URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libstdc++-v3/] [include/] [bits/] [locale_facets.tcc] - Rev 742
Compare with Previous | Blame | View Log
// Locale support -*- C++ -*-
// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
// 2006, 2007, 2008, 2009, 2010, 2011
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file bits/locale_facets.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{locale}
*/
#ifndef _LOCALE_FACETS_TCC
#define _LOCALE_FACETS_TCC 1
#pragma GCC system_header
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
// Routine to access a cache for the facet. If the cache didn't
// exist before, it gets constructed on the fly.
template<typename _Facet>
struct __use_cache
{
const _Facet*
operator() (const locale& __loc) const;
};
// Specializations.
template<typename _CharT>
struct __use_cache<__numpunct_cache<_CharT> >
{
const __numpunct_cache<_CharT>*
operator() (const locale& __loc) const
{
const size_t __i = numpunct<_CharT>::id._M_id();
const locale::facet** __caches = __loc._M_impl->_M_caches;
if (!__caches[__i])
{
__numpunct_cache<_CharT>* __tmp = 0;
__try
{
__tmp = new __numpunct_cache<_CharT>;
__tmp->_M_cache(__loc);
}
__catch(...)
{
delete __tmp;
__throw_exception_again;
}
__loc._M_impl->_M_install_cache(__tmp, __i);
}
return static_cast<const __numpunct_cache<_CharT>*>(__caches[__i]);
}
};
template<typename _CharT>
void
__numpunct_cache<_CharT>::_M_cache(const locale& __loc)
{
_M_allocated = true;
const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
char* __grouping = 0;
_CharT* __truename = 0;
_CharT* __falsename = 0;
__try
{
_M_grouping_size = __np.grouping().size();
__grouping = new char[_M_grouping_size];
__np.grouping().copy(__grouping, _M_grouping_size);
_M_grouping = __grouping;
_M_use_grouping = (_M_grouping_size
&& static_cast<signed char>(_M_grouping[0]) > 0
&& (_M_grouping[0]
!= __gnu_cxx::__numeric_traits<char>::__max));
_M_truename_size = __np.truename().size();
__truename = new _CharT[_M_truename_size];
__np.truename().copy(__truename, _M_truename_size);
_M_truename = __truename;
_M_falsename_size = __np.falsename().size();
__falsename = new _CharT[_M_falsename_size];
__np.falsename().copy(__falsename, _M_falsename_size);
_M_falsename = __falsename;
_M_decimal_point = __np.decimal_point();
_M_thousands_sep = __np.thousands_sep();
const ctype<_CharT>& __ct = use_facet<ctype<_CharT> >(__loc);
__ct.widen(__num_base::_S_atoms_out,
__num_base::_S_atoms_out
+ __num_base::_S_oend, _M_atoms_out);
__ct.widen(__num_base::_S_atoms_in,
__num_base::_S_atoms_in
+ __num_base::_S_iend, _M_atoms_in);
}
__catch(...)
{
delete [] __grouping;
delete [] __truename;
delete [] __falsename;
__throw_exception_again;
}
}
// Used by both numeric and monetary facets.
// Check to make sure that the __grouping_tmp string constructed in
// money_get or num_get matches the canonical grouping for a given
// locale.
// __grouping_tmp is parsed L to R
// 1,222,444 == __grouping_tmp of "\1\3\3"
// __grouping is parsed R to L
// 1,222,444 == __grouping of "\3" == "\3\3\3"
_GLIBCXX_PURE bool
__verify_grouping(const char* __grouping, size_t __grouping_size,
const string& __grouping_tmp) throw ();
_GLIBCXX_BEGIN_NAMESPACE_LDBL
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
_M_extract_float(_InIter __beg, _InIter __end, ios_base& __io,
ios_base::iostate& __err, string& __xtrc) const
{
typedef char_traits<_CharT> __traits_type;
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __lit = __lc->_M_atoms_in;
char_type __c = char_type();
// True if __beg becomes equal to __end.
bool __testeof = __beg == __end;
// First check for sign.
if (!__testeof)
{
__c = *__beg;
const bool __plus = __c == __lit[__num_base::_S_iplus];
if ((__plus || __c == __lit[__num_base::_S_iminus])
&& !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
&& !(__c == __lc->_M_decimal_point))
{
__xtrc += __plus ? '+' : '-';
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
}
// Next, look for leading zeros.
