) __attribute__ ((no_split_stack)); static void go_set_results (const struct __go_func_type *, unsigned char *, void **) __attribute__ ((no_split_stack)); /* Return an ffi_type for a Go array type. The libffi library does not have any builtin support for passing arrays as values. We work around this by pretending that the array is a struct. */ static ffi_type * go_array_to_ffi (const struct __go_array_type *descriptor) { ffi_type *ret; uintptr_t len; ffi_type *element; uintptr_t i; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; len = descriptor->__len; ret->elements = (ffi_type **) __go_alloc ((len + 1) * sizeof (ffi_type *)); element = go_type_to_ffi (descriptor->__element_type); for (i = 0; i < len; ++i) ret->elements[i] = element; ret->elements[len] = NULL; return ret; } /* Return an ffi_type for a Go slice type. This describes the __go_open_array type defines in array.h. */ static ffi_type * go_slice_to_ffi ( const struct __go_slice_type *descriptor __attribute__ ((unused))) { ffi_type *ret; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; ret->elements = (ffi_type **) __go_alloc (4 * sizeof (ffi_type *)); ret->elements[0] = &ffi_type_pointer; ret->elements[1] = &ffi_type_sint; ret->elements[2] = &ffi_type_sint; ret->elements[3] = NULL; return ret; } /* Return an ffi_type for a Go struct type. */ static ffi_type * go_struct_to_ffi (const struct __go_struct_type *descriptor) { ffi_type *ret; int field_count; const struct __go_struct_field *fields; int i; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; field_count = descriptor->__fields.__count; fields = (const struct __go_struct_field *) descriptor->__fields.__values; ret->elements = (ffi_type **) __go_alloc ((field_count + 1) * sizeof (ffi_type *)); for (i = 0; i < field_count; ++i) ret->elements[i] = go_type_to_ffi (fields[i].__type); ret->elements[field_count] = NULL; return ret; } /* Return an ffi_type for a Go string type. This describes the __go_string struct. */ static ffi_type * go_string_to_ffi (void) { ffi_type *ret; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; ret->elements = (ffi_type **) __go_alloc (3 * sizeof (ffi_type *)); ret->elements[0] = &ffi_type_pointer; ret->elements[1] = &ffi_type_sint; ret->elements[2] = NULL; return ret; } /* Return an ffi_type for a Go interface type. This describes the __go_interface and __go_empty_interface structs. */ static ffi_type * go_interface_to_ffi (void) { ffi_type *ret; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; ret->elements = (ffi_type **) __go_alloc (3 * sizeof (ffi_type *)); ret->elements[0] = &ffi_type_pointer; ret->elements[1] = &ffi_type_pointer; ret->elements[2] = NULL; return ret; } /* Return an ffi_type for a Go complex type. */ static ffi_type * go_complex_to_ffi (ffi_type *float_type) { ffi_type *ret; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; ret->elements = (ffi_type **) __go_alloc (3 * sizeof (ffi_type *)); ret->elements[0] = float_type; ret->elements[1] = float_type; ret->elements[2] = NULL; return ret; } /* Return an ffi_type for a type described by a __go_type_descriptor. */ static ffi_type * go_type_to_ffi (const struct __go_type_descriptor *descriptor) { switch (descriptor->__code & GO_CODE_MASK) { case GO_BOOL: if (sizeof (_Bool) == 1) return &ffi_type_uint8; else if (sizeof (_Bool) == sizeof (int)) return &ffi_type_uint; abort (); case GO_FLOAT32: if (sizeof (float) == 4) return &ffi_type_float; abort (); case GO_FLOAT64: if (sizeof (double) == 8) return &ffi_type_double; abort (); case GO_COMPLEX64: if (sizeof (float) == 4) return go_complex_to_ffi (&ffi_type_float); abort (); case GO_COMPLEX128: if (sizeof (double) == 8) return go_complex_to_ffi (&ffi_type_double); abort (); case GO_INT16: return &ffi_type_sint16; case GO_INT32: return &ffi_type_sint32; case GO_INT64: return &ffi_type_sint64; case GO_INT8: return &ffi_type_sint8; case GO_INT: return &ffi_type_sint; case GO_UINT16: return &ffi_type_uint16; case GO_UINT32: return &ffi_type_uint32; case GO_UINT64: return &ffi_type_uint64; case GO_UINT8: return &ffi_type_uint8; case GO_UINT: return &ffi_type_uint; case GO_UINTPTR: if (sizeof (void *) == 2) return &ffi_type_uint16; else if (sizeof (void *) == 4) return &ffi_type_uint32; else if (sizeof (void *) == 8) return &ffi_type_uint64; abort (); case GO_ARRAY: return go_array_to_ffi ((const struct __go_array_type *) descriptor); case GO_SLICE: return go_slice_to_ffi ((const struct __go_slice_type *) descriptor); case GO_STRUCT: return go_struct_to_ffi ((const struct __go_struct_type *) descriptor); case GO_STRING: return go_string_to_ffi (); case GO_INTERFACE: return go_interface_to_ffi (); case GO_CHAN: case GO_FUNC: case GO_MAP: case GO_PTR: case GO_UNSAFE_POINTER: /* These types are always pointers, and for FFI purposes nothing else matters. */ return &ffi_type_pointer; default: abort (); } } /* Return the return type for a function, given the number of out parameters and their types. */ static ffi_type * go_func_return_ffi (const struct __go_func_type *func) { int count; const struct __go_type_descriptor **types; ffi_type *ret; int i; count = func->__out.