URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2001.a] - Rev 816
Compare with Previous | Blame | View Log
-- CXG2001.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the floating point attributes Model_Mantissa,
-- Machine_Mantissa, Machine_Radix, and Machine_Rounds
-- are properly reported.
--
-- TEST DESCRIPTION:
-- This test uses a generic package to compute and check the
-- values of the Machine_ attributes listed above. The
-- generic package is instantiated with the standard FLOAT
-- type and a floating point type for the maximum number
-- of digits of precision.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
--
--
-- CHANGE HISTORY:
-- 26 JAN 96 SAIC Initial Release for 2.1
--
--!
-- References:
--
-- "Algorithms To Reveal Properties of Floating-Point Arithmetic"
-- Michael A. Malcolm; CACM November 1972; pgs 949-951.
--
-- Software Manual for Elementary Functions; W. J. Cody and W. Waite;
-- Prentice-Hall; 1980
-----------------------------------------------------------------------
--
-- This test relies upon the fact that
-- (A+2.0)-A is not necessarily 2.0. If A is large enough then adding
-- a small value to A does not change the value of A. Consider the case
-- where we have a decimal based floating point representation with 4
-- digits of precision. A floating point number would logically be
-- represented as "DDDD * 10 ** exp" where D is a value in the range 0..9.
-- The first loop of the test starts A at 2.0 and doubles it until
-- ((A+1.0)-A)-1.0 is no longer zero. For our decimal floating point
-- number this will be 1638 * 10**1 (the value 16384 rounded or truncated
-- to fit in 4 digits).
-- The second loop starts B at 2.0 and keeps doubling B until (A+B)-A is
-- no longer 0. This will keep looping until B is 8.0 because that is
-- the first value where rounding (assuming our machine rounds and addition
-- employs a guard digit) will change the upper 4 digits of the result:
-- 1638_
-- + 8
-- -------
-- 1639_
-- Without rounding the second loop will continue until
-- B is 16:
-- 1638_
-- + 16
-- -------
-- 1639_
--
-- The radix is then determined by (A+B)-A which will give 10.
--
-- The use of Tmp and ITmp in the test is to force values to be
-- stored into memory in the event that register precision is greater
-- than the stored precision of the floating point values.
--
--
-- The test for rounding is (ignoring the temporary variables used to
-- get the stored precision) is
-- Rounds := A + Radix/2.0 - A /= 0.0 ;
-- where A is the value determined in the first step that is the smallest
-- power of 2 such that A + 1.0 = A. This means that the true value of
-- A has one more digit in its value than 'Machine_Mantissa.
-- This check will detect the case where a value is always rounded.
-- There is an additional case where values are rounded to the nearest
-- even value. That is referred to as IEEE style rounding in the test.
--
-----------------------------------------------------------------------
with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
procedure CXG2001 is
Verbose : constant Boolean := False;
-- if one of the attribute computation loops exceeds Max_Iterations
-- it is most likely due to the compiler reordering an expression
-- that should not be reordered.
Illegal_Optimization : exception;
Max_Iterations : constant := 10_000;
generic
type Real is digits <>;
package Chk_Attrs is
procedure Do_Test;
end Chk_Attrs;
package body Chk_Attrs is
package EF is new Ada.Numerics.Generic_Elementary_Functions (Real);
function Log (X : Real) return Real renames EF.Log;
-- names used in paper
Radix : Integer; -- Beta
Mantissa_Digits : Integer; -- t
Rounds : Boolean; -- RND
-- made global to Determine_Attributes to help thwart optimization
A, B : Real := 2.0;
Tmp, Tmpa, Tmp1 : Real;
ITmp : Integer;
Half_Radix : Real;
-- special constants - not declared as constants so that
-- the "stored" precision will be used instead of a "register"
-- precision.
Zero : Real := 0.0;
One : Real := 1.0;
Two : Real := 2.0;
procedure Thwart_Optimization is
-- the purpose of this procedure is to reference the
-- global variables used by Determine_Attributes so
-- that the compiler is not likely to keep them in
-- a higher precision register for their entire lifetime.
begin
if Report.Ident_Bool (False) then
-- never executed
A := A + 5.0;
B := B + 6.0;
Tmp := Tmp + 1.0;
Tmp1 := Tmp1 + 2.0;
Tmpa := Tmpa + 2.0;
One := 12.34; Two := 56.78; Zero := 90.12;
end if;
end Thwart_Optimization;
-- determines values for Radix, Mantissa_Digits, and Rounds
-- This is mostly a straight translation of the C code.
