URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2008.a] - Rev 149
Go to most recent revision | Compare with Previous | Blame | View Log
-- CXG2008.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the complex multiplication and division
-- operations return results that are within the allowed
-- error bound.
-- Check that all the required pure Numerics packages are pure.
--
-- TEST DESCRIPTION:
-- This test contains three test packages that are almost
-- identical. The first two packages differ only in the
-- floating point type that is being tested. The first
-- and third package differ only in whether the generic
-- complex types package or the pre-instantiated
-- package is used.
-- The test package is not generic so that the arguments
-- and expected results for some of the test values
-- can be expressed as universal real instead of being
-- computed at runtime.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 24 FEB 96 SAIC Initial release for 2.1
-- 03 JUN 98 EDS Correct the test program's incorrect assumption
-- that Constraint_Error must be raised by complex
-- division by zero, which is contrary to the
-- allowance given by the Ada 95 standard G.1.1(40).
-- 13 MAR 01 RLB Replaced commented out Pure check on non-generic
-- packages, as required by Defect Report
-- 8652/0020 and as reflected in Technical
-- Corrigendum 1.
--!
------------------------------------------------------------------------------
-- Check that the required pure packages are pure by withing them from a
-- pure package. The non-generic versions of those packages are required to
-- be pure by Defect Report 8652/0020, Technical Corrigendum 1 [A.5.1(9/1) and
-- G.1.1(25/1)].
with Ada.Numerics.Generic_Elementary_Functions;
with Ada.Numerics.Elementary_Functions;
with Ada.Numerics.Generic_Complex_Types;
with Ada.Numerics.Complex_Types;
with Ada.Numerics.Generic_Complex_Elementary_Functions;
with Ada.Numerics.Complex_Elementary_Functions;
package CXG2008_0 is
pragma Pure;
-- CRC Standard Mathematical Tables; 23rd Edition; pg 738
Sqrt2 : constant :=
1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
Sqrt3 : constant :=
1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
end CXG2008_0;
------------------------------------------------------------------------------
with System;
with Report;
with Ada.Numerics.Generic_Complex_Types;
with Ada.Numerics.Complex_Types;
with CXG2008_0; use CXG2008_0;
procedure CXG2008 is
Verbose : constant Boolean := False;
package Float_Check is
subtype Real is Float;
procedure Do_Test;
end Float_Check;
package body Float_Check is
package Complex_Types is new
Ada.Numerics.Generic_Complex_Types (Real);
use Complex_Types;
-- keep track if an accuracy failure has occurred so the test
-- can be short-circuited to avoid thousands of error messages.
Failure_Detected : Boolean := False;
Mult_MBE : constant Real := 5.0;
Divide_MBE : constant Real := 13.0;
procedure Check (Actual, Expected : Complex;
Test_Name : String;
MBE : Real) is
Rel_Error : Real;
Abs_Error : Real;
Max_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon instead
-- of Model_Epsilon and Expected.
Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
Abs_Error := MBE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
if abs (Actual.Re - Expected.Re) > Max_Error then
Failure_Detected := True;
Report.Failed (Test_Name &
" actual.re: " & Real'Image (Actual.Re) &
" expected.re: " & Real'Image (Expected.Re) &
" difference.re " &
Real'Image (Actual.Re - Expected.Re) &
" mre:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result for real part");
else
Report.Comment (Test_Name & " passed for real part");
end if;
end if;
Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
if abs (Actual.Im - Expected.Im) > Max_Error then
Failure_Detected := True;
Report.Failed (Test_Name &
" actual.im: " & Real'Image (Actual.Im) &
" expected.im: " & Real'Image (Expected.Im) &
" difference.im " &
Real'Image (Actual.Im - Expected.Im) &
" mre:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result for imaginary part");
else
Report.Comment (Test_Name & " passed for imaginary part");
end if;
end if;
end Check;
procedure Special_Values is
begin
--- test 1 ---
declare
T : constant := (Real'Machine_EMax - 1) / 2;
Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
Expected : Complex := (0.0, 0.0);
X : Complex := (0.0, 0.0);
Y : Complex := (Big, Big);
Z : Complex;
begin
Z := X * Y;
Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
Mult_MBE);
Z := Y * X;
Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 1");
when others =>
Report.Failed ("exception in test 1");
end;
--- test 2 ---
declare
T : constant := Real'Model_EMin + 1;
Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
U : Complex := (Tiny, Tiny);
X : Complex := (0.0, 0.0);
Expected : Complex := (0.0, 0.0);
Z : Complex;
begin
Z := U * X;
Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 2");
when others =>
Report.Failed ("exception in test 2");
end;
--- test 3 ---
declare
T : constant := (Real'Machine_EMax - 1) / 2;
Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
B : Complex := (Big, Big);
X : Complex := (0.0, 0.0);
Z : Complex;
begin
if Real'Machine_Overflows then
Z := B / X;
Report.Failed ("test 3 - Constraint_Error not raised");
Check (Z, Z, "not executed - optimizer thwarting", 0.0);
end if;
exception
when Constraint_Error => null; -- expected
when others =>
Report.Failed ("exception in test 3");
end;
--- test 4 ---
declare
T : constant := Real'Model_EMin + 1;
Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
U : Complex := (Tiny, Tiny);
X : Complex := (0.0, 0.0);
Z : Complex;
begin
if Real'Machine_Overflows then
Z := U / X;
Report.Failed ("test 4 - Constraint_Error not raised");
Check (Z, Z, "not executed - optimizer thwarting", 0.0);
end if;
exception
when Constraint_Error => null; -- expected
when others =>
Report.Failed ("exception in test 4");
end;
--- test 5 ---
declare
X : Complex := (Sqrt2, Sqrt2);
Z : Complex;
Expected : constant Complex := (0.0, 4.0);
begin
Z := X * X;
Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 5");
when others =>
Report.Failed ("exception in test 5");
end;
--- test 6 ---
declare
X : Complex := Sqrt3 - Sqrt3 * i;
Z : Complex;
Expected : constant Complex := (0.0, -6.0);
begin
Z := X * X;
Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 6");
when others =>
Report.Failed ("exception in test 6");
end;
--- test 7 ---
declare
X : Complex := Sqrt2 + Sqrt2 * i;
Y : Complex := Sqrt2 - Sqrt2 * i;
Z : Complex;
Expected : constant Complex := 0.0 + i;
begin
Z := X / Y;
Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
Divide_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 7");
when others =>
Report.Failed ("exception in test 7");
end;
end Special_Values;
procedure Do_Mult_Div (X, Y : Complex) is
Z : Complex;
Args : constant String :=
"X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
"Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
begin
Z := (X * X) / X;
Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
Z := (X * Y) / X;
Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
Z := (X * Y) / Y;
Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
when others =>
Report.Failed ("exception in Do_Mult_Div for " & Args);
end Do_Mult_Div;
-- select complex values X and Y where the real and imaginary
-- parts are selected from the ranges (1/radix..1) and
-- (1..radix). This translates into quite a few combinations.
procedure Mult_Div_Check is
Samples : constant := 17;
Radix : constant Real := Real(Real'Machine_Radix);
Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
Low_Sample : Real; -- (1/radix .. 1)
High_Sample : Real; -- (1 .. radix)
Sample : array (1..2) of Real;
X, Y : Complex;
begin
for I in 1 .. Samples loop
Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
Inv_Radix;
Sample (1) := Low_Sample;
for J in 1 .. Samples loop
High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
Radix;
Sample (2) := High_Sample;
for K in 1 .. 2 loop
for L in 1 .. 2 loop
X := Complex'(Sample (K), Sample (L));
Y := Complex'(Sample (L), Sample (K));
Do_Mult_Div (X, Y);
if Failure_Detected then
return; -- minimize flood of error messages
end if;
end loop;
end loop;
end loop; -- J
end loop; -- I
end Mult_Div_Check;
procedure Do_Test is
begin
Special_Values;
Mult_Div_Check;
end Do_Test;
end Float_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
-- check the floating point type with the most digits
package A_Long_Float_Check is
type A_Long_Float is digits System.Max_Digits;
subtype Real is A_Long_Float;
procedure Do_Test;
end A_Long_Float_Check;
package body A_Long_Float_Check is
package Complex_Types is new
Ada.Numerics.Generic_Complex_Types (Real);
use Complex_Types;
-- keep track if an accuracy failure has occurred so the test
-- can be short-circuited to avoid thousands of error messages.
