URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libitm/] [dispatch.h] - Rev 737
Compare with Previous | Blame | View Log
/* Copyright (C) 2011 Free Software Foundation, Inc. Contributed by Torvald Riegel <triegel@redhat.com>. This file is part of the GNU Transactional Memory Library (libitm). Libitm is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libitm is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>. */ #ifndef DISPATCH_H #define DISPATCH_H 1 #include "libitm.h" #include "common.h" // Creates ABI load/store methods (can be made virtual or static using M, // use M2 to create separate methods names for virtual and static) // The _PV variants are for the pure-virtual methods in the base class. #define ITM_READ_M(T, LSMOD, M, M2) \ M _ITM_TYPE_##T ITM_REGPARM ITM_##LSMOD##T##M2 (const _ITM_TYPE_##T *ptr) \ { \ return load(ptr, abi_dispatch::LSMOD); \ } #define ITM_READ_M_PV(T, LSMOD, M, M2) \ M _ITM_TYPE_##T ITM_REGPARM ITM_##LSMOD##T##M2 (const _ITM_TYPE_##T *ptr) \ = 0; #define ITM_WRITE_M(T, LSMOD, M, M2) \ M void ITM_REGPARM ITM_##LSMOD##T##M2 (_ITM_TYPE_##T *ptr, \ _ITM_TYPE_##T val) \ { \ store(ptr, val, abi_dispatch::LSMOD); \ } #define ITM_WRITE_M_PV(T, LSMOD, M, M2) \ M void ITM_REGPARM ITM_##LSMOD##T##M2 (_ITM_TYPE_##T *ptr, \ _ITM_TYPE_##T val) \ = 0; // Creates ABI load/store methods for all load/store modifiers for a particular // type. #define CREATE_DISPATCH_METHODS_T(T, M, M2) \ ITM_READ_M(T, R, M, M2) \ ITM_READ_M(T, RaR, M, M2) \ ITM_READ_M(T, RaW, M, M2) \ ITM_READ_M(T, RfW, M, M2) \ ITM_WRITE_M(T, W, M, M2) \ ITM_WRITE_M(T, WaR, M, M2) \ ITM_WRITE_M(T, WaW, M, M2) #define CREATE_DISPATCH_METHODS_T_PV(T, M, M2) \ ITM_READ_M_PV(T, R, M, M2) \ ITM_READ_M_PV(T, RaR, M, M2) \ ITM_READ_M_PV(T, RaW, M, M2) \ ITM_READ_M_PV(T, RfW, M, M2) \ ITM_WRITE_M_PV(T, W, M, M2) \ ITM_WRITE_M_PV(T, WaR, M, M2) \ ITM_WRITE_M_PV(T, WaW, M, M2) // Creates ABI load/store methods for all types. // See CREATE_DISPATCH_FUNCTIONS for comments. #define CREATE_DISPATCH_METHODS(M, M2) \ CREATE_DISPATCH_METHODS_T (U1, M, M2) \ CREATE_DISPATCH_METHODS_T (U2, M, M2) \ CREATE_DISPATCH_METHODS_T (U4, M, M2) \ CREATE_DISPATCH_METHODS_T (U8, M, M2) \ CREATE_DISPATCH_METHODS_T (F, M, M2) \ CREATE_DISPATCH_METHODS_T (D, M, M2) \ CREATE_DISPATCH_METHODS_T (E, M, M2) \ CREATE_DISPATCH_METHODS_T (CF, M, M2) \ CREATE_DISPATCH_METHODS_T (CD, M, M2) \ CREATE_DISPATCH_METHODS_T (CE, M, M2) #define CREATE_DISPATCH_METHODS_PV(M, M2) \ CREATE_DISPATCH_METHODS_T_PV (U1, M, M2) \ CREATE_DISPATCH_METHODS_T_PV (U2, M, M2) \ CREATE_DISPATCH_METHODS_T_PV (U4, M, M2) \ CREATE_DISPATCH_METHODS_T_PV (U8, M, M2) \ CREATE_DISPATCH_METHODS_T_PV (F, M, M2) \ CREATE_DISPATCH_METHODS_T_PV (D, M, M2) \ CREATE_DISPATCH_METHODS_T_PV (E, M, M2) \ CREATE_DISPATCH_METHODS_T_PV (CF, M, M2) \ CREATE_DISPATCH_METHODS_T_PV (CD, M, M2) \ CREATE_DISPATCH_METHODS_T_PV (CE, M, M2) // Creates memcpy/memmove/memset methods. #define CREATE_DISPATCH_METHODS_MEM() \ virtual void memtransfer(void *dst, const void* src, size_t size, \ bool may_overlap, ls_modifier dst_mod, ls_modifier src_mod) \ { \ memtransfer_static(dst, src, size, may_overlap, dst_mod, src_mod); \ } \ virtual void memset(void *dst, int c, size_t size, ls_modifier mod) \ { \ memset_static(dst, c, size, mod); \ } #define CREATE_DISPATCH_METHODS_MEM_PV() \ virtual void memtransfer(void *dst, const void* src, size_t size, \ bool may_overlap, ls_modifier dst_mod, ls_modifier src_mod) = 0; \ virtual void memset(void *dst, int c, size_t size, ls_modifier mod) = 0; // Creates ABI load/store functions that can target either a class or an // object. #define ITM_READ(T, LSMOD, TARGET, M2) \ _ITM_TYPE_##T ITM_REGPARM _ITM_##LSMOD##T (const _ITM_TYPE_##T *ptr) \ { \ return TARGET ITM_##LSMOD##T##M2(ptr); \ } #define ITM_WRITE(T, LSMOD, TARGET, M2) \ void ITM_REGPARM _ITM_##LSMOD##T (_ITM_TYPE_##T *ptr, _ITM_TYPE_##T val) \ { \ TARGET ITM_##LSMOD##T##M2(ptr, val); \ } // Creates ABI load/store functions for all load/store modifiers for a // particular type. #define CREATE_DISPATCH_FUNCTIONS_T(T, TARGET, M2) \ ITM_READ(T, R, TARGET, M2) \ ITM_READ(T, RaR, TARGET, M2) \ ITM_READ(T, RaW, TARGET, M2) \ ITM_READ(T, RfW, TARGET, M2) \ ITM_WRITE(T, W, TARGET, M2) \ ITM_WRITE(T, WaR, TARGET, M2) \ ITM_WRITE(T, WaW, TARGET, M2) // Creates ABI memcpy/memmove/memset functions. #define ITM_MEMTRANSFER_DEF(TARGET, M2, NAME, READ, WRITE) \ void ITM_REGPARM _ITM_memcpy##NAME(void *dst, const void *src, size_t size) \ { \ TARGET memtransfer##M2 (dst, src, size, \ false, GTM::abi_dispatch::WRITE, GTM::abi_dispatch::READ); \ } \ void ITM_REGPARM _ITM_memmove##NAME(void *dst, const void *src, size_t size) \ { \ TARGET memtransfer##M2 (dst, src, size, \ GTM::abi_dispatch::memmove_overlap_check(dst, src, size, \ GTM::abi_dispatch::WRITE, GTM::abi_dispatch::READ), \ GTM::abi_dispatch::WRITE, GTM::abi_dispatch::READ); \ } #define ITM_MEMSET_DEF(TARGET, M2, WRITE) \ void ITM_REGPARM _ITM_memset##WRITE(void *dst, int c, size_t size) \ { \ TARGET memset##M2 (dst, c, size, GTM::abi_dispatch::WRITE); \ } \ // ??? The number of virtual methods is large (7*4 for integers, 7*6 for FP, // 7*3 for vectors). Is the cache footprint so costly that we should go for // a small table instead (i.e., only have two virtual load/store methods for // each supported type)? Note that this doesn't affect custom code paths at // all because these use only direct calls. // A large cache footprint could especially decrease HTM performance (due // to HTM capacity). We could add the modifier (RaR etc.) as parameter, which // would give us just 4*2+6*2+3*2 functions (so we'd just need one line for // the integer loads/stores), but then the modifier can be checked only at // runtime. // For memcpy/memmove/memset, we just have two virtual methods (memtransfer // and memset). #define CREATE_DISPATCH_FUNCTIONS(TARGET, M2) \ CREATE_DISPATCH_FUNCTIONS_T (U1, TARGET, M2) \ CREATE_DISPATCH_FUNCTIONS_T (U2, TARGET, M2) \ CREATE_DISPATCH_FUNCTIONS_T (U4, TARGET, M2) \ CREATE_DISPATCH_FUNCTIONS_T (U8, TARGET, M2) \ CREATE_DISPATCH_FUNCTIONS_T (F, TARGET, M2) \ CREATE_DISPATCH_FUNCTIONS_T (D, TARGET, M2) \ CREATE_DISPATCH_FUNCTIONS_T (E, TARGET, M2) \ CREATE_DISPATCH_FUNCTIONS_T (CF, TARGET, M2) \ CREATE_DISPATCH_FUNCTIONS_T (CD, TARGET, M2) \ CREATE_DISPATCH_FUNCTIONS_T (CE, TARGET, M2) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RnWt, NONTXNAL, W) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RnWtaR, NONTXNAL, WaR) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RnWtaW, NONTXNAL, WaW) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtWn, R, NONTXNAL) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtWt, R, W) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtWtaR, R, WaR) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtWtaW, R, WaW) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtaRWn, RaR, NONTXNAL) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtaRWt, RaR, W) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtaRWtaR, RaR, WaR) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtaRWtaW, RaR, WaW) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtaWWn, RaW, NONTXNAL) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtaWWt, RaW, W) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtaWWtaR, RaW, WaR) \ ITM_MEMTRANSFER_DEF(TARGET, M2, RtaWWtaW, RaW, WaW) \ ITM_MEMSET_DEF(TARGET, M2, W) \ ITM_MEMSET_DEF(TARGET, M2, WaR) \ ITM_MEMSET_DEF(TARGET, M2, WaW) // Creates ABI load/store functions that delegate to a transactional memcpy. #define ITM_READ_MEMCPY(T, LSMOD, TARGET, M2) \ _ITM_TYPE_##T ITM_REGPARM _ITM_##LSMOD##T (const _ITM_TYPE_##T *ptr)\ { \ _ITM_TYPE_##T v; \ TARGET memtransfer##M2(&v, ptr, sizeof(_ITM_TYPE_##T), false, \ GTM::abi_dispatch::NONTXNAL, GTM::abi_dispatch::LSMOD); \ return v; \ } #define ITM_WRITE_MEMCPY(T, LSMOD, TARGET, M2) \ void ITM_REGPARM _ITM_##LSMOD##T (_ITM_TYPE_##T *ptr, _ITM_TYPE_##T val)\ { \ TARGET memtransfer##M2(ptr, &val, sizeof(_ITM_TYPE_##T), false, \ GTM::abi_dispatch::LSMOD, GTM::abi_dispatch::NONTXNAL); \ } #define CREATE_DISPATCH_FUNCTIONS_T_MEMCPY(T, TARGET, M2) \ ITM_READ_MEMCPY(T, R, TARGET, M2) \ ITM_READ_MEMCPY(T, RaR, TARGET, M2) \ ITM_READ_MEMCPY(T, RaW, TARGET, M2) \ ITM_READ_MEMCPY(T, RfW, TARGET, M2) \ ITM_WRITE_MEMCPY(T, W, TARGET, M2) \ ITM_WRITE_MEMCPY(T, WaR, TARGET, M2) \ ITM_WRITE_MEMCPY(T, WaW, TARGET, M2) namespace GTM HIDDEN { struct gtm_transaction_cp; struct method_group { // Start using a TM method from this group. This constructs required meta // data on demand when this method group is actually used. Will be called // either on first use or after a previous call to fini(). virtual void init() = 0; // Stop using any method from this group for now. This can be used to // destruct meta data as soon as this method group is not used anymore. virtual void fini() = 0; // This can be overriden to implement more light-weight re-initialization. virtual void reinit() { fini(); init(); } }; // This is the base interface that all TM methods have to implement. struct abi_dispatch { public: enum ls_modifier { NONTXNAL, R, RaR, RaW, RfW, W, WaR, WaW }; private: // Disallow copies abi_dispatch(const abi_dispatch &) = delete; abi_dispatch& operator=(const abi_dispatch &) = delete; public: // Starts or restarts a transaction. Is called right before executing the // transactional application code (by either returning from // gtm_thread::begin_transaction or doing the longjmp when