URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [bfd/] [elf32-hppa.c] - Rev 860
Go to most recent revision | Compare with Previous | Blame | View Log
/* BFD back-end for HP PA-RISC ELF files. Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. Original code by Center for Software Science Department of Computer Science University of Utah Largely rewritten by Alan Modra <alan@linuxcare.com.au> Naming cleanup by Carlos O'Donell <carlos@systemhalted.org> TLS support written by Randolph Chung <tausq@debian.org> This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/hppa.h" #include "libhppa.h" #include "elf32-hppa.h" #define ARCH_SIZE 32 #include "elf32-hppa.h" #include "elf-hppa.h" /* In order to gain some understanding of code in this file without knowing all the intricate details of the linker, note the following: Functions named elf32_hppa_* are called by external routines, other functions are only called locally. elf32_hppa_* functions appear in this file more or less in the order in which they are called from external routines. eg. elf32_hppa_check_relocs is called early in the link process, elf32_hppa_finish_dynamic_sections is one of the last functions. */ /* We use two hash tables to hold information for linking PA ELF objects. The first is the elf32_hppa_link_hash_table which is derived from the standard ELF linker hash table. We use this as a place to attach other hash tables and static information. The second is the stub hash table which is derived from the base BFD hash table. The stub hash table holds the information necessary to build the linker stubs during a link. There are a number of different stubs generated by the linker. Long branch stub: : ldil LR'X,%r1 : be,n RR'X(%sr4,%r1) PIC long branch stub: : b,l .+8,%r1 : addil LR'X - ($PIC_pcrel$0 - 4),%r1 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1) Import stub to call shared library routine from normal object file (single sub-space version) : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point : ldw RR'lt_ptr+ltoff(%r1),%r21 : bv %r0(%r21) : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. Import stub to call shared library routine from shared library (single sub-space version) : addil LR'ltoff,%r19 ; get procedure entry point : ldw RR'ltoff(%r1),%r21 : bv %r0(%r21) : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. Import stub to call shared library routine from normal object file (multiple sub-space support) : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point : ldw RR'lt_ptr+ltoff(%r1),%r21 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. : ldsid (%r21),%r1 : mtsp %r1,%sr0 : be 0(%sr0,%r21) ; branch to target : stw %rp,-24(%sp) ; save rp Import stub to call shared library routine from shared library (multiple sub-space support) : addil LR'ltoff,%r19 ; get procedure entry point : ldw RR'ltoff(%r1),%r21 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. : ldsid (%r21),%r1 : mtsp %r1,%sr0 : be 0(%sr0,%r21) ; branch to target : stw %rp,-24(%sp) ; save rp Export stub to return from shared lib routine (multiple sub-space support) One of these is created for each exported procedure in a shared library (and stored in the shared lib). Shared lib routines are called via the first instruction in the export stub so that we can do an inter-space return. Not required for single sub-space. : bl,n X,%rp ; trap the return : nop : ldw -24(%sp),%rp ; restore the original rp : ldsid (%rp),%r1 : mtsp %r1,%sr0 : be,n 0(%sr0,%rp) ; inter-space return. */ /* Variable names follow a coding style. Please follow this (Apps Hungarian) style: Structure/Variable Prefix elf_link_hash_table "etab" elf_link_hash_entry "eh" elf32_hppa_link_hash_table "htab" elf32_hppa_link_hash_entry "hh" bfd_hash_table "btab" bfd_hash_entry "bh" bfd_hash_table containing stubs "bstab" elf32_hppa_stub_hash_entry "hsh" elf32_hppa_dyn_reloc_entry "hdh" Always remember to use GNU Coding Style. */ #define PLT_ENTRY_SIZE 8 #define GOT_ENTRY_SIZE 4 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" static const bfd_byte plt_stub[] = { 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */ 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */ 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */ #define PLT_STUB_ENTRY (3*4) 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */ 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */ 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */ 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */ }; /* Section name for stubs is the associated section name plus this string. */ #define STUB_SUFFIX ".stub" /* We don't need to copy certain PC- or GP-relative dynamic relocs into a shared object's dynamic section. All the relocs of the limited class we are interested in, are absolute. */ #ifndef RELATIVE_DYNRELOCS #define RELATIVE_DYNRELOCS 0 #define IS_ABSOLUTE_RELOC(r_type) 1 #endif /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid copying dynamic variables from a shared lib into an app's dynbss section, and instead use a dynamic relocation to point into the shared lib. */ #define ELIMINATE_COPY_RELOCS 1 enum elf32_hppa_stub_type { hppa_stub_long_branch, hppa_stub_long_branch_shared, hppa_stub_import, hppa_stub_import_shared, hppa_stub_export, hppa_stub_none }; struct elf32_hppa_stub_hash_entry { /* Base hash table entry structure. */ struct bfd_hash_entry bh_root; /* The stub section. */ asection *stub_sec; /* Offset within stub_sec of the beginning of this stub. */ bfd_vma stub_offset; /* Given the symbol's value and its section we can determine its final value when building the stubs (so the stub knows where to jump. */ bfd_vma target_value; asection *target_section; enum elf32_hppa_stub_type stub_type; /* The symbol table entry, if any, that this was derived from. */ struct elf32_hppa_link_hash_entry *hh; /* Where this stub is being called from, or, in the case of combined stub sections, the first input section in the group. */ asection *id_sec; }; struct elf32_hppa_link_hash_entry { struct elf_link_hash_entry eh; /* A pointer to the most recently used stub hash entry against this symbol. */ struct elf32_hppa_stub_hash_entry *hsh_cache; /* Used to count relocations for delayed sizing of relocation sections. */ struct elf32_hppa_dyn_reloc_entry { /* Next relocation in the chain. */ struct elf32_hppa_dyn_reloc_entry *hdh_next; /* The input section of the reloc. */ asection *sec; /* Number of relocs copied in this section. */ bfd_size_type count; #if RELATIVE_DYNRELOCS /* Number of relative relocs copied for the input section. */ bfd_size_type relative_count; #endif } *dyn_relocs; enum { GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8 } tls_type; /* Set if this symbol is used by a plabel reloc. */ unsigned int plabel:1; }; struct elf32_hppa_link_hash_table { /* The main hash table. */ struct elf_link_hash_table etab; /* The stub hash table. */ struct bfd_hash_table bstab; /* Linker stub bfd. */ bfd *stub_bfd; /* Linker call-backs. */ asection * (*add_stub_section) (const char *, asection *); void (*layout_sections_again) (void); /* Array to keep track of which stub sections have been created, and information on stub grouping. */ struct map_stub { /* This is the section to which stubs in the group will be attached. */ asection *link_sec; /* The stub section. */ asection *stub_sec; } *stub_group; /* Assorted information used by elf32_hppa_size_stubs. */ unsigned int bfd_count; int top_index; asection **input_list; Elf_Internal_Sym **all_local_syms; /* Short-cuts to get to dynamic linker sections. */ asection *sgot; asection *srelgot; asection *splt; asection *srelplt; asection *sdynbss; asection *srelbss; /* Used during a final link to store the base of the text and data segments so that we can perform SEGREL relocations. */ bfd_vma text_segment_base; bfd_vma data_segment_base; /* Whether we support multiple sub-spaces for shared libs. */ unsigned int multi_subspace:1; /* Flags set when various size branches are detected. Used to select suitable defaults for the stub group size. */ unsigned int has_12bit_branch:1; unsigned int has_17bit_branch:1; unsigned int has_22bit_branch:1; /* Set if we need a .plt stub to support lazy dynamic linking. */ unsigned int need_plt_stub:1; /* Small local sym to section mapping cache. */ struct sym_sec_cache sym_sec; /* Data for LDM relocations. */ union { bfd_signed_vma refcount; bfd_vma offset; } tls_ldm_got; }; /* Various hash macros and functions. */ #define hppa_link_hash_table(p) \ ((struct elf32_hppa_link_hash_table *) ((p)->hash)) #define hppa_elf_hash_entry(ent) \ ((struct elf32_hppa_link_hash_entry *)(ent)) #define hppa_stub_hash_entry(ent) \ ((struct elf32_hppa_stub_hash_entry *)(ent)) #define hppa_stub_hash_lookup(table, string, create, copy) \ ((struct elf32_hppa_stub_hash_entry *) \ bfd_hash_lookup ((table), (string), (create), (copy))) #define hppa_elf_local_got_tls_type(abfd) \ ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2))) #define hh_name(hh) \ (hh ? hh->eh.root.root.string : "<undef>") #define eh_name(eh) \ (eh ? eh->root.root.string : "<undef>") /* Override the generic function because we want to mark our BFDs. */ static bfd_boolean elf32_hppa_mkobject (bfd *abfd) { return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata), HPPA_ELF_TDATA); } /* Assorted hash table functions. */ /* Initialize an entry in the stub hash table. */ static struct bfd_hash_entry * stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct elf32_hppa_stub_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = bfd_hash_newfunc (entry, table, string); if (entry != NULL) { struct elf32_hppa_stub_hash_entry *hsh; /* Initialize the local fields. */ hsh = hppa_stub_hash_entry (entry); hsh->stub_sec = NULL; hsh->stub_offset = 0; hsh->target_value = 0; hsh->target_section = NULL; hsh->stub_type = hppa_stub_long_branch; hsh->hh = NULL; hsh->id_sec = NULL; } return entry; } /* Initialize an entry in the link hash table. */ static struct bfd_hash_entry * hppa_link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct elf32_hppa_link_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = _bfd_elf_link_hash_newfunc (entry, table, string); if (entry != NULL) { struct elf32_hppa_link_hash_entry *hh; /* Initialize the local fields. */ hh = hppa_elf_hash_entry (entry); hh->hsh_cache = NULL; hh->dyn_relocs = NULL; hh->plabel = 0; hh->tls_type = GOT_UNKNOWN; } return entry; } /* Create the derived linker hash table. The PA ELF port uses the derived hash table to keep information specific to the PA ELF linker (without using static variables). */ static struct bfd_link_hash_table * elf32_hppa_link_hash_table_create (bfd *abfd) { struct elf32_hppa_link_hash_table *htab; bfd_size_type amt = sizeof (*htab); htab = bfd_malloc (amt); if (htab == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc, sizeof (struct elf32_hppa_link_hash_entry))) { free (htab); return NULL; } /* Init the stub hash table too. */ if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc, sizeof (struct elf32_hppa_stub_hash_entry))) return NULL; htab->stub_bfd = NULL; htab->add_stub_section = NULL; htab->layout_sections_again = NULL; htab->stub_group = NULL; htab->sgot = NULL; htab->srelgot = NULL; htab->splt = NULL; htab->srelplt = NULL; htab->sdynbss = NULL; htab->srelbss = NULL; htab->text_segment_base = (bfd_vma) -1; htab->data_segment_base = (bfd_vma) -1; htab->multi_subspace = 0; htab->has_12bit_branch = 0; htab->has_17bit_branch = 0; htab->has_22bit_branch = 0; htab->need_plt_stub = 0; htab->sym_sec.abfd = NULL; htab->tls_ldm_got.refcount = 0; return &htab->etab.root; } /* Free the derived linker hash table. */ static void elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab) { struct elf32_hppa_link_hash_table *htab = (struct elf32_hppa_link_hash_table *) btab; bfd_hash_table_free (&htab->bstab); _bfd_generic_link_hash_table_free (btab); } /* Build a name for an entry in the stub hash table. */ static char * hppa_stub_name (const asection *input_section, const asection *sym_sec, const struct elf32_hppa_link_hash_entry *hh, const Elf_Internal_Rela *rela) { char *stub_name; bfd_size_type len; if (hh) { len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1; stub_name = bfd_malloc (len); if (stub_name != NULL) sprintf (stub_name, "%08x_%s+%x", input_section->id & 0xffffffff, hh_name (hh), (int) rela->r_addend & 0xffffffff); } else { len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1; stub_name = bfd_malloc (len); if (stub_name != NULL) sprintf (stub_name, "%08x_%x:%x+%x", input_section->id & 0xffffffff, sym_sec->id & 0xffffffff, (int) ELF32_R_SYM (rela->r_info) & 0xffffffff, (int) rela->r_addend & 0xffffffff); } return stub_name; } /* Look up an entry in the stub hash. Stub entries are cached because creating the stub name takes a bit of time. */ static struct elf32_hppa_stub_hash_entry * hppa_get_stub_entry (const asection *input_section, const asection *sym_sec, struct elf32_hppa_link_hash_entry *hh, const Elf_Internal_Rela *rela, struct elf32_hppa_link_hash_table *htab) { struct elf32_hppa_stub_hash_entry *hsh_entry; const asection *id_sec; /* If this input section is part of a group of sections sharing one stub section, then use the id of the first section in the group. Stub names need to include a section id, as there may well be more than one stub used to reach say, printf, and we need to distinguish between them. */ id_sec = htab->stub_group[input_section->id].link_sec; if (hh != NULL && hh->hsh_cache != NULL && hh->hsh_cache->hh == hh && hh->hsh_cache->id_sec == id_sec) { hsh_entry = hh->hsh_cache; } else { char *stub_name; stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela); if (stub_name == NULL) return NULL; hsh_entry = hppa_stub_hash_lookup (&htab->bstab, stub_name, FALSE, FALSE); if (hh != NULL) hh->hsh_cache = hsh_entry; free (stub_name); } return