bool __found_mantissa = false;
int __sep_pos = 0;
while (!__testeof)
{
if ((__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
|| __c == __lc->_M_decimal_point)
break;
else if (__c == __lit[__num_base::_S_izero])
{
if (!__found_mantissa)
{
__xtrc += '0';
__found_mantissa = true;
}
++__sep_pos;
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
else
break;
}
// Only need acceptable digits for floating point numbers.
bool __found_dec = false;
bool __found_sci = false;
string __found_grouping;
if (__lc->_M_use_grouping)
__found_grouping.reserve(32);
const char_type* __lit_zero = __lit + __num_base::_S_izero;
if (!__lc->_M_allocated)
// "C" locale
while (!__testeof)
{
const int __digit = _M_find(__lit_zero, 10, __c);
if (__digit != -1)
{
__xtrc += '0' + __digit;
__found_mantissa = true;
}
else if (__c == __lc->_M_decimal_point
&& !__found_dec && !__found_sci)
{
__xtrc += '.';
__found_dec = true;
}
else if ((__c == __lit[__num_base::_S_ie]
|| __c == __lit[__num_base::_S_iE])
&& !__found_sci && __found_mantissa)
{
// Scientific notation.
__xtrc += 'e';
__found_sci = true;
// Remove optional plus or minus sign, if they exist.
if (++__beg != __end)
{
__c = *__beg;
const bool __plus = __c == __lit[__num_base::_S_iplus];
if (__plus || __c == __lit[__num_base::_S_iminus])
__xtrc += __plus ? '+' : '-';
else
continue;
}
else
{
__testeof = true;
break;
}
}
else
break;
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
else
while (!__testeof)
{
// According to 22.2.2.1.2, p8-9, first look for thousands_sep
// and decimal_point.
if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
{
if (!__found_dec && !__found_sci)
{
// NB: Thousands separator at the beginning of a string
// is a no-no, as is two consecutive thousands separators.
if (__sep_pos)
{
__found_grouping += static_cast<char>(__sep_pos);
__sep_pos = 0;
}
else
{
// NB: __convert_to_v will not assign __v and will
// set the failbit.
__xtrc.clear();
break;
}
}
else
break;
}
else if (__c == __lc->_M_decimal_point)
{
if (!__found_dec && !__found_sci)
{
// If no grouping chars are seen, no grouping check
// is applied. Therefore __found_grouping is adjusted
// only if decimal_point comes after some thousands_sep.
if (__found_grouping.size())
__found_grouping += static_cast<char>(__sep_pos);
__xtrc += '.';
__found_dec = true;
}
else
break;
}
else
{
const char_type* __q =
__traits_type::find(__lit_zero, 10, __c);
if (__q)
{
__xtrc += '0' + (__q - __lit_zero);
__found_mantissa = true;
++__sep_pos;
}
else if ((__c == __lit[__num_base::_S_ie]
|| __c == __lit[__num_base::_S_iE])
&& !__found_sci && __found_mantissa)
{
// Scientific notation.
if (__found_grouping.size() && !__found_dec)
__found_grouping += static_cast<char>(__sep_pos);
__xtrc += 'e';
__found_sci = true;
// Remove optional plus or minus sign, if they exist.
if (++__beg != __end)
{
__c = *__beg;
const bool __plus = __c == __lit[__num_base::_S_iplus];
if ((__plus || __c == __lit[__num_base::_S_iminus])
&& !(__lc->_M_use_grouping
&& __c == __lc->_M_thousands_sep)
&& !(__c == __lc->_M_decimal_point))
__xtrc += __plus ? '+' : '-';
else
continue;
}
else
{
__testeof = true;
break;
}
}
else
break;
}
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
// Digit grouping is checked. If grouping and found_grouping don't
// match, then get very very upset, and set failbit.
if (__found_grouping.size())
{
// Add the ending grouping if a decimal or 'e'/'E' wasn't found.
