URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [libgomp/] [testsuite/] [libgomp.fortran/] [jacobi.f] - Rev 825
Go to most recent revision | Compare with Previous | Blame | View Log
* { dg-do run } program main ************************************************************ * program to solve a finite difference * discretization of Helmholtz equation : * (d2/dx2)u + (d2/dy2)u - alpha u = f * using Jacobi iterative method. * * Modified: Sanjiv Shah, Kuck and Associates, Inc. (KAI), 1998 * Author: Joseph Robicheaux, Kuck and Associates, Inc. (KAI), 1998 * * Directives are used in this code to achieve paralleism. * All do loops are parallized with default 'static' scheduling. * * Input : n - grid dimension in x direction * m - grid dimension in y direction * alpha - Helmholtz constant (always greater than 0.0) * tol - error tolerance for iterative solver * relax - Successice over relaxation parameter * mits - Maximum iterations for iterative solver * * On output * : u(n,m) - Dependent variable (solutions) * : f(n,m) - Right hand side function ************************************************************* implicit none integer n,m,mits,mtemp include "omp_lib.h" double precision tol,relax,alpha common /idat/ n,m,mits,mtemp common /fdat/tol,alpha,relax * * Read info * write(*,*) "Input n,m - grid dimension in x,y direction " n = 64 m = 64 * read(5,*) n,m write(*,*) n, m write(*,*) "Input alpha - Helmholts constant " alpha = 0.5 * read(5,*) alpha write(*,*) alpha write(*,*) "Input relax - Successive over-relaxation parameter" relax = 0.9 * read(5,*) relax write(*,*) relax write(*,*) "Input tol - error tolerance for iterative solver" tol = 1.0E-12 * read(5,*) tol write(*,*) tol write(*,*) "Input mits - Maximum iterations for solver" mits = 100 * read(5,*) mits write(*,*) mits call omp_set_num_threads (2) * * Calls a driver routine * call driver () stop end subroutine driver ( ) ************************************************************* * Subroutine driver () * This is where the arrays are allocated and initialzed. * * Working varaibles/arrays * dx - grid spacing in x direction * dy - grid spacing in y direction ************************************************************* implicit none integer n,m,mits,mtemp double precision tol,relax,alpha common /idat/ n,m,mits,mtemp common /fdat/tol,alpha,relax double precision u(n,m),f(n,m),dx,dy * Initialize data call initialize (n,m,alpha,dx,dy,u,f) * Solve Helmholtz equation call jacobi (n,m,dx,dy,alpha,relax,u,f,tol,mits) * Check error between exact solution call error_check (n,m,alpha,dx,dy,u,f) return end subroutine initialize (n,m,alpha,dx,dy,u,f) ****************************************************** * Initializes data * Assumes exact solution is u(x,y) = (1-x^2)*(1-y^2) * ****************************************************** implicit none integer n,m double precision u(n,m),f(n,m),dx,dy,alpha integer i,j, xx,yy double precision PI parameter (PI=3.1415926) dx = 2.0 / (n-1) dy = 2.0 / (m-1) * Initilize initial condition and RHS !$omp parallel do private(xx,yy) do j = 1,m do i = 1,n xx = -1.0 + dx * dble(i-1) ! -1 < x < 1 yy = -1.0 + dy * dble(j-1) ! -1 < y < 1 u(i,j) = 0.0 f(i,j) = -alpha *(1.0-xx*xx)*(1.0-yy*yy) & - 2.0*(1.0-xx*xx)-2.0*(1.0-yy*yy) enddo enddo !$omp end parallel do return end subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxit) ****************************************************************** * Subroutine HelmholtzJ * Solves poisson equation on rectangular grid assuming : * (1) Uniform discretization in each direction, and * (2) Dirichlect boundary conditions * * Jacobi method is used in this routine * * Input : n,m Number of grid points in the X/Y directions * dx,dy Grid spacing in the X/Y directions * alpha Helmholtz eqn. coefficient * omega Relaxation factor * f(n,m) Right hand side function * u(n,m) Dependent variable/Solution * tol Tolerance for iterative solver * maxit Maximum number of iterations * * Output : u(n,m) - Solution ***************************************************************** implicit none integer n,m,maxit double precision dx,dy,f(n,m),u(n,m),alpha, tol,omega * * Local variables * integer i,j,k,k_local double precision error,resid,rsum,ax,ay,b double precision error_local, uold(n,m) real ta,tb,tc,td,te,ta1,ta2,tb1,tb2,tc1,tc2,td1,td2 real te1,te2 real second external second * * Initialize coefficients ax = 1.0/(dx*dx) ! X-direction coef ay = 1.0/(dy*dy) ! Y-direction coef b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha ! Central coeff error = 10.0 * tol k = 1 do while (k.le.maxit .and. error.gt. tol) error = 0.0 * Copy new solution into old !$omp parallel !$omp do do j=1,m do i=1,n uold(i,j) = u(i,j) enddo enddo * Compute stencil, residual, & update !$omp do private(resid) reduction(+:error) do j = 2,m-1 do i = 2,n-1 * Evaluate residual resid = (ax*(uold(i-1,j) + uold(i+1,j)) & + ay*(uold(i,j-1) + uold(i,j+1)) & + b * uold(i,j) - f(i,j))/b * Update solution u(i,j) = uold(i,j) - omega * resid * Accumulate residual error error = error + resid*resid end do enddo !$omp enddo nowait !$omp end parallel * Error check k = k + 1 error = sqrt(error)/dble(n*m) * enddo ! End iteration loop * print *, 'Total Number of Iterations ', k print *, 'Residual ', error return end subroutine error_check (n,m,alpha,dx,dy,u,f) implicit none ************************************************************ * Checks error between numerical and exact solution * ************************************************************ integer n,m double precision u(n,m),f(n,m),dx,dy,alpha integer i,j double precision xx,yy,temp,error dx = 2.0 / (n-1) dy = 2.0 / (m-1) error = 0.0 !$omp parallel do private(xx,yy,temp) reduction(+:error) do j = 1,m do i = 1,n xx = -1.0d0 + dx * dble(i-1) yy = -1.0d0 + dy * dble(j-1) temp = u(i,j) - (1.0-xx*xx)*(1.0-yy*yy) error = error + temp*temp enddo enddo error = sqrt(error)/dble(n*m) print *, 'Solution Error : ',error return end
Go to most recent revision | Compare with Previous | Blame | View Log