OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [config/] [xtensa/] [lib1funcs.asm] - Rev 832

Go to most recent revision | Compare with Previous | Blame | View Log

/* Assembly functions for the Xtensa version of libgcc1.
   Copyright (C) 2001, 2002, 2003, 2005, 2006 Free Software Foundation, Inc.
   Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#include "xtensa-config.h"

# Define macros for the ABS and ADDX* instructions to handle cases
# where they are not included in the Xtensa processor configuration.

        .macro  do_abs dst, src, tmp
#if XCHAL_HAVE_ABS
        abs     \dst, \src
#else
        neg     \tmp, \src
        movgez  \tmp, \src, \src
        mov     \dst, \tmp
#endif
        .endm

        .macro  do_addx2 dst, as, at, tmp
#if XCHAL_HAVE_ADDX
        addx2   \dst, \as, \at
#else
        slli    \tmp, \as, 1
        add     \dst, \tmp, \at
#endif
        .endm

        .macro  do_addx4 dst, as, at, tmp
#if XCHAL_HAVE_ADDX
        addx4   \dst, \as, \at
#else
        slli    \tmp, \as, 2
        add     \dst, \tmp, \at
#endif
        .endm

        .macro  do_addx8 dst, as, at, tmp
#if XCHAL_HAVE_ADDX
        addx8   \dst, \as, \at
#else
        slli    \tmp, \as, 3
        add     \dst, \tmp, \at
#endif
        .endm

# Define macros for leaf function entry and return, supporting either the
# standard register windowed ABI or the non-windowed call0 ABI.  These
# macros do not allocate any extra stack space, so they only work for
# leaf functions that do not need to spill anything to the stack.

        .macro leaf_entry reg, size
#if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__
        entry \reg, \size
#else
        /* do nothing */
#endif
        .endm

        .macro leaf_return
#if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__
        retw
#else
        ret
#endif
        .endm


#ifdef L_mulsi3
        .align  4
        .global __mulsi3
        .type   __mulsi3,@function
__mulsi3:
        leaf_entry sp, 16

#if XCHAL_HAVE_MUL16
        or      a4, a2, a3
        srai    a4, a4, 16
        bnez    a4, .LMUL16
        mul16u  a2, a2, a3
        leaf_return
.LMUL16:
        srai    a4, a2, 16
        srai    a5, a3, 16
        mul16u  a7, a4, a3
        mul16u  a6, a5, a2
        mul16u  a4, a2, a3
        add     a7, a7, a6
        slli    a7, a7, 16
        add     a2, a7, a4

#elif XCHAL_HAVE_MAC16
        mul.aa.hl a2, a3
        mula.aa.lh a2, a3
        rsr     a5, ACCLO
        umul.aa.ll a2, a3
        rsr     a4, ACCLO
        slli    a5, a5, 16
        add     a2, a4, a5

#else /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */

        # Multiply one bit at a time, but unroll the loop 4x to better
        # exploit the addx instructions and avoid overhead.
        # Peel the first iteration to save a cycle on init.

        # Avoid negative numbers.
        xor     a5, a2, a3  # top bit is 1 iff one of the inputs is negative
        do_abs  a3, a3, a6
        do_abs  a2, a2, a6

        # Swap so the second argument is smaller.
        sub     a7, a2, a3
        mov     a4, a3
        movgez  a4, a2, a7  # a4 = max(a2, a3) 
        movltz  a3, a2, a7  # a3 = min(a2, a3)

        movi    a2, 0
        extui   a6, a3, 0, 1
        movnez  a2, a4, a6

        do_addx2 a7, a4, a2, a7
        extui   a6, a3, 1, 1
        movnez  a2, a7, a6

        do_addx4 a7, a4, a2, a7
        extui   a6, a3, 2, 1
        movnez  a2, a7, a6

        do_addx8 a7, a4, a2, a7
        extui   a6, a3, 3, 1
        movnez  a2, a7, a6

        bgeui   a3, 16, .Lmult_main_loop
        neg     a3, a2
        movltz  a2, a3, a5
        leaf_return

        .align  4
.Lmult_main_loop:
        srli    a3, a3, 4
        slli    a4, a4, 4

        add     a7, a4, a2
        extui   a6, a3, 0, 1
        movnez  a2, a7, a6

        do_addx2 a7, a4, a2, a7
        extui   a6, a3, 1, 1
        movnez  a2, a7, a6

        do_addx4 a7, a4, a2, a7
        extui   a6, a3, 2, 1
        movnez  a2, a7, a6

        do_addx8 a7, a4, a2, a7
        extui   a6, a3, 3, 1
        movnez  a2, a7, a6

        bgeui   a3, 16, .Lmult_main_loop

        neg     a3, a2
        movltz  a2, a3, a5

#endif /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */

        leaf_return
        .size   __mulsi3,.-__mulsi3

#endif /* L_mulsi3 */


# Define a macro for the NSAU (unsigned normalize shift amount)
# instruction, which computes the number of leading zero bits,
# to handle cases where it is not included in the Xtensa processor
# configuration.