hsh_entry; } /* Add a new stub entry to the stub hash. Not all fields of the new stub entry are initialised. */ static struct elf32_hppa_stub_hash_entry * hppa_add_stub (const char *stub_name, asection *section, struct elf32_hppa_link_hash_table *htab) { asection *link_sec; asection *stub_sec; struct elf32_hppa_stub_hash_entry *hsh; link_sec = htab->stub_group[section->id].link_sec; stub_sec = htab->stub_group[section->id].stub_sec; if (stub_sec == NULL) { stub_sec = htab->stub_group[link_sec->id].stub_sec; if (stub_sec == NULL) { size_t namelen; bfd_size_type len; char *s_name; namelen = strlen (link_sec->name); len = namelen + sizeof (STUB_SUFFIX); s_name = bfd_alloc (htab->stub_bfd, len); if (s_name == NULL) return NULL; memcpy (s_name, link_sec->name, namelen); memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); stub_sec = (*htab->add_stub_section) (s_name, link_sec); if (stub_sec == NULL) return NULL; htab->stub_group[link_sec->id].stub_sec = stub_sec; } htab->stub_group[section->id].stub_sec = stub_sec; } /* Enter this entry into the linker stub hash table. */ hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE); if (hsh == NULL) { (*_bfd_error_handler) (_("%B: cannot create stub entry %s"), section->owner, stub_name); return NULL; } hsh->stub_sec = stub_sec; hsh->stub_offset = 0; hsh->id_sec = link_sec; return hsh; } /* Determine the type of stub needed, if any, for a call. */ static enum elf32_hppa_stub_type hppa_type_of_stub (asection *input_sec, const Elf_Internal_Rela *rela, struct elf32_hppa_link_hash_entry *hh, bfd_vma destination, struct bfd_link_info *info) { bfd_vma location; bfd_vma branch_offset; bfd_vma max_branch_offset; unsigned int r_type; if (hh != NULL && hh->eh.plt.offset != (bfd_vma) -1 && hh->eh.dynindx != -1 && !hh->plabel && (info->shared || !hh->eh.def_regular || hh->eh.root.type == bfd_link_hash_defweak)) { /* We need an import stub. Decide between hppa_stub_import and hppa_stub_import_shared later. */ return hppa_stub_import; } /* Determine where the call point is. */ location = (input_sec->output_offset + input_sec->output_section->vma + rela->r_offset); branch_offset = destination - location - 8; r_type = ELF32_R_TYPE (rela->r_info); /* Determine if a long branch stub is needed. parisc branch offsets are relative to the second instruction past the branch, ie. +8 bytes on from the branch instruction location. The offset is signed and counts in units of 4 bytes. */ if (r_type == (unsigned int) R_PARISC_PCREL17F) max_branch_offset = (1 << (17 - 1)) << 2; else if (r_type == (unsigned int) R_PARISC_PCREL12F) max_branch_offset = (1 << (12 - 1)) << 2; else /* R_PARISC_PCREL22F. */ max_branch_offset = (1 << (22 - 1)) << 2; if (branch_offset + max_branch_offset >= 2*max_branch_offset) return hppa_stub_long_branch; return hppa_stub_none; } /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY. IN_ARG contains the link info pointer. */ #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */ #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */ #define BL_R1 0xe8200000 /* b,l .+8,%r1 */ #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */ #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */ #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */ #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */ #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */ #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */ #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */ #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */ #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */ #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */ #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */ #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */ #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */ #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */ #define NOP 0x08000240 /* nop */ #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */ #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */ #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */ #ifndef R19_STUBS #define R19_STUBS 1 #endif #if R19_STUBS #define LDW_R1_DLT LDW_R1_R19 #else #define LDW_R1_DLT LDW_R1_DP #endif static bfd_boolean hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg) { struct elf32_hppa_stub_hash_entry *hsh; struct bfd_link_info *info; struct elf32_hppa_link_hash_table *htab; asection *stub_sec; bfd *stub_bfd; bfd_byte *loc; bfd_vma sym_value; bfd_vma insn; bfd_vma off; int val; int size; /* Massage our args to the form they really have. */ hsh = hppa_stub_hash_entry (bh); info = (struct bfd_link_info *)in_arg; htab = hppa_link_hash_table (info); stub_sec = hsh->stub_sec; /* Make a note of the offset within the stubs for this entry. */ hsh->stub_offset = stub_sec->size; loc = stub_sec->contents + hsh->stub_offset; stub_bfd = stub_sec->owner; switch (hsh->stub_type) { case hppa_stub_long_branch: /* Create the long branch. A long branch is formed with "ldil" loading the upper bits of the target address into a register, then branching with "be" which adds in the lower bits. The "be" has its delay slot nullified. */ sym_value = (hsh->target_value + hsh->target_section->output_offset + hsh->target_section->output_section->vma); val = hppa_field_adjust (sym_value, 0, e_lrsel); insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21); bfd_put_32 (stub_bfd, insn, loc); val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2; insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); bfd_put_32 (stub_bfd, insn, loc + 4); size = 8; break; case hppa_stub_long_branch_shared: /* Branches are relative. This is where we are going to. */ sym_value = (hsh->target_value + hsh->target_section->output_offset + hsh->target_section->output_section->vma); /* And this is where we are coming from, more or less. */ sym_value -= (hsh->stub_offset + stub_sec->output_offset + stub_sec->output_section->vma); bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc); val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel); insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21); bfd_put_32 (stub_bfd, insn, loc + 4); val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2; insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); bfd_put_32 (stub_bfd, insn, loc + 8); size = 12; break; case hppa_stub_import: case hppa_stub_import_shared: off = hsh->hh->eh.plt.offset; if (off >= (bfd_vma) -2) abort (); off &= ~ (bfd_vma) 1; sym_value = (off + htab->splt->output_offset + htab->splt->output_section->vma - elf_gp (htab->splt->output_section->owner)); insn = ADDIL_DP; #if R19_STUBS if (hsh->stub_type == hppa_stub_import_shared) insn = ADDIL_R19; #endif val = hppa_field_adjust (sym_value, 0, e_lrsel), insn = hppa_rebuild_insn ((int) insn, val, 21); bfd_put_32 (stub_bfd, insn, loc); /* It is critical to use lrsel/rrsel here because we are using two different offsets (+0 and +4) from sym_value. If we use lsel/rsel then with unfortunate sym_values we will round sym_value+4 up to the next 2k block leading to a mis-match between the lsel and rsel value. */ val = hppa_field_adjust (sym_value, 0, e_rrsel); insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14); bfd_put_32 (stub_bfd, insn, loc + 4); if (htab->multi_subspace) { val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); bfd_put_32 (stub_bfd, insn, loc + 8); bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12); bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20); bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24); size = 28; } else { bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8); val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); bfd_put_32 (stub_bfd, insn, loc + 12); size = 16; } break; case hppa_stub_export: /* Branches are relative. This is where we are going to. */ sym_value = (hsh->target_value + hsh->target_section->output_offset + hsh->target_section->output_section->vma); /* And this is where we are coming from. */ sym_value -= (hsh->stub_offset + stub_sec->output_offset + stub_sec->output_section->vma); if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2)) && (!htab->has_22bit_branch || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2)))) { (*_bfd_error_handler) (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"), hsh->target_section->owner, stub_sec, (long) hsh->stub_offset, hsh->bh_root.string); bfd_set_error (bfd_error_bad_value); return FALSE; } val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2; if (!htab->has_22bit_branch) insn = hppa_rebuild_insn ((int) BL_RP, val, 17); else insn = hppa_rebuild_insn ((int) BL22_RP, val, 22); bfd_put_32 (stub_bfd, insn, loc); bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4); bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8); bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12); bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20); /* Point the function symbol at the stub. */ hsh->hh->eh.root.u.def.section = stub_sec; hsh->hh->eh.root.u.def.value = stub_sec->size; size = 24; break; default: BFD_FAIL (); return FALSE; } stub_sec->size += size; return TRUE; } #undef LDIL_R1 #undef BE_SR4_R1 #undef BL_R1 #undef ADDIL_R1 #undef DEPI_R1 #undef LDW_R1_R21 #undef LDW_R1_DLT #undef LDW_R1_R19 #undef ADDIL_R19 #undef LDW_R1_DP #undef LDSID_R21_R1 #undef MTSP_R1 #undef BE_SR0_R21 #undef STW_RP #undef BV_R0_R21 #undef BL_RP #undef NOP #undef LDW_RP #undef LDSID_RP_R1 #undef BE_SR0_RP /* As above, but don't actually build the stub. Just bump offset so we know stub section sizes. */ static bfd_boolean hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg) { struct elf32_hppa_stub_hash_entry *hsh; struct elf32_hppa_link_hash_table *htab; int size; /* Massage our args to the form they really have. */ hsh = hppa_stub_hash_entry (bh); htab = in_arg; if (hsh->stub_type == hppa_stub_long_branch) size = 8; else if (hsh->stub_type == hppa_stub_long_branch_shared) size = 12; else if (hsh->stub_type == hppa_stub_export) size = 24; else /* hppa_stub_import or hppa_stub_import_shared. */ { if (htab->multi_subspace) size = 28; else size = 16; } hsh->stub_sec->size += size; return TRUE; } /* Return nonzero if ABFD represents an HPPA ELF32 file. Additionally we set the default architecture and machine. */ static bfd_boolean elf32_hppa_object_p (bfd *abfd) { Elf_Internal_Ehdr * i_ehdrp; unsigned int flags; i_ehdrp = elf_elfheader (abfd); if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) { /* GCC on hppa-linux produces binaries with OSABI=Linux, but the kernel produces corefiles with OSABI=SysV. */ if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ return FALSE; } else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0) { /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD, but the kernel produces corefiles with OSABI=SysV. */ if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ return FALSE; } else { if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) return FALSE; } flags = i_ehdrp->e_flags; switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) { case EFA_PARISC_1_0: return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); case EFA_PARISC_1_1: return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); case EFA_PARISC_2_0: return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); case EFA_PARISC_2_0 | EF_PARISC_WIDE: return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); } return TRUE; } /* Create the .plt and .got sections, and set up our hash table short-cuts to various dynamic sections. */ static bfd_boolean elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) { struct elf32_hppa_link_hash_table *htab; struct elf_link_hash_entry *eh; /* Don't try to create the .plt and .got twice. */ htab = hppa_link_hash_table (info); if (htab->splt != NULL) return TRUE; /* Call the generic code to do most of the work. */ if (! _bfd_elf_create_dynamic_sections (abfd, info)) return FALSE; htab->splt = bfd_get_section_by_name (abfd, ".plt"); htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt"); htab->sgot = bfd_get_section_by_name (abfd, ".got"); htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)); if (htab->srelgot == NULL || ! bfd_set_section_alignment (abfd, htab->srelgot, 2)) return FALSE; htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss"); htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss"); /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main application, because __canonicalize_funcptr_for_compare needs it. */ eh = elf_hash_table (info)->hgot; eh->forced_local = 0; eh->other = STV_DEFAULT; return bfd_elf_link_record_dynamic_symbol (info, eh); } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *eh_dir, struct elf_link_hash_entry *eh_ind) { struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind; hh_dir = hppa_elf_hash_entry (eh_dir); hh_ind = hppa_elf_hash_entry (eh_ind); if (hh_ind->dyn_relocs != NULL) { if (hh_dir->dyn_relocs != NULL) { struct elf32_hppa_dyn_reloc_entry **hdh_pp; struct elf32_hppa_dyn_reloc_entry *hdh_p; /* Add reloc counts against the indirect sym to the direct sym list. Merge any entries against the same section. */ for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; ) { struct elf32_hppa_dyn_reloc_entry *hdh_q; for (hdh_q = hh_dir->dyn_relocs; hdh_q != NULL; hdh_q = hdh_q->hdh_next) if (hdh_q->sec == hdh_p->sec) { #if RELATIVE_DYNRELOCS hdh_q->relative_count += hdh_p->relative_count; #endif hdh_q->count += hdh_p->count; *hdh_pp = hdh_p->hdh_next; break; } if (hdh_q == NULL) hdh_pp = &hdh_p->hdh_next; } *hdh_pp = hh_dir->dyn_relocs; } hh_dir->dyn_relocs = hh_ind->dyn_relocs; hh_ind->dyn_relocs = NULL; } if (ELIMINATE_COPY_RELOCS && eh_ind->root.type != bfd_link_hash_indirect && eh_dir->dynamic_adjusted) { /* If called to transfer flags for a weakdef during processing of elf_adjust_dynamic_symbol, don't copy non_got_ref. We