URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [gdb/] [utils.c] - Rev 840
Compare with Previous | Blame | View Log
/* General utility routines for GDB, the GNU debugger. Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "gdb_assert.h" #include <ctype.h> #include "gdb_string.h" #include "event-top.h" #include "exceptions.h" #ifdef TUI #include "tui/tui.h" /* For tui_get_command_dimension. */ #endif #ifdef __GO32__ #include <pc.h> #endif /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */ #ifdef reg #undef reg #endif #include <signal.h> #include "gdbcmd.h" #include "serial.h" #include "bfd.h" #include "target.h" #include "demangle.h" #include "expression.h" #include "language.h" #include "charset.h" #include "annotate.h" #include "filenames.h" #include "symfile.h" #include "gdb_obstack.h" #include "gdbcore.h" #include "top.h" #include "inferior.h" /* for signed_pointer_to_address */ #include <sys/param.h> /* For MAXPATHLEN */ #include "gdb_curses.h" #include "readline/readline.h" #if !HAVE_DECL_MALLOC extern PTR malloc (); /* OK: PTR */ #endif #if !HAVE_DECL_REALLOC extern PTR realloc (); /* OK: PTR */ #endif #if !HAVE_DECL_FREE extern void free (); #endif /* readline defines this. */ #undef savestring void (*deprecated_error_begin_hook) (void); /* Prototypes for local functions */ static void vfprintf_maybe_filtered (struct ui_file *, const char *, va_list, int) ATTR_FORMAT (printf, 2, 0); static void fputs_maybe_filtered (const char *, struct ui_file *, int); static void do_my_cleanups (struct cleanup **, struct cleanup *); static void prompt_for_continue (void); static void set_screen_size (void); static void set_width (void); /* Chain of cleanup actions established with make_cleanup, to be executed if an error happens. */ static struct cleanup *cleanup_chain; /* cleaned up after a failed command */ static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */ static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */ /* cleaned up on each error from within an execution command */ static struct cleanup *exec_error_cleanup_chain; /* Pointer to what is left to do for an execution command after the target stops. Used only in asynchronous mode, by targets that support async execution. The finish and until commands use it. So does the target extended-remote command. */ struct continuation *cmd_continuation; struct continuation *intermediate_continuation; /* Nonzero if we have job control. */ int job_control; /* Nonzero means a quit has been requested. */ int quit_flag; /* Nonzero means quit immediately if Control-C is typed now, rather than waiting until QUIT is executed. Be careful in setting this; code which executes with immediate_quit set has to be very careful about being able to deal with being interrupted at any time. It is almost always better to use QUIT; the only exception I can think of is being able to quit out of a system call (using EINTR loses if the SIGINT happens between the previous QUIT and the system call). To immediately quit in the case in which a SIGINT happens between the previous QUIT and setting immediate_quit (desirable anytime we expect to block), call QUIT after setting immediate_quit. */ int immediate_quit; /* Nonzero means that encoded C++/ObjC names should be printed out in their C++/ObjC form rather than raw. */ int demangle = 1; static void show_demangle (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("\ Demangling of encoded C++/ObjC names when displaying symbols is %s.\n"), value); } /* Nonzero means that encoded C++/ObjC names should be printed out in their C++/ObjC form even in assembler language displays. If this is set, but DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */ int asm_demangle = 0; static void show_asm_demangle (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("\ Demangling of C++/ObjC names in disassembly listings is %s.\n"), value); } /* Nonzero means that strings with character values >0x7F should be printed as octal escapes. Zero means just print the value (e.g. it's an international character, and the terminal or window can cope.) */ int sevenbit_strings = 0; static void show_sevenbit_strings (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("\ Printing of 8-bit characters in strings as \\nnn is %s.\n"), value); } /* String to be printed before error messages, if any. */ char *error_pre_print; /* String to be printed before quit messages, if any. */ char *quit_pre_print; /* String to be printed before warning messages, if any. */ char *warning_pre_print = "\nwarning: "; int pagination_enabled = 1; static void show_pagination_enabled (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("State of pagination is %s.