Failure_Detected : Boolean := False;
Mult_MBE : constant Real := 5.0;
Divide_MBE : constant Real := 13.0;
procedure Check (Actual, Expected : Complex;
Test_Name : String;
MBE : Real) is
Rel_Error : Real;
Abs_Error : Real;
Max_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon instead
-- of Model_Epsilon and Expected.
Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
Abs_Error := MBE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
if abs (Actual.Re - Expected.Re) > Max_Error then
Failure_Detected := True;
Report.Failed (Test_Name &
" actual.re: " & Real'Image (Actual.Re) &
" expected.re: " & Real'Image (Expected.Re) &
" difference.re " &
Real'Image (Actual.Re - Expected.Re) &
" mre:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result for real part");
else
Report.Comment (Test_Name & " passed for real part");
end if;
end if;
Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
if abs (Actual.Im - Expected.Im) > Max_Error then
Failure_Detected := True;
Report.Failed (Test_Name &
" actual.im: " & Real'Image (Actual.Im) &
" expected.im: " & Real'Image (Expected.Im) &
" difference.im " &
Real'Image (Actual.Im - Expected.Im) &
" mre:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result for imaginary part");
else
Report.Comment (Test_Name & " passed for imaginary part");
end if;
end if;
end Check;
procedure Special_Values is
begin
--- test 1 ---
declare
T : constant := (Real'Machine_EMax - 1) / 2;
Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
Expected : Complex := (0.0, 0.0);
X : Complex := (0.0, 0.0);
Y : Complex := (Big, Big);
Z : Complex;
begin
Z := X * Y;
Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
Mult_MBE);
Z := Y * X;
Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 1");
when others =>
Report.Failed ("exception in test 1");
end;
--- test 2 ---
declare
T : constant := Real'Model_EMin + 1;
Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
U : Complex := (Tiny, Tiny);
X : Complex := (0.0, 0.0);
Expected : Complex := (0.0, 0.0);
Z : Complex;
begin
Z := U * X;
Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 2");
when others =>
Report.Failed ("exception in test 2");
end;
--- test 3 ---
declare
T : constant := (Real'Machine_EMax - 1) / 2;
Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
B : Complex := (Big, Big);
X : Complex := (0.0, 0.0);
Z : Complex;
begin
if Real'Machine_Overflows then
Z := B / X;
Report.Failed ("test 3 - Constraint_Error not raised");
Check (Z, Z, "not executed - optimizer thwarting", 0.0);
end if;
exception
when Constraint_Error => null; -- expected
when others =>
Report.Failed ("exception in test 3");
end;
--- test 4 ---
declare
T : constant := Real'Model_EMin + 1;
Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
U : Complex := (Tiny, Tiny);
X : Complex := (0.0, 0.0);
Z : Complex;
begin
if Real'Machine_Overflows then
Z := U / X;
Report.Failed ("test 4 - Constraint_Error not raised");
Check (Z, Z, "not executed - optimizer thwarting", 0.0);
end if;
exception
when Constraint_Error => null; -- expected
when others =>
Report.Failed ("exception in test 4");
end;
--- test 5 ---
declare
X : Complex := (Sqrt2, Sqrt2);
Z : Complex;
Expected : constant Complex := (0.0, 4.0);
begin
Z := X * X;
Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 5");
when others =>
Report.Failed ("exception in test 5");
end;
--- test 6 ---
declare
X : Complex := Sqrt3 - Sqrt3 * i;
Z : Complex;
Expected : constant Complex := (0.0, -6.0);
begin
Z := X * X;
Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 6");
when others =>
Report.Failed ("exception in test 6");
end;
--- test 7 ---
declare
X : Complex := Sqrt2 + Sqrt2 * i;
Y : Complex := Sqrt2 - Sqrt2 * i;
Z : Complex;
Expected : constant Complex := 0.0 + i;
begin
Z := X / Y;
Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
Divide_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 7");
when others =>
Report.Failed ("exception in test 7");
end;
end Special_Values;
procedure Do_Mult_Div (X, Y : Complex) is
Z : Complex;
Args : constant String :=
"X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
"Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
begin
Z := (X * X) / X;
Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
Z := (X * Y) / X;
Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
Z := (X * Y) / Y;
Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
when others =>
Report.Failed ("exception in Do_Mult_Div for " & Args);
end Do_Mult_Div;
-- select complex values X and Y where the real and imaginary
-- parts are selected from the ranges (1/radix..1) and
-- (1..radix). This translates into quite a few combinations.