restarting). // Returns NO_RESTART if the transaction started successfully. Returns // a real restart reason if it couldn't start and does need to abort. This // allows TM methods to just give up and delegate ensuring progress to the // restart mechanism. If it returns a restart reason, this call must be // idempotent because it will trigger the restart mechanism, which could // switch to a different TM method. virtual gtm_restart_reason begin_or_restart() = 0; // Tries to commit the transaction. Iff this returns true, the transaction // got committed and all per-transaction data will have been reset. // Currently, this is called only for the commit of the outermost // transaction, or when switching to serial mode (which can happen in a // nested transaction). // If privatization safety must be ensured in a quiescence-based way, set // priv_time to a value different to 0. Nontransactional code will not be // executed after this commit until all registered threads' shared_state is // larger than or equal to this value. virtual bool trycommit(gtm_word& priv_time) = 0; // Rolls back a transaction. Called on abort or after trycommit() returned // false. virtual void rollback(gtm_transaction_cp *cp = 0) = 0; // Return an alternative method that is compatible with the current // method but supports closed nesting. Return zero if there is none. // Note that too be compatible, it must be possible to switch to this other // method on begin of a nested transaction without committing or restarting // the parent method. virtual abi_dispatch* closed_nesting_alternative() { return 0; } // Returns true iff this method group supports the current situation. // NUMBER_OF_THREADS is the current number of threads that might execute // transactions. virtual bool supports(unsigned number_of_threads) { return true; } bool read_only () const { return m_read_only; } bool write_through() const { return m_write_through; } bool can_run_uninstrumented_code() const { return m_can_run_uninstrumented_code; } // Returns true iff this TM method supports closed nesting. bool closed_nesting() const { return m_closed_nesting; } method_group* get_method_group() const { return m_method_group; } static void *operator new(size_t s) { return xmalloc (s); } static void operator delete(void *p) { free (p); } public: static bool memmove_overlap_check(void *dst, const void *src, size_t size, ls_modifier dst_mod, ls_modifier src_mod); // Creates the ABI dispatch methods for loads and stores. // ??? Should the dispatch table instead be embedded in the dispatch object // to avoid the indirect lookup in the vtable? CREATE_DISPATCH_METHODS_PV(virtual, ) // Creates the ABI dispatch methods for memcpy/memmove/memset. CREATE_DISPATCH_METHODS_MEM_PV() protected: const bool m_read_only; const bool m_write_through; const bool m_can_run_uninstrumented_code; const bool m_closed_nesting; method_group* const m_method_group; abi_dispatch(bool ro, bool wt, bool uninstrumented, bool closed_nesting, method_group* mg) : m_read_only(ro), m_write_through(wt), m_can_run_uninstrumented_code(uninstrumented), m_closed_nesting(closed_nesting), m_method_group(mg) { } }; } #endif // DISPATCH_H