URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [gnu/] [javax/] [crypto/] [cipher/] [Square.java] - Rev 769
Compare with Previous | Blame | View Log
/* Square.java -- Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc. This file is a part of GNU Classpath. GNU Classpath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GNU Classpath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Classpath; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Linking this library statically or dynamically with other modules is making a combined work based on this library. Thus, the terms and conditions of the GNU General Public License cover the whole combination. As a special exception, the copyright holders of this library give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you may extend this exception to your version of the library, but you are not obligated to do so. If you do not wish to do so, delete this exception statement from your version. */ package gnu.javax.crypto.cipher; import gnu.java.security.Registry; import gnu.java.security.util.Util; import java.security.InvalidKeyException; import java.util.ArrayList; import java.util.Collections; import java.util.Iterator; /** * Square is a 128-bit key, 128-bit block cipher algorithm developed by Joan * Daemen, Lars Knudsen and Vincent Rijmen. * <p> * References: * <ol> * <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/square/">The block * cipher Square</a>.<br> * <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>, <a * href="mailto:lars.knudsen@esat.kuleuven.ac.be">Lars Knudsen</a> and <a * href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li> * </ol> */ public final class Square extends BaseCipher { private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes private static final int DEFAULT_KEY_SIZE = 16; // in bytes private static final int ROUNDS = 8; private static final int ROOT = 0x1F5; // for generating GF(2**8) private static final int[] OFFSET = new int[ROUNDS]; private static final String Sdata = "\uB1CE\uC395\u5AAD\uE702\u4D44\uFB91\u0C87\uA150" + "\uCB67\u54DD\u468F\uE14E\uF0FD\uFCEB\uF9C4\u1A6E" + "\u5EF5\uCC8D\u1C56\u43FE\u0761\uF875\u59FF\u0322" + "\u8AD1\u13EE\u8800\u0E34\u1580\u94E3\uEDB5\u5323" + "\u4B47\u17A7\u9035\uABD8\uB8DF\u4F57\u9A92\uDB1B" + "\u3CC8\u9904\u8EE0\uD77D\u85BB\u402C\u3A45\uF142" + "\u6520\u4118\u7225\u9370\u3605\uF20B\uA379\uEC08" + "\u2731\u32B6\u7CB0\u0A73\u5B7B\uB781\uD20D\u6A26" + "\u9E58\u9C83\u74B3\uAC30\u7A69\u770F\uAE21\uDED0" + "\u2E97\u10A4\u98A8\uD468\u2D62\u296D\u1649\u76C7" + "\uE8C1\u9637\uE5CA\uF4E9\u6312\uC2A6\u14BC\uD328" + "\uAF2F\uE624\u52C6\uA009\uBD8C\uCF5D\u115F\u01C5" + "\u9F3D\uA29B\uC93B\uBE51\u191F\u3F5C\uB2EF\u4ACD" + "\uBFBA\u6F64\uD9F3\u3EB4\uAADC\uD506\uC07E\uF666" + "\u6C84\u7138\uB91D\u7F9D\u488B\u2ADA\uA533\u8239" + "\uD678\u86FA\uE42B\uA91E\u8960\u6BEA\u554C\uF7E2"; /** Substitution boxes for encryption and decryption. */ private static final byte[] Se = new byte[256]; private static final byte[] Sd = new byte[256]; /** Transposition boxes for encryption and decryption. */ private static final int[] Te = new int[256]; private static final int[] Td = new int[256]; /** * KAT vector (from ecb_vk): I=87 KEY=00000000000000000000020000000000 * CT=A9DF031B4E25E89F527EFFF89CB0BEBA */ private static final byte[] KAT_KEY = Util.toBytesFromString("00000000000000000000020000000000"); private static final byte[] KAT_CT = Util.toBytesFromString("A9DF031B4E25E89F527EFFF89CB0BEBA"); /** caches the result of the correctness test, once executed. */ private static Boolean valid; static { int i, j; // re-construct Se box values int limit = Sdata.length(); char c1; for (i = 0, j = 0; i < limit; i++) { c1 = Sdata.charAt(i); Se[j++] = (byte)(c1 >>> 