URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libquadmath/] [math/] [rem_pio2q.c] - Rev 791
Go to most recent revision | Compare with Previous | Blame | View Log
#include "quadmath-imp.h" #include <math.h> /* @(#)k_rem_pio2.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) * double x[],y[]; int e0,nx,prec; int ipio2[]; * * __kernel_rem_pio2 return the last three digits of N with * y = x - N*pi/2 * so that |y| < pi/2. * * The method is to compute the integer (mod 8) and fraction parts of * (2/pi)*x without doing the full multiplication. In general we * skip the part of the product that are known to be a huge integer ( * more accurately, = 0 mod 8 ). Thus the number of operations are * independent of the exponent of the input. * * (2/pi) is represented by an array of 24-bit integers in ipio2[]. * * Input parameters: * x[] The input value (must be positive) is broken into nx * pieces of 24-bit integers in double precision format. * x[i] will be the i-th 24 bit of x. The scaled exponent * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 * match x's up to 24 bits. * * Example of breaking a double positive z into x[0]+x[1]+x[2]: * e0 = ilogb(z)-23 * z = scalbn(z,-e0) * for i = 0,1,2 * x[i] = floor(z) * z = (z-x[i])*2**24 * * * y[] ouput result in an array of double precision numbers. * The dimension of y[] is: * 24-bit precision 1 * 53-bit precision 2 * 64-bit precision 2 * 113-bit precision 3 * The actual value is the sum of them. Thus for 113-bit * precision, one may have to do something like: * * long double t,w,r_head, r_tail; * t = (long double)y[2] + (long double)y[1]; * w = (long double)y[0]; * r_head = t+w; * r_tail = w - (r_head - t); * * e0 The exponent of x[0] * * nx dimension of x[] * * prec an integer indicating the precision: * 0 24 bits (single) * 1 53 bits (double) * 2 64 bits (extended) * 3 113 bits (quad) * * ipio2[] * integer array, contains the (24*i)-th to (24*i+23)-th * bit of 2/pi after binary point. The corresponding * floating value is * * ipio2[i] * 2^(-24(i+1)). * * External function: * double scalbn(), floor(); * * * Here is the description of some local variables: * * jk jk+1 is the initial number of terms of ipio2[] needed * in the computation. The recommended value is 2,3,4, * 6 for single, double, extended,and quad. * * jz local integer variable indicating the number of * terms of ipio2[] used. * * jx nx - 1 * * jv index for pointing to the suitable ipio2[] for the * computation. In general, we want * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 * is an integer. Thus * e0-3-24*jv >= 0 or (e0-3)/24 >= jv * Hence jv = max(0,(e0-3)/24). * * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. * * q[] double array with integral value, representing the * 24-bits chunk of the product of x and 2/pi. * * q0 the corresponding exponent of q[0]. Note that the * exponent for q[i] would be q0-24*i. * * PIo2[] double precision array, obtained by cutting pi/2 * into 24 bits chunks. * * f[] ipio2[] in floating point * * iq[] integer array by breaking up q[] in 24-bits chunk. * * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] * * ih integer. If >0 it indicates q[] is >= 0.5, hence * it also indicates the *sign* of the result. * */ /* * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ static const double PIo2[] = { 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ }; static const double zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ static int __quadmath_kernel_rem_pio2 (double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) { int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; double z,fw,f[20],fq[20],q[20]; /* initialize jk*/ jk = init_jk[prec]; jp = jk; /* determine jx,jv,q0, note that 3>q0 */ jx = nx-1; jv = (e0-3)/24; if(jv<0) jv=0; q0 = e0-24*(jv+1); /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ j = jv-jx; m = jx+jk; for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; /* compute q[0],q[1],...q[jk] */ for (i=0;i<=jk;i++) { for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; } jz = jk; recompute: /* distill q[] into iq[] reversingly */ for(i=0,j=jz,z=q[jz];j>0;i++,j--) { fw = (double)((int32_t)(twon24* z)); iq[i] = (int32_t)(z-two24*fw); z = q[j-1]+fw; } /* compute n */ z = scalbn(z,q0); /* actual value of z */ z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ n = (int32_t) z; z -= (double)n; ih = 0; if(q0>0) { /* need iq[jz-1] to determine n */ i = (iq[jz-1]>>(24-q0)); n += i; iq[jz-1] -= i<<(24-q0); ih = iq[jz-1]>>(23-q0); } else if(q0==0) ih = iq[jz-1]>>23; else if(z>=0.5) ih=2; if(ih>0) { /* q > 0.5 */ n += 1; carry = 0; for(i=0;i<jz ;i++) { /* compute 1-q */ j = iq[i]; if(carry==0) { if(j!=0) { carry = 1; iq[i] = 0x1000000- j; } } else iq[i] = 0xffffff - j; } if(q0>0) { /* rare case: chance is 1 in 12 */ switch(q0) { case 1: iq[jz-1] &= 0x7fffff; break; case 2: iq[jz-1] &= 0x3fffff; break; } } if(ih==2) { z = one - z; if(carry!