if (!__found_dec && !__found_sci)
__found_grouping += static_cast<char>(__sep_pos);
if (!std::__verify_grouping(__lc->_M_grouping,
__lc->_M_grouping_size,
__found_grouping))
__err = ios_base::failbit;
}
return __beg;
}
template<typename _CharT, typename _InIter>
template<typename _ValueT>
_InIter
num_get<_CharT, _InIter>::
_M_extract_int(_InIter __beg, _InIter __end, ios_base& __io,
ios_base::iostate& __err, _ValueT& __v) const
{
typedef char_traits<_CharT> __traits_type;
using __gnu_cxx::__add_unsigned;
typedef typename __add_unsigned<_ValueT>::__type __unsigned_type;
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __lit = __lc->_M_atoms_in;
char_type __c = char_type();
// NB: Iff __basefield == 0, __base can change based on contents.
const ios_base::fmtflags __basefield = __io.flags()
& ios_base::basefield;
const bool __oct = __basefield == ios_base::oct;
int __base = __oct ? 8 : (__basefield == ios_base::hex ? 16 : 10);
// True if __beg becomes equal to __end.
bool __testeof = __beg == __end;
// First check for sign.
bool __negative = false;
if (!__testeof)
{
__c = *__beg;
__negative = __c == __lit[__num_base::_S_iminus];
if ((__negative || __c == __lit[__num_base::_S_iplus])
&& !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
&& !(__c == __lc->_M_decimal_point))
{
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
}
// Next, look for leading zeros and check required digits
// for base formats.
bool __found_zero = false;
int __sep_pos = 0;
while (!__testeof)
{
if ((__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
|| __c == __lc->_M_decimal_point)
break;
else if (__c == __lit[__num_base::_S_izero]
&& (!__found_zero || __base == 10))
{
__found_zero = true;
++__sep_pos;
if (__basefield == 0)
__base = 8;
if (__base == 8)
__sep_pos = 0;
}
else if (__found_zero
&& (__c == __lit[__num_base::_S_ix]
|| __c == __lit[__num_base::_S_iX]))
{
if (__basefield == 0)
__base = 16;
if (__base == 16)
{
__found_zero = false;
__sep_pos = 0;
}
else
break;
}
else
break;
if (++__beg != __end)
{
__c = *__beg;
if (!__found_zero)
break;
}
else
__testeof = true;
}
// At this point, base is determined. If not hex, only allow
// base digits as valid input.
const size_t __len = (__base == 16 ? __num_base::_S_iend
- __num_base::_S_izero : __base);
// Extract.
string __found_grouping;
if (__lc->_M_use_grouping)
__found_grouping.reserve(32);
bool __testfail = false;
bool __testoverflow = false;
const __unsigned_type __max =
(__negative && __gnu_cxx::__numeric_traits<_ValueT>::__is_signed)
? -__gnu_cxx::__numeric_traits<_ValueT>::__min
: __gnu_cxx::__numeric_traits<_ValueT>::__max;
const __unsigned_type __smax = __max / __base;
__unsigned_type __result = 0;
int __digit = 0;
const char_type* __lit_zero = __lit + __num_base::_S_izero;
if (!__lc->_M_allocated)
// "C" locale
while (!__testeof)
{
__digit = _M_find(__lit_zero, __len, __c);
if (__digit == -1)
break;
if (__result > __smax)
__testoverflow = true;
else
{
__result *= __base;
__testoverflow |= __result > __max - __digit;
__result += __digit;
++__sep_pos;
}
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
else
while (!__testeof)
{
// According to 22.2.2.1.2, p8-9, first look for thousands_sep
// and decimal_point.
if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep)
{
// NB: Thousands separator at the beginning of a string
// is a no-no, as is two consecutive thousands separators.
if (__sep_pos)
{
__found_grouping += static_cast<char>(__sep_pos);
__sep_pos = 0;
}
else
{
__testfail = true;
break;
}
}
else if (__c == __lc->_M_decimal_point)
break;
else
{
const char_type* __q =
__traits_type::find(__lit_zero, __len, __c);
if (!__q)
break;
__digit = __q - __lit_zero;
if (__digit > 15)
__digit -= 6;
if (__result > __smax)
__testoverflow = true;
else
{
__result *= __base;
__testoverflow |= __result > __max - __digit;
__result += __digit;
++__sep_pos;
}
}
if (++__beg != __end)
__c = *__beg;
else
__testeof = true;
}
// Digit grouping is checked. If grouping and found_grouping don't
// match, then get very very upset, and set failbit.
if (__found_grouping.size())
{
// Add the ending grouping.