clear it ourselves for ELIMINATE_COPY_RELOCS. */ eh_dir->ref_dynamic |= eh_ind->ref_dynamic; eh_dir->ref_regular |= eh_ind->ref_regular; eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak; eh_dir->needs_plt |= eh_ind->needs_plt; } else { if (eh_ind->root.type == bfd_link_hash_indirect && eh_dir->got.refcount <= 0) { hh_dir->tls_type = hh_ind->tls_type; hh_ind->tls_type = GOT_UNKNOWN; } _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind); } } static int elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED, int r_type, int is_local ATTRIBUTE_UNUSED) { /* For now we don't support linker optimizations. */ return r_type; } /* Look through the relocs for a section during the first phase, and calculate needed space in the global offset table, procedure linkage table, and dynamic reloc sections. At this point we haven't necessarily read all the input files. */ static bfd_boolean elf32_hppa_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **eh_syms; const Elf_Internal_Rela *rela; const Elf_Internal_Rela *rela_end; struct elf32_hppa_link_hash_table *htab; asection *sreloc; asection *stubreloc; int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN; if (info->relocatable) return TRUE; htab = hppa_link_hash_table (info); symtab_hdr = &elf_tdata (abfd)->symtab_hdr; eh_syms = elf_sym_hashes (abfd); sreloc = NULL; stubreloc = NULL; rela_end = relocs + sec->reloc_count; for (rela = relocs; rela < rela_end; rela++) { enum { NEED_GOT = 1, NEED_PLT = 2, NEED_DYNREL = 4, PLT_PLABEL = 8 }; unsigned int r_symndx, r_type; struct elf32_hppa_link_hash_entry *hh; int need_entry = 0; r_symndx = ELF32_R_SYM (rela->r_info); if (r_symndx < symtab_hdr->sh_info) hh = NULL; else { hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]); while (hh->eh.root.type == bfd_link_hash_indirect || hh->eh.root.type == bfd_link_hash_warning) hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); } r_type = ELF32_R_TYPE (rela->r_info); r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL); switch (r_type) { case R_PARISC_DLTIND14F: case R_PARISC_DLTIND14R: case R_PARISC_DLTIND21L: /* This symbol requires a global offset table entry. */ need_entry = NEED_GOT; break; case R_PARISC_PLABEL14R: /* "Official" procedure labels. */ case R_PARISC_PLABEL21L: case R_PARISC_PLABEL32: /* If the addend is non-zero, we break badly. */ if (rela->r_addend != 0) abort (); /* If we are creating a shared library, then we need to create a PLT entry for all PLABELs, because PLABELs with local symbols may be passed via a pointer to another object. Additionally, output a dynamic relocation pointing to the PLT entry. For executables, the original 32-bit ABI allowed two different styles of PLABELs (function pointers): For global functions, the PLABEL word points into the .plt two bytes past a (function address, gp) pair, and for local functions the PLABEL points directly at the function. The magic +2 for the first type allows us to differentiate between the two. As you can imagine, this is a real pain when it comes to generating code to call functions indirectly or to compare function pointers. We avoid the mess by always pointing a PLABEL into the .plt, even for local functions. */ need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL; break; case R_PARISC_PCREL12F: htab->has_12bit_branch = 1; goto branch_common; case R_PARISC_PCREL17C: case R_PARISC_PCREL17F: htab->has_17bit_branch = 1; goto branch_common; case R_PARISC_PCREL22F: htab->has_22bit_branch = 1; branch_common: /* Function calls might need to go through the .plt, and might require long branch stubs. */ if (hh == NULL) { /* We know local syms won't need a .plt entry, and if they need a long branch stub we can't guarantee that we can reach the stub. So just flag an error later if we're doing a shared link and find we need a long branch stub. */ continue; } else { /* Global symbols will need a .plt entry if they remain global, and in most cases won't need a long branch stub. Unfortunately, we have to cater for the case where a symbol is forced local by versioning, or due to symbolic linking, and we lose the .plt entry. */ need_entry = NEED_PLT; if (hh->eh.type == STT_PARISC_MILLI) need_entry = 0; } break; case R_PARISC_SEGBASE: /* Used to set segment base. */ case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */ case R_PARISC_PCREL14F: /* PC relative load/store. */ case R_PARISC_PCREL14R: case R_PARISC_PCREL17R: /* External branches. */ case R_PARISC_PCREL21L: /* As above, and for load/store too. */ case R_PARISC_PCREL32: /* We don't need to propagate the relocation if linking a shared object since these are section relative. */ continue; case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */ case R_PARISC_DPREL14R: case R_PARISC_DPREL21L: if (info->shared) { (*_bfd_error_handler) (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"), abfd, elf_hppa_howto_table[r_type].name); bfd_set_error (bfd_error_bad_value); return FALSE; } /* Fall through. */ case R_PARISC_DIR17F: /* Used for external branches. */ case R_PARISC_DIR17R: case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */ case R_PARISC_DIR14R: case R_PARISC_DIR21L: /* As above, and for ext branches too. */ case R_PARISC_DIR32: /* .word relocs. */ /* We may want to output a dynamic relocation later. */ need_entry = NEED_DYNREL; break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_PARISC_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset)) return FALSE; continue; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_PARISC_GNU_VTENTRY: BFD_ASSERT (hh != NULL); if (hh != NULL && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend)) return FALSE; continue; case R_PARISC_TLS_GD21L: case R_PARISC_TLS_GD14R: case R_PARISC_TLS_LDM21L: case R_PARISC_TLS_LDM14R: need_entry = NEED_GOT; break; case R_PARISC_TLS_IE21L: case R_PARISC_TLS_IE14R: if (info->shared) info->flags |= DF_STATIC_TLS; need_entry = NEED_GOT; break; default: continue; } /* Now carry out our orders. */ if (need_entry & NEED_GOT) { switch (r_type) { default: tls_type = GOT_NORMAL; break; case R_PARISC_TLS_GD21L: case R_PARISC_TLS_GD14R: tls_type |= GOT_TLS_GD; break; case R_PARISC_TLS_LDM21L: case R_PARISC_TLS_LDM14R: tls_type |= GOT_TLS_LDM; break; case R_PARISC_TLS_IE21L: case R_PARISC_TLS_IE14R: tls_type |= GOT_TLS_IE; break; } /* Allocate space for a GOT entry, as well as a dynamic relocation for this entry. */ if (htab->sgot == NULL) { if (htab->etab.dynobj == NULL) htab->etab.dynobj = abfd; if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info)) return FALSE; } if (r_type == R_PARISC_TLS_LDM21L || r_type == R_PARISC_TLS_LDM14R) hppa_link_hash_table (info)->tls_ldm_got.refcount += 1; else { if (hh != NULL) { hh->eh.got.refcount += 1; old_tls_type = hh->tls_type; } else { bfd_signed_vma *local_got_refcounts; /* This is a global offset table entry for a local symbol. */ local_got_refcounts = elf_local_got_refcounts (abfd); if (local_got_refcounts == NULL) { bfd_size_type size; /* Allocate space for local got offsets and local plt offsets. Done this way to save polluting elf_obj_tdata with another target specific pointer. */ size = symtab_hdr->sh_info; size *= 2 * sizeof (bfd_signed_vma); /* Add in space to store the local GOT TLS types. */ size += symtab_hdr->sh_info; local_got_refcounts = bfd_zalloc (abfd, size); if (local_got_refcounts == NULL) return FALSE; elf_local_got_refcounts (abfd) = local_got_refcounts; memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN, symtab_hdr->sh_info); } local_got_refcounts[r_symndx] += 1; old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx]; } tls_type |= old_tls_type; if (old_tls_type != tls_type) { if (hh != NULL) hh->tls_type = tls_type; else hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type; } } } if (need_entry & NEED_PLT) { /* If we are creating a shared library, and this is a reloc against a weak symbol or a global symbol in a dynamic object, then we will be creating an import stub and a .plt entry for the symbol. Similarly, on a normal link to symbols defined in a dynamic object we'll need the import stub and a .plt entry. We don't know yet whether the symbol is defined or not, so make an entry anyway and clean up later in adjust_dynamic_symbol. */ if ((sec->flags & SEC_ALLOC) != 0) { if (hh != NULL) { hh->eh.needs_plt = 1; hh->eh.plt.refcount += 1; /* If this .plt entry is for a plabel, mark it so that adjust_dynamic_symbol will keep the entry even if it appears to be local. */ if (need_entry & PLT_PLABEL) hh->plabel = 1; } else if (need_entry & PLT_PLABEL) { bfd_signed_vma *local_got_refcounts; bfd_signed_vma *local_plt_refcounts; local_got_refcounts = elf_local_got_refcounts (abfd); if (local_got_refcounts == NULL) { bfd_size_type size; /* Allocate space for local got offsets and local plt offsets. */ size = symtab_hdr->sh_info; size *= 2 * sizeof (bfd_signed_vma); /* Add in space to store the local GOT TLS types. */ size += symtab_hdr->sh_info; local_got_refcounts = bfd_zalloc (abfd, size); if (local_got_refcounts == NULL) return FALSE; elf_local_got_refcounts (abfd) = local_got_refcounts; } local_plt_refcounts = (local_got_refcounts + symtab_hdr->sh_info); local_plt_refcounts[r_symndx] += 1; } } } if (need_entry & NEED_DYNREL) { /* Flag this symbol as having a non-got, non-plt reference so that we generate copy relocs if it turns out to be dynamic. */ if (hh != NULL && !info->shared) hh->eh.non_got_ref = 1; /* If we are creating a shared library then we need to copy the reloc into the shared library. However, if we are linking with -Bsymbolic, we need only copy absolute relocs or relocs against symbols that are not defined in an object we are including in the link. PC- or DP- or DLT-relative relocs against any local sym or global sym with DEF_REGULAR set, can be discarded. At this point we have not seen all the input files, so it is possible that DEF_REGULAR is not set now but will be set later (it is never cleared). We account for that possibility below by storing information in the dyn_relocs field of the hash table entry. A similar situation to the -Bsymbolic case occurs when creating shared libraries and symbol visibility changes render the symbol local. As it turns out, all the relocs we will be creating here are absolute, so we cannot remove them on -Bsymbolic links or visibility changes anyway. A STUB_REL reloc is absolute too, as in that case it is the reloc in the stub we will be creating, rather than copying the PCREL reloc in the branch. If on the other hand, we are creating an executable, we may need to keep relocations for symbols satisfied by a dynamic library if we manage to avoid copy relocs for the symbol. */ if ((info->shared && (sec->flags & SEC_ALLOC) != 0 && (IS_ABSOLUTE_RELOC (r_type) || (hh != NULL && (!info->symbolic || hh->eh.root.type == bfd_link_hash_defweak || !hh->eh.def_regular)))) || (ELIMINATE_COPY_RELOCS && !info->shared && (sec->flags & SEC_ALLOC) != 0 && hh != NULL && (hh->eh.root.type == bfd_link_hash_defweak || !hh->eh.def_regular))) { struct elf32_hppa_dyn_reloc_entry *hdh_p; struct elf32_hppa_dyn_reloc_entry **hdh_head; /* Create a reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { char *name; bfd *dynobj; name = (bfd_elf_string_from_elf_section (abfd, elf_elfheader (abfd)->e_shstrndx, elf_section_data (sec)->rel_hdr.sh_name)); if (name == NULL) { (*_bfd_error_handler) (_("Could not find relocation section for %s"), sec->name); bfd_set_error (bfd_error_bad_value); return FALSE; } if (htab->etab.dynobj == NULL) htab->etab.dynobj = abfd; dynobj = htab->etab.dynobj; sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { flagword flags; flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED); if ((sec->flags & SEC_ALLOC) != 0) flags |= SEC_ALLOC | SEC_LOAD; sreloc = bfd_make_section_with_flags (dynobj, name, flags); if (sreloc == NULL || !bfd_set_section_alignment (dynobj, sreloc, 2)) return FALSE; } elf_section_data (sec)->sreloc = sreloc; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (hh != NULL) { hdh_head = &hh->dyn_relocs; } else { /* Track dynamic relocs needed for local syms too. We really need local syms available to do this easily. Oh well. */ asection *sr; void *vpp; sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec, r_symndx); if (sr == NULL) return FALSE; vpp = &elf_section_data (sr)->local_dynrel; hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp; } hdh_p = *hdh_head; if (hdh_p == NULL || hdh_p->sec != sec) { hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p); if (hdh_p == NULL) return FALSE; hdh_p->hdh_next = *hdh_head; *hdh_head = hdh_p; hdh_p->sec = sec; hdh_p->count = 0; #if RELATIVE_DYNRELOCS hdh_p->relative_count = 0; #endif } hdh_p->count += 1; #if RELATIVE_DYNRELOCS if (!IS_ABSOLUTE_RELOC (rtype)) hdh_p->relative_count += 1; #endif } } } return TRUE; } /* Return the section that should be marked against garbage collection for a given relocation. */ static asection * elf32_hppa_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rela, struct elf_link_hash_entry *hh, Elf_Internal_Sym *sym) { if (hh != NULL) switch ((unsigned int) ELF32_R_TYPE (rela->r_info)) { case R_PARISC_GNU_VTINHERIT: case R_PARISC_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym); } /* Update the got and plt entry reference counts for the section being removed. */ static bfd_boolean elf32_hppa_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED, asection *sec, const Elf_Internal_Rela *relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **eh_syms; bfd_signed_vma *local_got_refcounts; bfd_signed_vma *local_plt_refcounts; const Elf_Internal_Rela *rela, *relend; if (info->relocatable) return TRUE; elf_section_data (sec)->local_dynrel = NULL; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; eh_syms = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); local_plt_refcounts = local_got_refcounts; if (local_plt_refcounts != NULL) local_plt_refcounts += symtab_hdr->sh_info; relend = relocs + sec->reloc_count; for (rela = relocs; rela < relend; rela++) { unsigned long r_symndx; unsigned int r_type; struct elf_link_hash_entry *eh = NULL; r_symndx = ELF32_R_SYM (rela->r_info); if (r_symndx >= symtab_hdr->sh_info) { struct elf32_hppa_link_hash_entry *hh; struct elf32_hppa_dyn_reloc_entry **hdh_pp; struct elf32_hppa_dyn_reloc_entry *hdh_p; eh = eh_syms[r_symndx - symtab_hdr->sh_info]; while (eh->root.type == bfd_link_hash_indirect || eh->root.type == bfd_link_hash_warning) eh = (struct elf_link_hash_entry *) eh->root.u.i.link; hh = hppa_elf_hash_entry (eh); for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next) if (hdh_p->sec == sec) { /* Everything must go for SEC. */ *hdh_pp = hdh_p->hdh_next; break; } } r_type = ELF32_R_TYPE (rela->r_info); r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL); switch (r_type) { case R_PARISC_DLTIND14F: case R_PARISC_DLTIND14R: case R_PARISC_DLTIND21L: case R_PARISC_TLS_GD21L: case R_PARISC_TLS_GD14R: case R_PARISC_TLS_IE21L: case R_PARISC_TLS_IE14R: if (eh != NULL) { if (eh->got.refcount > 0) eh->got.refcount -= 1; } else if (local_got_refcounts != NULL) { if (local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx] -= 1; } break; case R_PARISC_TLS_LDM21L: case R_PARISC_TLS_LDM14R: hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1; break; case R_PARISC_PCREL12F: case R_PARISC_PCREL17C: case R_PARISC_PCREL17F: case R_PARISC_PCREL22F: if (eh != NULL) { if (eh->plt.refcount > 0) eh->plt.refcount -= 1; } break; case R_PARISC_PLABEL14R: case R_PARISC_PLABEL21L: case R_PARISC_PLABEL32: if (eh != NULL) { if (eh->plt.refcount > 0) eh->plt.refcount -= 1; } else if (local_plt_refcounts != NULL) { if (local_plt_refcounts[r_symndx] > 0) local_plt_refcounts[r_symndx] -= 1; } break; default: break; } } return TRUE; } /* Support for core dump NOTE sections. */ static bfd_boolean elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { int offset; size_t size; switch (note->descsz) { default: return FALSE; case 396: /* Linux/hppa */ /* pr_cursig */ elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid */ elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); /* pr_reg */ offset = 72; size = 320; break; } /* Make a ".reg/999" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", size, note->descpos + offset); } static bfd_boolean elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) { switch (note->descsz) { default: return FALSE; case 124: /* Linux/hppa elf_prpsinfo. */ elf_tdata (abfd)->core_program = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); elf_tdata (abfd)->core_command = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ { char *command = elf_tdata (abfd)->core_command; int n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; } return TRUE; } /* Our own version of hide_symbol, so that we can keep plt entries for plabels. */ static void elf32_hppa_hide_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *eh, bfd_boolean force_local) { if (force_local) { eh->forced_local = 1; if (eh->dynindx != -1) { eh->dynindx = -1; _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, eh->dynstr_index); } } if (! hppa_elf_hash_entry (eh)->plabel) { eh->needs_plt = 0; eh->plt = elf_hash_table (info)->init_plt_refcount; } } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *eh) { struct elf32_hppa_link_hash_table *htab; asection *sec; /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later. */ if (eh->type == STT_FUNC || eh->needs_plt) { if (eh->plt.refcount <= 0 || (eh->def_regular && eh->root.type != bfd_link_hash_defweak && ! hppa_elf_hash_entry (eh)->plabel && (!info->shared || info->symbolic))) { /* The .plt entry is not needed when: a) Garbage collection has removed all references to the symbol, or b) We know for certain the symbol is defined in this object, and it's not a weak definition, nor is the symbol used by a plabel relocation. Either this object is the application or we are doing a shared symbolic link. */ eh->plt.offset = (bfd_vma) -1; eh->needs_plt = 0; } return TRUE; } else eh->plt.offset = (bfd_vma) -1; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (eh->u.weakdef != NULL) { if (eh->u.weakdef->root.type != bfd_link_hash_defined && eh->u.weakdef->root.type != bfd_link_hash_defweak) abort (); eh->root.u.def.section = eh->u.weakdef->root.u.def.section; eh->root.u.def.value = eh->u.weakdef->root.u.def.value; if (ELIMINATE_COPY_RELOCS) eh->non_got_ref = eh->u.weakdef->non_got_ref; return TRUE; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return TRUE; /* If there are no references to this symbol that do not use the GOT, we don't need to generate a copy reloc. */ if (!eh->non_got_ref) return TRUE; if (ELIMINATE_COPY_RELOCS) { struct elf32_hppa_link_hash_entry *hh; struct elf32_hppa_dyn_reloc_entry *hdh_p; hh = hppa_elf_hash_entry (eh); for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next) { sec = hdh_p->sec->output_section; if (sec != NULL && (sec->flags & SEC_READONLY) != 0) break; } /* If we didn't find any dynamic relocs in read-only sections, then we'll be keeping the dynamic relocs and avoiding the copy reloc. */ if (hdh_p == NULL) { eh->non_got_ref = 0; return TRUE; } } if (eh->size == 0) { (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), eh->root.root.string); return TRUE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ htab = hppa_link_hash_table (info); /* We must generate a COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. */ if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0) { htab->srelbss->size += sizeof (Elf32_External_Rela); eh->needs_copy = 1; } sec = htab->sdynbss; return _bfd_elf_adjust_dynamic_copy (eh, sec); } /* Allocate space in the .plt for entries that won't have relocations. ie. plabel entries. */ static bfd_boolean allocate_plt_static (struct elf_link_hash_entry *eh, void *inf) { struct bfd_link_info *info; struct elf32_hppa_link_hash_table *htab; struct elf32_hppa_link_hash_entry *hh; asection *sec; if (eh->root.type == bfd_link_hash_indirect) return TRUE; if (eh->root.type == bfd_link_hash_warning) eh = (struct elf_link_hash_entry *) eh->root.u.i.link; info = (struct bfd_link_info *) inf; hh = hppa_elf_hash_entry (eh); htab = hppa_link_hash_table (info); if (htab->etab.dynamic_sections_created && eh->plt.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (eh->dynindx == -1 && !eh->forced_local && eh->type != STT_PARISC_MILLI) { if (! bfd_elf_link_record_dynamic_symbol (info, eh)) return FALSE; } if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh)) { /* Allocate these later. From this point on, h->plabel means that the plt entry is only used by a plabel. We'll be using a normal plt entry for this symbol, so clear the plabel indicator. */ hh->plabel = 0; } else if (hh->plabel) { /* Make an entry in the .plt section for plabel references that won't have a .plt entry for other reasons. */ sec = htab->splt; eh->plt.offset = sec->size; sec->size += PLT_ENTRY_SIZE; } else { /* No .plt entry needed. */ eh->plt.offset = (bfd_vma) -1; eh->needs_plt = 0; } } else { eh->plt.offset = (bfd_vma) -1; eh->needs_plt = 0; } return TRUE; } /* Allocate space in .plt, .got and associated reloc sections for global syms. */ static bfd_boolean allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf) { struct bfd_link_info *info; struct elf32_hppa_link_hash_table *htab; asection *sec; struct elf32_hppa_link_hash_entry *hh; struct elf32_hppa_dyn_reloc_entry *hdh_p; if (eh->root.type == bfd_link_hash_indirect) return TRUE; if (eh->root.type == bfd_link_hash_warning) eh = (struct elf_link_hash_entry *) eh->root.u.i.link; info = inf; htab = hppa_link_hash_table (info); hh = hppa_elf_hash_entry (eh); if (htab->etab.dynamic_sections_created && eh->plt.offset != (bfd_vma) -1 && !hh->plabel && eh->plt.refcount > 0) { /* Make an entry in the .plt section. */ sec = htab->splt; eh->plt.offset = sec->size; sec->size += PLT_ENTRY_SIZE; /* We also need to make an entry in the .rela.plt section. */ htab->srelplt->size += sizeof (Elf32_External_Rela); htab->need_plt_stub = 1; } if (eh->got.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (eh->dynindx == -1 && !eh->forced_local && eh->type != STT_PARISC_MILLI) { if (! bfd_elf_link_record_dynamic_symbol (info, eh)) return FALSE; } sec = htab->sgot; eh->got.offset = sec->size; sec->size += GOT_ENTRY_SIZE; /* R_PARISC_TLS_GD* needs two GOT entries */ if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE)) sec->size += GOT_ENTRY_SIZE * 2; else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD) sec->size += GOT_ENTRY_SIZE; if (htab->etab.dynamic_sections_created && (info->shared || (eh->dynindx != -1 && !eh->forced_local))) { htab->srelgot->size += sizeof (Elf32_External_Rela); if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE)) htab->srelgot->size += 2 * sizeof (Elf32_External_Rela); else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD) htab->srelgot->size += sizeof (Elf32_External_Rela); } } else eh->got.offset = (bfd_vma) -1; if (hh->dyn_relocs == NULL) return TRUE; /* If this is a -Bsymbolic shared link, then we need to discard all space allocated for dynamic pc-relative relocs against symbols defined in a regular object. For the normal shared case, discard space for relocs that have become local due to symbol visibility changes. */ if (info->shared) { #if RELATIVE_DYNRELOCS if (SYMBOL_CALLS_LOCAL (info, eh)) { struct elf32_hppa_dyn_reloc_entry **hdh_pp; for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; ) { hdh_p->count -= hdh_p->relative_count; hdh_p->relative_count = 0; if (hdh_p->count == 0) *hdh_pp = hdh_p->hdh_next; else hdh_pp = &hdh_p->hdh_next; } } #endif /* Also discard relocs on undefined weak syms with non-default visibility. */ if (hh->dyn_relocs != NULL && eh->root.type == bfd_link_hash_undefweak) { if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT) hh->dyn_relocs = NULL; /* Make sure undefined weak symbols are output as a dynamic symbol in PIEs. */ else if (eh->dynindx == -1 && !eh->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, eh)) return FALSE; } } } else { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if (!eh->non_got_ref && ((ELIMINATE_COPY_RELOCS && eh->def_dynamic && !eh->def_regular) || (htab->etab.dynamic_sections_created && (eh->root.type == bfd_link_hash_undefweak || eh->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (eh->dynindx == -1 && !eh->forced_local && eh->type != STT_PARISC_MILLI) { if (! bfd_elf_link_record_dynamic_symbol (info, eh)) return FALSE; } /* If that succeeded, we know we'll be keeping all the relocs. */ if (eh->dynindx != -1) goto keep; } hh->dyn_relocs = NULL; return TRUE; keep: ; } /* Finally, allocate space. */ for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next) { asection *sreloc = elf_section_data (hdh_p->sec)->sreloc; sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela); } return TRUE; } /* This function is called via elf_link_hash_traverse to force millicode symbols local so they do not end up as globals in the dynamic symbol table. We ought to be able to do this in adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called for all dynamic symbols. Arguably, this is a bug in elf_adjust_dynamic_symbol. */ static bfd_boolean clobber_millicode_symbols (struct elf_link_hash_entry *eh, struct bfd_link_info *info) { if (eh->root.type == bfd_link_hash_warning) eh = (struct elf_link_hash_entry *) eh->root.u.i.link; if (eh->type == STT_PARISC_MILLI && !eh->forced_local) { elf32_hppa_hide_symbol (info, eh, TRUE); } return TRUE; } /* Find any dynamic relocs that apply to read-only sections. */ static bfd_boolean readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf) { struct elf32_hppa_link_hash_entry *hh; struct elf32_hppa_dyn_reloc_entry *hdh_p; if (eh->root.type == bfd_link_hash_warning) eh = (struct elf_link_hash_entry *) eh->root.u.i.link; hh = hppa_elf_hash_entry (eh); for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next) { asection *sec = hdh_p->sec->output_section; if (sec != NULL && (sec->flags & SEC_READONLY) != 0) { struct bfd_link_info *info = inf; info->flags |= DF_TEXTREL; /* Not an error, just cut short the traversal. */ return FALSE; } } return TRUE; } /* Set the sizes of the dynamic sections. */ static bfd_boolean elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { struct elf32_hppa_link_hash_table *htab; bfd *dynobj; bfd *ibfd; asection *sec; bfd_boolean relocs; htab = hppa_link_hash_table (info); dynobj = htab->etab.dynobj; if (dynobj == NULL) abort (); if (htab->etab.dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { sec = bfd_get_section_by_name (dynobj, ".interp"); if (sec == NULL) abort (); sec->size = sizeof ELF_DYNAMIC_INTERPRETER; sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } /* Force millicode symbols local. */ elf_link_hash_traverse (&htab->etab, clobber_millicode_symbols, info); } /* Set up .got and .plt offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; bfd_signed_vma *local_plt; bfd_signed_vma *end_local_plt; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; char *local_tls_type; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) continue; for (sec = ibfd->sections; sec != NULL; sec = sec->next) { struct elf32_hppa_dyn_reloc_entry *hdh_p; for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *) elf_section_data (sec)->local_dynrel); hdh_p != NULL; hdh_p = hdh_p->hdh_next) { if (!bfd_is_abs_section (hdh_p->sec) && bfd_is_abs_section (hdh_p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (hdh_p->count != 0) { srel = elf_section_data (hdh_p->sec)->sreloc; srel->size += hdh_p->count * sizeof (Elf32_External_Rela); if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; local_tls_type = hppa_elf_local_got_tls_type (ibfd); sec = htab->sgot; srel = htab->srelgot; for (; local_got < end_local_got; ++local_got) { if (*local_got > 0) { *local_got = sec->size; sec->size += GOT_ENTRY_SIZE; if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE)) sec->size += 2 * GOT_ENTRY_SIZE; else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD) sec->size += GOT_ENTRY_SIZE; if (info->shared) { srel->size += sizeof (Elf32_External_Rela); if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE)) srel->size += 2 * sizeof (Elf32_External_Rela); else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD) srel->size += sizeof (Elf32_External_Rela); } } else *local_got = (bfd_vma) -1; ++local_tls_type; } local_plt = end_local_got; end_local_plt = local_plt + locsymcount; if (! htab->etab.dynamic_sections_created) { /* Won't be used, but be safe. */ for (; local_plt < end_local_plt; ++local_plt) *local_plt = (bfd_vma) -1; } else { sec = htab->splt; srel = htab->srelplt; for (; local_plt < end_local_plt; ++local_plt) { if (*local_plt > 0) { *local_plt = sec->size; sec->size += PLT_ENTRY_SIZE; if (info->shared) srel->size += sizeof (Elf32_External_Rela); } else *local_plt = (bfd_vma) -1; } } } if (htab->tls_ldm_got.refcount > 0) { /* Allocate 2 got entries and 1 dynamic reloc for R_PARISC_TLS_DTPMOD32 relocs. */ htab->tls_ldm_got.offset = htab->sgot->size; htab->sgot->size += (GOT_ENTRY_SIZE * 2); htab->srelgot->size += sizeof (Elf32_External_Rela); } else htab->tls_ldm_got.offset = -1; /* Do all the .plt entries without relocs first. The dynamic linker uses the last .plt reloc to find the end of the .plt (and hence the start of the .got) for lazy linking. */ elf_link_hash_traverse (&htab->etab, allocate_plt_static, info); /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info); /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ relocs = FALSE; for (sec = dynobj->sections; sec != NULL; sec = sec->next) { if ((sec->flags & SEC_LINKER_CREATED) == 0) continue; if (sec == htab->splt) { if (htab->need_plt_stub) { /* Make space for the plt stub at the end of the .plt section. We want this stub right at the end, up against the .got section. */ int gotalign = bfd_section_alignment (dynobj, htab->sgot); int pltalign = bfd_section_alignment (dynobj, sec); bfd_size_type mask; if (gotalign > pltalign) bfd_set_section_alignment (dynobj, sec, gotalign); mask = ((bfd_size_type) 1 << gotalign) - 1; sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask; } } else if (sec == htab->sgot || sec == htab->sdynbss) ; else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela")) { if (sec->size != 0) { /* Remember whether there are any reloc sections other than .rela.plt. */ if (sec != htab->srelplt) relocs = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ sec->reloc_count = 0; } } else { /* It's not one of our sections, so don't allocate space. */ continue; } if (sec->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ sec->flags |= SEC_EXCLUDE; continue; } if ((sec->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. Zero it, because we may not fill in all the reloc sections. */ sec->contents = bfd_zalloc (dynobj, sec->size); if (sec->contents == NULL) return FALSE; } if (htab->etab.dynamic_sections_created) { /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It actually has nothing to do with the PLT, it is how we communicate the LTP value of a load module to the dynamic linker. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (!add_dynamic_entry (DT_PLTGOT, 0)) return FALSE; /* Add some entries to the .dynamic section. We fill in the values later, in elf32_hppa_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ if (info->executable) { if (!add_dynamic_entry (DT_DEBUG, 0)) return FALSE; } if (htab->srelplt->size != 0) { if (!add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return FALSE; } if (relocs) { if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) return FALSE; /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) == 0) elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info); if ((info->flags & DF_TEXTREL) != 0) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } } } #undef add_dynamic_entry return TRUE; } /* External entry points for sizing and building linker stubs. */ /* Set up various things so that we can make a list of input sections for each output section included in the link. Returns -1 on error, 0 when no stubs will be needed, and 1 on success. */ int elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) { bfd *input_bfd; unsigned int bfd_count; int top_id, top_index; asection *section; asection **input_list, **list; bfd_size_type amt; struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); /* Count the number of input BFDs and find the top input section id. */ for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; input_bfd != NULL; input_bfd = input_bfd->link_next) { bfd_count += 1; for (section = input_bfd->sections; section != NULL; section = section->next) { if (top_id < section->id) top_id = section->id; } } htab->bfd_count = bfd_count; amt = sizeof (struct map_stub) * (top_id + 1); htab->stub_group = bfd_zmalloc (amt); if (htab->stub_group == NULL) return -1; /* We can't use output_bfd->section_count here to find the top output section index as some sections may have been removed, and strip_excluded_output_sections doesn't renumber the indices. */ for (section = output_bfd->sections, top_index = 0; section != NULL; section = section->next) { if (top_index < section->index) top_index = section->index; } htab->top_index = top_index; amt = sizeof (asection *) * (top_index + 1); input_list = bfd_malloc (amt); htab->input_list = input_list; if (input_list == NULL) return -1; /* For sections we aren't interested in, mark their entries with a value we can check later. */ list = input_list + top_index; do *list = bfd_abs_section_ptr; while (list-- != input_list); for (section = output_bfd->sections; section != NULL; section = section->next) { if ((section->flags & SEC_CODE) != 0) input_list[section->index] = NULL; } return 1; } /* The linker repeatedly calls this function for each input section, in the order that input sections are linked into output sections. Build lists of input sections to determine groupings between which we may insert linker stubs. */ void elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec) { struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); if (isec->output_section->index <= htab->top_index) { asection **list = htab->input_list + isec->output_section->index; if (*list != bfd_abs_section_ptr) { /* Steal the link_sec pointer for our list. */ #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) /* This happens to make the list in reverse order, which is what we want. */ PREV_SEC (isec) = *list; *list = isec; } } } /* See whether we can group stub sections together. Grouping stub sections may result in fewer stubs. More importantly, we need to put all .init* and .fini* stubs at the beginning of the .init or .fini output sections respectively, because glibc splits the _init and _fini functions into multiple parts. Putting a stub in the middle of a function is not a good idea. */ static void group_sections (struct elf32_hppa_link_hash_table *htab, bfd_size_type stub_group_size, bfd_boolean stubs_always_before_branch) { asection **list = htab->input_list + htab->top_index; do { asection *tail = *list; if (tail == bfd_abs_section_ptr) continue; while (tail != NULL) { asection *curr; asection *prev; bfd_size_type total; bfd_boolean big_sec; curr = tail; total = tail->size; big_sec = total >= stub_group_size; while ((prev = PREV_SEC (curr)) != NULL && ((total += curr->output_offset - prev->output_offset) < stub_group_size)) curr = prev; /* OK, the size from the start of CURR to the end is less than 240000 bytes and thus can be handled by one stub section. (or the tail section is itself larger than 240000 bytes, in which case we may be toast.) We should really be keeping track of the total size of stubs added here, as stubs contribute to the final output section size. That's a little tricky, and this way will only break if stubs added total more than 22144 bytes, or 2768 long branch stubs. It seems unlikely for more than 2768 different functions to be called, especially from code only 240000 bytes long. This limit used to be 250000, but c++ code tends to generate lots of little functions, and sometimes violated the assumption. */ do { prev = PREV_SEC (tail); /* Set up this stub group. */ htab->stub_group[tail->id].link_sec = curr; } while (tail != curr && (tail = prev) != NULL); /* But wait, there's more! Input sections up to 240000 bytes before the stub section can be handled by it too. Don't do this if we have a really large section after the stubs, as adding more stubs increases the chance that branches may not reach into the stub section. */ if (!stubs_always_before_branch && !big_sec) { total = 0; while (prev != NULL && ((total += tail->output_offset - prev->output_offset) < stub_group_size)) { tail = prev; prev = PREV_SEC (tail); htab->stub_group[tail->id].link_sec = curr; } } tail = prev; } } while (list-- != htab->input_list); free (htab->input_list); #undef PREV_SEC } /* Read in all local syms for all input bfds, and create hash entries for export stubs if we are building a multi-subspace shared lib. Returns -1 on error, 1 if export stubs created, 0 otherwise. */ static int get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info) { unsigned int bfd_indx; Elf_Internal_Sym *local_syms, **all_local_syms; int stub_changed = 0; struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); /* We want to read in symbol extension records only once. To do this we need to read in the local symbols in parallel and save them for later use; so hold pointers to the local symbols in an array. */ bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count; all_local_syms = bfd_zmalloc (amt); htab->all_local_syms = all_local_syms; if (all_local_syms == NULL) return -1; /* Walk over all the input BFDs, swapping in local symbols. If we are creating a shared library, create hash entries for the export stubs. */ for (bfd_indx = 0; input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++) { Elf_Internal_Shdr *symtab_hdr; /* We'll need the symbol table in a second. */ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; if (symtab_hdr->sh_info == 0) continue; /* We need an array of the local symbols attached to the input bfd. */ local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; if (local_syms == NULL) { local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); /* Cache them for elf_link_input_bfd. */ symtab_hdr->contents = (unsigned char *) local_syms; } if (local_syms == NULL) return -1; all_local_syms[bfd_indx] = local_syms; if (info->shared && htab->multi_subspace) { struct elf_link_hash_entry **eh_syms; struct elf_link_hash_entry **eh_symend; unsigned int symcount; symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) - symtab_hdr->sh_info); eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd); eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount); /* Look through the global syms for functions; We need to build export stubs for all globally visible functions. */ for (; eh_syms < eh_symend; eh_syms++) { struct elf32_hppa_link_hash_entry *hh; hh = hppa_elf_hash_entry (*eh_syms); while (hh->eh.root.type == bfd_link_hash_indirect || hh->eh.root.type == bfd_link_hash_warning) hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); /* At this point in the link, undefined syms have been resolved, so we need to check that the symbol was defined in this BFD. */ if ((hh->eh.root.type == bfd_link_hash_defined || hh->eh.root.type == bfd_link_hash_defweak) && hh->eh.type == STT_FUNC && hh->eh.root.u.def.section->output_section != NULL && (hh->eh.root.u.def.section->output_section->owner == output_bfd) && hh->eh.root.u.def.section->owner == input_bfd && hh->eh.def_regular && !hh->eh.forced_local && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT) { asection *sec; const char *stub_name; struct elf32_hppa_stub_hash_entry *hsh; sec = hh->eh.root.u.def.section; stub_name = hh_name (hh); hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name, FALSE, FALSE); if (hsh == NULL) { hsh = hppa_add_stub (stub_name, sec, htab); if (!hsh) return -1; hsh->target_value = hh->eh.root.u.def.value; hsh->target_section = hh->eh.root.u.def.section; hsh->stub_type = hppa_stub_export; hsh->hh = hh; stub_changed = 1; } else { (*_bfd_error_handler) (_("%B: duplicate export stub %s"), input_bfd, stub_name); } } } } } return stub_changed; } /* Determine and set the size of the stub section for a final link. The basic idea here is to examine all the relocations looking for PC-relative calls to a target that is unreachable with a "bl" instruction. */ bfd_boolean elf32_hppa_size_stubs (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info, bfd_boolean multi_subspace, bfd_signed_vma group_size, asection * (*add_stub_section) (const char *, asection *), void (*layout_sections_again) (void)) { bfd_size_type stub_group_size; bfd_boolean stubs_always_before_branch; bfd_boolean stub_changed; struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); /* Stash our params away. */ htab->stub_bfd = stub_bfd; htab->multi_subspace = multi_subspace; htab->add_stub_section = add_stub_section; htab->layout_sections_again = layout_sections_again; stubs_always_before_branch = group_size < 0; if (group_size < 0) stub_group_size = -group_size; else stub_group_size = group_size; if (stub_group_size == 1) { /* Default values. */ if (stubs_always_before_branch) { stub_group_size = 7680000; if (htab->has_17bit_branch || htab->multi_subspace) stub_group_size = 240000; if (htab->has_12bit_branch) stub_group_size = 7500; } else { stub_group_size = 6971392; if (htab->has_17bit_branch || htab->multi_subspace) stub_group_size = 217856; if (htab->has_12bit_branch) stub_group_size = 6808; } } group_sections (htab, stub_group_size, stubs_always_before_branch); switch (get_local_syms (output_bfd, info->input_bfds, info)) { default: if (htab->all_local_syms) goto error_ret_free_local; return FALSE; case 0: stub_changed = FALSE; break; case 1: stub_changed = TRUE; break; } while (1) { bfd *input_bfd; unsigned int bfd_indx; asection *stub_sec; for (input_bfd = info->input_bfds, bfd_indx = 0; input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++) { Elf_Internal_Shdr *symtab_hdr; asection *section; Elf_Internal_Sym *local_syms; /* We'll need the symbol table in a second. */ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; if (symtab_hdr->sh_info == 0) continue; local_syms = htab->all_local_syms[bfd_indx]; /* Walk over each section attached to the input bfd. */ for (section = input_bfd->sections; section != NULL; section = section->next) { Elf_Internal_Rela *internal_relocs, *irelaend, *irela; /* If there aren't any relocs, then there's nothing more to do. */ if ((section->flags & SEC_RELOC) == 0 || section->reloc_count == 0) continue; /* If this section is a link-once section that will be discarded, then don't create any stubs. */ if (section->output_section == NULL || section->output_section->owner != output_bfd) continue; /* Get the relocs. */ internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL, info->keep_memory); if (internal_relocs == NULL) goto error_ret_free_local; /* Now examine each relocation. */ irela = internal_relocs; irelaend = irela + section->reloc_count; for (; irela < irelaend; irela++) { unsigned int r_type, r_indx; enum elf32_hppa_stub_type stub_type; struct elf32_hppa_stub_hash_entry *hsh; asection *sym_sec; bfd_vma sym_value; bfd_vma destination; struct elf32_hppa_link_hash_entry *hh; char *stub_name; const asection *id_sec; r_type = ELF32_R_TYPE (irela->r_info); r_indx = ELF32_R_SYM (irela->r_info); if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) { bfd_set_error (bfd_error_bad_value); error_ret_free_internal: if (elf_section_data (section)->relocs == NULL) free (internal_relocs); goto error_ret_free_local; } /* Only look for stubs on call instructions. */ if (r_type != (unsigned int) R_PARISC_PCREL12F && r_type != (unsigned int) R_PARISC_PCREL17F && r_type != (unsigned int) R_PARISC_PCREL22F) continue; /* Now determine the call target, its name, value, section. */ sym_sec = NULL; sym_value = 0; destination = 0; hh = NULL; if (r_indx < symtab_hdr->sh_info) { /* It's a local symbol. */ Elf_Internal_Sym *sym; Elf_Internal_Shdr *hdr; unsigned int shndx; sym = local_syms + r_indx; if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) sym_value = sym->st_value; shndx = sym->st_shndx; if (shndx < elf_numsections (input_bfd)) { hdr = elf_elfsections (input_bfd)[shndx]; sym_sec = hdr->bfd_section; destination = (sym_value + irela->r_addend + sym_sec->output_offset + sym_sec->output_section->vma); } } else { /* It's an external symbol. */ int e_indx; e_indx = r_indx - symtab_hdr->sh_info; hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]); while (hh->eh.root.type == bfd_link_hash_indirect || hh->eh.root.type == bfd_link_hash_warning) hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); if (hh->eh.root.type == bfd_link_hash_defined || hh->eh.root.type == bfd_link_hash_defweak) { sym_sec = hh->eh.root.u.def.section; sym_value = hh->eh.root.u.def.value; if (sym_sec->output_section != NULL) destination = (sym_value + irela->r_addend + sym_sec->output_offset + sym_sec->output_section->vma); } else if (hh->eh.root.type == bfd_link_hash_undefweak) { if (! info->shared) continue; } else if (hh->eh.root.type == bfd_link_hash_undefined) { if (! (info->unresolved_syms_in_objects == RM_IGNORE && (ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT) && hh->eh.type != STT_PARISC_MILLI)) continue; } else { bfd_set_error (bfd_error_bad_value); goto error_ret_free_internal; } } /* Determine what (if any) linker stub is needed. */ stub_type = hppa_type_of_stub (section, irela, hh, destination, info); if (stub_type == hppa_stub_none) continue; /* Support for grouping stub sections. */ id_sec = htab->stub_group[section->id].link_sec; /* Get the name of this stub. */ stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela); if (!stub_name) goto error_ret_free_internal; hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name, FALSE, FALSE); if (hsh != NULL) { /* The proper stub has already been created. */ free (stub_name); continue; } hsh = hppa_add_stub (stub_name, section, htab); if (hsh == NULL) { free (stub_name); goto error_ret_free_internal; } hsh->target_value = sym_value; hsh->target_section = sym_sec; hsh->stub_type = stub_type; if (info->shared) { if (stub_type == hppa_stub_import) hsh->stub_type = hppa_stub_import_shared; else if (stub_type == hppa_stub_long_branch) hsh->stub_type = hppa_stub_long_branch_shared; } hsh->hh = hh; stub_changed = TRUE; } /* We're done with the internal relocs, free them. */ if (elf_section_data (section)->relocs == NULL) free (internal_relocs); } } if (!stub_changed) break; /* OK, we've added some stubs. Find out the new size of the stub sections. */ for (stub_sec = htab->stub_bfd->sections; stub_sec != NULL; stub_sec = stub_sec->next) stub_sec->size = 0; bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab); /* Ask the linker to do its stuff. */ (*htab->layout_sections_again) (); stub_changed = FALSE; } free (htab->all_local_syms); return TRUE; error_ret_free_local: free (htab->all_local_syms); return FALSE; } /* For a final link, this function is called after we have sized the stubs to provide a value for __gp. */ bfd_boolean elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info) { struct bfd_link_hash_entry *h; asection *sec = NULL; bfd_vma gp_val = 0; struct elf32_hppa_link_hash_table *htab; htab = hppa_link_hash_table (info); h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE); if (h != NULL && (h->type == bfd_link_hash_defined || h->type == bfd_link_hash_defweak)) { gp_val = h->u.def.value; sec = h->u.def.section; } else { asection *splt = bfd_get_section_by_name (abfd, ".plt"); asection *sgot = bfd_get_section_by_name (abfd, ".got"); /* Choose to point our LTP at, in this order, one of .plt, .got, or .data, if these sections exist. In the case of choosing .plt try to make the LTP ideal for addressing anywhere in the .plt or .got with a 14 bit signed offset. Typically, the end of the .plt is the start of the .got, so choose .plt + 0x2000 if either the .plt or .got is larger than 0x2000. If both the .plt and .got are smaller than 0x2000, choose the end of the .plt section. */ sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0 ? NULL : splt; if (sec != NULL) { gp_val = sec->size; if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000)) { gp_val = 0x2000; } } else { sec = sgot; if (sec != NULL) { if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0) { /* We know we don't have a .plt. If .got is large, offset our LTP. */ if (sec->size > 0x2000) gp_val = 0x2000; } } else { /* No .plt or .got. Who cares what the LTP is? */ sec = bfd_get_section_by_name (abfd, ".data"); } } if (h != NULL) { h->type = bfd_link_hash_defined; h->u.def.value = gp_val; if (sec != NULL) h->u.def.section = sec; else h->u.def.section = bfd_abs_section_ptr; } } if (sec != NULL && sec->output_section != NULL) gp_val += sec->output_section->vma + sec->output_offset; elf_gp (abfd) = gp_val; return TRUE; } /* Build all the stubs associated with the current output file. The stubs are kept in a hash table attached to the main linker hash table. We also set up the .plt entries for statically linked PIC functions here. This function is called via hppaelf_finish in the linker. */ bfd_boolean elf32_hppa_build_stubs (struct bfd_link_info *info) { asection *stub_sec; struct bfd_hash_table *table; struct elf32_hppa_link_hash_table *htab; htab = hppa_link_hash_table (info); for (stub_sec = htab->stub_bfd->sections; stub_sec != NULL; stub_sec = stub_sec->next) { bfd_size_type size; /* Allocate memory to hold the linker stubs. */ size = stub_sec->size; stub_sec->contents = bfd_zalloc (htab->stub_bfd, size); if (stub_sec->contents == NULL && size != 0) return FALSE; stub_sec->size = 0; } /* Build the stubs as directed by the stub hash table. */ table = &htab->bstab; bfd_hash_traverse (table, hppa_build_one_stub, info); return TRUE; } /* Return the base vma address which should be subtracted from the real address when resolving a dtpoff relocation. This is PT_TLS segment p_vaddr. */ static bfd_vma dtpoff_base (struct bfd_link_info *info) { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; return elf_hash_table (info)->tls_sec->vma; } /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */ static bfd_vma tpoff (struct bfd_link_info *info, bfd_vma address) { struct elf_link_hash_table *htab = elf_hash_table (info); /* If tls_sec is NULL, we should have signalled an error already. */ if (htab->tls_sec == NULL) return 0; /* hppa TLS ABI is variant I and static TLS block start just after tcbhead structure which has 2 pointer fields. */ return (address - htab->tls_sec->vma + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power)); } /* Perform a final link. */ static bfd_boolean elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info) { /* Invoke the regular ELF linker to do all the work. */ if (!bfd_elf_final_link (abfd, info)) return FALSE; /* If we're producing a final executable, sort the contents of the unwind section. */ return elf_hppa_sort_unwind (abfd); } /* Record the lowest address for the data and text segments. */ static void hppa_record_segment_addr (bfd *abfd, asection *section, void *data) { struct elf32_hppa_link_hash_table *htab; htab = (struct elf32_hppa_link_hash_table*) data; if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) { bfd_vma value; Elf_Internal_Phdr *p; p = _bfd_elf_find_segment_containing_section (abfd, section->output_section); BFD_ASSERT (p != NULL); value = p->p_vaddr; if ((section->flags & SEC_READONLY) != 0) { if (value < htab->text_segment_base) htab->text_segment_base = value; } else { if (value < htab->data_segment_base) htab->data_segment_base = value; } } } /* Perform a relocation as part of a final link. */ static bfd_reloc_status_type final_link_relocate (asection *input_section, bfd_byte *contents, const Elf_Internal_Rela *rela, bfd_vma value, struct elf32_hppa_link_hash_table *htab, asection *sym_sec, struct elf32_hppa_link_hash_entry *hh, struct bfd_link_info *info) { int insn; unsigned int r_type = ELF32_R_TYPE (rela->r_info); unsigned int orig_r_type = r_type; reloc_howto_type *howto = elf_hppa_howto_table + r_type; int r_format = howto->bitsize; enum hppa_reloc_field_selector_type_alt r_field; bfd *input_bfd = input_section->owner; bfd_vma offset = rela->r_offset; bfd_vma max_branch_offset = 0; bfd_byte *hit_data = contents + offset; bfd_signed_vma addend = rela->r_addend; bfd_vma location; struct elf32_hppa_stub_hash_entry *hsh = NULL; int val; if (r_type == R_PARISC_NONE) return bfd_reloc_ok; insn = bfd_get_32 (input_bfd, hit_data); /* Find out where we are and where we're going. */ location = (offset + input_section->output_offset + input_section->output_section->vma); /* If we are not building a shared library, convert DLTIND relocs to DPREL relocs. */ if (!info->shared) { switch (r_type) { case R_PARISC_DLTIND21L: r_type = R_PARISC_DPREL21L; break; case R_PARISC_DLTIND14R: r_type = R_PARISC_DPREL14R; break; case R_PARISC_DLTIND14F: r_type = R_PARISC_DPREL14F; break; } } switch (r_type) { case R_PARISC_PCREL12F: case R_PARISC_PCREL17F: case R_PARISC_PCREL22F: /* If this call should go via the plt, find the import stub in the stub hash. */ if (sym_sec == NULL || sym_sec->output_section == NULL || (hh != NULL && hh->eh.plt.offset != (bfd_vma) -1 && hh->eh.dynindx != -1 && !hh->plabel && (info->shared || !hh->eh.def_regular || hh->eh.root.type == bfd_link_hash_defweak))) { hsh = hppa_get_stub_entry (input_section, sym_sec, hh, rela, htab); if (hsh != NULL) { value = (hsh->stub_offset + hsh->stub_sec->output_offset + hsh->stub_sec->output_section->vma); addend = 0; } else if (sym_sec == NULL && hh != NULL && hh->eh.root.type == bfd_link_hash_undefweak) { /* It's OK if undefined weak. Calls to undefined weak symbols behave as if the "called" function immediately returns. We can thus call to a weak function without first checking whether the function is defined. */ value = location; addend = 8; } else return bfd_reloc_undefined; } /* Fall thru. */ case R_PARISC_PCREL21L: case R_PARISC_PCREL17C: case R_PARISC_PCREL17R: case R_PARISC_PCREL14R: case R_PARISC_PCREL14F: case R_PARISC_PCREL32: /* Make it a pc relative offset. */ value -= location; addend -= 8; break; case R_PARISC_DPREL21L: case R_PARISC_DPREL14R: case R_PARISC_DPREL14F: /* Convert instructions that use the linkage table pointer (r19) to instructions that use the global data pointer (dp). This is the most efficient way of using PIC code in an incomplete executable, but the user must follow the standard runtime conventions for accessing data for this to work. */ if (orig_r_type == R_PARISC_DLTIND21L) { /* Convert addil instructions if the original reloc was a DLTIND21L. GCC sometimes uses a register other than r19 for the operation, so we must convert any addil instruction that uses this relocation. */ if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26)) insn = ADDIL_DP; else /* We must have a ldil instruction. It's too hard to find and convert the associated add instruction, so issue an error. */ (*_bfd_error_handler) (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"), input_bfd, input_section, offset, howto->name, insn); } else if (orig_r_type == R_PARISC_DLTIND14F) { /* This must be a format 1 load/store. Change the base register to