=0) z -= scalbn(one,q0); } } /* check if recomputation is needed */ if(z==zero) { j = 0; for (i=jz-1;i>=jk;i--) j |= iq[i]; if(j==0) { /* need recomputation */ for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ f[jx+i] = (double) ipio2[jv+i]; for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; } jz += k; goto recompute; } } /* chop off zero terms */ if(z==0.0) { jz -= 1; q0 -= 24; while(iq[jz]==0) { jz--; q0-=24;} } else { /* break z into 24-bit if necessary */ z = scalbn(z,-q0); if(z>=two24) { fw = (double)((int32_t)(twon24*z)); iq[jz] = (int32_t)(z-two24*fw); jz += 1; q0 += 24; iq[jz] = (int32_t) fw; } else iq[jz] = (int32_t) z ; } /* convert integer "bit" chunk to floating-point value */ fw = scalbn(one,q0); for(i=jz;i>=0;i--) { q[i] = fw*(double)iq[i]; fw*=twon24; } /* compute PIo2[0,...,jp]*q[jz,...,0] */ for(i=jz;i>=0;i--) { for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; fq[jz-i] = fw; } /* compress fq[] into y[] */ switch(prec) { case 0: fw = 0.0; for (i=jz;i>=0;i--) fw += fq[i]; y[0] = (ih==0)? fw: -fw; break; case 1: case 2: fw = 0.0; for (i=jz;i>=0;i--) fw += fq[i]; y[0] = (ih==0)? fw: -fw; fw = fq[0]-fw; for (i=1;i<=jz;i++) fw += fq[i]; y[1] = (ih==0)? fw: -fw; break; case 3: /* painful */ for (i=jz;i>0;i--) { #if __FLT_EVAL_METHOD__ != 0 volatile #endif double fv = (double)(fq[i-1]+fq[i]); fq[i] += fq[i-1]-fv; fq[i-1] = fv; } for (i=jz;i>1;i--) { #if __FLT_EVAL_METHOD__ != 0 volatile #endif double fv = (double)(fq[i-1]+fq[i]); fq[i] += fq[i-1]-fv; fq[i-1] = fv; } for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; if(ih==0) { y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; } else { y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; } } return n&7; } /* Quad-precision floating point argument reduction. Copyright (C) 1999 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Jakub Jelinek <jj@ultra.linux.cz> The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ /* * Table of constants for 2/pi, 5628 hexadecimal digits of 2/pi */ static const int32_t two_over_pi[] = { 0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62, 0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a, 0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129, 0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41, 0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8, 0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf, 0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5, 0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08, 0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3, 0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880, 0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b, 0x47c419, 0xc367cd, 0xdce809, 0x2a8359, 0xc4768b, 0x961ca6, 0xddaf44, 0xd15719, 0x053ea5, 0xff0705, 0x3f7e33, 0xe832c2, 0xde4f98, 0x327dbb, 0xc33d26, 0xef6b1e, 0x5ef89f, 0x3a1f35, 0xcaf27f, 0x1d87f1, 0x21907c, 0x7c246a, 0xfa6ed5, 0x772d30, 