\n"), value); } /* Add a new cleanup to the cleanup_chain, and return the previous chain pointer to be passed later to do_cleanups or discard_cleanups. Args are FUNCTION to clean up with, and ARG to pass to it. */ struct cleanup * make_cleanup (make_cleanup_ftype *function, void *arg) { return make_my_cleanup (&cleanup_chain, function, arg); } struct cleanup * make_final_cleanup (make_cleanup_ftype *function, void *arg) { return make_my_cleanup (&final_cleanup_chain, function, arg); } struct cleanup * make_exec_cleanup (make_cleanup_ftype *function, void *arg) { return make_my_cleanup (&exec_cleanup_chain, function, arg); } struct cleanup * make_exec_error_cleanup (make_cleanup_ftype *function, void *arg) { return make_my_cleanup (&exec_error_cleanup_chain, function, arg); } static void do_freeargv (void *arg) { freeargv ((char **) arg); } struct cleanup * make_cleanup_freeargv (char **arg) { return make_my_cleanup (&cleanup_chain, do_freeargv, arg); } static void do_bfd_close_cleanup (void *arg) { bfd_close (arg); } struct cleanup * make_cleanup_bfd_close (bfd *abfd) { return make_cleanup (do_bfd_close_cleanup, abfd); } static void do_close_cleanup (void *arg) { int *fd = arg; close (*fd); xfree (fd); } struct cleanup * make_cleanup_close (int fd) { int *saved_fd = xmalloc (sizeof (fd)); *saved_fd = fd; return make_cleanup (do_close_cleanup, saved_fd); } static void do_ui_file_delete (void *arg) { ui_file_delete (arg); } struct cleanup * make_cleanup_ui_file_delete (struct ui_file *arg) { return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg); } static void do_free_section_addr_info (void *arg) { free_section_addr_info (arg); } struct cleanup * make_cleanup_free_section_addr_info (struct section_addr_info *addrs) { return make_my_cleanup (&cleanup_chain, do_free_section_addr_info, addrs); } struct cleanup * make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function, void *arg) { struct cleanup *new = (struct cleanup *) xmalloc (sizeof (struct cleanup)); struct cleanup *old_chain = *pmy_chain; new->next = *pmy_chain; new->function = function; new->arg = arg; *pmy_chain = new; return old_chain; } /* Discard cleanups and do the actions they describe until we get back to the point OLD_CHAIN in the cleanup_chain. */ void do_cleanups (struct cleanup *old_chain) { do_my_cleanups (&cleanup_chain, old_chain); } void do_final_cleanups (struct cleanup *old_chain) { do_my_cleanups (&final_cleanup_chain, old_chain); } void do_exec_cleanups (struct cleanup *old_chain) { do_my_cleanups (&exec_cleanup_chain, old_chain); } void do_exec_error_cleanups (struct cleanup *old_chain) { do_my_cleanups (&exec_error_cleanup_chain, old_chain); } static void do_my_cleanups (struct cleanup **pmy_chain, struct cleanup *old_chain) { struct cleanup *ptr; while ((ptr = *pmy_chain) != old_chain) { *pmy_chain = ptr->next; /* Do this first incase recursion */ (*ptr->function) (ptr->arg); xfree (ptr); } } /* Discard cleanups, not doing the actions they describe, until we get back to the point OLD_CHAIN in the cleanup_chain. */ void discard_cleanups (struct cleanup *old_chain) { discard_my_cleanups (&cleanup_chain, old_chain); } void discard_final_cleanups (struct cleanup *old_chain) { discard_my_cleanups (&final_cleanup_chain, old_chain); } void discard_exec_error_cleanups (struct cleanup *old_chain) { discard_my_cleanups (&exec_error_cleanup_chain, old_chain); } void discard_my_cleanups (struct cleanup **pmy_chain, struct cleanup *old_chain) { struct cleanup *ptr; while ((ptr = *pmy_chain) != old_chain) { *pmy_chain = ptr->next; xfree (ptr); } } /* Set the cleanup_chain to 0, and return the old cleanup chain. */ struct cleanup * save_cleanups (void) { return save_my_cleanups (&cleanup_chain); } struct cleanup * save_final_cleanups (void) { return save_my_cleanups (&final_cleanup_chain); } struct cleanup * save_my_cleanups (struct cleanup **pmy_chain) { struct cleanup *old_chain = *pmy_chain; *pmy_chain = 0; return old_chain; } /* Restore the cleanup chain from a previously saved chain. */ void restore_cleanups (struct cleanup *chain) { restore_my_cleanups (&cleanup_chain, chain); } void restore_final_cleanups (struct cleanup *chain) { restore_my_cleanups (&final_cleanup_chain, chain); } void restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain) { *pmy_chain = chain; } /* This function is useful for cleanups. Do foo = xmalloc (...); old_chain = make_cleanup (free_current_contents, &foo); to arrange to free the object thus allocated. */ void free_current_contents (void *ptr) { void **location = ptr; if (location == NULL) internal_error (__FILE__, __LINE__, _("free_current_contents: NULL pointer")); if (*location != NULL) { xfree (*location); *location = NULL; } } /* Provide a known function that does nothing, to use as a base for for a possibly long chain of cleanups. This is useful where we use the cleanup chain for handling normal cleanups as well as dealing with cleanups that need to be done as a result of a call to error(). In such cases, we may not be certain where the first cleanup is, unless we have a do-nothing one to always use as the base. */ void null_cleanup (void *arg) { } /* Add a continuation to the continuation list, the global list cmd_continuation. The new continuation will be added at the front.