__found_grouping += static_cast<char>(__sep_pos);
if (!std::__verify_grouping(__lc->_M_grouping,
__lc->_M_grouping_size,
__found_grouping))
__err = ios_base::failbit;
}
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 23. Num_get overflow result.
if ((!__sep_pos && !__found_zero && !__found_grouping.size())
|| __testfail)
{
__v = 0;
__err = ios_base::failbit;
}
else if (__testoverflow)
{
if (__negative
&& __gnu_cxx::__numeric_traits<_ValueT>::__is_signed)
__v = __gnu_cxx::__numeric_traits<_ValueT>::__min;
else
__v = __gnu_cxx::__numeric_traits<_ValueT>::__max;
__err = ios_base::failbit;
}
else
__v = __negative ? -__result : __result;
if (__testeof)
__err |= ios_base::eofbit;
return __beg;
}
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 17. Bad bool parsing
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, bool& __v) const
{
if (!(__io.flags() & ios_base::boolalpha))
{
// Parse bool values as long.
// NB: We can't just call do_get(long) here, as it might
// refer to a derived class.
long __l = -1;
__beg = _M_extract_int(__beg, __end, __io, __err, __l);
if (__l == 0 || __l == 1)
__v = bool(__l);
else
{
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 23. Num_get overflow result.
__v = true;
__err = ios_base::failbit;
if (__beg == __end)
__err |= ios_base::eofbit;
}
}
else
{
// Parse bool values as alphanumeric.
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
bool __testf = true;
bool __testt = true;
bool __donef = __lc->_M_falsename_size == 0;
bool __donet = __lc->_M_truename_size == 0;
bool __testeof = false;
size_t __n = 0;
while (!__donef || !__donet)
{
if (__beg == __end)
{
__testeof = true;
break;
}
const char_type __c = *__beg;
if (!__donef)
__testf = __c == __lc->_M_falsename[__n];
if (!__testf && __donet)
break;
if (!__donet)
__testt = __c == __lc->_M_truename[__n];
if (!__testt && __donef)
break;
if (!__testt && !__testf)
break;
++__n;
++__beg;
__donef = !__testf || __n >= __lc->_M_falsename_size;
__donet = !__testt || __n >= __lc->_M_truename_size;
}
if (__testf && __n == __lc->_M_falsename_size && __n)
{
__v = false;
if (__testt && __n == __lc->_M_truename_size)
__err = ios_base::failbit;
else
__err = __testeof ? ios_base::eofbit : ios_base::goodbit;
}
else if (__testt && __n == __lc->_M_truename_size && __n)
{
__v = true;
__err = __testeof ? ios_base::eofbit : ios_base::goodbit;
}
else
{
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 23. Num_get overflow result.
__v = false;
__err = ios_base::failbit;
if (__testeof)
__err |= ios_base::eofbit;
}
}
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, float& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, double& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
#if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
__do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, double& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
#endif
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long double& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale());
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, void*& __v) const
{
// Prepare for hex formatted input.
typedef ios_base::fmtflags fmtflags;
const fmtflags __fmt = __io.flags();
__io.flags((__fmt & ~ios_base::basefield) | ios_base::hex);
typedef __gnu_cxx::__conditional_type<(sizeof(void*)
<= sizeof(unsigned long)),
unsigned long, unsigned long long>::__type _UIntPtrType;
_UIntPtrType __ul;
__beg = _M_extract_int(__beg, __end, __io, __err, __ul);
// Reset from hex formatted input.
__io.flags(__fmt);
__v = reinterpret_cast<void*>(__ul);
return __beg;
}
// For use by integer and floating-point types after they have been
// converted into a char_type string.
template<typename _CharT, typename _OutIter>
void
num_put<_CharT, _OutIter>::
_M_pad(_CharT __fill, streamsize __w, ios_base& __io,
_CharT* __new, const _CharT* __cs, int& __len) const
{
// [22.2.2.2.2] Stage 3.
// If necessary, pad.