0x433b15, 0xc614b5, 0x9d19c3, 0xc2c4ad, 0x414d2c, 0x5d000c, 0x467d86, 0x2d71e3, 0x9ac69b, 0x006233, 0x7cd2b4, 0x97a7b4, 0xd55537, 0xf63ed7, 0x1810a3, 0xfc764d, 0x2a9d64, 0xabd770, 0xf87c63, 0x57b07a, 0xe71517, 0x5649c0, 0xd9d63b, 0x3884a7, 0xcb2324, 0x778ad6, 0x23545a, 0xb91f00, 0x1b0af1, 0xdfce19, 0xff319f, 0x6a1e66, 0x615799, 0x47fbac, 0xd87f7e, 0xb76522, 0x89e832, 0x60bfe6, 0xcdc4ef, 0x09366c, 0xd43f5d, 0xd7de16, 0xde3b58, 0x929bde, 0x2822d2, 0xe88628, 0x4d58e2, 0x32cac6, 0x16e308, 0xcb7de0, 0x50c017, 0xa71df3, 0x5be018, 0x34132e, 0x621283, 0x014883, 0x5b8ef5, 0x7fb0ad, 0xf2e91e, 0x434a48, 0xd36710, 0xd8ddaa, 0x425fae, 0xce616a, 0xa4280a, 0xb499d3, 0xf2a606, 0x7f775c, 0x83c2a3, 0x883c61, 0x78738a, 0x5a8caf, 0xbdd76f, 0x63a62d, 0xcbbff4, 0xef818d, 0x67c126, 0x45ca55, 0x36d9ca, 0xd2a828, 0x8d61c2, 0x77c912, 0x142604, 0x9b4612, 0xc459c4, 0x44c5c8, 0x91b24d, 0xf31700, 0xad43d4, 0xe54929, 0x10d5fd, 0xfcbe00, 0xcc941e, 0xeece70, 0xf53e13, 0x80f1ec, 0xc3e7b3, 0x28f8c7, 0x940593, 0x3e71c1, 0xb3092e, 0xf3450b, 0x9c1288, 0x7b20ab, 0x9fb52e, 0xc29247, 0x2f327b, 0x6d550c, 0x90a772, 0x1fe76b, 0x96cb31, 0x4a1679, 0xe27941, 0x89dff4, 0x9794e8, 0x84e6e2, 0x973199, 0x6bed88, 0x365f5f, 0x0efdbb, 0xb49a48, 0x6ca467, 0x427271, 0x325d8d, 0xb8159f, 0x09e5bc, 0x25318d, 0x3974f7, 0x1c0530, 0x010c0d, 0x68084b, 0x58ee2c, 0x90aa47, 0x02e774, 0x24d6bd, 0xa67df7, 0x72486e, 0xef169f, 0xa6948e, 0xf691b4, 0x5153d1, 0xf20acf, 0x339820, 0x7e4bf5, 0x6863b2, 0x5f3edd, 0x035d40, 0x7f8985, 0x295255, 0xc06437, 0x10d86d, 0x324832, 0x754c5b, 0xd4714e, 0x6e5445, 0xc1090b, 0x69f52a, 0xd56614, 0x9d0727, 0x50045d, 0xdb3bb4, 0xc576ea, 0x17f987, 0x7d6b49, 0xba271d, 0x296996, 0xacccc6, 0x5414ad, 0x6ae290, 0x89d988, 0x50722c, 0xbea404, 0x940777, 0x7030f3, 0x27fc00, 0xa871ea, 0x49c266, 0x3de064, 0x83dd97, 0x973fa3, 0xfd9443, 0x8c860d, 0xde4131, 0x9d3992, 0x8c70dd, 0xe7b717, 0x3bdf08, 0x2b3715, 0xa0805c, 0x93805a, 0x921110, 0xd8e80f, 0xaf806c, 0x4bffdb, 0x0f9038, 0x761859, 0x15a562, 0xbbcb61, 0xb989c7, 0xbd4010, 0x04f2d2, 0x277549, 0xf6b6eb, 0xbb22db, 0xaa140a, 0x2f2689, 0x768364, 0x333b09, 0x1a940e, 0xaa3a51, 0xc2a31d, 0xaeedaf, 0x12265c, 0x4dc26d, 0x9c7a2d, 0x9756c0, 0x833f03, 0xf6f009, 0x8c402b, 0x99316d, 0x07b439, 0x15200c, 0x5bc3d8, 0xc492f5, 0x4badc6, 0xa5ca4e, 0xcd37a7, 0x36a9e6, 0x9492ab, 0x6842dd, 0xde6319, 0xef8c76, 0x528b68, 0x37dbfc, 0xaba1ae, 0x3115df, 0xa1ae00, 0xdafb0c, 0x664d64, 0xb705ed, 0x306529, 0xbf5657, 0x3aff47, 0xb9f96a, 0xf3be75, 0xdf9328, 0x3080ab, 0xf68c66, 0x15cb04, 0x0622fa, 0x1de4d9, 0xa4b33d, 0x8f1b57, 0x09cd36, 0xe9424e, 0xa4be13, 0xb52333, 0x1aaaf0, 0xa8654f, 0xa5c1d2, 0x0f3f0b, 0xcd785b, 