*/ void add_continuation (void (*continuation_hook) (struct continuation_arg *), struct continuation_arg *arg_list) { struct continuation *continuation_ptr; continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation)); continuation_ptr->continuation_hook = continuation_hook; continuation_ptr->arg_list = arg_list; continuation_ptr->next = cmd_continuation; cmd_continuation = continuation_ptr; } /* Walk down the cmd_continuation list, and execute all the continuations. There is a problem though. In some cases new continuations may be added while we are in the middle of this loop. If this happens they will be added in the front, and done before we have a chance of exhausting those that were already there. We need to then save the beginning of the list in a pointer and do the continuations from there on, instead of using the global beginning of list as our iteration pointer. */ void do_all_continuations (void) { struct continuation *continuation_ptr; struct continuation *saved_continuation; /* Copy the list header into another pointer, and set the global list header to null, so that the global list can change as a side effect of invoking the continuations and the processing of the preexisting continuations will not be affected. */ continuation_ptr = cmd_continuation; cmd_continuation = NULL; /* Work now on the list we have set aside. */ while (continuation_ptr) { (continuation_ptr->continuation_hook) (continuation_ptr->arg_list); saved_continuation = continuation_ptr; continuation_ptr = continuation_ptr->next; xfree (saved_continuation); } } /* Walk down the cmd_continuation list, and get rid of all the continuations. */ void discard_all_continuations (void) { struct continuation *continuation_ptr; while (cmd_continuation) { continuation_ptr = cmd_continuation; cmd_continuation = continuation_ptr->next; xfree (continuation_ptr); } } /* Add a continuation to the continuation list, the global list intermediate_continuation. The new continuation will be added at the front. */ void add_intermediate_continuation (void (*continuation_hook) (struct continuation_arg *), struct continuation_arg *arg_list) { struct continuation *continuation_ptr; continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation)); continuation_ptr->continuation_hook = continuation_hook; continuation_ptr->arg_list = arg_list; continuation_ptr->next = intermediate_continuation; intermediate_continuation = continuation_ptr; } /* Walk down the cmd_continuation list, and execute all the continuations. There is a problem though. In some cases new continuations may be added while we are in the middle of this loop. If this happens they will be added in the front, and done before we have a chance of exhausting those that were already there. We need to then save the beginning of the list in a pointer and do the continuations from there on, instead of using the global beginning of list as our iteration pointer.*/ void do_all_intermediate_continuations (void) { struct continuation *continuation_ptr; struct continuation *saved_continuation; /* Copy the list header into another pointer, and set the global list header to null, so that the global list can change as a side effect of invoking the continuations and the processing of the preexisting continuations will not be affected. */ continuation_ptr = intermediate_continuation; intermediate_continuation = NULL; /* Work now on the list we have set aside. */ while (continuation_ptr) { (continuation_ptr->continuation_hook) (continuation_ptr->arg_list); saved_continuation = continuation_ptr; continuation_ptr = continuation_ptr->next; xfree (saved_continuation); } } /* Walk down the cmd_continuation list, and get rid of all the continuations. */ void discard_all_intermediate_continuations (void) { struct continuation *continuation_ptr; while (intermediate_continuation) { continuation_ptr = intermediate_continuation; intermediate_continuation = continuation_ptr->next; xfree (continuation_ptr); } } /* Print a warning message. The first argument STRING is the warning message, used as an fprintf format string, the second is the va_list of arguments for that string. A