__count; if (count == 0) return &ffi_type_void; types = (const struct __go_type_descriptor **) func->__out.__values; if (count == 1) return go_type_to_ffi (types[0]); ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; ret->elements = (ffi_type **) __go_alloc ((count + 1) * sizeof (ffi_type *)); for (i = 0; i < count; ++i) ret->elements[i] = go_type_to_ffi (types[i]); ret->elements[count] = NULL; return ret; } /* Build an ffi_cif structure for a function described by a __go_func_type structure. */ static void go_func_to_cif (const struct __go_func_type *func, _Bool is_interface, _Bool is_method, ffi_cif *cif) { int num_params; const struct __go_type_descriptor **in_types; size_t num_args; ffi_type **args; int off; int i; ffi_type *rettype; ffi_status status; num_params = func->__in.__count; in_types = ((const struct __go_type_descriptor **) func->__in.__values); num_args = num_params + (is_interface ? 1 : 0); args = (ffi_type **) __go_alloc (num_args * sizeof (ffi_type *)); i = 0; off = 0; if (is_interface) { args[0] = &ffi_type_pointer; off = 1; } else if (is_method) { args[0] = &ffi_type_pointer; i = 1; } for (; i < num_params; ++i) args[i + off] = go_type_to_ffi (in_types[i]); rettype = go_func_return_ffi (func); status = ffi_prep_cif (cif, FFI_DEFAULT_ABI, num_args, rettype, args); __go_assert (status == FFI_OK); } /* Get the total size required for the result parameters of a function. */ static size_t go_results_size (const struct __go_func_type *func) { int count; const struct __go_type_descriptor **types; size_t off; size_t maxalign; int i; count = func->__out.__count; if (count == 0) return 0; types = (const struct __go_type_descriptor **) func->__out.__values; /* A single integer return value is always promoted to a full word. */ if (count == 1) { switch (types[0]->__code & GO_CODE_MASK) { case GO_BOOL: case GO_INT8: case GO_INT16: case GO_INT32: case GO_UINT8: case GO_UINT16: case GO_UINT32: case GO_INT: case GO_UINT: return sizeof (ffi_arg); default: break; } } off = 0; maxalign = 0; for (i = 0; i < count; ++i) { size_t align; align = types[i]->__field_align; if (align > maxalign) maxalign = align; off = (off + align - 1) & ~ (align - 1); off += types[i]->__size; } off = (off + maxalign - 1) & ~ (maxalign - 1); return off; } /* Copy the results of calling a function via FFI from CALL_RESULT into the addresses in RESULTS. */ static void go_set_results (const struct __go_func_type *func, unsigned char *call_result, void **results) { int count; const struct __go_type_descriptor **types; size_t off; int i; count = func->__out.__count; if (count == 0) return; types = (const struct __go_type_descriptor **) func->__out.__values; /* A single integer return value is always promoted to a full word. */ if (count == 1) { switch (types[0]->__code & GO_CODE_MASK) { case GO_BOOL: case GO_INT8: case GO_INT16: case GO_INT32: case GO_UINT8: case GO_UINT16: case GO_UINT32: case GO_INT: case GO_UINT: { union { unsigned char buf[sizeof (ffi_arg)]; ffi_arg v; } u; ffi_arg v; __builtin_memcpy (&u.buf, call_result, sizeof (ffi_arg)); v = u.v; switch (types[0]->__size) { case 1: { uint8_t b; b = (uint8_t) v; __builtin_memcpy (results[0], &b, 1); } break; case 2: { uint16_t s; s = (uint16_t) v; __builtin_memcpy (results[0], &s, 2); } break; case 4: { uint32_t w; w = (uint32_t) v; __builtin_memcpy (results[0], &w, 4); } break; case 8: { uint64_t d; d = (uint64_t) v; __builtin_memcpy (results[0], &d, 8); } break; default: abort (); } } return; default: break; } } off = 0; for (i = 0; i < count; ++i) { size_t align; size_t size; align = types[i]->__field_align; size = types[i]->__size; off = (off + align - 1) & ~ (align - 1); __builtin_memcpy (results[i], call_result + off, size); off += size; } } /* Call a function. The type of the function is FUNC_TYPE, and the address is FUNC_ADDR. PARAMS is an array of parameter addresses. RESULTS is an array of result addresses. */ void reflect_call (const struct __go_func_type *func_type, const void *func_addr, _Bool is_interface, _Bool is_method, void **params, void **results) { ffi_cif cif; unsigned char *call_result; __go_assert ((func_type->__common.__code & GO_CODE_MASK) == GO_FUNC); go_func_to_cif (func_type, is_interface, is_method, &cif); call_result = (unsigned char *) malloc (go_results_size (func_type)); ffi_call (&cif, func_addr, call_result, params); /* Some day we may need to free result values if RESULTS is NULL. */ if (results != NULL) go_set_results (func_type, call_result, results); free (call_result); } #else /* !defined(USE_LIBFFI) */ void reflect_call (const struct __go_func_type *func_type __attribute__ ((unused)), const void *func_addr __attribute__ ((unused)), _Bool is_interface __attribute__ ((unused)), _Bool is_method __attribute__ ((unused)), void **params __attribute__ ((unused)), void **results __attribute__ ((unused))) { /* Without FFI there is nothing we can do. */ runtime_throw("libgo built without FFI does not support " "reflect.Call or runtime.SetFinalizer"); } #endif /* !defined(USE_LIBFFI) */
Go to most recent revision | Compare with Previous | Blame | View Log