__pad<_CharT, char_traits<_CharT> >::_S_pad(__io, __fill, __new,
__cs, __w, __len);
__len = static_cast<int>(__w);
}
_GLIBCXX_END_NAMESPACE_LDBL
template<typename _CharT, typename _ValueT>
int
__int_to_char(_CharT* __bufend, _ValueT __v, const _CharT* __lit,
ios_base::fmtflags __flags, bool __dec)
{
_CharT* __buf = __bufend;
if (__builtin_expect(__dec, true))
{
// Decimal.
do
{
*--__buf = __lit[(__v % 10) + __num_base::_S_odigits];
__v /= 10;
}
while (__v != 0);
}
else if ((__flags & ios_base::basefield) == ios_base::oct)
{
// Octal.
do
{
*--__buf = __lit[(__v & 0x7) + __num_base::_S_odigits];
__v >>= 3;
}
while (__v != 0);
}
else
{
// Hex.
const bool __uppercase = __flags & ios_base::uppercase;
const int __case_offset = __uppercase ? __num_base::_S_oudigits
: __num_base::_S_odigits;
do
{
*--__buf = __lit[(__v & 0xf) + __case_offset];
__v >>= 4;
}
while (__v != 0);
}
return __bufend - __buf;
}
_GLIBCXX_BEGIN_NAMESPACE_LDBL
template<typename _CharT, typename _OutIter>
void
num_put<_CharT, _OutIter>::
_M_group_int(const char* __grouping, size_t __grouping_size, _CharT __sep,
ios_base&, _CharT* __new, _CharT* __cs, int& __len) const
{
_CharT* __p = std::__add_grouping(__new, __sep, __grouping,
__grouping_size, __cs, __cs + __len);
__len = __p - __new;
}
template<typename _CharT, typename _OutIter>
template<typename _ValueT>
_OutIter
num_put<_CharT, _OutIter>::
_M_insert_int(_OutIter __s, ios_base& __io, _CharT __fill,
_ValueT __v) const
{
using __gnu_cxx::__add_unsigned;
typedef typename __add_unsigned<_ValueT>::__type __unsigned_type;
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __lit = __lc->_M_atoms_out;
const ios_base::fmtflags __flags = __io.flags();
// Long enough to hold hex, dec, and octal representations.
const int __ilen = 5 * sizeof(_ValueT);
_CharT* __cs = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __ilen));
// [22.2.2.2.2] Stage 1, numeric conversion to character.
// Result is returned right-justified in the buffer.
const ios_base::fmtflags __basefield = __flags & ios_base::basefield;
const bool __dec = (__basefield != ios_base::oct
&& __basefield != ios_base::hex);
const __unsigned_type __u = ((__v > 0 || !__dec)
? __unsigned_type(__v)
: -__unsigned_type(__v));
int __len = __int_to_char(__cs + __ilen, __u, __lit, __flags, __dec);
__cs += __ilen - __len;
// Add grouping, if necessary.
if (__lc->_M_use_grouping)
{
// Grouping can add (almost) as many separators as the number
// of digits + space is reserved for numeric base or sign.
_CharT* __cs2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* (__len + 1)
* 2));
_M_group_int(__lc->_M_grouping, __lc->_M_grouping_size,
__lc->_M_thousands_sep, __io, __cs2 + 2, __cs, __len);
__cs = __cs2 + 2;
}
// Complete Stage 1, prepend numeric base or sign.
if (__builtin_expect(__dec, true))
{
// Decimal.
if (__v >= 0)
{
if (bool(__flags & ios_base::showpos)
&& __gnu_cxx::__numeric_traits<_ValueT>::__is_signed)
*--__cs = __lit[__num_base::_S_oplus], ++__len;
}
else
*--__cs = __lit[__num_base::_S_ominus], ++__len;
}
else if (bool(__flags & ios_base::showbase) && __v)
{
if (__basefield == ios_base::oct)
*--__cs = __lit[__num_base::_S_odigits], ++__len;
else
{
// 'x' or 'X'
const bool __uppercase = __flags & ios_base::uppercase;
*--__cs = __lit[__num_base::_S_ox + __uppercase];
// '0'
*--__cs = __lit[__num_base::_S_odigits];
__len += 2;
}
}
// Pad.
const streamsize __w = __io.width();
if (__w > static_cast<streamsize>(__len))
{
_CharT* __cs3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __w));
_M_pad(__fill, __w, __io, __cs3, __cs, __len);
__cs = __cs3;
}
__io.width(0);
// [22.2.2.2.2] Stage 4.
