OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [runtime/] [mheap.c] - Rev 848

Go to most recent revision | Compare with Previous | Blame | View Log

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
 
// Page heap.
//
// See malloc.h for overview.
//
// When a MSpan is in the heap free list, state == MSpanFree
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
//
// When a MSpan is allocated, state == MSpanInUse
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
 
#include "runtime.h"
#include "arch.h"
#include "malloc.h"
 
static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32);
static bool MHeap_Grow(MHeap*, uintptr);
static void MHeap_FreeLocked(MHeap*, MSpan*);
static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
static MSpan *BestFit(MSpan*, uintptr, MSpan*);
 
static void
RecordSpan(void *vh, byte *p)
{
	MHeap *h;
	MSpan *s;
 
	h = vh;
	s = (MSpan*)p;
	s->allnext = h->allspans;
	h->allspans = s;
}
 
// Initialize the heap; fetch memory using alloc.
void
runtime_MHeap_Init(MHeap *h, void *(*alloc)(uintptr))
{
	uint32 i;
 
	runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), alloc, RecordSpan, h);
	runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), alloc, nil, nil);
	// h->mapcache needs no init
	for(i=0; i<nelem(h->free); i++)
		runtime_MSpanList_Init(&h->free[i]);
	runtime_MSpanList_Init(&h->large);
	for(i=0; i<nelem(h->central); i++)
		runtime_MCentral_Init(&h->central[i], i);
}
 
// Allocate a new span of npage pages from the heap
// and record its size class in the HeapMap and HeapMapCache.
MSpan*
runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct)
{
	MSpan *s;
 
	runtime_lock(h);
	runtime_purgecachedstats(runtime_m());
	s = MHeap_AllocLocked(h, npage, sizeclass);
	if(s != nil) {
		mstats.heap_inuse += npage<<PageShift;
		if(acct) {
			mstats.heap_objects++;
			mstats.heap_alloc += npage<<PageShift;
		}
	}
	runtime_unlock(h);
	return s;
}
 
static MSpan*
MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass)
{
	uintptr n;
	MSpan *s, *t;
	PageID p;
 
	// Try in fixed-size lists up to max.
	for(n=npage; n < nelem(h->free); n++) {
		if(!runtime_MSpanList_IsEmpty(&h->free[n])) {
			s = h->free[n].next;
			goto HaveSpan;
		}
	}
 
	// Best fit in list of large spans.
	if((s = MHeap_AllocLarge(h, npage)) == nil) {
		if(!MHeap_Grow(h, npage))
			return nil;
		if((s = MHeap_AllocLarge(h, npage)) == nil)
			return nil;
	}
 
HaveSpan:
	// Mark span in use.
	if(s->state != MSpanFree)
		runtime_throw("MHeap_AllocLocked - MSpan not free");
	if(s->npages < npage)
		runtime_throw("MHeap_AllocLocked - bad npages");
	runtime_MSpanList_Remove(s);
	s->state = MSpanInUse;
	mstats.heap_idle -= s->npages<<PageShift;
 
	if(s->npages > npage) {
		// Trim extra and put it back in the heap.
		t = runtime_FixAlloc_Alloc(&h->spanalloc);
		mstats.mspan_inuse = h->spanalloc.inuse;
		mstats.mspan_sys = h->spanalloc.sys;
		runtime_MSpan_Init(t, s->start + npage, s->npages - npage);
		s->npages = npage;
		p = t->start;
		if(sizeof(void*) == 8)
			p -= ((uintptr)h->arena_start>>PageShift);
		if(p > 0)
			h->map[p-1] = s;
		h->map[p] = t;
		h->map[p+t->npages-1] = t;
		*(uintptr*)(t->start<<PageShift) = *(uintptr*)(s->start<<PageShift);  // copy "needs zeroing" mark
		t->state = MSpanInUse;
		MHeap_FreeLocked(h, t);
	}
 
	if(*(uintptr*)(s->start<<PageShift) != 0)
		runtime_memclr((byte*)(s->start<<PageShift), s->npages<<PageShift);
 
