URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [config/] [rs6000/] [darwin-ldouble.c] - Rev 825
Go to most recent revision | Compare with Previous | Blame | View Log
/* 128-bit long double support routines for Darwin. Copyright (C) 1993, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Implementations of floating-point long double basic arithmetic functions called by the IBM C compiler when generating code for PowerPC platforms. In particular, the following functions are implemented: __gcc_qadd, __gcc_qsub, __gcc_qmul, and __gcc_qdiv. Double-double algorithms are based on the paper "Doubled-Precision IEEE Standard 754 Floating-Point Arithmetic" by W. Kahan, February 26, 1987. An alternative published reference is "Software for Doubled-Precision Floating-Point Computations", by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283. */ /* Each long double is made up of two IEEE doubles. The value of the long double is the sum of the values of the two parts. The most significant part is required to be the value of the long double rounded to the nearest double, as specified by IEEE. For Inf values, the least significant part is required to be one of +0.0 or -0.0. No other requirements are made; so, for example, 1.0 may be represented as (1.0, +0.0) or (1.0, -0.0), and the low part of a NaN is don't-care. This code currently assumes big-endian. */ #if ((!defined (__NO_FPRS__) || defined (_SOFT_FLOAT)) \ && !defined (__LITTLE_ENDIAN__) \ && (defined (__MACH__) || defined (__powerpc__) || defined (_AIX))) #define fabs(x) __builtin_fabs(x) #define isless(x, y) __builtin_isless (x, y) #define inf() __builtin_inf() #define unlikely(x) __builtin_expect ((x), 0) #define nonfinite(a) unlikely (! isless (fabs (a), inf ())) /* Define ALIASNAME as a strong alias for NAME. */ # define strong_alias(name, aliasname) _strong_alias(name, aliasname) # define _strong_alias(name, aliasname) \ extern __typeof (name) aliasname __attribute__ ((alias (#name))); /* All these routines actually take two long doubles as parameters, but GCC currently generates poor code when a union is used to turn a long double into a pair of doubles. */ long double __gcc_qadd (double, double, double, double); long double __gcc_qsub (double, double, double, double); long double __gcc_qmul (double, double, double, double); long double __gcc_qdiv (double, double, double, double); #if defined __ELF__ && defined SHARED \ && (defined __powerpc64__ || !(defined __linux__ || defined __gnu_hurd__)) /* Provide definitions of the old symbol names to satisfy apps and shared libs built against an older libgcc. To access the _xlq symbols an explicit version reference is needed, so these won't satisfy an unadorned reference like _xlqadd. If dot symbols are not needed, the assembler will remove the aliases from the symbol table. */ __asm__ (".symver __gcc_qadd,_xlqadd@GCC_3.4\n\t" ".symver __gcc_qsub,_xlqsub@GCC_3.4\n\t" ".symver __gcc_qmul,_xlqmul@GCC_3.4\n\t" ".symver __gcc_qdiv,_xlqdiv@GCC_3.4\n\t" ".symver .__gcc_qadd,._xlqadd@GCC_3.4\n\t" ".symver .__gcc_qsub,._xlqsub@GCC_3.4\n\t" ".symver .__gcc_qmul,._xlqmul@GCC_3.4\n\t" ".symver .