0x76f923, 0x048b7b, 0x721789, 0x53a6c6, 0xe26e6f, 0x00ebef, 0x584a9b, 0xb7dac4, 0xba66aa, 0xcfcf76, 0x1d02d1, 0x2df1b1, 0xc1998c, 0x77adc3, 0xda4886, 0xa05df7, 0xf480c6, 0x2ff0ac, 0x9aecdd, 0xbc5c3f, 0x6dded0, 0x1fc790, 0xb6db2a, 0x3a25a3, 0x9aaf00, 0x9353ad, 0x0457b6, 0xb42d29, 0x7e804b, 0xa707da, 0x0eaa76, 0xa1597b, 0x2a1216, 0x2db7dc, 0xfde5fa, 0xfedb89, 0xfdbe89, 0x6c76e4, 0xfca906, 0x70803e, 0x156e85, 0xff87fd, 0x073e28, 0x336761, 0x86182a, 0xeabd4d, 0xafe7b3, 0x6e6d8f, 0x396795, 0x5bbf31, 0x48d784, 0x16df30, 0x432dc7, 0x356125, 0xce70c9, 0xb8cb30, 0xfd6cbf, 0xa200a4, 0xe46c05, 0xa0dd5a, 0x476f21, 0xd21262, 0x845cb9, 0x496170, 0xe0566b, 0x015299, 0x375550, 0xb7d51e, 0xc4f133, 0x5f6e13, 0xe4305d, 0xa92e85, 0xc3b21d, 0x3632a1, 0xa4b708, 0xd4b1ea, 0x21f716, 0xe4698f, 0x77ff27, 0x80030c, 0x2d408d, 0xa0cd4f, 0x99a520, 0xd3a2b3, 0x0a5d2f, 0x42f9b4, 0xcbda11, 0xd0be7d, 0xc1db9b, 0xbd17ab, 0x81a2ca, 0x5c6a08, 0x17552e, 0x550027, 0xf0147f, 0x8607e1, 0x640b14, 0x8d4196, 0xdebe87, 0x2afdda, 0xb6256b, 0x34897b, 0xfef305, 0x9ebfb9, 0x4f6a68, 0xa82a4a, 0x5ac44f, 0xbcf82d, 0x985ad7, 0x95c7f4, 0x8d4d0d, 0xa63a20, 0x5f57a4, 0xb13f14, 0x953880, 0x0120cc, 0x86dd71, 0xb6dec9, 0xf560bf, 0x11654d, 0x6b0701, 0xacb08c, 0xd0c0b2, 0x485551, 0x0efb1e, 0xc37295, 0x3b06a3, 0x3540c0, 0x7bdc06, 0xcc45e0, 0xfa294e, 0xc8cad6, 0x41f3e8, 0xde647c, 0xd8649b, 0x31bed9, 0xc397a4, 0xd45877, 0xc5e369, 0x13daf0, 0x3c3aba, 0x461846, 0x5f7555, 0xf5bdd2, 0xc6926e, 0x5d2eac, 0xed440e, 0x423e1c, 0x87c461, 0xe9fd29, 0xf3d6e7, 0xca7c22, 0x35916f, 0xc5e008, 0x8dd7ff, 0xe26a6e, 0xc6fdb0, 0xc10893, 0x745d7c, 0xb2ad6b, 0x9d6ecd, 0x7b723e, 0x6a11c6, 0xa9cff7, 0xdf7329, 0xbac9b5, 0x5100b7, 0x0db2e2, 0x24ba74, 0x607de5, 0x8ad874, 0x2c150d, 0x0c1881, 0x94667e, 0x162901, 0x767a9f, 0xbefdfd, 0xef4556, 0x367ed9, 0x13d9ec, 0xb9ba8b, 0xfc97c4, 0x27a831, 0xc36ef1, 0x36c594, 0x56a8d8, 0xb5a8b4, 0x0ecccf, 0x2d8912, 0x34576f, 0x89562c, 0xe3ce99, 0xb920d6, 0xaa5e6b, 0x9c2a3e, 0xcc5f11, 0x4a0bfd, 0xfbf4e1, 0x6d3b8e, 0x2c86e2, 0x84d4e9, 0xa9b4fc, 0xd1eeef, 0xc9352e, 0x61392f, 0x442138, 0xc8d91b, 0x0afc81, 0x6a4afb, 0xd81c2f, 0x84b453, 0x8c994e, 0xcc2254, 0xdc552a, 0xd6c6c0, 0x96190b, 0xb8701a, 0x649569, 0x605a26, 0xee523f, 0x0f117f, 0x11b5f4, 0xf5cbfc, 0x2dbc34, 0xeebc34, 0xcc5de8, 0x605edd, 0x9b8e67, 0xef3392, 0xb817c9, 0x9b5861, 0xbc57e1, 0xc68351, 0x103ed8, 0x4871dd, 0xdd1c2d, 0xa118af, 0x462c21, 0xd7f359, 0x987ad9, 0xc0549e, 0xfa864f, 0xfc0656, 0xae79e5, 0x362289, 0x22ad38, 0xdc9367, 0xaae855, 0x382682, 0x9be7ca, 0xa40d51, 0xb13399, 0x0ed7a9, 0x480569, 0xf0b265, 0xa7887f, 0x974c88, 0x36d1f9, 0xb39221, 0x4a827b, 0x21cf98, 