procedure Mult_Div_Check is
Samples : constant := 17;
Radix : constant Real := Real(Real'Machine_Radix);
Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
Low_Sample : Real; -- (1/radix .. 1)
High_Sample : Real; -- (1 .. radix)
Sample : array (1..2) of Real;
X, Y : Complex;
begin
for I in 1 .. Samples loop
Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
Inv_Radix;
Sample (1) := Low_Sample;
for J in 1 .. Samples loop
High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
Radix;
Sample (2) := High_Sample;
for K in 1 .. 2 loop
for L in 1 .. 2 loop
X := Complex'(Sample (K), Sample (L));
Y := Complex'(Sample (L), Sample (K));
Do_Mult_Div (X, Y);
if Failure_Detected then
return; -- minimize flood of error messages
end if;
end loop;
end loop;
end loop; -- J
end loop; -- I
end Mult_Div_Check;
procedure Do_Test is
begin
Special_Values;
Mult_Div_Check;
end Do_Test;
end A_Long_Float_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
package Non_Generic_Check is
subtype Real is Float;
procedure Do_Test;
end Non_Generic_Check;
package body Non_Generic_Check is
use Ada.Numerics.Complex_Types;
-- keep track if an accuracy failure has occurred so the test
-- can be short-circuited to avoid thousands of error messages.
Failure_Detected : Boolean := False;
Mult_MBE : constant Real := 5.0;
Divide_MBE : constant Real := 13.0;
procedure Check (Actual, Expected : Complex;
Test_Name : String;
MBE : Real) is
Rel_Error : Real;
Abs_Error : Real;
Max_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon instead
-- of Model_Epsilon and Expected.
Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
Abs_Error := MBE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
if abs (Actual.Re - Expected.Re) > Max_Error then
Failure_Detected := True;
Report.Failed (Test_Name &
" actual.re: " & Real'Image (Actual.Re) &
" expected.re: " & Real'Image (Expected.Re) &
" difference.re " &
Real'Image (Actual.Re - Expected.Re) &
" mre:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result for real part");
else
Report.Comment (Test_Name & " passed for real part");
end if;
end if;
Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
if abs (Actual.Im - Expected.Im) > Max_Error then
Failure_Detected := True;
Report.Failed (Test_Name &
" actual.im: " & Real'Image (Actual.Im) &
" expected.im: " & Real'Image (Expected.Im) &
" difference.im " &
Real'Image (Actual.Im - Expected.Im) &
" mre:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result for imaginary part");
else
Report.Comment (Test_Name & " passed for imaginary part");
end if;
end if;
end Check;
procedure Special_Values is
begin
--- test 1 ---
declare
T : constant := (Real'Machine_EMax - 1) / 2;
Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
Expected : Complex := (0.0, 0.0);
X : Complex := (0.0, 0.0);
Y : Complex := (Big, Big);
Z : Complex;
begin
Z := X * Y;
Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
Mult_MBE);
Z := Y * X;
Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 1");
when others =>
Report.Failed ("exception in test 1");
end;
--- test 2 ---
declare
T : constant := Real'Model_EMin + 1;
Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
U : Complex := (Tiny, Tiny);
X : Complex := (0.0, 0.0);
Expected : Complex := (0.0, 0.0);
Z : Complex;
begin
Z := U * X;
Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 2");
when others =>
Report.Failed ("exception in test 2");
end;
--- test 3 ---
declare
T : constant := (Real'Machine_EMax - 1) / 2;
Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
B : Complex := (Big, Big);
X : Complex := (0.0, 0.0);
Z : Complex;
begin
if Real'Machine_Overflows then
Z := B / X;