// Write resulting, fully-formatted string to output iterator.
return std::__write(__s, __cs, __len);
}
template<typename _CharT, typename _OutIter>
void
num_put<_CharT, _OutIter>::
_M_group_float(const char* __grouping, size_t __grouping_size,
_CharT __sep, const _CharT* __p, _CharT* __new,
_CharT* __cs, int& __len) const
{
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 282. What types does numpunct grouping refer to?
// Add grouping, if necessary.
const int __declen = __p ? __p - __cs : __len;
_CharT* __p2 = std::__add_grouping(__new, __sep, __grouping,
__grouping_size,
__cs, __cs + __declen);
// Tack on decimal part.
int __newlen = __p2 - __new;
if (__p)
{
char_traits<_CharT>::copy(__p2, __p, __len - __declen);
__newlen += __len - __declen;
}
__len = __newlen;
}
// The following code uses vsnprintf (or vsprintf(), when
// _GLIBCXX_USE_C99 is not defined) to convert floating point values
// for insertion into a stream. An optimization would be to replace
// them with code that works directly on a wide buffer and then use
// __pad to do the padding. It would be good to replace them anyway
// to gain back the efficiency that C++ provides by knowing up front
// the type of the values to insert. Also, sprintf is dangerous
// since may lead to accidental buffer overruns. This
// implementation follows the C++ standard fairly directly as
// outlined in 22.2.2.2 [lib.locale.num.put]
template<typename _CharT, typename _OutIter>
template<typename _ValueT>
_OutIter
num_put<_CharT, _OutIter>::
_M_insert_float(_OutIter __s, ios_base& __io, _CharT __fill, char __mod,
_ValueT __v) const
{
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
// Use default precision if out of range.
const streamsize __prec = __io.precision() < 0 ? 6 : __io.precision();
const int __max_digits =
__gnu_cxx::__numeric_traits<_ValueT>::__digits10;
// [22.2.2.2.2] Stage 1, numeric conversion to character.
int __len;
// Long enough for the max format spec.
char __fbuf[16];
__num_base::_S_format_float(__io, __fbuf, __mod);
#ifdef _GLIBCXX_USE_C99
// First try a buffer perhaps big enough (most probably sufficient
// for non-ios_base::fixed outputs)
int __cs_size = __max_digits * 3;
char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
__len = std::__convert_from_v(_S_get_c_locale(), __cs, __cs_size,
__fbuf, __prec, __v);
// If the buffer was not large enough, try again with the correct size.
if (__len >= __cs_size)
{
__cs_size = __len + 1;
__cs = static_cast<char*>(__builtin_alloca(__cs_size));
__len = std::__convert_from_v(_S_get_c_locale(), __cs, __cs_size,
__fbuf, __prec, __v);
}
#else
// Consider the possibility of long ios_base::fixed outputs
const bool __fixed = __io.flags() & ios_base::fixed;
const int __max_exp =
__gnu_cxx::__numeric_traits<_ValueT>::__max_exponent10;
// The size of the output string is computed as follows.
// ios_base::fixed outputs may need up to __max_exp + 1 chars
// for the integer part + __prec chars for the fractional part
// + 3 chars for sign, decimal point, '\0'. On the other hand,
// for non-fixed outputs __max_digits * 2 + __prec chars are
// largely sufficient.
const int __cs_size = __fixed ? __max_exp + __prec + 4
: __max_digits * 2 + __prec;
char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
__len = std::__convert_from_v(_S_get_c_locale(), __cs, 0, __fbuf,
__prec, __v);
#endif
// [22.2.2.2.2] Stage 2, convert to char_type, using correct
// numpunct.decimal_point() values for '.' and adding grouping.
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
_CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len));
__ctype.widen(__cs, __cs + __len, __ws);
// Replace decimal point.
_CharT* __wp = 0;
const char* __p = char_traits<char>::find(__cs, __len, '.');
if (__p)
{
__wp = __ws + (__p - __cs);
*__wp = __lc->_M_decimal_point;
}
// Add grouping, if necessary.