0xdc9f40, 0x5547dc, 0x3a74e1, 0x42eb67, 0xdf9dfe, 0x5fd45e, 0xa4677b, 0x7aacba, 0xa2f655, 0x23882b, 0x55ba41, 0x086e59, 0x862a21, 0x834739, 0xe6e389, 0xd49ee5, 0x40fb49, 0xe956ff, 0xca0f1c, 0x8a59c5, 0x2bfa94, 0xc5c1d3, 0xcfc50f, 0xae5adb, 0x86c547, 0x624385, 0x3b8621, 0x94792c, 0x876110, 0x7b4c2a, 0x1a2c80, 0x12bf43, 0x902688, 0x893c78, 0xe4c4a8, 0x7bdbe5, 0xc23ac4, 0xeaf426, 0x8a67f7, 0xbf920d, 0x2ba365, 0xb1933d, 0x0b7cbd, 0xdc51a4, 0x63dd27, 0xdde169, 0x19949a, 0x9529a8, 0x28ce68, 0xb4ed09, 0x209f44, 0xca984e, 0x638270, 0x237c7e, 0x32b90f, 0x8ef5a7, 0xe75614, 0x08f121, 0x2a9db5, 0x4d7e6f, 0x5119a5, 0xabf9b5, 0xd6df82, 0x61dd96, 0x023616, 0x9f3ac4, 0xa1a283, 0x6ded72, 0x7a8d39, 0xa9b882, 0x5c326b, 0x5b2746, 0xed3400, 0x7700d2, 0x55f4fc, 0x4d5901, 0x8071e0, 0xe13f89, 0xb295f3, 0x64a8f1, 0xaea74b, 0x38fc4c, 0xeab2bb, 0x47270b, 0xabc3a7, 0x34ba60, 0x52dd34, 0xf8563a, 0xeb7e8a, 0x31bb36, 0x5895b7, 0x47f7a9, 0x94c3aa, 0xd39225, 0x1e7f3e, 0xd8974e, 0xbba94f, 0xd8ae01, 0xe661b4, 0x393d8e, 0xa523aa, 0x33068e, 0x1633b5, 0x3bb188, 0x1d3a9d, 0x4013d0, 0xcc1be5, 0xf862e7, 0x3bf28f, 0x39b5bf, 0x0bc235, 0x22747e, 0xa247c0, 0xd52d1f, 0x19add3, 0x9094df, 0x9311d0, 0xb42b25, 0x496db2, 0xe264b2, 0x5ef135, 0x3bc6a4, 0x1a4ad0, 0xaac92e, 0x64e886, 0x573091, 0x982cfb, 0x311b1a, 0x08728b, 0xbdcee1, 0x60e142, 0xeb641d, 0xd0bba3, 0xe559d4, 0x597b8c, 0x2a4483, 0xf332ba, 0xf84867, 0x2c8d1b, 0x2fa9b0, 0x50f3dd, 0xf9f573, 0xdb61b4, 0xfe233e, 0x6c41a6, 0xeea318, 0x775a26, 0xbc5e5c, 0xcea708, 0x94dc57, 0xe20196, 0xf1e839, 0xbe4851, 0x5d2d2f, 0x4e9555, 0xd96ec2, 0xe7d755, 0x6304e0, 0xc02e0e, 0xfc40a0, 0xbbf9b3, 0x7125a7, 0x222dfb, 0xf619d8, 0x838c1c, 0x6619e6, 0xb20d55, 0xbb5137, 0x79e809, 0xaf9149, 0x0d73de, 0x0b0da5, 0xce7f58, 0xac1934, 0x724667, 0x7a1a13, 0x9e26bc, 0x4555e7, 0x585cb5, 0x711d14, 0x486991, 0x480d60, 0x56adab, 0xd62f64, 0x96ee0c, 0x212ff3, 0x5d6d88, 0xa67684, 0x95651e, 0xab9e0a, 0x4ddefe, 0x571010, 0x836a39, 0xf8ea31, 0x9e381d, 0xeac8b1, 0xcac96b, 0x37f21e, 0xd505e9, 0x984743, 0x9fc56c, 0x0331b7, 0x3b8bf8, 0x86e56a, 0x8dc343, 0x6230e7, 0x93cfd5, 0x6a8f2d, 0x733005, 0x1af021, 0xa09fcb, 0x7415a1, 0xd56b23, 0x6ff725, 0x2f4bc7, 0xb8a591, 0x7fac59, 0x5c55de, 0x212c38, 0xb13296, 0x5cff50, 0x366262, 0xfa7b16, 0xf4d9a6, 0x2acfe7, 0xf07403, 0xd4d604, 0x6fd916, 0x31b1bf, 0xcbb450, 0x5bd7c8, 0x0ce194, 0x6bd643, 0x4fd91c, 0xdf4543, 0x5f3453, 0xe2b5aa, 0xc9aec8, 0x131485, 0xf9d2bf, 0xbadb9e, 0x76f5b9, 0xaf15cf, 0xca3182, 0x14b56d, 0xe9fe4d, 0x50fc35, 0xf5aed5, 0xa2d0c1, 0xc96057, 0x192eb6, 0xe91d92, 0x07d144, 0xaea3c6, 0x343566, 0x26d5b4, 0x3161e2, 0x37f1a2, 0x209eff, 0x958e23, 0x493798, 0x35f4a6, 