	// Record span info, because gc needs to be
	// able to map interior pointer to containing span.
	s->sizeclass = sizeclass;
	p = s->start;
	if(sizeof(void*) == 8)
		p -= ((uintptr)h->arena_start>>PageShift);
	for(n=0; n<npage; n++)
		h->map[p+n] = s;
	return s;
}
 
// Allocate a span of exactly npage pages from the list of large spans.
static MSpan*
MHeap_AllocLarge(MHeap *h, uintptr npage)
{
	return BestFit(&h->large, npage, nil);
}
 
// Search list for smallest span with >= npage pages.
// If there are multiple smallest spans, take the one
// with the earliest starting address.
static MSpan*
BestFit(MSpan *list, uintptr npage, MSpan *best)
{
	MSpan *s;
 
	for(s=list->next; s != list; s=s->next) {
		if(s->npages < npage)
			continue;
		if(best == nil
		|| s->npages < best->npages
		|| (s->npages == best->npages && s->start < best->start))
			best = s;
	}
	return best;
}
 
// Try to add at least npage pages of memory to the heap,
// returning whether it worked.
static bool
MHeap_Grow(MHeap *h, uintptr npage)
{
	uintptr ask;
	void *v;
	MSpan *s;
	PageID p;
 
	// Ask for a big chunk, to reduce the number of mappings
	// the operating system needs to track; also amortizes
	// the overhead of an operating system mapping.
	// Allocate a multiple of 64kB (16 pages).
	npage = (npage+15)&~15;
	ask = npage<<PageShift;
	if(ask < HeapAllocChunk)
		ask = HeapAllocChunk;
 
	v = runtime_MHeap_SysAlloc(h, ask);
	if(v == nil) {
		if(ask > (npage<<PageShift)) {
			ask = npage<<PageShift;
			v = runtime_MHeap_SysAlloc(h, ask);
		}
		if(v == nil) {
			runtime_printf("runtime: out of memory: cannot allocate %llu-byte block (%llu in use)\n", (unsigned long long)ask, (unsigned long long)mstats.heap_sys);
			return false;
		}
	}
	mstats.heap_sys += ask;
 
	// Create a fake "in use" span and free it, so that the
	// right coalescing happens.
	s = runtime_FixAlloc_Alloc(&h->spanalloc);
	mstats.mspan_inuse = h->spanalloc.inuse;
	mstats.mspan_sys = h->spanalloc.sys;
	runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
	p = s->start;
	if(sizeof(void*) == 8)
		p -= ((uintptr)h->arena_start>>PageShift);
	h->map[p] = s;
	h->map[p + s->npages - 1] = s;
	s->state = MSpanInUse;
	MHeap_FreeLocked(h, s);
	return true;
}
 
// Look up the span at the given address.
// Address is guaranteed to be in map
// and is guaranteed to be start or end of span.
MSpan*
runtime_MHeap_Lookup(MHeap *h, void *v)
{
	uintptr p;
 
	p = (uintptr)v;
	if(sizeof(void*) == 8)
		p -= (uintptr)h->arena_start;
	return h->map[p >> PageShift];
}
 
// Look up the span at the given address.
// Address is *not* guaranteed to be in map
// and may be anywhere in the span.
// Map entries for the middle of a span are only
// valid for allocated spans.  Free spans may have
// other garbage in their middles, so we have to
// check for that.
MSpan*
runtime_MHeap_LookupMaybe(MHeap *h, void *v)
{
	MSpan *s;
	PageID p, q;
 
	if((byte*)v < h->arena_start || (byte*)v >= h->arena_used)
		return nil;
	p = (uintptr)v>>PageShift;
	q = p;
	if(sizeof(void*) == 8)
		q -= (uintptr)h->arena_start >> PageShift;
	s = h->map[q];
	if(s == nil || p < s->start || p - s->start >= s->npages)
		return nil;
	if(s->state != MSpanInUse)
		return nil;
	return s;
}
 