Report.Failed ("test 3 - Constraint_Error not raised");
Check (Z, Z, "not executed - optimizer thwarting", 0.0);
end if;
exception
when Constraint_Error => null; -- expected
when others =>
Report.Failed ("exception in test 3");
end;
--- test 4 ---
declare
T : constant := Real'Model_EMin + 1;
Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
U : Complex := (Tiny, Tiny);
X : Complex := (0.0, 0.0);
Z : Complex;
begin
if Real'Machine_Overflows then
Z := U / X;
Report.Failed ("test 4 - Constraint_Error not raised");
Check (Z, Z, "not executed - optimizer thwarting", 0.0);
end if;
exception
when Constraint_Error => null; -- expected
when others =>
Report.Failed ("exception in test 4");
end;
--- test 5 ---
declare
X : Complex := (Sqrt2, Sqrt2);
Z : Complex;
Expected : constant Complex := (0.0, 4.0);
begin
Z := X * X;
Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 5");
when others =>
Report.Failed ("exception in test 5");
end;
--- test 6 ---
declare
X : Complex := Sqrt3 - Sqrt3 * i;
Z : Complex;
Expected : constant Complex := (0.0, -6.0);
begin
Z := X * X;
Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
Mult_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 6");
when others =>
Report.Failed ("exception in test 6");
end;
--- test 7 ---
declare
X : Complex := Sqrt2 + Sqrt2 * i;
Y : Complex := Sqrt2 - Sqrt2 * i;
Z : Complex;
Expected : constant Complex := 0.0 + i;
begin
Z := X / Y;
Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
Divide_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 7");
when others =>
Report.Failed ("exception in test 7");
end;
end Special_Values;
procedure Do_Mult_Div (X, Y : Complex) is
Z : Complex;
Args : constant String :=
"X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
"Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
begin
Z := (X * X) / X;
Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
Z := (X * Y) / X;
Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
Z := (X * Y) / Y;
Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
when others =>
Report.Failed ("exception in Do_Mult_Div for " & Args);
end Do_Mult_Div;
-- select complex values X and Y where the real and imaginary
-- parts are selected from the ranges (1/radix..1) and
-- (1..radix). This translates into quite a few combinations.
procedure Mult_Div_Check is
Samples : constant := 17;
Radix : constant Real := Real(Real'Machine_Radix);
Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
Low_Sample : Real; -- (1/radix .. 1)
High_Sample : Real; -- (1 .. radix)
Sample : array (1..2) of Real;
X, Y : Complex;
begin
for I in 1 .. Samples loop
Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
Inv_Radix;
Sample (1) := Low_Sample;
for J in 1 .. Samples loop
High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
Radix;
Sample (2) := High_Sample;
for K in 1 .. 2 loop
for L in 1 .. 2 loop
X := Complex'(Sample (K), Sample (L));
Y := Complex'(Sample (L), Sample (K));
Do_Mult_Div (X, Y);
if Failure_Detected then
return; -- minimize flood of error messages
end if;
end loop;
end loop;
end loop; -- J
end loop; -- I
end Mult_Div_Check;
procedure Do_Test is
begin
Special_Values;
Mult_Div_Check;
end Do_Test;
end Non_Generic_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
begin
Report.Test ("CXG2008",
"Check the accuracy of the complex multiplication and" &
" division operators");
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
A_Long_Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking non-generic package");
end if;
Non_Generic_Check.Do_Test;
Report.Result;
end CXG2008;
Go to most recent revision | Compare with Previous | Blame | View Log