0x4bdc02, 0xc2be13, 0xbe80a0, 0x0b72a3, 0x115c5f, 0x1e1bd1, 0x0db4d3, 0x869e85, 0x96976b, 0x2ac91f, 0x8a26c2, 0x3070f0, 0x041412, 0xfc9fa5, 0xf72a38, 0x9c6878, 0xe2aa76, 0x50cfe1, 0x559274, 0x934e38, 0x0a92f7, 0x5533f0, 0xa63db4, 0x399971, 0xe2b755, 0xa98a7c, 0x008f19, 0xac54d2, 0x2ea0b4, 0xf5f3e0, 0x60c849, 0xffd269, 0xae52ce, 0x7a5fdd, 0xe9ce06, 0xfb0ae8, 0xa50cce, 0xea9d3e, 0x3766dd, 0xb834f5, 0x0da090, 0x846f88, 0x4ae3d5, 0x099a03, 0x2eae2d, 0xfcb40a, 0xfb9b33, 0xe281dd, 0x1b16ba, 0xd8c0af, 0xd96b97, 0xb52dc9, 0x9c277f, 0x5951d5, 0x21ccd6, 0xb6496b, 0x584562, 0xb3baf2, 0xa1a5c4, 0x7ca2cf, 0xa9b93d, 0x7b7b89, 0x483d38, }; static const __float128 c[] = { /* 93 bits of pi/2 */ #define PI_2_1 c[0] 1.57079632679489661923132169155131424e+00Q, /* 3fff921fb54442d18469898cc5100000 */ /* pi/2 - PI_2_1 */ #define PI_2_1t c[1] 8.84372056613570112025531863263659260e-29Q, /* 3fa1c06e0e68948127044533e63a0106 */ }; int32_t __quadmath_rem_pio2q (__float128 x, __float128 *y) { __float128 z, w, t; double tx[8]; int64_t exp, n, ix, hx; uint64_t lx; GET_FLT128_WORDS64 (hx, lx, x); ix = hx & 0x7fffffffffffffffLL; if (ix <= 0x3ffe921fb54442d1LL) /* x in <-pi/4, pi/4> */ { y[0] = x; y[1] = 0; return 0; } if (ix < 0x40002d97c7f3321dLL) /* |x| in <pi/4, 3pi/4) */ { if (hx > 0) { /* 113 + 93 bit PI is ok */ z = x - PI_2_1; y[0] = z - PI_2_1t; y[1] = (z - y[0]) - PI_2_1t; return 1; } else { /* 113 + 93 bit PI is ok */ z = x + PI_2_1; y[0] = z + PI_2_1t; y[1] = (z - y[0]) + PI_2_1t; return -1; } } if (ix >= 0x7fff000000000000LL) /* x is +=oo or NaN */ { y[0] = x - x; y[1] = y[0]; return 0; } /* Handle large arguments. We split the 113 bits of the mantissa into 5 24bit integers stored in a double array. */ exp = (ix >> 48) - 16383 - 23; /* This is faster than doing this in floating point, because we have to convert it to integers anyway and like this we can keep both integer and floating point units busy. */ tx [0] = (double)(((ix >> 25) & 0x7fffff) | 0x800000); tx [1] = (double)((ix >> 1) & 0xffffff); tx [2] = (double)(((ix << 23) | (lx >> 41)) & 0xffffff); tx [3] = (double)((lx >> 17) & 0xffffff); tx [4] = (double)((lx << 7) & 0xffffff); n = __quadmath_kernel_rem_pio2 (tx, tx + 5, exp, ((lx << 7) & 0xffffff) ? 5 : 4, 3, two_over_pi); /* The result is now stored in 3 double values, we need to convert it into two __float128 values. */ t = (__float128) tx [6] + (__float128) tx [7]; w = (__float128) tx [5]; if (hx >= 0) { y[0] = w + t; y[1] = t - (y[0] - w); return n; } else { y[0] = -(w + t); y[1] = -t - (y[0] + w); return -n; } }
Go to most recent revision | Compare with Previous | Blame | View Log