// N.B. Make sure to not group things like 2e20, i.e., no decimal
// point, scientific notation.
if (__lc->_M_use_grouping
&& (__wp || __len < 3 || (__cs[1] <= '9' && __cs[2] <= '9'
&& __cs[1] >= '0' && __cs[2] >= '0')))
{
// Grouping can add (almost) as many separators as the
// number of digits, but no more.
_CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len * 2));
streamsize __off = 0;
if (__cs[0] == '-' || __cs[0] == '+')
{
__off = 1;
__ws2[0] = __ws[0];
__len -= 1;
}
_M_group_float(__lc->_M_grouping, __lc->_M_grouping_size,
__lc->_M_thousands_sep, __wp, __ws2 + __off,
__ws + __off, __len);
__len += __off;
__ws = __ws2;
}
// Pad.
const streamsize __w = __io.width();
if (__w > static_cast<streamsize>(__len))
{
_CharT* __ws3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __w));
_M_pad(__fill, __w, __io, __ws3, __ws, __len);
__ws = __ws3;
}
__io.width(0);
// [22.2.2.2.2] Stage 4.
// Write resulting, fully-formatted string to output iterator.
return std::__write(__s, __ws, __len);
}
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const
{
const ios_base::fmtflags __flags = __io.flags();
if ((__flags & ios_base::boolalpha) == 0)
{
const long __l = __v;
__s = _M_insert_int(__s, __io, __fill, __l);
}
else
{
typedef __numpunct_cache<_CharT> __cache_type;
__use_cache<__cache_type> __uc;
const locale& __loc = __io._M_getloc();
const __cache_type* __lc = __uc(__loc);
const _CharT* __name = __v ? __lc->_M_truename
: __lc->_M_falsename;
int __len = __v ? __lc->_M_truename_size
: __lc->_M_falsename_size;
const streamsize __w = __io.width();
if (__w > static_cast<streamsize>(__len))
{
const streamsize __plen = __w - __len;
_CharT* __ps
= static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __plen));
char_traits<_CharT>::assign(__ps, __plen, __fill);
__io.width(0);
if ((__flags & ios_base::adjustfield) == ios_base::left)
{
__s = std::__write(__s, __name, __len);
__s = std::__write(__s, __ps, __plen);
}
else
{
__s = std::__write(__s, __ps, __plen);
__s = std::__write(__s, __name, __len);
}
return __s;
}
__io.width(0);
__s = std::__write(__s, __name, __len);
}
return __s;
}
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const
{ return _M_insert_float(__s, __io, __fill, char(), __v); }
#if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
__do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const
{ return _M_insert_float(__s, __io, __fill, char(), __v); }
#endif
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
long double __v) const
{ return _M_insert_float(__s, __io, __fill, 'L', __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
const void* __v) const
{
const ios_base::fmtflags __flags = __io.flags();
const ios_base::fmtflags __fmt = ~(ios_base::basefield
| ios_base::uppercase);
__io.flags((__flags & __fmt) | (ios_base::hex | ios_base::showbase));
typedef __gnu_cxx::__conditional_type<(sizeof(const void*)
<= sizeof(unsigned long)),
unsigned long, unsigned long long>::__type _UIntPtrType;
__s = _M_insert_int(__s, __io, __fill,
reinterpret_cast<_UIntPtrType>(__v));
__io.flags(__flags);
return __s;
}
_GLIBCXX_END_NAMESPACE_LDBL
// Construct correctly padded string, as per 22.2.2.2.2
// Assumes
// __newlen > __oldlen
// __news is allocated for __newlen size
// NB: Of the two parameters, _CharT can be deduced from the
// function arguments. The other (_Traits) has to be explicitly specified.
template<typename _CharT, typename _Traits>
void
__pad<_CharT, _Traits>::_S_pad(ios_base& __io, _CharT __fill,
_CharT* __news, const _CharT* __olds,
streamsize __newlen, streamsize __oldlen)
{
const size_t __plen = static_cast<size_t>(__newlen - __oldlen);
const ios_base::fmtflags __adjust = __io.flags() & ios_base::adjustfield;
// Padding last.
if (__adjust == ios_base::left)
{
_Traits::copy(__news, __olds, __oldlen);
_Traits::assign(__news + __oldlen, __plen, __fill);
return;
}
size_t __mod = 0;
if (__adjust == ios_base::internal)
{
// Pad after the sign, if there is one.
