URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [global.c] - Rev 859
Go to most recent revision | Compare with Previous | Blame | View Log
/* Allocate registers for pseudo-registers that span basic blocks. Copyright (C) 1987, 1988, 1991, 1994, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "machmode.h" #include "hard-reg-set.h" #include "rtl.h" #include "tm_p.h" #include "flags.h" #include "regs.h" #include "function.h" #include "insn-config.h" #include "recog.h" #include "reload.h" #include "output.h" #include "toplev.h" #include "tree-pass.h" #include "timevar.h" #include "vecprim.h" /* This pass of the compiler performs global register allocation. It assigns hard register numbers to all the pseudo registers that were not handled in local_alloc. Assignments are recorded in the vector reg_renumber, not by changing the rtl code. (Such changes are made by final). The entry point is the function global_alloc. After allocation is complete, the reload pass is run as a subroutine of this pass, so that when a pseudo reg loses its hard reg due to spilling it is possible to make a second attempt to find a hard reg for it. The reload pass is independent in other respects and it is run even when stupid register allocation is in use. 1. Assign allocation-numbers (allocnos) to the pseudo-registers still needing allocations and to the pseudo-registers currently allocated by local-alloc which may be spilled by reload. Set up tables reg_allocno and allocno_reg to map reg numbers to allocnos and vice versa. max_allocno gets the number of allocnos in use. 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it. Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix for conflicts between allocnos and explicit hard register use (which includes use of pseudo-registers allocated by local_alloc). 3. For each basic block walk forward through the block, recording which pseudo-registers and which hardware registers are live. Build the conflict matrix between the pseudo-registers and another of pseudo-registers versus hardware registers. Also record the preferred hardware registers for each pseudo-register. 4. Sort a table of the allocnos into order of desirability of the variables. 5. Allocate the variables in that order; each if possible into a preferred register, else into another register. */ /* Number of pseudo-registers which are candidates for allocation. */ static int max_allocno; /* Indexed by (pseudo) reg number, gives the allocno, or -1 for pseudo registers which are not to be allocated. */ static int *reg_allocno; struct allocno { int reg; /* Gives the number of consecutive hard registers needed by that pseudo reg. */ int size; /* Number of calls crossed by each allocno. */ int calls_crossed; /* Number of calls that might throw crossed by each allocno. */ int throwing_calls_crossed; /* Number of refs to each allocno. */ int n_refs; /* Frequency of uses of each allocno. */ int freq; /* Guess at live length of each allocno. This is actually the max of the live lengths of the regs. */ int live_length; /* Set of hard regs conflicting with allocno N. */ HARD_REG_SET hard_reg_conflicts; /* Set of hard regs preferred by allocno N. This is used to make allocnos go into regs that are copied to or from them, when possible, to reduce register shuffling. */ HARD_REG_SET hard_reg_preferences; /* Similar, but just counts register preferences made in simple copy operations, rather than arithmetic. These are given priority because we can always eliminate an insn by using these, but using a register in the above list won't always eliminate an insn. */ HARD_REG_SET hard_reg_copy_preferences; /* Similar to hard_reg_preferences, but includes bits for subsequent registers when an allocno is multi-word. The above variable is used for allocation while this is used to build reg_someone_prefers, below. */ HARD_REG_SET hard_reg_full_preferences; /* Set of hard registers that some later allocno has a preference for. */ HARD_REG_SET regs_someone_prefers; #ifdef STACK_REGS /* Set to true if allocno can't be allocated in the stack register. */ bool no_stack_reg; #endif }; static struct allocno *allocno; /* A vector of the integers from 0 to max_allocno-1, sorted in the order of first-to-be-allocated first. */ static int *allocno_order; /* Indexed by (pseudo) reg number, gives the number of another lower-numbered pseudo reg which can share a hard reg with this pseudo *even if the two pseudos would otherwise appear to conflict*. */ static int *reg_may_share; /* Define the number of bits in each element of `conflicts' and what type that element has. We use the largest integer format on the host machine. */ #define INT_BITS HOST_BITS_PER_WIDE_INT #define INT_TYPE HOST_WIDE_INT /* max_allocno by max_allocno array of bits, recording whether two allocno's conflict (can't go in the same hardware register). `conflicts' is symmetric after the call to mirror_conflicts. */ static INT_TYPE *conflicts; /* Number of ints required to hold max_allocno bits. This is the length of a row in `conflicts'. */ static int allocno_row_words; /* Two macros to test or store 1 in an element of `conflicts'. */ #define CONFLICTP(I, J) \ (conflicts[(I) * allocno_row_words + (unsigned) (J) / INT_BITS] \ & ((INT_TYPE) 1 << ((unsigned) (J) % INT_BITS))) /* For any allocno set in ALLOCNO_SET, set ALLOCNO to that allocno, and execute CODE. */ #define EXECUTE_IF_SET_IN_ALLOCNO_SET(ALLOCNO_SET, ALLOCNO, CODE) \ do { \ int i_; \ int allocno_; \ INT_TYPE *p_ = (ALLOCNO_SET); \ \ for (i_ = allocno_row_words - 1, allocno_ = 0; i_ >= 0; \ i_--, allocno_ += INT_BITS) \ { \ unsigned INT_TYPE word_ = (unsigned INT_TYPE) *p_++; \ \ for ((ALLOCNO) = allocno_; word_; word_ >>= 1, (ALLOCNO)++) \ { \ if (word_ & 1) \ {CODE;} \ } \ } \ } while (0) /* This doesn't work for non-GNU C due to the way CODE is macro expanded. */ #if 0 /* For any allocno that conflicts with IN_ALLOCNO, set OUT_ALLOCNO to the conflicting allocno, and execute CODE. This macro assumes that mirror_conflicts has been run. */ #define EXECUTE_IF_CONFLICT(IN_ALLOCNO, OUT_ALLOCNO, CODE)\ EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + (IN_ALLOCNO) * allocno_row_words,\ OUT_ALLOCNO, (CODE)) #endif /* Set of hard regs currently live (during scan of all insns). */ static HARD_REG_SET hard_regs_live; /* Set of registers that global-alloc isn't supposed to use. */ static HARD_REG_SET no_global_alloc_regs; /* Set of registers used so far. */ static HARD_REG_SET regs_used_so_far; /* Number of refs to each hard reg, as used by local alloc. It is zero for a reg that contains global pseudos or is explicitly used. */ static int local_reg_n_refs[FIRST_PSEUDO_REGISTER]; /* Frequency of uses of given hard reg. */ static int local_reg_freq[FIRST_PSEUDO_REGISTER]; /* Guess at live length of each hard reg, as used by local alloc. This is actually the sum of the live lengths of the specific regs. */ static int local_reg_live_length[FIRST_PSEUDO_REGISTER]; /* Set to 1 a bit in a vector TABLE of HARD_REG_SETs, for vector element I, and hard register number J. */ #define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (allocno[I].TABLE, J) /* Bit mask for allocnos live at current point in the scan. */ static INT_TYPE *allocnos_live; /* Test, set or clear bit number I in allocnos_live, a bit vector indexed by allocno. */ #define SET_ALLOCNO_LIVE(I) \ (allocnos_live[(unsigned) (I) / INT_BITS] \ |= ((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS))) #define CLEAR_ALLOCNO_LIVE(I) \ (allocnos_live[(unsigned) (I) / INT_BITS] \ &= ~((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS))) /* This is turned off because it doesn't work right for DImode. (And it is only used for DImode, so the other cases are worthless.) The problem is that it isn't true that there is NO possibility of conflict; only that there is no conflict if the two pseudos get the exact same regs. If they were allocated with a partial overlap, there would be a conflict. We can't safely turn off the conflict unless we have another way to prevent the partial overlap. Idea: change hard_reg_conflicts so that instead of recording which hard regs the allocno may not overlap, it records where the allocno may not start. Change both where it is used and where it is updated. Then there is a way to record that (reg:DI 108) may start at 10 but not at 9 or 11. There is still the question of how to record this semi-conflict between two pseudos. */ #if 0 /* Reg pairs for which conflict after the current insn is inhibited by a REG_NO_CONFLICT note. If the table gets full, we ignore any other notes--that is conservative. */ #define