dp. */ insn = (insn & 0xfc1ffff) | (27 << 21); } /* For all the DP relative relocations, we need to examine the symbol's section. If it has no section or if it's a code section, then "data pointer relative" makes no sense. In that case we don't adjust the "value", and for 21 bit addil instructions, we change the source addend register from %dp to %r0. This situation commonly arises for undefined weak symbols and when a variable's "constness" is declared differently from the way the variable is defined. For instance: "extern int foo" with foo defined as "const int foo". */ if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0) { if ((insn & ((0x3f << 26) | (0x1f << 21))) == (((int) OP_ADDIL << 26) | (27 << 21))) { insn &= ~ (0x1f << 21); } /* Now try to make things easy for the dynamic linker. */ break; } /* Fall thru. */ case R_PARISC_DLTIND21L: case R_PARISC_DLTIND14R: case R_PARISC_DLTIND14F: case R_PARISC_TLS_GD21L: case R_PARISC_TLS_GD14R: case R_PARISC_TLS_LDM21L: case R_PARISC_TLS_LDM14R: case R_PARISC_TLS_IE21L: case R_PARISC_TLS_IE14R: value -= elf_gp (input_section->output_section->owner); break; case R_PARISC_SEGREL32: if ((sym_sec->flags & SEC_CODE) != 0) value -= htab->text_segment_base; else value -= htab->data_segment_base; break; default: break; } switch (r_type) { case R_PARISC_DIR32: case R_PARISC_DIR14F: case R_PARISC_DIR17F: case R_PARISC_PCREL17C: case R_PARISC_PCREL14F: case R_PARISC_PCREL32: case R_PARISC_DPREL14F: case R_PARISC_PLABEL32: case R_PARISC_DLTIND14F: case R_PARISC_SEGBASE: case R_PARISC_SEGREL32: case R_PARISC_TLS_DTPMOD32: case R_PARISC_TLS_DTPOFF32: case R_PARISC_TLS_TPREL32: r_field = e_fsel; break; case R_PARISC_DLTIND21L: case R_PARISC_PCREL21L: case R_PARISC_PLABEL21L: r_field = e_lsel; break; case R_PARISC_DIR21L: case R_PARISC_DPREL21L: case R_PARISC_TLS_GD21L: case R_PARISC_TLS_LDM21L: case R_PARISC_TLS_LDO21L: case R_PARISC_TLS_IE21L: case R_PARISC_TLS_LE21L: r_field = e_lrsel; break; case R_PARISC_PCREL17R: case R_PARISC_PCREL14R: case R_PARISC_PLABEL14R: case R_PARISC_DLTIND14R: r_field = e_rsel; break; case R_PARISC_DIR17R: case R_PARISC_DIR14R: case R_PARISC_DPREL14R: case R_PARISC_TLS_GD14R: case R_PARISC_TLS_LDM14R: case R_PARISC_TLS_LDO14R: case R_PARISC_TLS_IE14R: case R_PARISC_TLS_LE14R: r_field = e_rrsel; break; case R_PARISC_PCREL12F: case R_PARISC_PCREL17F: case R_PARISC_PCREL22F: r_field = e_fsel; if (r_type == (unsigned int) R_PARISC_PCREL17F) { max_branch_offset = (1 << (17-1)) << 2; } else if (r_type == (unsigned int) R_PARISC_PCREL12F) { max_branch_offset = (1 << (12-1)) << 2; } else { max_branch_offset = (1 << (22-1)) << 2; } /* sym_sec is NULL on undefined weak syms or when shared on undefined syms. We've already checked for a stub for the shared undefined case. */ if (sym_sec == NULL) break; /* If the branch is out of reach, then redirect the call to the local stub for this function. */ if (value + addend + max_branch_offset >= 2*max_branch_offset) { hsh = hppa_get_stub_entry (input_section, sym_sec, hh, rela, htab); if (hsh == NULL) return bfd_reloc_undefined; /* Munge up the value and addend so that we call the stub rather than the procedure directly. */ value = (hsh->stub_offset + hsh->stub_sec->output_offset + hsh->stub_sec->output_section->vma - location); addend = -8; } break; /* Something we don't know how to handle. */ default: return bfd_reloc_notsupported; } /* Make sure we can reach the stub. */ if (max_branch_offset != 0 && value + addend + max_branch_offset >= 2*max_branch_offset) { (*_bfd_error_handler) (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"), input_bfd, input_section, offset, hsh->bh_root.string); bfd_set_error (bfd_error_bad_value); return bfd_reloc_notsupported; } val = hppa_field_adjust (value, addend, r_field); switch (r_type) { case R_PARISC_PCREL12F: case R_PARISC_PCREL17C: case R_PARISC_PCREL17F: case R_PARISC_PCREL17R: case R_PARISC_PCREL22F: case R_PARISC_DIR17F: case R_PARISC_DIR17R: /* This is a branch. Divide the offset by four. Note that we need to decide whether it's a branch or otherwise by inspecting the reloc. Inspecting insn won't work as insn might be from a .word directive. */ val >>= 2; break; default: break; } insn = hppa_rebuild_insn (insn, val, r_format); /* Update the instruction word. */ bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); return bfd_reloc_ok; } /* Relocate an HPPA ELF section. */ static bfd_boolean elf32_hppa_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { bfd_vma *local_got_offsets; struct elf32_hppa_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *rela; Elf_Internal_Rela *relend; symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; htab = hppa_link_hash_table (info); local_got_offsets = elf_local_got_offsets (input_bfd); rela = relocs; relend = relocs + input_section->reloc_count; for (; rela < relend; rela++) { unsigned int r_type; reloc_howto_type *howto; unsigned int r_symndx; struct elf32_hppa_link_hash_entry *hh; Elf_Internal_Sym *sym; asection *sym_sec; bfd_vma relocation; bfd_reloc_status_type rstatus; const char *sym_name; bfd_boolean plabel; bfd_boolean warned_undef; r_type = ELF32_R_TYPE (rela->r_info); if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) { bfd_set_error (bfd_error_bad_value); return FALSE; } if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) continue; r_symndx = ELF32_R_SYM (rela->r_info); hh = NULL; sym = NULL; sym_sec = NULL; warned_undef = FALSE; if (r_symndx < symtab_hdr->sh_info) { /* This is a local symbol, h defaults to NULL. */ sym = local_syms + r_symndx; sym_sec = local_sections[r_symndx]; relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela); } else { struct elf_link_hash_entry *eh; bfd_boolean unresolved_reloc; struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela, r_symndx, symtab_hdr, sym_hashes, eh, sym_sec, relocation, unresolved_reloc, warned_undef); if (!info->relocatable && relocation == 0 && eh->root.type != bfd_link_hash_defined && eh->root.type != bfd_link_hash_defweak && eh->root.type != bfd_link_hash_undefweak) { if (info->unresolved_syms_in_objects == RM_IGNORE && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT && eh->type == STT_PARISC_MILLI) { if (! info->callbacks->undefined_symbol (info, eh_name (eh), input_bfd, input_section, rela->r_offset, FALSE)) return FALSE; warned_undef = TRUE; } } hh = hppa_elf_hash_entry (eh); } if (sym_sec != NULL && elf_discarded_section (sym_sec)) { /* For relocs against symbols from removed linkonce sections, or sections discarded by a linker script, we just want the section contents zeroed. Avoid any special processing. */ _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd, contents + rela->r_offset); rela->r_info = 0; rela->r_addend = 0; continue; } if (info->relocatable) continue; /* Do any required modifications to the relocation value, and determine what types of dynamic info we need to output, if any. */ plabel = 0; switch (r_type) { case R_PARISC_DLTIND14F: case R_PARISC_DLTIND14R: case R_PARISC_DLTIND21L: { bfd_vma off; bfd_boolean do_got = 0; /* Relocation is to the entry for this symbol in the global offset table. */ if (hh != NULL) { bfd_boolean dyn; off = hh->eh.got.offset; dyn = htab->etab.dynamic_sections_created; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)) { /* If we aren't going to call finish_dynamic_symbol, then we need to handle initialisation of the .got entry and create needed relocs here. Since the offset must always be a multiple of 4, we use the least significant bit to record whether we have initialised it already. */ if ((off & 1) != 0) off &= ~1; else { hh->eh.got.offset |= 1; do_got = 1; } } } else { /* Local symbol case. */ if (local_got_offsets == NULL) abort (); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already generated the necessary reloc. */ if ((off & 1) != 0) off &= ~1; else { local_got_offsets[r_symndx] |= 1; do_got = 1; } } if (do_got) { if (info->shared) { /* Output a dynamic relocation for this GOT entry. In this case it is relative to the base of the object because the symbol index is zero. */ Elf_Internal_Rela outrel; bfd_byte *loc; asection *sec = htab->srelgot; outrel.r_offset = (off + htab->sgot->output_offset + htab->sgot->output_section->vma); outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); outrel.r_addend = relocation; loc = sec->contents; loc += sec->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } else bfd_put_32 (output_bfd, relocation, htab->sgot->contents + off); } if (off >= (bfd_vma) -2) abort (); /* Add the base of the GOT to the relocation value. */ relocation = (off + htab->sgot->output_offset + htab->sgot->output_section->vma); } break; case R_PARISC_SEGREL32: /* If this is the first SEGREL relocation, then initialize the segment base values. */ if (htab->text_segment_base == (bfd_vma) -1) bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab); break; case R_PARISC_PLABEL14R: case R_PARISC_PLABEL21L: case R_PARISC_PLABEL32: if (htab->etab.dynamic_sections_created) { bfd_vma off; bfd_boolean do_plt = 0; /* If we have a global symbol with a PLT slot, then redirect this relocation to it. */ if (hh != NULL) { off = hh->eh.plt.offset; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, &hh->eh)) { /* In a non-shared link, adjust_dynamic_symbols isn't called for symbols forced local. We need to write out the plt entry here. */ if ((off & 1) != 0) off &= ~1; else { hh->eh.plt.offset |= 1; do_plt = 1; } } } else { bfd_vma *local_plt_offsets; if (local_got_offsets == NULL) abort (); local_plt_offsets = local_got_offsets + symtab_hdr->sh_info; off = local_plt_offsets[r_symndx]; /* As for the local .got entry case, we use the last bit to record whether we've already initialised this local .plt entry. */ if ((off & 1) != 0) off &= ~1; else { local_plt_offsets[r_symndx] |= 1; do_plt = 1; } } if (do_plt) { if (info->shared) { /* Output a dynamic IPLT relocation for this PLT entry. */ Elf_Internal_Rela outrel; bfd_byte *loc; asection *s = htab->srelplt; outrel.r_offset = (off + htab->splt->output_offset + htab->splt->output_section->vma); outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); outrel.r_addend = relocation; loc = s->contents; loc += s->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } else { bfd_put_32 (output_bfd, relocation, htab->splt->contents + off); bfd_put_32 (output_bfd, elf_gp (htab->splt->output_section->owner), htab->splt->contents + off + 4); } } if (off >= (bfd_vma) -2) abort (); /* PLABELs contain function pointers. Relocation is to the entry for the function in the .plt. The magic +2 offset signals to $$dyncall that the function pointer is in the .plt and thus has a gp pointer too. Exception: Undefined PLABELs should have a value of zero. */ if (hh == NULL || (hh->eh.root.type != bfd_link_hash_undefweak && hh->eh.root.type != bfd_link_hash_undefined)) { relocation = (off + htab->splt->output_offset + htab->splt->output_section->vma + 2); } plabel = 1; } /* Fall through and possibly emit a dynamic relocation. */ case R_PARISC_DIR17F: case R_PARISC_DIR17R: case R_PARISC_DIR14F: case R_PARISC_DIR14R: case R_PARISC_DIR21L: case R_PARISC_DPREL14F: case R_PARISC_DPREL14R: case R_PARISC_DPREL21L: case R_PARISC_DIR32: if ((input_section->flags & SEC_ALLOC) == 0) break; /* The reloc types handled here and this conditional expression must match the code in ..check_relocs and allocate_dynrelocs. ie. We need exactly the same condition as in ..check_relocs, with some extra conditions (dynindx test in this case) to cater for relocs removed by allocate_dynrelocs. If you squint, the non-shared test here does indeed match the one in ..check_relocs, the difference being that here we test DEF_DYNAMIC as well as !DEF_REGULAR. All common syms end up with !DEF_REGULAR, which is why we can't use just that test here. Conversely, DEF_DYNAMIC can't be used in check_relocs as there all files have not been loaded. */ if ((info->shared && (hh == NULL || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT || hh->eh.root.type != bfd_link_hash_undefweak) && (IS_ABSOLUTE_RELOC (r_type) || !SYMBOL_CALLS_LOCAL (info, &hh->eh))) || (!info->shared && hh != NULL && hh->eh.dynindx != -1 && !hh->eh.non_got_ref && ((ELIMINATE_COPY_RELOCS && hh->eh.def_dynamic && !hh->eh.def_regular) || hh->eh.root.type == bfd_link_hash_undefweak || hh->eh.root.type == bfd_link_hash_undefined))) { Elf_Internal_Rela outrel; bfd_boolean skip; asection *sreloc; bfd_byte *loc; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ outrel.r_addend = rela->r_addend; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rela->r_offset); skip = (outrel.r_offset == (bfd_vma) -1 || outrel.r_offset == (bfd_vma) -2); outrel.r_offset += (input_section->output_offset + input_section->output_section->vma); if (skip) { memset (&outrel, 0, sizeof (outrel)); } else if (hh != NULL && hh->eh.dynindx != -1 && (plabel || !IS_ABSOLUTE_RELOC (r_type) || !info->shared || !info->symbolic || !hh->eh.def_regular)) { outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type); } else /* It's a local symbol, or one marked to become local. */ { int indx = 0; /* Add the absolute offset of the symbol. */ outrel.r_addend += relocation; /* Global plabels need to be processed by the dynamic linker so that functions have at most one fptr. For this reason, we need to differentiate between global and local plabels, which we do by providing the function symbol for a global plabel reloc, and no symbol for local plabels. */ if (! plabel && sym_sec != NULL && sym_sec->output_section != NULL && ! bfd_is_abs_section (sym_sec)) { asection *osec; osec = sym_sec->output_section; indx = elf_section_data (osec)->dynindx; if (indx == 0) { osec = htab->etab.text_index_section; indx = elf_section_data (osec)->dynindx; } BFD_ASSERT (indx != 0); /* We are turning this relocation into one against a section symbol, so