        .macro  do_nsau cnt, val, tmp, a
#if XCHAL_HAVE_NSA
        nsau    \cnt, \val
#else
        mov     \a, \val
        movi    \cnt, 0
        extui   \tmp, \a, 16, 16
        bnez    \tmp, 0f
        movi    \cnt, 16
        slli    \a, \a, 16
0:      
        extui   \tmp, \a, 24, 8
        bnez    \tmp, 1f
        addi    \cnt, \cnt, 8
        slli    \a, \a, 8
1:      
        movi    \tmp, __nsau_data
        extui   \a, \a, 24, 8
        add     \tmp, \tmp, \a
        l8ui    \tmp, \tmp, 0
        add     \cnt, \cnt, \tmp
#endif /* !XCHAL_HAVE_NSA */
        .endm

#ifdef L_nsau
        .section .rodata
        .align  4
        .global __nsau_data
        .type   __nsau_data,@object
__nsau_data:    
#if !XCHAL_HAVE_NSA
        .byte   8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4
        .byte   3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
        .byte   2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
        .byte   2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
        .byte   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
        .byte   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
        .byte   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
        .byte   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
        .byte   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        .byte   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        .byte   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        .byte   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        .byte   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        .byte   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        .byte   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
        .byte   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#endif /* !XCHAL_HAVE_NSA */
        .size   __nsau_data,.-__nsau_data
        .hidden __nsau_data
#endif /* L_nsau */


#ifdef L_udivsi3
        .align  4
        .global __udivsi3
        .type   __udivsi3,@function
__udivsi3:
        leaf_entry sp, 16
        bltui   a3, 2, .Lle_one # check if the divisor <= 1

        mov     a6, a2          # keep dividend in a6
        do_nsau a5, a6, a2, a7  # dividend_shift = nsau(dividend)
        do_nsau a4, a3, a2, a7  # divisor_shift = nsau(divisor)
        bgeu    a5, a4, .Lspecial

        sub     a4, a4, a5      # count = divisor_shift - dividend_shift
        ssl     a4
        sll     a3, a3          # divisor <<= count
        movi    a2, 0           # quotient = 0

        # test-subtract-and-shift loop; one quotient bit on each iteration
#if XCHAL_HAVE_LOOPS
        loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
        bltu    a6, a3, .Lzerobit
        sub     a6, a6, a3
        addi    a2, a2, 1
.Lzerobit:
        slli    a2, a2, 1
        srli    a3, a3, 1
#if !XCHAL_HAVE_LOOPS
        addi    a4, a4, -1
        bnez    a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:

        bltu    a6, a3, .Lreturn
        addi    a2, a2, 1       # increment quotient if dividend >= divisor
.Lreturn:
        leaf_return

.Lle_one:
        beqz    a3, .Lerror     # if divisor == 1, return the dividend
        leaf_return

.Lspecial:
        # return dividend >= divisor
        bltu    a6, a3, .Lreturn0
        movi    a2, 1
        leaf_return

.Lerror:
        # just return 0; could throw an exception

.Lreturn0:
        movi    a2, 0
        leaf_return
        .size   __udivsi3,.-__udivsi3

#endif /* L_udivsi3 */


#ifdef L_divsi3
        .align  4
        .global __divsi3
        .type   __divsi3,@function
__divsi3:
        leaf_entry sp, 16
        xor     a7, a2, a3      # sign = dividend ^ divisor
        do_abs  a6, a2, a4      # udividend = abs(dividend)
        do_abs  a3, a3, a4      # udivisor = abs(divisor)
        bltui   a3, 2, .Lle_one # check if udivisor <= 1
        do_nsau a5, a6, a2, a8  # udividend_shift = nsau(udividend)
        do_nsau a4, a3, a2, a8  # udivisor_shift = nsau(udivisor)
        bgeu    a5, a4, .Lspecial

        sub     a4, a4, a5      # count = udivisor_shift - udividend_shift
        ssl     a4
        sll     a3, a3          # udivisor <<= count
        movi    a2, 0           # quotient = 0

