URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [external/] [jsr166/] [java/] [util/] [concurrent/] [CompletionService.java] - Rev 768
Compare with Previous | Blame | View Log
/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain */ package java.util.concurrent; /** * A service that decouples the production of new asynchronous tasks * from the consumption of the results of completed tasks. Producers * <tt>submit</tt> tasks for execution. Consumers <tt>take</tt> * completed tasks and process their results in the order they * complete. A <tt>CompletionService</tt> can for example be used to * manage asynchronous IO, in which tasks that perform reads are * submitted in one part of a program or system, and then acted upon * in a different part of the program when the reads complete, * possibly in a different order than they were requested. * * <p>Typically, a <tt>CompletionService</tt> relies on a separate * {@link Executor} to actually execute the tasks, in which case the * <tt>CompletionService</tt> only manages an internal completion * queue. The {@link ExecutorCompletionService} class provides an * implementation of this approach. * * <p>Memory consistency effects: Actions in a thread prior to * submitting a task to a {@code CompletionService} * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a> * actions taken by that task, which in turn <i>happen-before</i> * actions following a successful return from the corresponding {@code take()}. * */ public interface CompletionService<V> { /** * Submits a value-returning task for execution and returns a Future * representing the pending results of the task. Upon completion, * this task may be taken or polled. * * @param task the task to submit * @return a Future representing pending completion of the task * @throws RejectedExecutionException if the task cannot be * scheduled for execution * @throws NullPointerException if the task is null */ Future<V> submit(Callable<V> task); /** * Submits a Runnable task for execution and returns a Future * representing that task. Upon completion, this task may be * taken or polled. * * @param task the task to submit * @param result the result to return upon successful completion * @return a Future representing pending completion of the task, * and whose <tt>get()</tt> method will return the given * result value upon completion * @throws RejectedExecutionException if the task cannot be * scheduled for execution * @throws NullPointerException if the task is null */ Future<V> submit(Runnable task, V result); /** * Retrieves and removes the Future representing the next * completed task, waiting if none are yet present. * * @return the Future representing the next completed task * @throws InterruptedException if interrupted while waiting */ Future<V> take() throws InterruptedException; /** * Retrieves and removes the Future representing the next * completed task or <tt>null</tt> if none are present. * * @return the Future representing the next completed task, or * <tt>null</tt> if none are present */ Future<V> poll(); /** * Retrieves and removes the Future representing the next * completed task, waiting if necessary up to the specified wait * time if none are yet present. * * @param timeout how long to wait before giving up, in units of * <tt>unit</tt> * @param unit a <tt>TimeUnit</tt> determining how to interpret the * <tt>timeout</tt> parameter * @return the Future representing the next completed task or * <tt>null</tt> if the specified waiting time elapses * before one is present * @throws InterruptedException if interrupted while waiting */ Future<V> poll(long timeout, TimeUnit unit) throws InterruptedException; }