8); Se[j++] = (byte) c1; } // compute Sd box values for (i = 0; i < 256; i++) Sd[Se[i] & 0xFF] = (byte) i; // generate OFFSET values OFFSET[0] = 1; for (i = 1; i < ROUNDS; i++) { OFFSET[i] = mul(OFFSET[i - 1], 2); OFFSET[i - 1] <<= 24; } OFFSET[ROUNDS - 1] <<= 24; // generate Te and Td boxes if we're not reading their values // Notes: // (1) The function mul() computes the product of two elements of GF(2**8) // with ROOT as reduction polynomial. // (2) the values used in computing the Te and Td are the GF(2**8) // coefficients of the diffusion polynomial c(x) and its inverse // (modulo x**4 + 1) d(x), defined in sections 2.1 and 4 of the Square // paper. for (i = 0; i < 256; i++) { j = Se[i] & 0xFF; Te[i] = (Se[i & 3] == 0) ? 0 : mul(j, 2) << 24 | j << 16 | j << 8 | mul(j, 3); j = Sd[i] & 0xFF; Td[i] = (Sd[i & 3] == 0) ? 0 : mul(j, 14) << 24 | mul(j, 9) << 16 | mul(j, 13) << 8 | mul(j, 11); } } /** Trivial 0-arguments constructor. */ public Square() { super(Registry.SQUARE_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE); } private static void square(byte[] in, int i, byte[] out, int j, int[][] K, int[] T, byte[] S) { int a = ((in[i++]) << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ K[0][0]; int b = ((in[i++]) << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ K[0][1]; int c = ((in[i++]) << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ K[0][2]; int d = ((in[i++]) << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i ] & 0xFF) ) ^ K[0][3]; int r, aa, bb, cc, dd; for (r = 1; r < ROUNDS; r++) { // R - 1 full rounds aa = T[(a >>> 24) ] ^ rot32R(T[(b >>> 24) ], 8) ^ rot32R(T[(c >>> 24) ], 16) ^ rot32R(T[(d >>> 24) ], 24) ^ K[r][0]; bb = T[(a >>> 16) & 0xFF] ^ rot32R(T[(b >>> 16) & 0xFF], 8) ^ rot32R(T[(c >>> 16) & 0xFF], 16) ^ rot32R(T[(d >>> 16) & 0xFF], 24) ^ K[r][1]; cc = T[(a >>> 8) & 0xFF] ^ rot32R(T[(b >>> 8) & 0xFF], 8) ^ rot32R(T[(c >>> 8) & 0xFF], 16) ^ rot32R(T[(d >>> 8) & 0xFF], 24) ^ K[r][2]; dd = T[ a & 0xFF] ^ rot32R(T[ b & 0xFF], 8) ^ rot32R(T[ c & 0xFF], 16) ^ rot32R(T[ d & 0xFF], 24) ^ K[r][3]; a = aa; b = bb; c = cc; d = dd; } // last round (diffusion becomes only transposition) aa = ((S[(a >>> 24) ] ) << 24 | (S[(b >>> 24) ] & 0xFF) << 16 | (S[(c >>> 24) ] & 0xFF) << 8 | (S[(d >>> 24) ] & 0xFF) ) ^ K[r][0]; bb = ((S[(a >>> 16) & 0xFF] ) << 24 | (S[(b >>> 16) & 0xFF] & 0xFF) << 16 | (S[(c >>> 16) & 0xFF] & 0xFF) << 8 | (S[(d >>> 16) & 0xFF] & 0xFF) ) ^ K[r][1]; cc = ((S[(a >>> 8) & 0xFF] ) << 24 | (S[(b >>> 8) & 0xFF] & 0xFF) << 16 | (S[(c >>> 8) & 0xFF] & 0xFF) << 8 | (S[(d >>> 8) & 0xFF] & 0xFF) ) ^ K[r][2]; dd = ((S[ a & 0xFF] ) << 24 | (S[ b & 0xFF] & 0xFF) << 16 | (S[ c & 0xFF] & 0xFF) << 8 | (S[ d & 0xFF] & 0xFF) ) ^ K[r][3]; out[j++] = (byte)(aa >>> 24); out[j++] = (byte)(aa >>> 16); out[j++] = (byte)(aa >>> 8); out[j++] = (byte) aa; out[j++] = (byte)(bb >>> 24); out[j++] = (byte)(bb >>> 16); out[j++] = (byte)(bb >>> 8); out[j++] = (byte) bb; out[j++] = (byte)(cc >>> 24); out[j++] = (byte)(cc >>> 16); out[j++] = (byte)(cc >>> 8); out[j++] = (byte) cc; out[j++] = (byte)(dd >>> 24); out[j++] = (byte)(dd >>> 16); out[j++] = (byte)(dd >>> 8); out[j ] = (byte) dd; } /** * Applies the Theta function to an input <i>in</i> in order to produce in * <i>out</i> an internal session sub-key. * <p> * Both <i>in</i> and <i>out</i> are arrays of four ints. * <p> * Pseudo-code is: * <pre> * for (i = 0; i < 4; i++) * { * out[i] = 0; * for (j = 0, n = 24; j < 4; j++, n -= 8) * { * k = mul(in[i] >>> 24, G[0][j]) ˆ mul(in[i] >>> 16, G[1][j]) * ˆ mul(in[i] >>> 8, G[2][j]) ˆ mul(in[i], G[3][j]); * out[i] ˆ= k << n; * } * } * </pre> */ private static void transform(int[] in, int[] out) { int l3, l2, l1, l0, m; for (int i = 0; i < 4; i++) { l3 = in[i]; l2 = l3 >>> 8; l1 = l3 >>> 16; l0 = l3 >>> 24; m = ((mul(l0, 2) ^ mul(l1, 3) ^ l2 ^ l3) & 0xFF) << 24; m ^= ((l0 ^ mul(l1, 2) ^ mul(l2, 3) ^ l3) & 0xFF) << 16; m ^= ((l0 ^ l1 ^ mul(l2, 2) ^ mul(l3, 3)) & 0xFF) << 8; m ^= ((mul(l0, 3) ^ l1 ^ l2 ^ mul(l3, 2)) & 0xFF); out[i] = m; } } /** * Left rotate a 32-bit chunk. * * @param x the 32-bit data to rotate * @param s number of places to left-rotate by * @return the newly permutated value. */ private static int rot32L(int x, int s) { return x << s | x >>> (32 - s); } /** * Right rotate a 32-bit chunk. * * @param x the 32-bit data to rotate * @param s number of places to right-rotate by * @return the newly permutated value. */ private static int rot32R(int x, int s) { return x >>> s | x << (32 - s); } /** * Returns the product of two binary numbers a and b, using the generator ROOT * as the modulus: p = (a * b) mod ROOT. ROOT Generates a suitable Galois * Field in GF(2**8). * <p> * For best performance call it with abs(b) < abs(a). * * @param a operand for multiply. * @param b operand for multiply. * @return the result of (a * b) % ROOT. */ private static final int mul(int a, int b) { if (a == 0) return 0; a &= 0xFF; b &= 0xFF; int result = 0; while (b != 0) { if ((b & 0x01) != 0) result ^= a; b >>>= 1; a <<= 1; if (a > 0xFF) a ^= ROOT; } return result & 0xFF; } public Object clone() { Square result = new Square(); result.currentBlockSize = this.currentBlockSize; return result; } public Iterator blockSizes() { ArrayList al = new ArrayList(); al.add(Integer.valueOf(DEFAULT_BLOCK_SIZE)); return Collections.unmodifiableList(al).iterator(); } public Iterator keySizes() { ArrayList al = new ArrayList(); al.add(Integer.valueOf(DEFAULT_KEY_SIZE)); return Collections.unmodifiableList(al).iterator(); } public Object makeKey(byte[] uk, int bs) throws InvalidKeyException { if (bs != DEFAULT_BLOCK_SIZE) throw new IllegalArgumentException(); if (uk == null) throw new InvalidKeyException("Empty key"); if (uk.length != DEFAULT_KEY_SIZE) throw new InvalidKeyException("Key is not 128-bit."); int[][] Ke = new int[ROUNDS + 1][4]; int[][] Kd = new int[ROUNDS + 1][4]; int[][] tK = new int[ROUNDS + 1][4]; int i = 0; Ke[0][0] = (uk[i++] & 0xFF) << 24 | (uk[i++] & 0xFF) << 16 | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF); tK[0][0] = Ke[0][0]; Ke[0][1] = (uk[i++] & 0xFF) << 24 | (uk[i++] & 0xFF) << 16 | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF); tK[0][1] = Ke[0][1]; Ke[0][2] = (uk[i++] & 0xFF) << 24 | (uk[i++] & 0xFF) << 16 | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF); tK[0][2] = Ke[0][2]; Ke[0][3] = (uk[i++] & 0xFF) << 24 | (uk[i++] & 0xFF) << 16 | (uk[i++] & 0xFF) << 8 | (uk[i ] & 0xFF); tK[0][3] = Ke[0][3]; int j; for (i = 1, j = 0; i < ROUNDS + 1; i++, j++) { tK[i][0] = tK[j][0] ^ rot32L(tK[j][3], 8) ^ OFFSET[j]; tK[i][1] = tK[j][1] ^ tK[i][0]; tK[i][2] = tK[j][2] ^ tK[i][1]; tK[i][3] = tK[j][3] ^ tK[i][2]; System.arraycopy(tK[i], 0, Ke[i], 0, 4); transform(Ke[j], Ke[j]); } for (i = 0; i < ROUNDS; i++) System.arraycopy(tK[ROUNDS - i], 0, Kd[i], 0, 4); transform(tK[0], Kd[ROUNDS]); return new Object[] { Ke, Kd }; } public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (bs != DEFAULT_BLOCK_SIZE) throw new IllegalArgumentException(); int[][] K = (int[][])((Object[]) k)[0]; square(in, i, out, j, K, Te, Se); } public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (bs != DEFAULT_BLOCK_SIZE) throw new IllegalArgumentException(); int[][] K = (int[][])((Object[]) k)[1]; square(in, i, out, j, K, Td, Sd); } public boolean selfTest() { if (valid == null) { boolean result = super.selfTest(); // do symmetry tests if (result) result = testKat(KAT_KEY, KAT_CT); valid = Boolean.valueOf(result); } return valid.booleanValue(); } }