        # test-subtract-and-shift loop; one quotient bit on each iteration
#if XCHAL_HAVE_LOOPS
        loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
        bltu    a6, a3, .Lzerobit
        sub     a6, a6, a3
        addi    a2, a2, 1
.Lzerobit:
        slli    a2, a2, 1
        srli    a3, a3, 1
#if !XCHAL_HAVE_LOOPS
        addi    a4, a4, -1
        bnez    a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:

        bltu    a6, a3, .Lreturn
        addi    a2, a2, 1       # increment quotient if udividend >= udivisor
.Lreturn:
        neg     a5, a2
        movltz  a2, a5, a7      # return (sign < 0) ? -quotient : quotient
        leaf_return

.Lle_one:
        beqz    a3, .Lerror
        neg     a2, a6          # if udivisor == 1, then return...
        movgez  a2, a6, a7      # (sign < 0) ? -udividend : udividend
        leaf_return

.Lspecial:
        bltu    a6, a3, .Lreturn0 #  if dividend < divisor, return 0
        movi    a2, 1
        movi    a4, -1
        movltz  a2, a4, a7      # else return (sign < 0) ? -1 :  1 
        leaf_return

.Lerror:
        # just return 0; could throw an exception

.Lreturn0:
        movi    a2, 0
        leaf_return
        .size   __divsi3,.-__divsi3

#endif /* L_divsi3 */


#ifdef L_umodsi3
        .align  4
        .global __umodsi3
        .type   __umodsi3,@function
__umodsi3:
        leaf_entry sp, 16
        bltui   a3, 2, .Lle_one # check if the divisor is <= 1

        do_nsau a5, a2, a6, a7  # dividend_shift = nsau(dividend)
        do_nsau a4, a3, a6, a7  # divisor_shift = nsau(divisor)
        bgeu    a5, a4, .Lspecial

        sub     a4, a4, a5      # count = divisor_shift - dividend_shift
        ssl     a4
        sll     a3, a3          # divisor <<= count

        # test-subtract-and-shift loop
#if XCHAL_HAVE_LOOPS
        loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
        bltu    a2, a3, .Lzerobit
        sub     a2, a2, a3
.Lzerobit:
        srli    a3, a3, 1
#if !XCHAL_HAVE_LOOPS
        addi    a4, a4, -1
        bnez    a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:

.Lspecial:
        bltu    a2, a3, .Lreturn
        sub     a2, a2, a3      # subtract once more if dividend >= divisor
.Lreturn:
        leaf_return

.Lle_one:
        # the divisor is either 0 or 1, so just return 0.
        # someday we may want to throw an exception if the divisor is 0.
        movi    a2, 0
        leaf_return
        .size   __umodsi3,.-__umodsi3

#endif /* L_umodsi3 */


#ifdef L_modsi3
        .align  4
        .global __modsi3
        .type   __modsi3,@function
__modsi3:
        leaf_entry sp, 16
        mov     a7, a2          # save original (signed) dividend
        do_abs  a2, a2, a4      # udividend = abs(dividend)
        do_abs  a3, a3, a4      # udivisor = abs(divisor)
        bltui   a3, 2, .Lle_one # check if udivisor <= 1
        do_nsau a5, a2, a6, a8  # udividend_shift = nsau(udividend)
        do_nsau a4, a3, a6, a8  # udivisor_shift = nsau(udivisor)
        bgeu    a5, a4, .Lspecial

        sub     a4, a4, a5      # count = udivisor_shift - udividend_shift
        ssl     a4
        sll     a3, a3          # udivisor <<= count

        # test-subtract-and-shift loop
#if XCHAL_HAVE_LOOPS
        loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
        bltu    a2, a3, .Lzerobit
        sub     a2, a2, a3
.Lzerobit:
        srli    a3, a3, 1
#if !XCHAL_HAVE_LOOPS
        addi    a4, a4, -1
        bnez    a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:

.Lspecial:
        bltu    a2, a3, .Lreturn
        sub     a2, a2, a3      # subtract once more if udividend >= udivisor
.Lreturn:
        bgez    a7, .Lpositive
        neg     a2, a2          # if (dividend < 0), return -udividend
.Lpositive:     
        leaf_return

.Lle_one:
        # udivisor is either 0 or 1, so just return 0.
        # someday we may want to throw an exception if udivisor is 0.
        movi    a2, 0
        leaf_return
        .size   __modsi3,.-__modsi3

#endif /* L_modsi3 */

#include "ieee754-df.S"
#include "ieee754-sf.S"

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.