URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libquadmath/] [math/] [fmaq.c] - Rev 841
Go to most recent revision | Compare with Previous | Blame | View Log
/* Compute x * y + z as ternary operation. Copyright (C) 2010 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Jakub Jelinek <jakub@redhat.com>, 2010. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include "quadmath-imp.h" #include <math.h> #include <float.h> #ifdef HAVE_FENV_H # include <fenv.h> # if defined HAVE_FEHOLDEXCEPT && defined HAVE_FESETROUND \ && defined HAVE_FEUPDATEENV && defined HAVE_FETESTEXCEPT \ && defined FE_TOWARDZERO && defined FE_INEXACT # define USE_FENV_H # endif #endif /* This implementation uses rounding to odd to avoid problems with double rounding. See a paper by Boldo and Melquiond: http://www.lri.fr/~melquion/doc/08-tc.pdf */ __float128 fmaq (__float128 x, __float128 y, __float128 z) { ieee854_float128 u, v, w; int adjust = 0; u.value = x; v.value = y; w.value = z; if (__builtin_expect (u.ieee.exponent + v.ieee.exponent >= 0x7fff + IEEE854_FLOAT128_BIAS - FLT128_MANT_DIG, 0) || __builtin_expect (u.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0) || __builtin_expect (v.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0) || __builtin_expect (w.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0) || __builtin_expect (u.ieee.exponent + v.ieee.exponent <= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG, 0)) { /* If z is Inf, but x and y are finite, the result should be z rather than NaN. */ if (w.ieee.exponent == 0x7fff && u.ieee.exponent != 0x7fff && v.ieee.exponent != 0x7fff) return (z + x) + y; /* If x or y or z is Inf/NaN, or if fma will certainly overflow, or if x * y is less than half of FLT128_DENORM_MIN, compute as x * y + z. */ if (u.ieee.exponent == 0x7fff || v.ieee.exponent == 0x7fff || w.ieee.exponent == 0x7fff || u.ieee.exponent + v.ieee.exponent > 0x7fff + IEEE854_FLOAT128_BIAS || u.ieee.exponent + v.ieee.exponent < IEEE854_FLOAT128_BIAS - FLT128_MANT_DIG - 2) return x * y + z; if (u.ieee.exponent + v.ieee.exponent >= 0x7fff + IEEE854_FLOAT128_BIAS - FLT128_MANT_DIG) { /* Compute 1p-113 times smaller result and multiply at the end. */ if (u.ieee.exponent > v.ieee.exponent) u.ieee.exponent -= FLT128_MANT_DIG; else v.ieee.exponent -= FLT128_MANT_DIG; /* If x + y exponent is very large and z exponent is very small, it doesn't matter if we don't adjust it. */ if (w.ieee.exponent > FLT128_MANT_DIG) w.ieee.exponent -= FLT128_MANT_DIG; adjust = 1; } else if (w.ieee.exponent >= 0x7fff - FLT128_MANT_DIG) { /* Similarly. If z exponent is very large and x and y exponents are very small, it doesn't matter if we don't adjust it. */ if (u.ieee.exponent > v.ieee.exponent) { if (u.ieee.exponent > FLT128_MANT_DIG) u.ieee.exponent -= FLT128_MANT_DIG; } else if (v.ieee.exponent > FLT128_MANT_DIG) v.ieee.exponent -= FLT128_MANT_DIG; w.ieee.exponent -= FLT128_MANT_DIG; adjust = 1; } else if (u.ieee.exponent >= 0x7fff - FLT128_MANT_DIG) { u.ieee.exponent -= FLT128_MANT_DIG; if (v.ieee.exponent) v.ieee.exponent += FLT128_MANT_DIG; else v.value *= 0x1p113Q; } else if (v.ieee.exponent >= 0x7fff - FLT128_MANT_DIG) { v.ieee.exponent -= FLT128_MANT_DIG; if (u.ieee.exponent) u.ieee.exponent += FLT128_MANT_DIG; else u.value *= 0x1p113Q; } else /* if (u.ieee.exponent + v.ieee.exponent <= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG) */ { if (u.ieee.exponent > v.ieee.exponent) u.ieee.exponent += 2 * FLT128_MANT_DIG; else v.ieee.exponent += 2 * FLT128_MANT_DIG; if (w.ieee.exponent <= 4 * FLT128_MANT_DIG + 4) { if (w.ieee.exponent) w.ieee.exponent += 2 * FLT128_MANT_DIG; else w.value *= 0x1p226Q; adjust = -1; } /* Otherwise x * y should just affect inexact and nothing else. */ } x = u.value; y = v.value; z = w.value; } /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ #define C ((1LL << (FLT128_MANT_DIG + 1) / 2) + 1) __float128 x1 = x * C; __float128 y1 = y * C; __float128 m1 = x * y; x1 = (x - x1) + x1; y1 = (y - y1) + y1; __float128 x2 = x - x1; __float128 y2 = y - y1; __float128 m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ __float128 a1 = z + m1; __float128 t1 = a1 - z; __float128 t2 = a1 - t1; t1 = m1 - t1; t2 = z - t2; __float128 a2 = t1 + t2; #ifdef USE_FENV_H fenv_t env; feholdexcept (&env); fesetround (FE_TOWARDZERO); #endif /* Perform m2 + a2 addition with round to odd. */ u.value = a2 + m2; if (__builtin_expect (adjust == 0, 1)) { #ifdef USE_FENV_H if ((u.ieee.mant_low & 1) == 0 && u.ieee.exponent != 0x7fff) u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0; feupdateenv (&env); #endif /* Result is a1 + u.value. */ return a1 + u.value; } else if (__builtin_expect (adjust > 0, 1)) { #ifdef USE_FENV_H if ((u.ieee.mant_low & 1) == 0 && u.ieee.exponent != 0x7fff) u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0; feupdateenv (&env); #endif /* Result is a1 + u.value, scaled up. */ return (a1 + u.value) * 0x1p113Q; } else { #ifdef USE_FENV_H if ((u.ieee.mant_low & 1) == 0) u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0; #endif v.value = a1 + u.value; /* Ensure the addition is not scheduled after fetestexcept call. */ asm volatile ("" : : "m" (v)); #ifdef USE_FENV_H int j = fetestexcept (FE_INEXACT) != 0; feupdateenv (&env); #else int j = 0; #endif /* Ensure the following computations are performed in default rounding mode instead of just reusing the round to zero computation. */ asm volatile ("" : "=m" (u) : "m" (u)); /* If a1 + u.value is exact, the only rounding happens during scaling down. */ if (j == 0) return v.value * 0x1p-226Q; /* If result rounded to zero is not subnormal, no double rounding will occur. */ if (v.ieee.exponent > 226) return (a1 + u.value) * 0x1p-226Q; /* If v.value * 0x1p-226Q with round to zero is a subnormal above or equal to FLT128_MIN / 2, then v.value * 0x1p-226Q shifts mantissa down just by 1 bit, which means v.ieee.mant_low |= j would change the round bit, not sticky or guard bit. v.value * 0x1p-226Q never normalizes by shifting up, so round bit plus sticky bit should be already enough for proper rounding. */ if (v.ieee.exponent == 226) { /* v.ieee.mant_low & 2 is LSB bit of the result before rounding, v.ieee.mant_low & 1 is the round bit and j is our sticky bit. In round-to-nearest 001 rounds down like 00, 011 rounds up, even though 01 rounds down (thus we need to adjust), 101 rounds down like 10 and 111 rounds up like 11. */ if ((v.ieee.mant_low & 3) == 1) { v.value *= 0x1p-226Q; if (v.ieee.negative) return v.value - 0x1p-16494Q /* __FLT128_DENORM_MIN__ */; else return v.value + 0x1p-16494Q /* __FLT128_DENORM_MIN__ */; } else return v.value * 0x1p-226Q; } v.ieee.mant_low |= j; return v.value * 0x1p-226Q; } }
Go to most recent revision | Compare with Previous | Blame | View Log