// Pad after 0[xX], if there is one.
// Who came up with these rules, anyway? Jeeze.
const locale& __loc = __io._M_getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
if (__ctype.widen('-') == __olds[0]
|| __ctype.widen('+') == __olds[0])
{
__news[0] = __olds[0];
__mod = 1;
++__news;
}
else if (__ctype.widen('0') == __olds[0]
&& __oldlen > 1
&& (__ctype.widen('x') == __olds[1]
|| __ctype.widen('X') == __olds[1]))
{
__news[0] = __olds[0];
__news[1] = __olds[1];
__mod = 2;
__news += 2;
}
// else Padding first.
}
_Traits::assign(__news, __plen, __fill);
_Traits::copy(__news + __plen, __olds + __mod, __oldlen - __mod);
}
template<typename _CharT>
_CharT*
__add_grouping(_CharT* __s, _CharT __sep,
const char* __gbeg, size_t __gsize,
const _CharT* __first, const _CharT* __last)
{
size_t __idx = 0;
size_t __ctr = 0;
while (__last - __first > __gbeg[__idx]
&& static_cast<signed char>(__gbeg[__idx]) > 0
&& __gbeg[__idx] != __gnu_cxx::__numeric_traits<char>::__max)
{
__last -= __gbeg[__idx];
__idx < __gsize - 1 ? ++__idx : ++__ctr;
}
while (__first != __last)
*__s++ = *__first++;
while (__ctr--)
{
*__s++ = __sep;
for (char __i = __gbeg[__idx]; __i > 0; --__i)
*__s++ = *__first++;
}
while (__idx--)
{
*__s++ = __sep;
for (char __i = __gbeg[__idx]; __i > 0; --__i)
*__s++ = *__first++;
}
return __s;
}
// Inhibit implicit instantiations for required instantiations,
// which are defined via explicit instantiations elsewhere.
#if _GLIBCXX_EXTERN_TEMPLATE
extern template class numpunct<char>;
extern template class numpunct_byname<char>;
extern template class _GLIBCXX_NAMESPACE_LDBL num_get<char>;
extern template class _GLIBCXX_NAMESPACE_LDBL num_put<char>;
extern template class ctype_byname<char>;
extern template
const ctype<char>&
use_facet<ctype<char> >(const locale&);
extern template
const numpunct<char>&
use_facet<numpunct<char> >(const locale&);
extern template
const num_put<char>&
use_facet<num_put<char> >(const locale&);
extern template
const num_get<char>&
use_facet<num_get<char> >(const locale&);
extern template
bool
has_facet<ctype<char> >(const locale&);
extern template
bool
has_facet<numpunct<char> >(const locale&);
extern template
bool
has_facet<num_put<char> >(const locale&);
extern template
bool
has_facet<num_get<char> >(const locale&);
#ifdef _GLIBCXX_USE_WCHAR_T
extern template class numpunct<wchar_t>;
extern template class numpunct_byname<wchar_t>;
extern template class _GLIBCXX_NAMESPACE_LDBL num_get<wchar_t>;
extern template class _GLIBCXX_NAMESPACE_LDBL num_put<wchar_t>;
extern template class ctype_byname<wchar_t>;
extern template
const ctype<wchar_t>&
use_facet<ctype<wchar_t> >(const locale&);
extern template
const numpunct<wchar_t>&
use_facet<numpunct<wchar_t> >(const locale&);
extern template
const num_put<wchar_t>&
use_facet<num_put<wchar_t> >(const locale&);
extern template
const num_get<wchar_t>&
use_facet<num_get<wchar_t> >(const locale&);
extern template
bool
has_facet<ctype<wchar_t> >(const locale&);
extern template
bool
has_facet<numpunct<wchar_t> >(const locale&);
extern template
bool
has_facet<num_put<wchar_t> >(const locale&);
extern template
bool
has_facet<num_get<wchar_t> >(const locale&);
#endif
#endif
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace
#endif