subtract out the output section's address but not the offset of the input section in the output section. */ outrel.r_addend -= osec->vma; } outrel.r_info = ELF32_R_INFO (indx, r_type); } sreloc = elf_section_data (input_section)->sreloc; if (sreloc == NULL) abort (); loc = sreloc->contents; loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } break; case R_PARISC_TLS_LDM21L: case R_PARISC_TLS_LDM14R: { bfd_vma off; off = htab->tls_ldm_got.offset; if (off & 1) off &= ~1; else { Elf_Internal_Rela outrel; bfd_byte *loc; outrel.r_offset = (off + htab->sgot->output_section->vma + htab->sgot->output_offset); outrel.r_addend = 0; outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32); loc = htab->srelgot->contents; loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); htab->tls_ldm_got.offset |= 1; } /* Add the base of the GOT to the relocation value. */ relocation = (off + htab->sgot->output_offset + htab->sgot->output_section->vma); break; } case R_PARISC_TLS_LDO21L: case R_PARISC_TLS_LDO14R: relocation -= dtpoff_base (info); break; case R_PARISC_TLS_GD21L: case R_PARISC_TLS_GD14R: case R_PARISC_TLS_IE21L: case R_PARISC_TLS_IE14R: { bfd_vma off; int indx; char tls_type; indx = 0; if (hh != NULL) { bfd_boolean dyn; dyn = htab->etab.dynamic_sections_created; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh) && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))) { indx = hh->eh.dynindx; } off = hh->eh.got.offset; tls_type = hh->tls_type; } else { off = local_got_offsets[r_symndx]; tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx]; } if (tls_type == GOT_UNKNOWN) abort (); if ((off & 1) != 0) off &= ~1; else { bfd_boolean need_relocs = FALSE; Elf_Internal_Rela outrel; bfd_byte *loc = NULL; int cur_off = off; /* The GOT entries have not been initialized yet. Do it now, and emit any relocations. If both an IE GOT and a GD GOT are necessary, we emit the GD first. */ if ((info->shared || indx != 0) && (hh == NULL || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT || hh->eh.root.type != bfd_link_hash_undefweak)) { need_relocs = TRUE; loc = htab->srelgot->contents; /* FIXME (CAO): Should this be reloc_count++ ? */ loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela); } if (tls_type & GOT_TLS_GD) { if (need_relocs) { outrel.r_offset = (cur_off + htab->sgot->output_section->vma + htab->sgot->output_offset); outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32); outrel.r_addend = 0; bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); htab->srelgot->reloc_count++; loc += sizeof (Elf32_External_Rela); if (indx == 0) bfd_put_32 (output_bfd, relocation - dtpoff_base (info), htab->sgot->contents + cur_off + 4); else { bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off + 4); outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32); outrel.r_offset += 4; bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc); htab->srelgot->reloc_count++; loc += sizeof (Elf32_External_Rela); } } else { /* If we are not emitting relocations for a general dynamic reference, then we must be in a static link or an executable link with the symbol binding locally. Mark it as belonging to module 1, the executable. */ bfd_put_32 (output_bfd, 1, htab->sgot->contents + cur_off); bfd_put_32 (output_bfd, relocation - dtpoff_base (info), htab->sgot->contents + cur_off + 4); } cur_off += 8; } if (tls_type & GOT_TLS_IE) { if (need_relocs) { outrel.r_offset = (cur_off + htab->sgot->output_section->vma + htab->sgot->output_offset); outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32); if (indx == 0) outrel.r_addend = relocation - dtpoff_base (info); else outrel.r_addend = 0; bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); htab->srelgot->reloc_count++; loc += sizeof (Elf32_External_Rela); } else bfd_put_32 (output_bfd, tpoff (info, relocation), htab->sgot->contents + cur_off); cur_off += 4; } if (hh != NULL) hh->eh.got.offset |= 1; else local_got_offsets[r_symndx] |= 1; } if ((tls_type & GOT_TLS_GD) && r_type != R_PARISC_TLS_GD21L && r_type != R_PARISC_TLS_GD14R) off += 2 * GOT_ENTRY_SIZE; /* Add the base of the GOT to the relocation value. */ relocation = (off + htab->sgot->output_offset + htab->sgot->output_section->vma); break; } case R_PARISC_TLS_LE21L: case R_PARISC_TLS_LE14R: { relocation = tpoff (info, relocation); break; } break; default: break; } rstatus = final_link_relocate (input_section, contents, rela, relocation, htab, sym_sec, hh, info); if (rstatus == bfd_reloc_ok) continue; if (hh != NULL) sym_name = hh_name (hh); else { sym_name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (sym_name == NULL) return FALSE; if (*sym_name == '\0') sym_name = bfd_section_name (input_bfd, sym_sec); } howto = elf_hppa_howto_table + r_type; if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported) { if (rstatus == bfd_reloc_notsupported || !warned_undef) { (*_bfd_error_handler) (_("%B(%A+0x%lx): cannot handle %s for %s"), input_bfd, input_section, (long) rela->r_offset, howto->name, sym_name); bfd_set_error (bfd_error_bad_value); return FALSE; } } else { if (!((*info->callbacks->reloc_overflow) (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name, (bfd_vma) 0, input_bfd, input_section, rela->r_offset))) return FALSE; } } return TRUE; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean elf32_hppa_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *eh, Elf_Internal_Sym *sym) { struct elf32_hppa_link_hash_table *htab; Elf_Internal_Rela rela; bfd_byte *loc; htab = hppa_link_hash_table (info); if (eh->plt.offset != (bfd_vma) -1) { bfd_vma value; if (eh->plt.offset & 1) abort (); /* This symbol has an entry in the procedure linkage table. Set it up. The format of a plt entry is <funcaddr> <__gp> */ value = 0; if (eh->root.type == bfd_link_hash_defined || eh->root.type == bfd_link_hash_defweak) { value = eh->root.u.def.value; if (eh->root.u.def.section->output_section != NULL) value += (eh->root.u.def.section->output_offset + eh->root.u.def.section->output_section->vma); } /* Create a dynamic IPLT relocation for this entry. */ rela.r_offset = (eh->plt.offset + htab->splt->output_offset + htab->splt->output_section->vma); if (eh->dynindx != -1) { rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT); rela.r_addend = 0; } else { /* This symbol has been marked to become local, and is used by a plabel so must be kept in the .plt. */ rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); rela.r_addend = value; } loc = htab->srelplt->contents; loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc); if (!eh->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; } } if (eh->got.offset != (bfd_vma) -1 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0) { /* This symbol has an entry in the global offset table. Set it up. */ rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1) + htab->sgot->output_offset + htab->sgot->output_section->vma); /* If this is a -Bsymbolic link and the symbol is defined locally or was forced to be local because of a version file, we just want to emit a RELATIVE reloc. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && (info->symbolic || eh->dynindx == -1) && eh->def_regular) { rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); rela.r_addend = (eh->root.u.def.value + eh->root.u.def.section->output_offset + eh->root.u.def.section->output_section->vma); } else { if ((eh->got.offset & 1) != 0) abort (); bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1)); rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32); rela.r_addend = 0; } loc = htab->srelgot->contents; loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); } if (eh->needs_copy) { asection *sec; /* This symbol needs a copy reloc. Set it up. */ if (! (eh->dynindx != -1 && (eh->root.type == bfd_link_hash_defined || eh->root.type == bfd_link_hash_defweak))) abort (); sec = htab->srelbss; rela.r_offset = (eh->root.u.def.value + eh->root.u.def.section->output_offset + eh->root.u.def.section->output_section->vma); rela.r_addend = 0; rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY); loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ if (eh_name (eh)[0] == '_' && (strcmp (eh_name (eh), "_DYNAMIC") == 0 || eh == htab->etab.hgot)) { sym->st_shndx = SHN_ABS; } return TRUE; } /* Used to decide how to sort relocs in an optimal manner for the dynamic linker, before writing them out. */ static enum elf_reloc_type_class elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela) { /* Handle TLS relocs first; we don't want them to be marked relative by the "if (ELF32_R_SYM (rela->r_info) == 0)" check below. */ switch ((int) ELF32_R_TYPE (rela->r_info)) { case R_PARISC_TLS_DTPMOD32: case R_PARISC_TLS_DTPOFF32: case R_PARISC_TLS_TPREL32: return reloc_class_normal; } if (ELF32_R_SYM (rela->r_info) == 0) return reloc_class_relative; switch ((int) ELF32_R_TYPE (rela->r_info)) { case R_PARISC_IPLT: return reloc_class_plt; case R_PARISC_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Finish up the dynamic sections. */ static bfd_boolean elf32_hppa_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { bfd *dynobj; struct elf32_hppa_link_hash_table *htab; asection *sdyn; htab = hppa_link_hash_table (info); dynobj = htab->etab.dynobj; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (htab->etab.dynamic_sections_created) { Elf32_External_Dyn *dyncon, *dynconend; if (sdyn == NULL) abort (); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; asection *s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: continue; case DT_PLTGOT: /* Use PLTGOT to set the GOT register. */ dyn.d_un.d_ptr = elf_gp (output_bfd); break; case DT_JMPREL: s = htab->srelplt; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; break; case DT_PLTRELSZ: s = htab->srelplt; dyn.d_un.d_val = s->size; break; case DT_RELASZ: /* Don't count procedure linkage table relocs in the overall reloc count. */ s = htab->srelplt; if (s == NULL) continue; dyn.d_un.d_val -= s->size; break; case DT_RELA: /* We may not be using the standard ELF linker script. If .rela.plt is the first .rela section, we adjust DT_RELA to not include it. */ s = htab->srelplt; if (s == NULL) continue; if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset) continue; dyn.d_un.d_ptr += s->size; break; } bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); } } if (htab->sgot != NULL && htab->sgot->size != 0) { /* Fill in the first entry in the global offset table. We use it to point to our dynamic section, if we have one. */ bfd_put_32 (output_bfd, sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0, htab->sgot->contents); /* The second entry is reserved for use by the dynamic linker. */ memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE); /* Set .got entry size. */ elf_section_data (htab->sgot->output_section) ->this_hdr.sh_entsize = GOT_ENTRY_SIZE; } if (htab->splt != NULL && htab->splt->size != 0) { /* Set plt entry size. */ elf_section_data (htab->splt->output_section) ->this_hdr.sh_entsize = PLT_ENTRY_SIZE; if (htab->need_plt_stub) { /* Set up the .plt stub. */ memcpy (htab->splt->contents + htab->splt->size - sizeof (plt_stub), plt_stub, sizeof (plt_stub)); if ((htab->splt->output_offset + htab->splt->output_section->vma + htab->splt->size) != (htab->sgot->output_offset + htab->sgot->output_section->vma)) { (*_bfd_error_handler) (_(".got section not immediately after .plt section")); return FALSE; } } } return TRUE; } /* Called when writing out an object file to decide the type of a symbol. */ static int elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type) { if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) return STT_PARISC_MILLI; else return type; } /* Misc BFD support code. */ #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup #define elf_info_to_howto elf_hppa_info_to_howto #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel /* Stuff for the BFD linker. */ #define bfd_elf32_mkobject elf32_hppa_mkobject #define bfd_elf32_bfd_final_link elf32_hppa_final_link #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol #define elf_backend_check_relocs elf32_hppa_check_relocs #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections #define elf_backend_fake_sections elf_hppa_fake_sections #define elf_backend_relocate_section elf32_hppa_relocate_section #define elf_backend_hide_symbol elf32_hppa_hide_symbol #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections #define elf_backend_init_index_section _bfd_elf_init_1_index_section #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo #define elf_backend_object_p elf32_hppa_object_p #define elf_backend_final_write_processing elf_hppa_final_write_processing #define elf_backend_post_process_headers _bfd_elf_set_osabi #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class #define elf_backend_action_discarded elf_hppa_action_discarded #define elf_backend_can_gc_sections 1 #define elf_backend_can_refcount 1 #define elf_backend_plt_alignment 2 #define elf_backend_want_got_plt 0 #define elf_backend_plt_readonly 0 #define elf_backend_want_plt_sym 0 #define elf_backend_got_header_size 8 #define elf_backend_rela_normal 1 #define TARGET_BIG_SYM bfd_elf32_hppa_vec #define TARGET_BIG_NAME "elf32-hppa" #define ELF_ARCH bfd_arch_hppa #define ELF_MACHINE_CODE EM_PARISC #define ELF_MAXPAGESIZE 0x1000 #define ELF_OSABI ELFOSABI_HPUX #define elf32_bed elf32_hppa_hpux_bed #include "elf32-target.h" #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-hppa-linux" #undef ELF_OSABI #define ELF_OSABI ELFOSABI_LINUX #undef elf32_bed #define elf32_bed elf32_hppa_linux_bed #include "elf32-target.h" #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-hppa-netbsd" #undef ELF_OSABI #define ELF_OSABI ELFOSABI_NETBSD #undef elf32_bed #define elf32_bed elf32_hppa_netbsd_bed #include "elf32-target.h"
Go to most recent revision | Compare with Previous | Blame | View Log