// Free the span back into the heap.
void
runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
{
	runtime_lock(h);
	runtime_purgecachedstats(runtime_m());
	mstats.heap_inuse -= s->npages<<PageShift;
	if(acct) {
		mstats.heap_alloc -= s->npages<<PageShift;
		mstats.heap_objects--;
	}
	MHeap_FreeLocked(h, s);
	runtime_unlock(h);
}
 
static void
MHeap_FreeLocked(MHeap *h, MSpan *s)
{
	uintptr *sp, *tp;
	MSpan *t;
	PageID p;
 
	if(s->state != MSpanInUse || s->ref != 0) {
		// runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d\n", s, s->start<<PageShift, s->state, s->ref);
		runtime_throw("MHeap_FreeLocked - invalid free");
	}
	mstats.heap_idle += s->npages<<PageShift;
	s->state = MSpanFree;
	runtime_MSpanList_Remove(s);
	sp = (uintptr*)(s->start<<PageShift);
 
	// Coalesce with earlier, later spans.
	p = s->start;
	if(sizeof(void*) == 8)
		p -= (uintptr)h->arena_start >> PageShift;
	if(p > 0 && (t = h->map[p-1]) != nil && t->state != MSpanInUse) {
		tp = (uintptr*)(t->start<<PageShift);
		*tp |= *sp;	// propagate "needs zeroing" mark
		s->start = t->start;
		s->npages += t->npages;
		p -= t->npages;
		h->map[p] = s;
		runtime_MSpanList_Remove(t);
		t->state = MSpanDead;
		runtime_FixAlloc_Free(&h->spanalloc, t);
		mstats.mspan_inuse = h->spanalloc.inuse;
		mstats.mspan_sys = h->spanalloc.sys;
	}
	if(p+s->npages < nelem(h->map) && (t = h->map[p+s->npages]) != nil && t->state != MSpanInUse) {
		tp = (uintptr*)(t->start<<PageShift);
		*sp |= *tp;	// propagate "needs zeroing" mark
		s->npages += t->npages;
		h->map[p + s->npages - 1] = s;
		runtime_MSpanList_Remove(t);
		t->state = MSpanDead;
		runtime_FixAlloc_Free(&h->spanalloc, t);
		mstats.mspan_inuse = h->spanalloc.inuse;
		mstats.mspan_sys = h->spanalloc.sys;
	}
 
	// Insert s into appropriate list.
	if(s->npages < nelem(h->free))
		runtime_MSpanList_Insert(&h->free[s->npages], s);
	else
		runtime_MSpanList_Insert(&h->large, s);
 
	// TODO(rsc): IncrementalScavenge() to return memory to OS.
}
 
// Initialize a new span with the given start and npages.
void
runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages)
{
	span->next = nil;
	span->prev = nil;
	span->start = start;
	span->npages = npages;
	span->freelist = nil;
	span->ref = 0;
	span->sizeclass = 0;
	span->state = 0;
}
 
// Initialize an empty doubly-linked list.
void
runtime_MSpanList_Init(MSpan *list)
{
	list->state = MSpanListHead;
	list->next = list;
	list->prev = list;
}
 
void
runtime_MSpanList_Remove(MSpan *span)
{
	if(span->prev == nil && span->next == nil)
		return;
	span->prev->next = span->next;
	span->next->prev = span->prev;
	span->prev = nil;
	span->next = nil;
}
 
bool
runtime_MSpanList_IsEmpty(MSpan *list)
{
	return list->next == list;
}
 
void
runtime_MSpanList_Insert(MSpan *list, MSpan *span)
{
	if(span->next != nil || span->prev != nil) {
		// runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
		runtime_throw("MSpanList_Insert");
	}
	span->next = list->next;
	span->prev = list;
	span->next->prev = span;
	span->prev->next = span;
}
 
 
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.