NUM_NO_CONFLICT_PAIRS 4 /* Number of pairs in use in this insn. */ int n_no_conflict_pairs; static struct { int allocno1, allocno2;} no_conflict_pairs[NUM_NO_CONFLICT_PAIRS]; #endif /* 0 */ /* Record all regs that are set in any one insn. Communication from mark_reg_{store,clobber} and global_conflicts. */ static rtx *regs_set; static int n_regs_set; /* All registers that can be eliminated. */ static HARD_REG_SET eliminable_regset; static int allocno_compare (const void *, const void *); static void global_conflicts (void); static void mirror_conflicts (void); static void expand_preferences (void); static void prune_preferences (void); static void find_reg (int, HARD_REG_SET, int, int, int); static void record_one_conflict (int); static void record_conflicts (int *, int); static void mark_reg_store (rtx, rtx, void *); static void mark_reg_clobber (rtx, rtx, void *); static void mark_reg_conflicts (rtx); static void mark_reg_death (rtx); static void mark_reg_live_nc (int, enum machine_mode); static void set_preference (rtx, rtx); static void dump_conflicts (FILE *); static void reg_becomes_live (rtx, rtx, void *); static void reg_dies (int, enum machine_mode, struct insn_chain *); static void allocate_bb_info (void); static void free_bb_info (void); static bool check_earlyclobber (rtx); static void mark_reg_use_for_earlyclobber_1 (rtx *, void *); static int mark_reg_use_for_earlyclobber (rtx *, void *); static void calculate_local_reg_bb_info (void); static void set_up_bb_rts_numbers (void); static int rpost_cmp (const void *, const void *); static void calculate_reg_pav (void); static void modify_reg_pav (void); static void make_accurate_live_analysis (void); /* Perform allocation of pseudo-registers not allocated by local_alloc. Return value is nonzero if reload failed and we must not do any more for this function. */ static int global_alloc (void) { int retval; #ifdef ELIMINABLE_REGS static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS; #endif int need_fp = (! flag_omit_frame_pointer || (current_function_calls_alloca && EXIT_IGNORE_STACK) || FRAME_POINTER_REQUIRED); size_t i; rtx x; make_accurate_live_analysis (); max_allocno = 0; /* A machine may have certain hard registers that are safe to use only within a basic block. */ CLEAR_HARD_REG_SET (no_global_alloc_regs); /* Build the regset of all eliminable registers and show we can't use those that we already know won't be eliminated. */ #ifdef ELIMINABLE_REGS for (i = 0; i < ARRAY_SIZE (eliminables); i++) { bool cannot_elim = (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to) || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp)); if (!regs_asm_clobbered[eliminables[i].from]) { SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from); if (cannot_elim) SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from); } else if (cannot_elim) error ("%s cannot be used in asm here", reg_names[eliminables[i].from]); else regs_ever_live[eliminables[i].from] = 1; } #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM if (!regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM]) { SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM); if (need_fp) SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM); } else if (need_fp) error ("%s cannot be used in asm here", reg_names[HARD_FRAME_POINTER_REGNUM]); else regs_ever_live[HARD_FRAME_POINTER_REGNUM] = 1; #endif #else if (!regs_asm_clobbered[FRAME_POINTER_REGNUM]) { SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM); if (need_fp) SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM); } else if (need_fp) error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]); else regs_ever_live[FRAME_POINTER_REGNUM] = 1; #endif /* Track which registers have already been used. Start with registers explicitly in the rtl, then registers allocated by local register allocation. */ CLEAR_HARD_REG_SET (regs_used_so_far); #ifdef LEAF_REGISTERS /* If we are doing the leaf function optimization, and this is a leaf function, it means that the registers that take work to save are those that need a register window. So prefer the ones that can be used in a leaf function. */ { const char *cheap_regs; const char *const leaf_regs = LEAF_REGISTERS; if (only_leaf_regs_used () && leaf_function_p ()) cheap_regs = leaf_regs; else cheap_regs = call_used_regs; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (regs_ever_live[i] || cheap_regs[i]) SET_HARD_REG_BIT (regs_used_so_far, i); } #else /* We consider registers that do not have to be saved over calls as if they were already used since there is no cost in using them. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (regs_ever_live[i] || call_used_regs[i]) SET_HARD_REG_BIT (regs_used_so_far, i); #endif for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) if (reg_renumber[i] >= 0) SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]); /* Establish mappings from register number to allocation number and vice versa. In the process, count the allocnos. */ reg_allocno = XNEWVEC (int, max_regno); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) reg_allocno[i] = -1; /* Initialize the shared-hard-reg mapping from the list of pairs that may share. */ reg_may_share = XCNEWVEC (int, max_regno); for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1)) { int r1 = REGNO (XEXP (x, 0)); int r2 = REGNO (XEXP (XEXP (x, 1), 0)); if (r1 > r2) reg_may_share[r1] = r2; else reg_may_share[r2] = r1; } for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) /* Note that reg_live_length[i] < 0 indicates a "constant" reg that we are supposed to refrain from putting in a hard reg. -2 means do make an allocno but don't allocate it. */ if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1 /* Don't allocate pseudos that cross calls, if this function receives a nonlocal goto. */ && (! current_function_has_nonlocal_label || REG_N_CALLS_CROSSED (i) == 0)) { if (reg_renumber[i] < 0 && reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0) reg_allocno[i] = reg_allocno[reg_may_share[i]]; else reg_allocno[i] = max_allocno++; gcc_assert (REG_LIVE_LENGTH (i)); } else reg_allocno[i] = -1; allocno = XCNEWVEC (struct allocno, max_allocno); for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) if (reg_allocno[i] >= 0) { int num = reg_allocno[i]; allocno[num].reg = i; allocno[num].size = PSEUDO_REGNO_SIZE (i); allocno[num].calls_crossed += REG_N_CALLS_CROSSED (i); allocno[num].throwing_calls_crossed += REG_N_THROWING_CALLS_CROSSED (i); allocno[num].n_refs += REG_N_REFS (i); allocno[num].freq += REG_FREQ (i); if (allocno[num].live_length < REG_LIVE_LENGTH (i)) allocno[num].live_length = REG_LIVE_LENGTH (i); } /* Calculate amount of usage of each hard reg by pseudos allocated by local-alloc. This is to see if we want to override it. */ memset (local_reg_live_length, 0, sizeof local_reg_live_length); memset (local_reg_n_refs, 0, sizeof local_reg_n_refs); memset (local_reg_freq, 0, sizeof local_reg_freq); for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) if (reg_renumber[i] >= 0) { int regno = reg_renumber[i]; int endregno = regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)]; int j; for (j = regno; j < endregno; j++) { local_reg_n_refs[j] += REG_N_REFS (i); local_reg_freq[j] += REG_FREQ (i); local_reg_live_length[j] += REG_LIVE_LENGTH (i); } } /* We can't override local-alloc for a reg used not just by local-alloc. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (regs_ever_live[i]) local_reg_n_refs[i] = 0, local_reg_freq[i] = 0; allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS; /* We used to use alloca here, but the size of what it would try to allocate would occasionally cause it to exceed the stack limit and cause unpredictable core dumps. Some examples were > 2Mb in size. */ conflicts = XCNEWVEC (INT_TYPE, max_allocno * allocno_row_words); allocnos_live = XNEWVEC (INT_TYPE, allocno_row_words); /* If there is work to be done (at least one reg to allocate), perform global conflict analysis and allocate the regs. */ if (max_allocno > 0) { /* Scan all the insns and compute the conflicts among allocnos and between allocnos and hard regs. */ global_conflicts (); mirror_conflicts (); /* Eliminate conflicts between pseudos and eliminable registers. If the register is not eliminated, the pseudo won't really be able to live in the eliminable register, so the conflict doesn't matter. If we do eliminate the register, the conflict will no longer exist. So in either case, we can ignore the conflict. Likewise for preferences. */ for (i = 0; i < (size_t) max_allocno; i++) { AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_conflicts, eliminable_regset); AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_copy_preferences, eliminable_regset); AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_preferences, eliminable_regset); } /* Try to expand the preferences by merging them between allocnos. */ expand_preferences (); /* Determine the order to allocate the remaining pseudo registers. */ allocno_order = XNEWVEC (int, max_allocno); for (i = 0; i < (size_t) max_allocno; i++) allocno_order[i] = i; /* Default the size to 1, since allocno_compare uses it to divide by. Also convert allocno_live_length of zero to -1. A length of zero can occur when all the registers for that allocno have reg_live_length equal to -2. In this case, we want to make an allocno, but not allocate it. So avoid the divide-by-zero and set it to a low priority. */ for (i = 0; i < (size_t) max_allocno; i++) { if (allocno[i].size == 0) allocno[i].size = 1; if (allocno[i].live_length == 0) allocno[i].live_length = -1; } qsort (allocno_order, max_allocno, sizeof (int), allocno_compare); prune_preferences (); if (dump_file) dump_conflicts (dump_file); /* Try allocating them, one by one, in that order, except for parameters marked with reg_live_length[regno] == -2. */ for (i = 0; i < (size_t) max_allocno; i++) if (reg_renumber[allocno[allocno_order[i]].reg] < 0 && REG_LIVE_LENGTH (allocno[allocno_order[i]].reg) >= 0) { /* If we have more than one register class, first try allocating in the class that is cheapest for this pseudo-reg. If that fails, try any reg. */ if (N_REG_CLASSES > 1) { find_reg (allocno_order[i], 0, 0, 0, 0); if (reg_renumber[allocno[allocno_order[i]].reg] >= 0) continue; } if (reg_alternate_class (allocno[allocno_order[i]].reg) != NO_REGS) find_reg (allocno_order[i], 0, 1, 0, 0); } free (allocno_order); } /* Do the reloads now while the allocno data still exists, so that we can try to assign new hard regs to any pseudo regs that are spilled. */ #if 0 /* We need to eliminate regs even if there is no rtl code, for the sake of debugging information. */ if (n_basic_blocks > NUM_FIXED_BLOCKS) #endif { build_insn_chain (get_insns ()); retval = reload (get_insns (), 1); } /* Clean up. */ free (reg_allocno); free (reg_may_share); free (allocno); free (conflicts); free (allocnos_live); return retval; } /* Sort predicate for ordering the allocnos. Returns -1 (1) if *v1 should be allocated before (after) *v2. */ static int allocno_compare (const void *v1p, const void *v2p) { int v1 = *(const int *)v1p, v2 = *(const int *)v2p; /* Note that the quotient will never be bigger than the value of floor_log2 times the maximum number of times a register can occur in one insn (surely less than 100) weighted by the frequency (maximally REG_FREQ_MAX). Multiplying this by 10000/REG_FREQ_MAX can't overflow. */ int pri1 = (((double) (floor_log2 (allocno[v1].n_refs) * allocno[v1].freq) / allocno[v1].live_length) * (10000 / REG_FREQ_MAX) * allocno[v1].size); int pri2 = (((double) (floor_log2 (allocno[v2].n_refs) * allocno[v2].freq) / allocno[v2].live_length) * (10000 / REG_FREQ_MAX) * allocno[v2].size); if (pri2 - pri1) return pri2 - pri1; /* If regs are equally good, sort by allocno, so that the results of qsort leave nothing to chance. */ return v1 - v2; } /* Scan the rtl code and record all conflicts and register preferences in the conflict matrices and preference tables. */ static void global_conflicts (void) { unsigned i; basic_block b; rtx insn; int *block_start_allocnos; /* Make a vector that mark_reg_{store,clobber} will store in. */ regs_set = XNEWVEC (rtx, max_parallel * 2); block_start_allocnos = XNEWVEC (int, max_allocno); FOR_EACH_BB (b) { memset (allocnos_live, 0, allocno_row_words * sizeof (INT_TYPE)); /* Initialize table of registers currently live to the state at the beginning of this basic block. This also marks the conflicts among hard registers and any allocnos that are live. For pseudo-regs, there is only one bit for each one no matter how many hard regs it occupies. This is ok; we know the size from PSEUDO_REGNO_SIZE. For explicit hard regs, we cannot know the size that way since one hard reg can be used with various sizes. Therefore, we must require that all the hard regs implicitly live as part of a multi-word hard reg be explicitly marked in basic_block_live_at_start. */ { regset old = b->il.rtl->global_live_at_start; int ax = 0; reg_set_iterator rsi; REG_SET_TO_HARD_REG_SET (hard_regs_live, old); EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i, rsi) { int a = reg_allocno[i]; if (a >= 0) { SET_ALLOCNO_LIVE (a); block_start_allocnos[ax++] = a; } else if ((a = reg_renumber[i]) >= 0) mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i)); } /* Record that each allocno now live conflicts with each hard reg now live. It is not necessary to mark any conflicts between pseudos at this point, even for pseudos which are live at the start of the basic block. Given two pseudos X and Y and any point in the CFG P. On any path to point P where X and Y are live one of the following conditions must be true: 1. X is live at some instruction on the path that evaluates Y. 2. Y is live at some instruction on the path that evaluates X. 3. Either X or Y is not evaluated on the path to P (i.e. it is used uninitialized) and thus the conflict can be ignored. In cases #1 and #2 the conflict will be recorded when we scan the instruction that makes either X or Y become live. */ record_conflicts (block_start_allocnos, ax); #ifdef EH_RETURN_DATA_REGNO if (bb_has_eh_pred (b)) { unsigned int i; for (i = 0; ; ++i) { unsigned int regno = EH_RETURN_DATA_REGNO (i); if (regno == INVALID_REGNUM) break; record_one_conflict (regno); } } #endif /* Pseudos can't go in stack regs at the start of a basic block that is reached by an abnormal edge. Likewise for call clobbered regs, because caller-save, fixup_abnormal_edges and possibly the table driven EH machinery are not quite ready to handle such regs live across such edges. */ { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, b->preds) if (e->flags & EDGE_ABNORMAL) break; if (e != NULL) { #ifdef STACK_REGS EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, ax, { allocno[ax].no_stack_reg = 1; }); for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++) record_one_conflict (ax); #endif /* No need to record conflicts for call clobbered regs if we have nonlocal labels around, as we don't ever try to allocate such regs in this case. */ if (! current_function_has_nonlocal_label) for (ax = 0; ax < FIRST_PSEUDO_REGISTER; ax++) if (call_used_regs [ax]) record_one_conflict (ax); } } } insn = BB_HEAD (b); /* Scan the code of this basic block, noting which allocnos and hard regs are born or die. When one is born, record a conflict with all others currently live. */ while (1) { RTX_CODE code = GET_CODE (insn); rtx link; /* Make regs_set an empty set. */ n_regs_set = 0; if (code == INSN || code == CALL_INSN || code == JUMP_INSN) { #if 0 int i = 0; for (link = REG_NOTES (insn); link && i < NUM_NO_CONFLICT_PAIRS; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_NO_CONFLICT) { no_conflict_pairs[i].allocno1 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))]; no_conflict_pairs[i].allocno2 = reg_allocno[REGNO (XEXP (link, 0))]; i++; } #endif /* 0 */ /* Mark any registers clobbered by INSN as live, so they conflict with the inputs. */ note_stores (PATTERN (insn), mark_reg_clobber, NULL); /* Mark any registers dead after INSN as dead now. */ for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_DEAD) mark_reg_death (XEXP (link, 0)); /* Mark any registers set in INSN as live, and mark them as conflicting with all other live regs. Clobbers are processed again, so they conflict with the registers that are set. */ note_stores (PATTERN (insn), mark_reg_store, NULL); #ifdef AUTO_INC_DEC for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_INC) mark_reg_store (XEXP (link, 0), NULL_RTX, NULL); #endif /* If INSN has multiple outputs, then any reg that dies here and is used inside of an output must conflict with the other outputs. It is unsafe to use !single_set here since it will ignore an unused output. Just because an output is unused does not mean the compiler can assume the side effect will not occur. Consider if REG appears in the address of an output and we reload the output. If we allocate REG to the same hard register as an unused output we could set the hard register before the output reload insn. */ if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn)) for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_DEAD) { int used_in_output = 0; int i; rtx reg = XEXP (link, 0); for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) { rtx set = XVECEXP (PATTERN (insn), 0, i); if (GET_CODE (set) == SET && !REG_P (SET_DEST (set)) && !rtx_equal_p (reg, SET_DEST (set)) && reg_overlap_mentioned_p (reg, SET_DEST (set))) used_in_output = 1; } if (used_in_output) mark_reg_conflicts (reg); } /* Mark any registers set in INSN and then never used. */ while (n_regs_set-- > 0) { rtx note = find_regno_note (insn, REG_UNUSED, REGNO (regs_set[n_regs_set])); if (note) mark_reg_death (XEXP (note, 0)); } } if (insn == BB_END (b)) break; insn = NEXT_INSN (insn); } } /* Clean up. */ free (block_start_allocnos); free (regs_set); } /* Expand the preference information by looking for cases where one allocno dies in an insn that sets an allocno. If those two allocnos don't conflict, merge any preferences between those allocnos. */ static void expand_preferences (void) { rtx insn; rtx link; rtx set; /* We only try to handle the most common cases here. Most of the cases where this wins are reg-reg copies. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (INSN_P (insn) && (set = single_set (insn)) != 0 && REG_P (SET_DEST (set)) && reg_allocno[REGNO (SET_DEST (set))] >= 0) for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_DEAD && REG_P (XEXP (link, 0)) && reg_allocno[REGNO (XEXP (link, 0))] >= 0 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))], reg_allocno[REGNO (XEXP (link, 0))])) { int a1 = reg_allocno[REGNO (SET_DEST (set))]; int a2 = reg_allocno[REGNO (XEXP (link, 0))]; if (XEXP (link, 0) == SET_SRC (set)) { IOR_HARD_REG_SET (allocno[a1].hard_reg_copy_preferences, allocno[a2].hard_reg_copy_preferences); IOR_HARD_REG_SET (allocno[a2].hard_reg_copy_preferences, allocno[a1].hard_reg_copy_preferences); } IOR_HARD_REG_SET (allocno[a1].hard_reg_preferences, allocno[a2].hard_reg_preferences); IOR_HARD_REG_SET (allocno[a2].hard_reg_preferences, allocno[a1].hard_reg_preferences); IOR_HARD_REG_SET (allocno[a1].hard_reg_full_preferences, allocno[a2].hard_reg_full_preferences); IOR_HARD_REG_SET (allocno[a2].hard_reg_full_preferences, allocno[a1].hard_reg_full_preferences); } } /* Prune the preferences for global registers to exclude registers that cannot be used. Compute `regs_someone_prefers', which is a bitmask of the hard registers that are preferred by conflicting registers of lower priority. If possible, we will avoid using these registers. */ static void prune_preferences (void) { int i; int num; int *allocno_to_order = XNEWVEC (int, max_allocno); /* Scan least most important to most important. For each allocno, remove from preferences registers that cannot be used, either because of conflicts or register type. Then compute all registers preferred by each lower-priority register that conflicts. */ for (i = max_allocno - 1; i >= 0; i--) { HARD_REG_SET temp; num = allocno_order[i]; allocno_to_order[num] = i; COPY_HARD_REG_SET (temp, allocno[num].hard_reg_conflicts); if (allocno[num].calls_crossed == 0) IOR_HARD_REG_SET (temp, fixed_reg_set); else IOR_HARD_REG_SET (temp, call_used_reg_set); IOR_COMPL_HARD_REG_SET (temp, reg_class_contents[(int) reg_preferred_class (allocno[num].reg)]); AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, temp); AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, temp); AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_full_preferences, temp); } for (i = max_allocno - 1; i >= 0; i--) { /* Merge in the preferences of lower-priority registers (they have already been pruned). If we also prefer some of those registers, don't exclude them unless we are of a smaller size (in which case we want to give the lower-priority allocno the first chance for these registers). */ HARD_REG_SET temp, temp2; int allocno2; num = allocno_order[i]; CLEAR_HARD_REG_SET (temp); CLEAR_HARD_REG_SET (temp2); EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + num * allocno_row_words, allocno2, { if (allocno_to_order[allocno2] > i) { if (allocno[allocno2].size <= allocno[num].size) IOR_HARD_REG_SET (temp, allocno[allocno2].hard_reg_full_preferences); else IOR_HARD_REG_SET (temp2, allocno[allocno2].hard_reg_full_preferences); } }); AND_COMPL_HARD_REG_SET (temp, allocno[num].hard_reg_full_preferences); IOR_HARD_REG_SET (temp, temp2); COPY_HARD_REG_SET (allocno[num].regs_someone_prefers, temp); } free (allocno_to_order); } /* Assign a hard register to allocno NUM; look for one that is the beginning of a long enough stretch of hard regs none of which conflicts with ALLOCNO. The registers marked in PREFREGS are tried first. LOSERS, if nonzero, is a HARD_REG_SET indicating registers that cannot be used for this allocation. If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg. Otherwise ignore that preferred class and use the alternate class. If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that will have to be saved and restored at calls. RETRYING is nonzero if this is called from retry_global_alloc. If we find one, record it in reg_renumber. If not, do nothing. */ static void find_reg (int num, HARD_REG_SET losers, int alt_regs_p, int accept_call_clobbered, int retrying) { int i, best_reg, pass; HARD_REG_SET used, used1, used2; enum reg_class class = (alt_regs_p ? reg_alternate_class (allocno[num].reg) : reg_preferred_class (allocno[num].reg)); enum machine_mode mode = PSEUDO_REGNO_MODE (allocno[num].reg); if (accept_call_clobbered) COPY_HARD_REG_SET (used1, call_fixed_reg_set); else if (allocno[num].calls_crossed == 0) COPY_HARD_REG_SET (used1, fixed_reg_set); else COPY_HARD_REG_SET (used1, call_used_reg_set); /* Some registers should not be allocated in global-alloc. */ IOR_HARD_REG_SET (used1, no_global_alloc_regs); if (losers) IOR_HARD_REG_SET (used1, losers); IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]); COPY_HARD_REG_SET (used2, used1); IOR_HARD_REG_SET (used1, allocno[num].hard_reg_conflicts); #ifdef CANNOT_CHANGE_MODE_CLASS cannot_change_mode_set_regs (&used1, mode, allocno[num].reg); #endif /* Try each hard reg to see if it fits. Do this in two passes. In the first pass, skip registers that are preferred by some other pseudo to give it a better chance of getting one of those registers. Only if we can't get a register when excluding those do we take one of them. However, we never allocate a register for the first time in pass 0. */ COPY_HARD_REG_SET (used, used1); IOR_COMPL_HARD_REG_SET (used, regs_used_so_far); IOR_HARD_REG_SET (used, allocno[num].regs_someone_prefers); best_reg = -1; for (i = FIRST_PSEUDO_REGISTER, pass = 0; pass <= 1 && i >= FIRST_PSEUDO_REGISTER; pass++) { if (pass == 1) COPY_HARD_REG_SET (used, used1); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { #ifdef REG_ALLOC_ORDER int regno = reg_alloc_order[i]; #else int regno = i; #endif if (! TEST_HARD_REG_BIT (used, regno) && HARD_REGNO_MODE_OK (regno, mode) && (allocno[num].calls_crossed == 0 || accept_call_clobbered || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))) { int j; int lim = regno + hard_regno_nregs[regno][mode]; for (j = regno + 1; (j < lim && ! TEST_HARD_REG_BIT (used, j)); j++); if (j == lim) { best_reg = regno; break; } #ifndef REG_ALLOC_ORDER i = j; /* Skip starting points we know will lose */ #endif } } } /* See if there is a preferred register with the same class as the register we allocated above. Making this restriction prevents register preferencing from creating worse register allocation. Remove from the preferred registers and conflicting registers. Note that additional conflicts may have been added after `prune_preferences' was called. First do this for those register with copy preferences, then all preferred registers. */ AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, used); GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_copy_preferences, reg_class_contents[(int) NO_REGS], no_copy_prefs); if (best_reg >= 0) { for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (allocno[num].hard_reg_copy_preferences, i) && HARD_REGNO_MODE_OK (i, mode) && (allocno[num].calls_crossed == 0 || accept_call_clobbered || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode)) && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg) || reg_class_subset_p (REGNO_REG_CLASS (i), REGNO_REG_CLASS (best_reg)) || reg_class_subset_p (REGNO_REG_CLASS (best_reg), REGNO_REG_CLASS (i)))) { int j; int lim = i + hard_regno_nregs[i][mode]; for (j = i + 1; (j < lim && ! TEST_HARD_REG_BIT (used, j) && (REGNO_REG_CLASS (j) == REGNO_REG_CLASS (best_reg + (j - i)) || reg_class_subset_p (REGNO_REG_CLASS (j), REGNO_REG_CLASS (best_reg + (j - i))) || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)), REGNO_REG_CLASS (j)))); j++); if (j == lim) { best_reg = i; goto no_prefs; } } } no_copy_prefs: AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, used); GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_preferences, reg_class_contents[(int) NO_REGS], no_prefs); if (best_reg >= 0) { for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (allocno[num].hard_reg_preferences, i) && HARD_REGNO_MODE_OK (i, mode) && (allocno[num].calls_crossed == 0 || accept_call_clobbered || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode)) && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg) || reg_class_subset_p (REGNO_REG_CLASS (i), REGNO_REG_CLASS (best_reg)) || reg_class_subset_p (REGNO_REG_CLASS (best_reg), REGNO_REG_CLASS (i)))) { int j; int lim = i + hard_regno_nregs[i][mode]; for (j = i + 1; (j < lim && ! TEST_HARD_REG_BIT (used, j) && (REGNO_REG_CLASS (j) == REGNO_REG_CLASS (best_reg + (j - i)) || reg_class_subset_p (REGNO_REG_CLASS (j), REGNO_REG_CLASS (best_reg + (j - i))) || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)), REGNO_REG_CLASS (j)))); j++); if (j == lim) { best_reg = i; break; } } } no_prefs: /* If we haven't succeeded yet, try with caller-saves. We need not check to see if the current function has nonlocal labels because we don't put any pseudos that are live over calls in registers in that case. */ if (flag_caller_saves && best_reg < 0) { /* Did not find a register. If it would be profitable to allocate a call-clobbered register and save and restore it around calls, do that. Don't do this if it crosses any calls that might throw. */ if (! accept_call_clobbered && allocno[num].calls_crossed != 0 && allocno[num].throwing_calls_crossed == 0 && CALLER_SAVE_PROFITABLE (allocno[num].n_refs, allocno[num].calls_crossed)) { HARD_REG_SET new_losers; if (! losers) CLEAR_HARD_REG_SET (new_losers); else COPY_HARD_REG_SET (new_losers, losers); IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set); find_reg (num, new_losers, alt_regs_p, 1, retrying); if (reg_renumber[allocno[num].reg] >= 0) { caller_save_needed = 1; return; } } } /* If we haven't succeeded yet, see if some hard reg that conflicts with us was utilized poorly by local-alloc. If so, kick out the regs that were put there by local-alloc so we can use it instead. */ if (best_reg < 0 && !retrying /* Let's not bother with multi-reg allocnos. */ && allocno[num].size == 1 && REG_BASIC_BLOCK (allocno[num].reg) == REG_BLOCK_GLOBAL) { /* Count from the end, to find the least-used ones first. */ for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--) { #ifdef REG_ALLOC_ORDER int regno = reg_alloc_order[i]; #else int regno = i; #endif if (local_reg_n_refs[regno] != 0 /* Don't use a reg no good for this pseudo. */ && ! TEST_HARD_REG_BIT (used2, regno) && HARD_REGNO_MODE_OK (regno, mode) /* The code below assumes that we need only a single register, but the check of allocno[num].size above was not enough. Sometimes we need more than one register for a single-word value. */ && hard_regno_nregs[regno][mode] == 1 && (allocno[num].calls_crossed == 0 || accept_call_clobbered || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)) #ifdef CANNOT_CHANGE_MODE_CLASS && ! invalid_mode_change_p (regno, REGNO_REG_CLASS (regno), mode) #endif #ifdef STACK_REGS && (!allocno[num].no_stack_reg || regno < FIRST_STACK_REG || regno > LAST_STACK_REG) #endif ) { /* We explicitly evaluate the divide results into temporary variables so as to avoid excess precision problems that occur on an i386-unknown-sysv4.2 (unixware) host. */ double tmp1 = ((double) local_reg_freq[regno] * local_reg_n_refs[regno] / local_reg_live_length[regno]); double tmp2 = ((double) allocno[num].freq * allocno[num].n_refs / allocno[num].live_length); if (tmp1 < tmp2) { /* Hard reg REGNO was used less in total by local regs than it would be used by this one allocno! */ int k; if (dump_file) { fprintf (dump_file, "Regno %d better for global %d, ", regno, allocno[num].reg); fprintf (dump_file, "fr:%d, ll:%d, nr:%d ", allocno[num].freq, allocno[num].live_length, allocno[num].n_refs); fprintf (dump_file, "(was: fr:%d, ll:%d, nr:%d)\n", local_reg_freq[regno], local_reg_live_length[regno], local_reg_n_refs[regno]); } for (k = 0; k < max_regno; k++) if (reg_renumber[k] >= 0) { int r = reg_renumber[k]; int endregno = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (k)]; if (regno >= r && regno < endregno) { if (dump_file) fprintf (dump_file, "Local Reg %d now on stack\n", k); reg_renumber[k] = -1; } } best_reg = regno; break; } } } } /* Did we find a register? */ if (best_reg >= 0) { int lim, j; HARD_REG_SET this_reg; /* Yes. Record it as the hard register of this pseudo-reg. */ reg_renumber[allocno[num].reg] = best_reg; /* Also of any pseudo-regs that share with it. */ if (reg_may_share[allocno[num].reg]) for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++) if (reg_allocno[j] == num) reg_renumber[j] = best_reg; /* Make a set of the hard regs being allocated. */ CLEAR_HARD_REG_SET (this_reg); lim = best_reg + hard_regno_nregs[best_reg][mode]; for (j = best_reg; j < lim; j++) { SET_HARD_REG_BIT (this_reg, j); SET_HARD_REG_BIT (regs_used_so_far, j); /* This is no longer a reg used just by local regs. */ local_reg_n_refs[j] = 0; local_reg_freq[j] = 0; } /* For each other pseudo-reg conflicting with this one, mark it as conflicting with the hard regs this one occupies. */ lim = num; EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + lim * allocno_row_words, j, { IOR_HARD_REG_SET (allocno[j].hard_reg_conflicts, this_reg); }); } } /* Called from `reload' to look for a hard reg to put pseudo reg REGNO in. Perhaps it had previously seemed not worth a hard reg, or perhaps its old hard reg has been commandeered for reloads. FORBIDDEN_REGS indicates certain hard regs that may not be used, even if they do not appear to be allocated. If FORBIDDEN_REGS is zero, no regs are forbidden. */ void retry_global_alloc (int regno, HARD_REG_SET forbidden_regs) { int alloc_no = reg_allocno[regno]; if (alloc_no >= 0) { /* If we have more than one register class, first try allocating in the class that is cheapest for this pseudo-reg. If that fails, try any reg. */ if (N_REG_CLASSES > 1) find_reg (alloc_no, forbidden_regs, 0, 0, 1); if (reg_renumber[regno] < 0 && reg_alternate_class (regno) != NO_REGS) find_reg (alloc_no, forbidden_regs, 1, 0, 1); /* If we found a register, modify the RTL for the register to show the hard register, and mark that register live. */ if (reg_renumber[regno] >= 0) { REGNO (regno_reg_rtx[regno]) = reg_renumber[regno]; mark_home_live (regno); } } } /* Record a conflict between register REGNO and everything currently live. REGNO must not be a pseudo reg that was allocated by local_alloc; such numbers must be translated through reg_renumber before calling here. */ static void record_one_conflict (int regno) { int j; if (regno < FIRST_PSEUDO_REGISTER) /* When a hard register becomes live, record conflicts with live pseudo regs. */ EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, j, { SET_HARD_REG_BIT (allocno[j].hard_reg_conflicts, regno); }); else /* When a pseudo-register becomes live, record conflicts first with hard regs, then with other pseudo regs. */ { int ialloc = reg_allocno[regno]; int ialloc_prod = ialloc * allocno_row_words; IOR_HARD_REG_SET (allocno[ialloc].hard_reg_conflicts, hard_regs_live); for (j = allocno_row_words - 1; j >= 0; j--) conflicts[ialloc_prod + j] |= allocnos_live[j]; } } /* Record all allocnos currently live as conflicting with all hard regs currently live. ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that are currently live. Their bits are also flagged in allocnos_live. */ static void record_conflicts (int *allocno_vec, int len) { while (--len >= 0) IOR_HARD_REG_SET (allocno[allocno_vec[len]].hard_reg_conflicts, hard_regs_live); } /* If CONFLICTP (i, j) is true, make sure CONFLICTP (j, i) is also true. */ static void mirror_conflicts (void) { int i, j; int rw = allocno_row_words; int rwb = rw * INT_BITS; INT_TYPE *p = conflicts; INT_TYPE *q0 = conflicts, *q1, *q2; unsigned INT_TYPE mask; for (i = max_allocno - 1, mask = 1; i >= 0; i--, mask <<= 1) { if (! mask) { mask = 1; q0++; } for (j = allocno_row_words - 1, q1 = q0; j >= 0; j--, q1 += rwb) { unsigned INT_TYPE word; for (word = (unsigned INT_TYPE) *p++, q2 = q1; word; word >>= 1, q2 += rw) { if (word & 1) *q2 |= mask; } } } } /* Handle the case where REG is set by the insn being scanned, during the forward scan to accumulate conflicts. Store a 1 in regs_live or allocnos_live for this register, record how many consecutive hardware registers it actually needs, and record a conflict with all other registers already live. Note that even if REG does not remain alive after this insn, we must mark it here as live, to ensure a conflict between REG and any other regs set in this insn that really do live. This is because those other regs could be considered after this. REG might actually be something other than a register; if so, we do nothing. SETTER is 0 if this register was modified by an auto-increment (i.e., a REG_INC note was found for it). */ static void mark_reg_store (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED) { int regno; if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); if (!REG_P (reg)) return; regs_set[n_regs_set++] = reg; if (setter && GET_CODE (setter) != CLOBBER) set_preference (reg, SET_SRC (setter)); regno = REGNO (reg); /* Either this is one of the max_allocno pseudo regs not allocated, or it is or has a hardware reg. First handle the pseudo-regs. */ if (regno >= FIRST_PSEUDO_REGISTER) { if (reg_allocno[regno] >= 0) { SET_ALLOCNO_LIVE (reg_allocno[regno]); record_one_conflict (regno); } } if (reg_renumber[regno] >= 0) regno = reg_renumber[regno]; /* Handle hardware regs (and pseudos allocated to hard regs). */ if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno]) { int last = regno + hard_regno_nregs[regno][GET_MODE (reg)]; while (regno < last) { record_one_conflict (regno); SET_HARD_REG_BIT (hard_regs_live, regno); regno++; } } } /* Like mark_reg_store except notice just CLOBBERs; ignore SETs. */ static void mark_reg_clobber (rtx reg, rtx setter, void *data) { if (GET_CODE (setter) == CLOBBER) mark_reg_store (reg, setter, data); } /* Record that REG has conflicts with all the regs currently live. Do not mark REG itself as live. */ static void mark_reg_conflicts (rtx reg) { int regno; if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); if (!REG_P (reg)) return; regno = REGNO (reg); /* Either this is one of the max_allocno pseudo regs not allocated, or it is or has a hardware reg. First handle the pseudo-regs. */ if (regno >= FIRST_PSEUDO_REGISTER) { if (reg_allocno[regno] >= 0) record_one_conflict (regno); } if (reg_renumber[regno] >= 0) regno = reg_renumber[regno]; /* Handle hardware regs (and pseudos allocated to hard regs). */ if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno]) { int last = regno + hard_regno_nregs[regno][GET_MODE (reg)]; while (regno < last) { record_one_conflict (regno); regno++; } } } /* Mark REG as being dead (following the insn being scanned now). Store a 0 in regs_live or allocnos_live for this register. */ static void mark_reg_death (rtx reg) { int regno = REGNO (reg); /* Either this is one of the max_allocno pseudo regs not allocated, or it is a hardware reg. First handle the pseudo-regs. */ if (regno >= FIRST_PSEUDO_REGISTER) { if (reg_allocno[regno] >= 0) CLEAR_ALLOCNO_LIVE (reg_allocno[regno]); } /* For pseudo reg, see if it has been assigned a hardware reg. */ if (reg_renumber[regno] >= 0) regno = reg_renumber[regno]; /* Handle hardware regs (and pseudos allocated to hard regs). */ if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno]) { /* Pseudo regs already assigned hardware regs are treated almost the same as explicit hardware regs. */ int last = regno + hard_regno_nregs[regno][GET_MODE (reg)]; while (regno < last) { CLEAR_HARD_REG_BIT (hard_regs_live, regno); regno++; } } } /* Mark hard reg REGNO as currently live, assuming machine mode MODE for the value stored in it. MODE determines how many consecutive registers are actually in use. Do not record conflicts; it is assumed that the caller will do that. */ static void mark_reg_live_nc (int regno, enum machine_mode mode) { int last = regno + hard_regno_nregs[regno][mode]; while (regno < last) { SET_HARD_REG_BIT (hard_regs_live, regno); regno++; } } /* Try to set a preference for an allocno to a hard register. We are passed DEST and SRC which are the operands of a SET. It is known that SRC is a register. If SRC or the first operand of SRC is a register, try to set a preference. If one of the two is a hard register and the other is a pseudo-register, mark the preference. Note that we are not as aggressive as local-alloc in trying to tie a pseudo-register to a hard register. */ static void set_preference (rtx dest, rtx src) { unsigned int src_regno, dest_regno; /* Amount to add to the hard regno for SRC, or subtract from that for DEST, to compensate for subregs in SRC or DEST. */ int offset = 0; unsigned int i; int copy = 1; if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e') src = XEXP (src, 0), copy = 0; /* Get the reg number for both SRC and DEST. If neither is a reg, give up. */ if (REG_P (src)) src_regno = REGNO (src); else if (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))) { src_regno = REGNO (SUBREG_REG (src)); if (REGNO (SUBREG_REG (src)) < FIRST_PSEUDO_REGISTER) offset += subreg_regno_offset (REGNO (SUBREG_REG (src)), GET_MODE (SUBREG_REG (src)), SUBREG_BYTE (src), GET_MODE (src)); else offset += (SUBREG_BYTE (src) / REGMODE_NATURAL_SIZE (GET_MODE (src))); } else return; if (REG_P (dest)) dest_regno = REGNO (dest); else if (GET_CODE (dest) == SUBREG && REG_P (SUBREG_REG (dest))) { dest_regno = REGNO (SUBREG_REG (dest)); if (REGNO (SUBREG_REG (dest)) < FIRST_PSEUDO_REGISTER) offset -= subreg_regno_offset (REGNO (SUBREG_REG (dest)), GET_MODE (SUBREG_REG (dest)), SUBREG_BYTE (dest), GET_MODE (dest)); else offset -= (SUBREG_BYTE (dest) / REGMODE_NATURAL_SIZE (GET_MODE (dest))); } else return; /* Convert either or both to hard reg numbers. */ if (reg_renumber[src_regno] >= 0) src_regno = reg_renumber[src_regno]; if (reg_renumber[dest_regno] >= 0) dest_regno = reg_renumber[dest_regno]; /* Now if one is a hard reg and the other is a global pseudo then give the other a preference. */ if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER && reg_allocno[src_regno] >= 0) { dest_regno -= offset; if (dest_regno < FIRST_PSEUDO_REGISTER) { if (copy) SET_REGBIT (hard_reg_copy_preferences, reg_allocno[src_regno], dest_regno); SET_REGBIT (hard_reg_preferences, reg_allocno[src_regno], dest_regno); for (i = dest_regno; i < dest_regno + hard_regno_nregs[dest_regno][GET_MODE (dest)]; i++) SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i); } } if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER && reg_allocno[dest_regno] >= 0) { src_regno += offset; if (src_regno < FIRST_PSEUDO_REGISTER) { if (copy) SET_REGBIT (hard_reg_copy_preferences, reg_allocno[dest_regno], src_regno); SET_REGBIT (hard_reg_preferences, reg_allocno[dest_regno], src_regno); for (i = src_regno; i < src_regno + hard_regno_nregs[src_regno][GET_MODE (src)]; i++) SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i); } } } /* Indicate that hard register number FROM was eliminated and replaced with an offset from hard register number TO. The status of hard registers live at the start of a basic block is updated by replacing a use of FROM with a use of TO. */ void mark_elimination (int from, int to) { basic_block bb; FOR_EACH_BB (bb) { regset r = bb->il.rtl->global_live_at_start; if (REGNO_REG_SET_P (r, from)) { CLEAR_REGNO_REG_SET (r, from); SET_REGNO_REG_SET (r, to); } } } /* Used for communication between the following functions. Holds the current life information. */ static regset live_relevant_regs; /* Record in live_relevant_regs and REGS_SET that register REG became live. This is called via note_stores. */ static void reg_becomes_live (rtx reg, rtx setter ATTRIBUTE_UNUSED, void *regs_set) { int regno; if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); if (!REG_P (reg)) return; regno = REGNO (reg); if (regno < FIRST_PSEUDO_REGISTER) { int nregs = hard_regno_nregs[regno][GET_MODE (reg)]; while (nregs-- > 0) { SET_REGNO_REG_SET (live_relevant_regs, regno); if (! fixed_regs[regno]) SET_REGNO_REG_SET ((regset) regs_set, regno); regno++; } } else if (reg_renumber[regno] >= 0) { SET_REGNO_REG_SET (live_relevant_regs, regno); SET_REGNO_REG_SET ((regset) regs_set, regno); } } /* Record in live_relevant_regs that register REGNO died. */ static void reg_dies (int regno, enum machine_mode mode, struct insn_chain *chain) { if (regno < FIRST_PSEUDO_REGISTER) { int nregs = hard_regno_nregs[regno][mode]; while (nregs-- > 0) { CLEAR_REGNO_REG_SET (live_relevant_regs, regno); if (! fixed_regs[regno]) SET_REGNO_REG_SET (&chain->dead_or_set, regno); regno++; } } else { CLEAR_REGNO_REG_SET (live_relevant_regs, regno); if (reg_renumber[regno] >= 0) SET_REGNO_REG_SET (&chain->dead_or_set, regno); } } /* Walk the insns of the current function and build