-- The only significant addition is the iteration count
-- to prevent endless looping if things are really screwed up.
procedure Determine_Attributes is
Iterations : Integer;
begin
Rounds := True;
Iterations := 0;
Tmp := Real'Machine (((A + One) - A) - One);
while Tmp = Zero loop
A := Real'Machine(A + A);
Tmp := Real'Machine(A + One);
Tmp1 := Real'Machine(Tmp - A);
Tmp := Real'Machine(Tmp1 - One);
Iterations := Iterations + 1;
if Iterations > Max_Iterations then
raise Illegal_Optimization;
end if;
end loop;
Iterations := 0;
Tmp := Real'Machine(A + B);
ITmp := Integer (Tmp - A);
while ITmp = 0 loop
B := Real'Machine(B + B);
Tmp := Real'Machine(A + B);
ITmp := Integer (Tmp - A);
Iterations := Iterations + 1;
if Iterations > Max_Iterations then
raise Illegal_Optimization;
end if;
end loop;
Radix := ITmp;
Mantissa_Digits := 0;
B := 1.0;
Tmp := Real'Machine(((B + One) - B) - One);
Iterations := 0;
while (Tmp = Zero) loop
Mantissa_Digits := Mantissa_Digits + 1;
B := B * Real (Radix);
Tmp := Real'Machine(B + One);
Tmp1 := Real'Machine(Tmp - B);
Tmp := Real'Machine(Tmp1 - One);
Iterations := Iterations + 1;
if Iterations > Max_Iterations then
raise Illegal_Optimization;
end if;
end loop;
Rounds := False;
Half_Radix := Real (Radix) / Two;
Tmp := Real'Machine(A + Half_Radix);
Tmp1 := Real'Machine(Tmp - A);
if (Tmp1 /= Zero) then
Rounds := True;
end if;
Tmpa := Real'Machine(A + Real (Radix));
Tmp := Real'Machine(Tmpa + Half_Radix);
if not Rounds and (Tmp - TmpA /= Zero) then
Rounds := True;
if Verbose then
Report.Comment ("IEEE style rounding");
end if;
end if;
exception
when others =>
Thwart_Optimization;
raise;
end Determine_Attributes;
procedure Do_Test is
Show_Results : Boolean := Verbose;
Min_Mantissa_Digits : Integer;
begin
-- compute the actual Machine_* attribute values
Determine_Attributes;
if Real'Machine_Radix /= Radix then
Report.Failed ("'Machine_Radix incorrectly reports" &
Integer'Image (Real'Machine_Radix));
Show_Results := True;
end if;
if Real'Machine_Mantissa /= Mantissa_Digits then
Report.Failed ("'Machine_Mantissa incorrectly reports" &
Integer'Image (Real'Machine_Mantissa));
Show_Results := True;
end if;
if Real'Machine_Rounds /= Rounds then
Report.Failed ("'Machine_Rounds incorrectly reports " &
Boolean'Image (Real'Machine_Rounds));
Show_Results := True;
end if;
if Show_Results then
Report.Comment ("computed Machine_Mantissa is" &
Integer'Image (Mantissa_Digits));
Report.Comment ("computed Radix is" &
Integer'Image (Radix));
Report.Comment ("computed Rounds is " &
Boolean'Image (Rounds));
end if;
-- check the model attributes against the machine attributes
-- G.2.2(3)/3;6.0
if Real'Model_Mantissa > Real'Machine_Mantissa then
Report.Failed ("model mantissa > machine mantissa");
end if;
-- G.2.2(3)/2;6.0
-- 'Model_Mantissa >= ceiling(d*log(10)/log(radix))+1
Min_Mantissa_Digits :=
Integer (
Real'Ceiling (
Real(Real'Digits) * Log(10.0) / Log(Real(Real'Machine_Radix))
) ) + 1;
if Real'Model_Mantissa < Min_Mantissa_Digits then
Report.Failed ("Model_Mantissa [" &
Integer'Image (Real'Model_Mantissa) &
"] < minimum mantissa digits [" &
Integer'Image (Min_Mantissa_Digits) &
"]");
end if;
exception
when Illegal_Optimization =>
Report.Failed ("illegal optimization of" &
" floating point expression");
end Do_Test;
end Chk_Attrs;
package Chk_Float is new Chk_Attrs (Float);
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
package Chk_A_Long_Float is new Chk_Attrs (A_Long_Float);
begin
Report.Test ("CXG2001",
"Check the attributes Model_Mantissa," &
" Machine_Mantissa, Machine_Radix," &
" and Machine_Rounds");
Report.Comment ("checking Standard.Float");
Chk_Float.Do_Test;
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
Chk_A_Long_Float.Do_Test;
Report.Result;
end CXG2001;