__gcc_qdiv,._xlqdiv@GCC_3.4"); #endif typedef union { long double ldval; double dval[2]; } longDblUnion; /* Add two 'long double' values and return the result. */ long double __gcc_qadd (double a, double aa, double c, double cc) { longDblUnion x; double z, q, zz, xh; z = a + c; if (nonfinite (z)) { z = cc + aa + c + a; if (nonfinite (z)) return z; x.dval[0] = z; /* Will always be DBL_MAX. */ zz = aa + cc; if (fabs(a) > fabs(c)) x.dval[1] = a - z + c + zz; else x.dval[1] = c - z + a + zz; } else { q = a - z; zz = q + c + (a - (q + z)) + aa + cc; /* Keep -0 result. */ if (zz == 0.0) return z; xh = z + zz; if (nonfinite (xh)) return xh; x.dval[0] = xh; x.dval[1] = z - xh + zz; } return x.ldval; } long double __gcc_qsub (double a, double b, double c, double d) { return __gcc_qadd (a, b, -c, -d); } #ifdef _SOFT_FLOAT static double fmsub (double, double, double); #endif long double __gcc_qmul (double a, double b, double c, double d) { longDblUnion z; double t, tau, u, v, w; t = a * c; /* Highest order double term. */ if (unlikely (t == 0) /* Preserve -0. */ || nonfinite (t)) return t; /* Sum terms of two highest orders. */ /* Use fused multiply-add to get low part of a * c. */ #ifndef _SOFT_FLOAT asm ("fmsub %0,%1,%2,%3" : "=f"(tau) : "f"(a), "f"(c), "f"(t)); #else tau = fmsub (a, c, t); #endif v = a*d; w = b*c; tau += v + w; /* Add in other second-order terms. */ u = t + tau; /* Construct long double result. */ if (nonfinite (u)) return u; z.dval[0] = u; z.dval[1] = (t - u) + tau; return z.ldval; } long double __gcc_qdiv (double a, double b, double c, double d) { longDblUnion z; double s, sigma, t, tau, u, v, w; t = a / c; /* highest order double term */ if (unlikely (t == 0) /* Preserve -0. */ || nonfinite (t)) return t; /* Finite nonzero result requires corrections to the highest order term. */ s = c * t; /* (s,sigma) = c*t exactly. */ w = -(-b + d * t); /* Written to get fnmsub for speed, but not numerically necessary. */ /* Use fused multiply-add to get low part of c * t. */ #ifndef _SOFT_FLOAT asm ("fmsub %0,%1,%2,%3" : "=f"(sigma) : "f"(c), "f"(t), "f"(s)); #else sigma = fmsub (c, t, s); #endif v = a - s; tau = ((v-sigma)+w)/c; /* Correction to t. */ u = t + tau; /* Construct long double result. */ if (nonfinite (u)) return u; z.dval[0] = u; z.dval[1] = (t - u) + tau; return z.ldval; } #if defined (_SOFT_FLOAT) && defined (__LONG_DOUBLE_128__) long double __gcc_qneg (double, double); int __gcc_qeq (double, double, double, double); int __gcc_qne (double, double, double, double); int __gcc_qge (double, double, double, double); int __gcc_qle (double, double, double, double); int __gcc_qunord (double, double, double, double); long double __gcc_stoq (float); long double __gcc_dtoq (double); float __gcc_qtos (double, double); double __gcc_qtod (double, double); int __gcc_qtoi (double, double); unsigned int __gcc_qtou (double, double); long double __gcc_itoq (int); long double __gcc_utoq (unsigned int); extern int __eqdf2 (double, double); extern int __ledf2 (double, double); extern int __gedf2 (double, double); extern int __unorddf2 (double, double); /* Negate 'long double' value and return the result. */ long double __gcc_qneg (double a, double aa) { longDblUnion x; x.dval[0] = -a; x.dval[1] = -aa; return x.ldval; } /* Compare two 'long double' values for equality. */ int __gcc_qeq (double a, double aa, double c, double cc) { if (__eqdf2 (a, c) == 0) return __eqdf2 (aa, cc); return 1; } strong_alias (__gcc_qeq, __gcc_qne); /* Compare two 'long double' values for less than or equal. */ int __gcc_qle (double a, double aa, double c, double cc) { if (__eqdf2 (a, c) == 0) return __ledf2 (aa, cc); return __ledf2 (a, c); } strong_alias (__gcc_qle, __gcc_qlt); /* Compare two 'long double' values for greater than or equal. */ int __gcc_qge (double a, double aa, double c, double cc) { if (__eqdf2 (a, c) == 0) return __gedf2 (aa, cc); return __gedf2 (a, c); } strong_alias (__gcc_qge, __gcc_qgt); /* Compare two 'long double' values for unordered. */ int __gcc_qunord (double a, double aa, double c, double cc) { if (__eqdf2 (a, c) == 0) return __unorddf2 (aa, cc); return __unorddf2 (a, c); } /* Convert single to long double. */ long double __gcc_stoq (float a) { longDblUnion x; x.dval[0] = (double) a; x.dval[1] = 0.0; return x.ldval; } /* Convert double to long double. */ long double __gcc_dtoq (double a) { longDblUnion x; x.dval[0] = a; x.dval[1] = 0.0; return x.ldval; } /* Convert long double to single. */ float __gcc_qtos (double a, double aa __attribute__ ((__unused__))) { return (float) a; } /* Convert long double to double. */ double __gcc_qtod (double a, double aa __attribute__ ((__unused__))) { return a; } /* Convert long double to int. */ int __gcc_qtoi (double a, double aa) { double z = a + aa; return (int) z; } /* Convert long double to unsigned int. */ unsigned int __gcc_qtou (double a, double aa) { double z = a + aa; return (unsigned int) z; } /* Convert int to long double. */ long double __gcc_itoq (int a) { return __gcc_dtoq ((double) a); } /* Convert unsigned int to long double. */ long double __gcc_utoq (unsigned int a) { return __gcc_dtoq ((double) a); } #include "config/soft-fp/soft-fp.h" #include "config/soft-fp/double.h" #include "config/soft-fp/quad.h" /* Compute floating point multiply-subtract with higher (quad) precision. */ static double fmsub (double a, double b, double c) { FP_DECL_EX; FP_DECL_D(A); FP_DECL_D(B); FP_DECL_D(C); FP_DECL_Q(X); FP_DECL_Q(Y); FP_DECL_Q(Z); FP_DECL_Q(U); FP_DECL_Q(V); FP_DECL_D(R); double r; long double u, v, x, y, z; FP_INIT_ROUNDMODE; FP_UNPACK_RAW_D (A, a); FP_UNPACK_RAW_D (B, b); FP_UNPACK_RAW_D (C, c); /* Extend double to quad. */ #if (2 * _FP_W_TYPE_SIZE) < _FP_FRACBITS_Q FP_EXTEND(Q,D,4,2,X,A); FP_EXTEND(Q,D,4,2,Y,B); FP_EXTEND(Q,D,4,2,Z,C); #else FP_EXTEND(Q,D,2,1,X,A); FP_EXTEND(Q,D,2,1,Y,B); FP_EXTEND(Q,D,2,1,Z,C); #endif FP_PACK_RAW_Q(x,X); FP_PACK_RAW_Q(y,Y); FP_PACK_RAW_Q(z,Z); FP_HANDLE_EXCEPTIONS; /* Multiply. */ FP_INIT_ROUNDMODE; FP_UNPACK_Q(X,x); FP_UNPACK_Q(Y,y); FP_MUL_Q(U,X,Y); FP_PACK_Q(u,U); FP_HANDLE_EXCEPTIONS; /* Subtract. */ FP_INIT_ROUNDMODE; FP_UNPACK_SEMIRAW_Q(U,u); FP_UNPACK_SEMIRAW_Q(Z,z); FP_SUB_Q(V,U,Z); FP_PACK_SEMIRAW_Q(v,V); FP_HANDLE_EXCEPTIONS; /* Truncate quad to double. */ FP_INIT_ROUNDMODE; FP_UNPACK_SEMIRAW_Q(V,v); #if (2 * _FP_W_TYPE_SIZE) < _FP_FRACBITS_Q FP_TRUNC(D,Q,2,4,R,V); #else FP_TRUNC(D,Q,1,2,R,V); #endif FP_PACK_SEMIRAW_D(r,R); FP_HANDLE_EXCEPTIONS; return r; } #endif #endif
Go to most recent revision | Compare with Previous | Blame | View Log