reload_insn_chain, and record register life information. */ void build_insn_chain (rtx first) { struct insn_chain **p = &reload_insn_chain; struct insn_chain *prev = 0; basic_block b = ENTRY_BLOCK_PTR->next_bb; live_relevant_regs = ALLOC_REG_SET (®_obstack); for (; first; first = NEXT_INSN (first)) { struct insn_chain *c; if (first == BB_HEAD (b)) { unsigned i; bitmap_iterator bi; CLEAR_REG_SET (live_relevant_regs); EXECUTE_IF_SET_IN_BITMAP (b->il.rtl->global_live_at_start, 0, i, bi) { if (i < FIRST_PSEUDO_REGISTER ? ! TEST_HARD_REG_BIT (eliminable_regset, i) : reg_renumber[i] >= 0) SET_REGNO_REG_SET (live_relevant_regs, i); } } if (!NOTE_P (first) && !BARRIER_P (first)) { c = new_insn_chain (); c->prev = prev; prev = c; *p = c; p = &c->next; c->insn = first; c->block = b->index; if (INSN_P (first)) { rtx link; /* Mark the death of everything that dies in this instruction. */ for (link = REG_NOTES (first); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_DEAD && REG_P (XEXP (link, 0))) reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)), c); COPY_REG_SET (&c->live_throughout, live_relevant_regs); /* Mark everything born in this instruction as live. */ note_stores (PATTERN (first), reg_becomes_live, &c->dead_or_set); } else COPY_REG_SET (&c->live_throughout, live_relevant_regs); if (INSN_P (first)) { rtx link; /* Mark anything that is set in this insn and then unused as dying. */ for (link = REG_NOTES (first); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_UNUSED && REG_P (XEXP (link, 0))) reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)), c); } } if (first == BB_END (b)) b = b->next_bb; /* Stop after we pass the end of the last basic block. Verify that no real insns are after the end of the last basic block. We may want to reorganize the loop somewhat since this test should always be the right exit test. Allow an ADDR_VEC or ADDR_DIF_VEC if the previous real insn is a JUMP_INSN. */ if (b == EXIT_BLOCK_PTR) { #ifdef ENABLE_CHECKING for (first = NEXT_INSN (first); first; first = NEXT_INSN (first)) gcc_assert (!INSN_P (first) || GET_CODE (PATTERN (first)) == USE || ((GET_CODE (PATTERN (first)) == ADDR_VEC || GET_CODE (PATTERN (first)) == ADDR_DIFF_VEC) && prev_real_insn (first) != 0 && JUMP_P (prev_real_insn (first)))); #endif break; } } FREE_REG_SET (live_relevant_regs); *p = 0; } /* Print debugging trace information if -dg switch is given, showing the information on which the allocation decisions are based. */ static void dump_conflicts (FILE *file) { int i; int has_preferences; int nregs; nregs = 0; for (i = 0; i < max_allocno; i++) { if (reg_renumber[allocno[allocno_order[i]].reg] >= 0) continue; nregs++; } fprintf (file, ";; %d regs to allocate:", nregs); for (i = 0; i < max_allocno; i++) { int j; if (reg_renumber[allocno[allocno_order[i]].reg] >= 0) continue; fprintf (file, " %d", allocno[allocno_order[i]].reg); for (j = 0; j < max_regno; j++) if (reg_allocno[j] == allocno_order[i] && j != allocno[allocno_order[i]].reg) fprintf (file, "+%d", j); if (allocno[allocno_order[i]].size != 1) fprintf (file, " (%d)", allocno[allocno_order[i]].size); } fprintf (file, "\n"); for (i = 0; i < max_allocno; i++) { int j; fprintf (file, ";; %d conflicts:", allocno[i].reg); for (j = 0; j < max_allocno; j++) if (CONFLICTP (j, i)) fprintf (file, " %d", allocno[j].reg); for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) if (TEST_HARD_REG_BIT (allocno[i].hard_reg_conflicts, j)) fprintf (file, " %d", j); fprintf (file, "\n"); has_preferences = 0; for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j)) has_preferences = 1; if (! has_preferences) continue; fprintf (file, ";; %d preferences:", allocno[i].reg); for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j)) fprintf (file, " %d", j); fprintf (file, "\n"); } fprintf (file, "\n"); } void dump_global_regs (FILE *file) { int i, j; fprintf (file, ";; Register dispositions:\n"); for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++) if (reg_renumber[i] >= 0) { fprintf (file, "%d in %d ", i, reg_renumber[i]); if (++j % 6 == 0) fprintf (file, "\n"); } fprintf (file, "\n\n;; Hard regs used: "); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (regs_ever_live[i]) fprintf (file, " %d", i); fprintf (file, "\n\n"); } /* This page contains code to make live information more accurate. The accurate register liveness at program point P means: o there is a path from P to usage of the register and the register is not redefined or killed on the path. o register at P is partially available, i.e. there is a path from a register definition to the point P and the register is not killed (clobbered) on the path The standard GCC live information means only the first condition. Without the partial availability, there will be more register conflicts and as a consequence worse register allocation. The typical example where the information can be different is a register initialized in the loop at the basic block preceding the loop in CFG. */ /* The following structure contains basic block data flow information used to calculate partial availability of registers. */ struct bb_info { /* The basic block reverse post-order number. */ int rts_number; /* Registers used uninitialized in an insn in which there is an early clobbered register might get the same hard register. */ bitmap earlyclobber; /* Registers correspondingly killed (clobbered) and defined but not killed afterward in the basic block. */ bitmap killed, avloc; /* Registers partially available and living (in other words whose values were calculated and used) correspondingly at the start and end of the basic block. */ bitmap live_pavin, live_pavout; }; /* Macros for accessing data flow information of basic blocks. */ #define BB_INFO(BB) ((struct bb_info *) (BB)->aux) #define BB_INFO_BY_INDEX(N) BB_INFO (BASIC_BLOCK(N)) static struct bitmap_obstack greg_obstack; /* The function allocates the info structures of each basic block. It also initialized LIVE_PAVIN and LIVE_PAVOUT as if all hard registers were partially available. */ static void allocate_bb_info (void) { int i; basic_block bb; struct bb_info *bb_info; bitmap init; alloc_aux_for_blocks (sizeof (struct bb_info)); init = BITMAP_ALLOC (NULL); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) bitmap_set_bit (init, i); bitmap_obstack_initialize (&greg_obstack); FOR_EACH_BB (bb) { bb_info = bb->aux; bb_info->earlyclobber = BITMAP_ALLOC (&greg_obstack); bb_info->avloc = BITMAP_ALLOC (&greg_obstack); bb_info->killed = BITMAP_ALLOC (&greg_obstack); bb_info->live_pavin = BITMAP_ALLOC (&greg_obstack); bb_info->live_pavout = BITMAP_ALLOC (&greg_obstack); bitmap_copy (bb_info->live_pavin, init); bitmap_copy (bb_info->live_pavout, init); } BITMAP_FREE (init); } /* The function frees the allocated info of all basic blocks. */ static void free_bb_info (void) { bitmap_obstack_release (&greg_obstack); free_aux_for_blocks (); } /* The function modifies local info for register REG being changed in SETTER. DATA is used to pass the current basic block info. */ static void mark_reg_change (rtx reg, rtx setter, void *data) { int regno; basic_block bb = data; struct bb_info *bb_info = BB_INFO (bb); if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); if (!REG_P (reg)) return; regno = REGNO (reg); bitmap_set_bit (bb_info->killed, regno); if (GET_CODE (setter) != CLOBBER) bitmap_set_bit (bb_info->avloc, regno); else bitmap_clear_bit (bb_info->avloc, regno); } /* Classes of registers which could be early clobbered in the current insn. */ static VEC(int,heap) *earlyclobber_regclass; /* This function finds and stores register classes that could be early clobbered in INSN. If any earlyclobber classes are found, the function returns TRUE, in all other cases it returns FALSE. */ static bool check_earlyclobber (rtx insn) { int opno; bool found = false; extract_insn (insn); VEC_truncate (int, earlyclobber_regclass, 0); for (opno = 0; opno < recog_data.n_operands; opno++) { char c; bool amp_p; int i; enum reg_class class; const char *p = recog_data.constraints[opno]; class = NO_REGS; amp_p = false; for (;;) { c = *p; switch (c) { case '=': case '+': case '?': case '#': case '!': case '*': case '%': case 'm': case '<': case '>': case 'V': case 'o': case 'E': case 'F': case 'G': case 'H': case 's': case 'i': case 'n': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': case 'X': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': /* These don't say anything we care about. */ break; case '&': amp_p = true; break; case '\0': case ',': if (amp_p && class != NO_REGS) { int rc; found = true; for (i = 0; VEC_iterate (int, earlyclobber_regclass, i, rc); i++) { if (rc == (int) class) goto found_rc; } /* We use VEC_quick_push here because earlyclobber_regclass holds no more than N_REG_CLASSES elements. */ VEC_quick_push (int, earlyclobber_regclass, (int) class); found_rc: ; } amp_p = false; class = NO_REGS; break; case 'r': class = GENERAL_REGS; break; default: class = REG_CLASS_FROM_CONSTRAINT (c, p); break; } if (c == '\0') break; p += CONSTRAINT_LEN (c, p); } } return found; } /* The function checks that pseudo-register *X has a class intersecting with the class of pseudo-register could be early clobbered in the same insn. This function is a no-op if earlyclobber_regclass is empty. */ static int mark_reg_use_for_earlyclobber (rtx *x, void *data ATTRIBUTE_UNUSED) { enum reg_class pref_class, alt_class; int i, regno; basic_block bb = data; struct bb_info *bb_info = BB_INFO (bb); if (REG_P (*x) && REGNO (*x) >= FIRST_PSEUDO_REGISTER) { int rc; regno = REGNO (*x); if (bitmap_bit_p (bb_info->killed, regno) || bitmap_bit_p (bb_info->avloc, regno)) return 0; pref_class = reg_preferred_class (regno); alt_class = reg_alternate_class (regno); for (i = 0; VEC_iterate (int, earlyclobber_regclass, i, rc); i++) { if (reg_classes_intersect_p (rc, pref_class) || (rc != NO_REGS && reg_classes_intersect_p (rc, alt_class))) { bitmap_set_bit (bb_info->earlyclobber, regno); break; } } } return 0; } /* The function processes all pseudo-registers in *X with the aid of previous function. */ static void mark_reg_use_for_earlyclobber_1 (rtx *x, void *data) { for_each_rtx (x, mark_reg_use_for_earlyclobber, data); } /* The function calculates local info for each basic block. */ static void calculate_local_reg_bb_info (void) { basic_block bb; rtx insn, bound; /* We know that earlyclobber_regclass holds no more than N_REG_CLASSES elements. See check_earlyclobber. */ earlyclobber_regclass = VEC_alloc (int, heap, N_REG_CLASSES); FOR_EACH_BB (bb) { bound = NEXT_INSN (BB_END (bb)); for (insn = BB_HEAD (bb); insn != bound; insn = NEXT_INSN (insn)) if (INSN_P (insn)) { note_stores (PATTERN (insn), mark_reg_change, bb); if (check_earlyclobber (insn)) note_uses (&PATTERN (insn), mark_reg_use_for_earlyclobber_1, bb); } } VEC_free (int, heap, earlyclobber_regclass); } /* The function sets up reverse post-order number of each basic block. */ static void set_up_bb_rts_numbers (void) { int i; int *rts_order; rts_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS); post_order_compute (rts_order, false); for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++) BB_INFO_BY_INDEX (rts_order [i])->rts_number = i; free (rts_order); } /* Compare function for sorting blocks in reverse postorder. */ static int rpost_cmp (const void *bb1, const void *bb2) { basic_block b1 = *(basic_block *) bb1, b2 = *(basic_block *) bb2; return BB_INFO (b2)->rts_number - BB_INFO (b1)->rts_number; } /* Temporary bitmap used for live_pavin, live_pavout calculation. */ static bitmap temp_bitmap; /* The function calculates partial register availability according to the following equations: bb.live_pavin = empty for entry block | union (live_pavout of predecessors) & global_live_at_start bb.live_pavout = union (bb.live_pavin - bb.killed, bb.avloc) & global_live_at_end */ static void calculate_reg_pav (void) { basic_block bb, succ; edge e; int i, nel; VEC(basic_block,heap) *bbs, *new_bbs, *temp; basic_block *bb_array; sbitmap wset; bbs = VEC_alloc (basic_block, heap, n_basic_blocks); new_bbs = VEC_alloc (basic_block, heap, n_basic_blocks); temp_bitmap = BITMAP_ALLOC (NULL); FOR_EACH_BB (bb) { VEC_quick_push (basic_block, bbs, bb); } wset = sbitmap_alloc (n_basic_blocks + 1); while (VEC_length (basic_block, bbs)) { bb_array = VEC_address (basic_block, bbs); nel = VEC_length (basic_block, bbs); qsort (bb_array, nel, sizeof (basic_block), rpost_cmp); sbitmap_zero (wset); for (i = 0; i < nel; i++) { edge_iterator ei; struct bb_info *bb_info; bitmap bb_live_pavin, bb_live_pavout; bb = bb_array [i]; bb_info = BB_INFO (bb); bb_live_pavin = bb_info->live_pavin; bb_live_pavout = bb_info->live_pavout; FOR_EACH_EDGE (e, ei, bb->preds) { basic_block pred = e->src; if (pred->index != ENTRY_BLOCK) bitmap_ior_into (bb_live_pavin, BB_INFO (pred)->live_pavout); } bitmap_and_into (bb_live_pavin, bb->il.rtl->global_live_at_start); bitmap_ior_and_compl (temp_bitmap, bb_info->avloc, bb_live_pavin, bb_info->killed); bitmap_and_into (temp_bitmap, bb->il.rtl->global_live_at_end); if (! bitmap_equal_p (temp_bitmap, bb_live_pavout)) { bitmap_copy (bb_live_pavout, temp_bitmap); FOR_EACH_EDGE (e, ei, bb->succs) { succ = e->dest; if (succ->index != EXIT_BLOCK && !TEST_BIT (wset, succ->index)) { SET_BIT (wset, succ->index); VEC_quick_push (basic_block, new_bbs, succ); } } } } temp = bbs; bbs = new_bbs; new_bbs = temp; VEC_truncate (basic_block, new_bbs, 0); } sbitmap_free (wset); BITMAP_FREE (temp_bitmap); VEC_free (basic_block, heap, new_bbs); VEC_free (basic_block, heap, bbs); } /* The function modifies partial availability information for two special cases to prevent incorrect work of the subsequent passes with the accurate live information based on the partial availability. */ static void modify_reg_pav (void) { basic_block bb; struct bb_info *bb_info; #ifdef STACK_REGS int i; HARD_REG_SET zero, stack_hard_regs, used; bitmap stack_regs; CLEAR_HARD_REG_SET (zero); CLEAR_HARD_REG_SET (stack_hard_regs); for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) SET_HARD_REG_BIT(stack_hard_regs, i); stack_regs = BITMAP_ALLOC (&greg_obstack); for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) { COPY_HARD_REG_SET (used, reg_class_contents[reg_preferred_class (i)]); IOR_HARD_REG_SET (used, reg_class_contents[reg_alternate_class (i)]); AND_HARD_REG_SET (used, stack_hard_regs); GO_IF_HARD_REG_EQUAL(used, zero, skip); bitmap_set_bit (stack_regs, i); skip: ; } #endif FOR_EACH_BB (bb) { bb_info = BB_INFO (bb); /* Reload can assign the same hard register to uninitialized pseudo-register and early clobbered pseudo-register in an insn if the pseudo-register is used first time in given BB and not lived at the BB start. To prevent this we don't change life information for such pseudo-registers. */ bitmap_ior_into (bb_info->live_pavin, bb_info->earlyclobber); #ifdef STACK_REGS /* We can not use the same stack register for uninitialized pseudo-register and another living pseudo-register because if the uninitialized pseudo-register dies, subsequent pass reg-stack will be confused (it will believe that the other register dies). */ bitmap_ior_into (bb_info->live_pavin, stack_regs); #endif } #ifdef STACK_REGS BITMAP_FREE (stack_regs); #endif } /* The following function makes live information more accurate by modifying global_live_at_start and global_live_at_end of basic blocks. The standard GCC life analysis permits registers to live uninitialized, for example: R is never used ..... Loop: R is defined ... R is used. With normal life_analysis, R would be live before "Loop:". The result is that R causes many interferences that do not serve any purpose. After the function call a register lives at a program point only if it is initialized on a path from CFG entry to the program point. */ static void make_accurate_live_analysis (void) { basic_block bb; struct bb_info *bb_info; max_regno = max_reg_num (); compact_blocks (); allocate_bb_info (); calculate_local_reg_bb_info (); set_up_bb_rts_numbers (); calculate_reg_pav (); modify_reg_pav (); FOR_EACH_BB (bb) { bb_info = BB_INFO (bb); bitmap_and_into (bb->il.rtl->global_live_at_start, bb_info->live_pavin); bitmap_and_into (bb->il.rtl->global_live_at_end, bb_info->live_pavout); } free_bb_info (); } /* Run old register allocator. Return TRUE if we must exit rest_of_compilation upon return. */ static unsigned int rest_of_handle_global_alloc (void) { bool failure; /* If optimizing, allocate remaining pseudo-regs. Do the reload pass fixing up any insns that are invalid. */ if (optimize) failure = global_alloc (); else { build_insn_chain (get_insns ()); failure = reload (get_insns (), 0); } if (dump_enabled_p (pass_global_alloc.static_pass_number)) { timevar_push (TV_DUMP); dump_global_regs (dump_file); timevar_pop (TV_DUMP); } gcc_assert (reload_completed || failure); reload_completed = !failure; return 0; } struct tree_opt_pass pass_global_alloc = { "greg", /* name */ NULL, /* gate */ rest_of_handle_global_alloc, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_GLOBAL_ALLOC, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_ggc_collect, /* todo_flags_finish */ 'g' /* letter */ };
Go to most recent revision | Compare with Previous | Blame | View Log