warning is unfiltered (not paginated) so that the user does not need to page through each screen full of warnings when there are lots of them. */ void vwarning (const char *string, va_list args) { if (deprecated_warning_hook) (*deprecated_warning_hook) (string, args); else { target_terminal_ours (); wrap_here (""); /* Force out any buffered output */ gdb_flush (gdb_stdout); if (warning_pre_print) fputs_unfiltered (warning_pre_print, gdb_stderr); vfprintf_unfiltered (gdb_stderr, string, args); fprintf_unfiltered (gdb_stderr, "\n"); va_end (args); } } /* Print a warning message. The first argument STRING is the warning message, used as a fprintf string, and the remaining args are passed as arguments to it. The primary difference between warnings and errors is that a warning does not force the return to command level. */ void warning (const char *string, ...) { va_list args; va_start (args, string); vwarning (string, args); va_end (args); } /* Print an error message and return to command level. The first argument STRING is the error message, used as a fprintf string, and the remaining args are passed as arguments to it. */ NORETURN void verror (const char *string, va_list args) { throw_verror (GENERIC_ERROR, string, args); } NORETURN void error (const char *string, ...) { va_list args; va_start (args, string); throw_verror (GENERIC_ERROR, string, args); va_end (args); } /* Print an error message and quit. The first argument STRING is the error message, used as a fprintf string, and the remaining args are passed as arguments to it. */ NORETURN void vfatal (const char *string, va_list args) { throw_vfatal (string, args); } NORETURN void fatal (const char *string, ...) { va_list args; va_start (args, string); throw_vfatal (string, args); va_end (args); } NORETURN void error_stream (struct ui_file *stream) { long len; char *message = ui_file_xstrdup (stream, &len); make_cleanup (xfree, message); error (("%s"), message); } /* Print a message reporting an internal error/warning. Ask the user if they want to continue, dump core, or just exit. Return something to indicate a quit. */ struct internal_problem { const char *name; /* FIXME: cagney/2002-08-15: There should be ``maint set/show'' commands available for controlling these variables. */ enum auto_boolean should_quit; enum auto_boolean should_dump_core; }; /* Report a problem, internal to GDB, to the user. Once the problem has been reported, and assuming GDB didn't quit, the caller can either allow execution to resume or throw an error. */ /* JPB: Some picky Ubuntu GCC compilers don't like the result of write being ignored (even if you cast it to void). So capture the value and ignore THAT. */ static void ATTR_FORMAT (printf, 4, 0) internal_vproblem (struct internal_problem *problem, const char *file, int line, const char *fmt, va_list ap) { int res; /* For write result */ static int dejavu; int quit_p; int dump_core_p; char *reason; /* Don't allow infinite error/warning recursion. */ { static char msg[] = "Recursive internal problem.\n"; switch (dejavu) { case 0: dejavu = 1; break; case 1: dejavu = 2; fputs_unfiltered (msg, gdb_stderr); abort (); /* NOTE: GDB has only three calls to abort(). */ default: dejavu = 3; res = write (STDERR_FILENO, msg, sizeof (msg)); exit (1); } } /* Try to get the message out and at the start of a new line. */ target_terminal_ours (); begin_line (); /* Create a string containing the full error/warning message. Need to call query with this full string, as otherwize the reason (error/warning) and question become separated. Format using a style similar to a compiler error message. Include extra detail so that the user knows that they are living on the edge. */ { char *msg; msg = xstrvprintf (fmt, ap); reason = xstrprintf ("\ %s:%d: %s: %s\n\ A problem internal to GDB has been detected,\n\ further debugging may prove unreliable.", file, line, problem->name, msg); xfree (msg); make_cleanup (xfree, reason); } switch (problem->should_quit) { case AUTO_BOOLEAN_AUTO: /* Default (yes/batch case) is to quit GDB. When in batch mode this lessens the likelhood of GDB going into an infinate loop. */ quit_p = query (_("%s\nQuit this debugging session? "), reason); break; case AUTO_BOOLEAN_TRUE: quit_p = 1; break; case AUTO_BOOLEAN_FALSE: quit_p = 0; break; default: internal_error (__FILE__, __LINE__, _("bad switch")); } switch (problem->should_dump_core) { case AUTO_BOOLEAN_AUTO: /* Default (yes/batch case) is to dump core. This leaves a GDB `dropping' so that it is easier to see that something went wrong in GDB. */ dump_core_p = query (_("%s\nCreate a core file of GDB? "), reason); break; break; case AUTO_BOOLEAN_TRUE: dump_core_p = 1; break; case AUTO_BOOLEAN_FALSE: dump_core_p = 0; break; default: internal_error (__FILE__, __LINE__, _("bad switch")); } if (quit_p) { if (dump_core_p) abort (); /* NOTE: GDB has only three calls to abort(). */ else exit (1); } else { if (dump_core_p) { #ifdef HAVE_WORKING_FORK if (fork () == 0) abort (); /* NOTE: GDB has only three calls to abort(). */ #endif } } dejavu = 0; } static struct internal_problem internal_error_problem = { "internal-error", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO }; NORETURN void internal_verror (const char *file, int line, const char *fmt, va_list ap) { internal_vproblem (&internal_error_problem, file, line, fmt, ap); deprecated_throw_reason (RETURN_ERROR); } NORETURN void internal_error (const char *file, int line, const char *string, ...) { va_list ap; va_start (ap, string); internal_verror (file, line, string, ap); va_end (ap); } static struct internal_problem internal_warning_problem = { "internal-warning", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO }; void internal_vwarning (const char *file, int line, const char *fmt, va_list ap) { internal_vproblem (&internal_warning_problem, file, line, fmt, ap); } void internal_warning (const char *file, int line, const char *string, ...) { va_list ap; va_start (ap, string); internal_vwarning (file, line, string, ap); va_end (ap); } /* Print the system error message for errno, and also mention STRING as the file name for which the error was encountered. Then return to command level. */ NORETURN void perror_with_name (const char *string) { char *err; char *combined; err = safe_strerror (errno); combined = (char *) alloca (strlen (err) + strlen (string) + 3); strcpy (combined, string); strcat (combined, ": "); strcat (combined, err); /* I understand setting these is a matter of taste. Still, some people may clear errno but not know about bfd_error. Doing this here is not unreasonable. */ bfd_set_error (bfd_error_no_error); errno = 0; error (_("%s."), combined); } /* Print the system error message for ERRCODE, and also mention STRING as the file name for which the error was encountered. */ void print_sys_errmsg (const char *string, int errcode) { char *err; char *combined; err = safe_strerror (errcode); combined = (char *) alloca (strlen (err) + strlen (string) + 3); strcpy (combined, string); strcat (combined, ": "); strcat (combined, err); /* We want anything which was printed on stdout to come out first, before this message. */ gdb_flush (gdb_stdout); fprintf_unfiltered (gdb_stderr, "%s.\n", combined); } /* Control C eventually causes this to be called, at a convenient time. */ void quit (void) { #ifdef __MSDOS__ /* No steenking SIGINT will ever be coming our way when the program is resumed. Don't lie. */ fatal ("Quit"); #else if (job_control /* If there is no terminal switching for this target, then we can't possibly get screwed by the lack of job control. */ || current_target.to_terminal_ours == NULL) fatal ("Quit"); else fatal ("Quit (expect signal SIGINT when the program is resumed)"); #endif } /* Called when a memory allocation fails, with the number of bytes of memory requested in SIZE. */ NORETURN void nomem (long size) { if (size > 0) { internal_error (__FILE__, __LINE__, _("virtual memory exhausted: can't allocate %ld bytes."), size); } else { internal_error (__FILE__, __LINE__, _("virtual memory exhausted.")); } } /* The xmalloc() (libiberty.h) family of memory management routines. These are like the ISO-C malloc() family except that they implement consistent semantics and guard against typical memory management problems. */ /* NOTE: These are declared using PTR to ensure consistency with "libiberty.h". xfree() is GDB local. */ PTR /* OK: PTR */ xmalloc (size_t size) { void *val; /* See libiberty/xmalloc.c. This function need's to match that's semantics. It never returns NULL. */ if (size == 0) size = 1; val = malloc (size); /* OK: malloc */ if (val == NULL) nomem (size); return (val); } void * xzalloc (size_t size) { return xcalloc (1, size); } PTR /* OK: PTR */ xrealloc (PTR ptr, size_t size) /* OK: PTR */ { void *val; /* See libiberty/xmalloc.c. This function need's to match that's semantics. It never returns NULL. */ if (size == 0) size = 1; if (ptr != NULL) val = realloc (ptr, size); /* OK: realloc */ else val = malloc (size); /* OK: malloc */ if (val == NULL) nomem (size); return (val); } PTR /* OK: PTR */ xcalloc (size_t number, size_t size) { void *mem; /* See libiberty/xmalloc.c. This function need's to match that's semantics. It never returns NULL. */ if (number == 0 || size == 0) { number = 1; size = 1; } mem = calloc (number, size); /* OK: xcalloc */ if (mem == NULL) nomem (number * size); return mem; } void xfree (void *ptr) { if (ptr != NULL) free (ptr); /* OK: free */ } /* Like asprintf/vasprintf but get an internal_error if the call fails. */ char * xstrprintf (const char *format, ...) { char *ret; va_list args; va_start (args, format); ret = xstrvprintf (format, args); va_end (args); return ret; } void xasprintf (char **ret, const char *format, ...) { va_list args; va_start (args, format); (*ret) = xstrvprintf (format, args); va_end (args); } void xvasprintf (char **ret, const char *format, va_list ap) { (*ret) = xstrvprintf (format, ap); } char * xstrvprintf (const char *format, va_list ap) { char *ret = NULL; int status = vasprintf (&ret, format, ap); /* NULL is returned when there was a memory allocation problem, or any other error (for instance, a bad format string). A negative status (the printed length) with a non-NULL buffer should never happen, but just to be sure. */ if (ret == NULL || status < 0) internal_error (__FILE__, __LINE__, _("vasprintf call failed")); return ret; } int xsnprintf (char *str, size_t size, const char *format, ...) { va_list args; int ret; va_start (args, format); ret = vsnprintf (str, size, format, args); gdb_assert (ret < size); va_end (args); return ret; } /* My replacement for the read system call. Used like `read' but keeps going if `read' returns too soon. */ int myread (int desc, char *addr, int len) { int val; int orglen = len; while (len > 0) { val = read (desc, addr, len); if (val < 0) return val; if (val == 0) return orglen - len; len -= val; addr += val; } return orglen; } /* Make a copy of the string at PTR with SIZE characters (and add a null character at the end in the copy). Uses malloc to get the space. Returns the address of the copy. */ char * savestring (const char *ptr, size_t size) { char *p = (char *) xmalloc (size + 1); memcpy (p, ptr, size); p[size] = 0; return p; } void print_spaces (int n, struct ui_file *file) { fputs_unfiltered (n_spaces (n), file); } /* Print a host address. */ void gdb_print_host_address (const void *addr, struct ui_file *stream) { /* We could use the %p conversion specifier to fprintf if we had any way of knowing whether this host supports it. But the following should work on the Alpha and on 32 bit machines. */ fprintf_filtered (stream, "0x%lx", (unsigned long) addr); } /* This function supports the query, nquery, and yquery functions. Ask user a y-or-n question and return 0 if answer is no, 1 if answer is yes, or default the answer to the specified default (for yquery or nquery). DEFCHAR may be 'y' or 'n' to provide a default answer, or '\0' for no default. CTLSTR is the control string and should end in "? ". It should not say how to answer, because we do that. ARGS are the arguments passed along with the CTLSTR argument to printf. */ static int ATTR_FORMAT (printf, 1, 0) defaulted_query (const char *ctlstr, const char defchar, va_list args) { int answer; int ans2; int retval; int def_value; char def_answer, not_def_answer; char *y_string, *n_string, *question; /* Set up according to which answer is the default. */ if (defchar == '\0') { def_value = 1; def_answer = 'Y'; not_def_answer = 'N'; y_string = "y"; n_string = "n"; } else if (defchar == 'y') { def_value = 1; def_answer = 'Y'; not_def_answer = 'N'; y_string = "[y]"; n_string = "n"; } else { def_value = 0; def_answer = 'N'; not_def_answer = 'Y'; y_string = "y"; n_string = "[n]"; } /* Automatically answer the default value if the user did not want prompts. */ if (! caution) return def_value; /* If input isn't coming from the user directly, just say what question we're asking, and then answer "yes" automatically. This way, important error messages don't get lost when talking to GDB over a pipe. */ if (! input_from_terminal_p ()) { wrap_here (""); vfprintf_filtered (gdb_stdout, ctlstr, args); printf_filtered (_("(%s or %s) [answered %c; input not from terminal]\n"), y_string, n_string, def_answer); gdb_flush (gdb_stdout); return def_value; } /* Automatically answer the default value if input is not from the user directly, or if the user did not want prompts. */ if (!input_from_terminal_p () || !caution) return def_value; if (deprecated_query_hook) { return deprecated_query_hook (ctlstr, args); } /* Format the question outside of the loop, to avoid reusing args. */ question = xstrvprintf (ctlstr, args); while (1) { wrap_here (""); /* Flush any buffered output */ gdb_flush (gdb_stdout); if (annotation_level > 1) printf_filtered (("\n\032\032pre-query\n")); fputs_filtered (question, gdb_stdout); printf_filtered (_("(%s or %s) "), y_string, n_string); if (annotation_level > 1) printf_filtered (("\n\032\032query\n")); wrap_here (""); gdb_flush (gdb_stdout); answer = fgetc (stdin); clearerr (stdin); /* in case of C-d */ if (answer == EOF) /* C-d */ { printf_filtered ("EOF [assumed %c]\n", def_answer); retval = def_value; break; } /* Eat rest of input line, to EOF or newline */ if (answer != '\n') do { ans2 = fgetc (stdin); clearerr (stdin); } while (ans2 != EOF && ans2 != '\n' && ans2 != '\r'); if (answer >= 'a') answer -= 040; /* Check answer. For the non-default, the user must specify the non-default explicitly. */ if (answer == not_def_answer) { retval = !def_value; break; } /* Otherwise, if a default was specified, the user may either specify the required input or have it default by entering nothing. */ if (answer == def_answer || (defchar != '\0' && (answer == '\n' || answer == '\r' || answer == EOF))) { retval = def_value; break; } /* Invalid entries are not defaulted and require another selection. */ printf_filtered (_("Please answer %s or %s.\n"), y_string, n_string); } xfree (question); if (annotation_level > 1) printf_filtered (("\n\032\032post-query\n")); return retval; } /* Ask user a y-or-n question and return 0 if answer is no, 1 if answer is yes, or 0 if answer is defaulted. Takes three args which are given to printf to print the question. The first, a control string, should end in "? ". It should not say how to answer, because we do that. */ int nquery (const char *ctlstr, ...) { va_list args; va_start (args, ctlstr); return defaulted_query (ctlstr, 'n', args); va_end (args); } /* Ask user a y-or-n question and return 0 if answer is no, 1 if answer is yes, or 1 if answer is defaulted. Takes three args which are given to printf to print the question. The first, a control string, should end in "? ". It should not say how to answer, because we do that. */ int yquery (const char *ctlstr, ...) { va_list args; va_start (args, ctlstr); return defaulted_query (ctlstr, 'y', args); va_end (args); } /* Ask user a y-or-n question and return 1 iff answer is yes. Takes three args which are given to printf to print the question. The first, a control string, should end in "? ". It should not say how to answer, because we do that. */ int query (const char *ctlstr, ...) { va_list args; va_start (args, ctlstr); return defaulted_query (ctlstr, '\0', args); va_end (args); } /* Print an error message saying that we couldn't make sense of a \^mumble sequence in a string or character constant. START and END indicate a substring of some larger string that contains the erroneous backslash sequence, missing the initial backslash. */ static NORETURN int no_control_char_error (const char *start, const char *end) { int len = end - start; char *copy = alloca (end - start + 1); memcpy (copy, start, len); copy[len] = '\0'; error (_("There is no control character `\\%s' in the `%s' character set."), copy, target_charset ()); } /* Parse a C escape sequence. STRING_PTR points to a variable containing a pointer to the string to parse. That pointer should point to the character after the \. That pointer is updated past the characters we use. The value of the escape sequence is returned. A negative value means the sequence \ newline was seen, which is supposed to be equivalent to nothing at all. If \ is followed by a null character, we return a negative value and leave the string pointer pointing at the null character. If \ is followed by 000, we return 0 and leave the string pointer after the zeros. A value of 0 does not mean end of string. */ int parse_escape (char **string_ptr) { int target_char; int c = *(*string_ptr)++; if (c_parse_backslash (c, &target_char)) return target_char; else switch (c) { case '\n': return -2; case 0: (*string_ptr)--; return 0; case '^': { /* Remember where this escape sequence started, for reporting errors. */ char *sequence_start_pos = *string_ptr - 1; c = *(*string_ptr)++; if (c == '?') { /* XXXCHARSET: What is `delete' in the host character set? */ c = 0177; if (!host_char_to_target (c, &target_char)) error (_("There is no character corresponding to `Delete' " "in the target character set `%s'."), host_charset ()); return target_char; } else if (c == '\\') target_char = parse_escape (string_ptr); else { if (!host_char_to_target (c, &target_char)) no_control_char_error (sequence_start_pos, *string_ptr); } /* Now target_char is something like `c', and we want to find its control-character equivalent. */ if (!target_char_to_control_char (target_char, &target_char)) no_control_char_error (sequence_start_pos, *string_ptr); return target_char; } /* XXXCHARSET: we need to use isdigit and value-of-digit methods of the host character set here. */ case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { int i = c - '0'; int count = 0; while (++count < 3) { c = (**string_ptr); if (c >= '0' && c <= '7') { (*string_ptr)++; i *= 8; i += c - '0'; } else { break; } } return i; } default: if (!host_char_to_target (c, &target_char)) error ("The escape sequence `\%c' is equivalent to plain `%c', which" " has no equivalent\n" "in the `%s' character set.", c, c, target_charset ()); return target_char; } } /* Print the character C on STREAM as part of the contents of a literal string whose delimiter is QUOTER. Note that this routine should only be call for printing things which are independent of the language of the program being debugged. */ static void printchar (int c, void (*do_fputs) (const char *, struct ui_file *), void (*do_fprintf) (struct ui_file *, const char *, ...) ATTRIBUTE_FPTR_PRINTF_2, struct ui_file *stream, int quoter) { c &= 0xFF; /* Avoid sign bit follies */ if (c < 0x20 || /* Low control chars */ (c >= 0x7F && c < 0xA0) || /* DEL, High controls */ (sevenbit_strings && c >= 0x80)) { /* high order bit set */ switch (c) { case '\n': do_fputs ("\\n", stream); break; case '\b': do_fputs ("\\b", stream); break; case '\t': do_fputs ("\\t", stream); break; case '\f': do_fputs ("\\f", stream); break; case '\r': do_fputs ("\\r", stream); break; case '\033': do_fputs ("\\e", stream); break; case '\007': do_fputs ("\\a", stream); break; default: do_fprintf (stream, "\\%.3o", (unsigned int) c); break; } } else { if (c == '\\' || c == quoter) do_fputs ("\\", stream); do_fprintf (stream, "%c", c); } } /* Print the character C on STREAM as part of the contents of a literal string whose delimiter is QUOTER. Note that these routines should only be call for printing things which are independent of the language of the program being debugged. */ void fputstr_filtered (const char *str, int quoter, struct ui_file *stream) { while (*str) printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter); } void fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream) { while (*str) printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter); } void fputstrn_filtered (const char *str, int n, int quoter, struct ui_file *stream) { int i; for (i = 0; i < n; i++) printchar (str[i], fputs_filtered, fprintf_filtered, stream, quoter); } void fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream) { int i; for (i = 0; i < n; i++) printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter); } /* Number of lines per page or UINT_MAX if paging is disabled. */ static unsigned int lines_per_page; static void show_lines_per_page (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("\ Number of lines gdb thinks are in a page is %s.\n"), value); } /* Number of chars per line or UINT_MAX if line folding is disabled. */ static unsigned int chars_per_line; static void show_chars_per_line (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("\ Number of characters gdb thinks are in a line is %s.\n"), value); } /* Current count of lines printed on this page, chars on this line. */ static unsigned int lines_printed, chars_printed; /* Buffer and start column of buffered text, for doing smarter word- wrapping. When someone calls wrap_here(), we start buffering output that comes through fputs_filtered(). If we see a newline, we just spit it out and forget about the wrap_here(). If we see another wrap_here(), we spit it out and remember the newer one. If we see the end of the line, we spit out a newline, the indent, and then the buffered output. */ /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which are waiting to be output (they have already been counted in chars_printed). When wrap_buffer[0] is null, the buffer is empty. */ static char *wrap_buffer; /* Pointer in wrap_buffer to the next character to fill. */ static char *wrap_pointer; /* String to indent by if the wrap occurs. Must not be NULL if wrap_column is non-zero. */ static char *wrap_indent; /* Column number on the screen where wrap_buffer begins, or 0 if wrapping is not in effect. */ static int wrap_column; /* Inialize the number of lines per page and chars per line. */ void init_page_info (void) { #if defined(TUI) if (!tui_get_command_dimension (&chars_per_line, &lines_per_page)) #endif { int rows, cols; #if defined(__GO32__) rows = ScreenRows (); cols = ScreenCols (); lines_per_page = rows; chars_per_line = cols; #else /* Make sure Readline has initialized its terminal settings. */ rl_reset_terminal (NULL); /* Get the screen size from Readline. */ rl_get_screen_size (&rows, &cols); lines_per_page = rows; chars_per_line = cols; /* Readline should have fetched the termcap entry for us. */ if (tgetnum ("li") < 0 || getenv ("EMACS")) { /* The number of lines per page is not mentioned in the terminal description. This probably means that paging is not useful (e.g. emacs shell window), so disable paging. */ lines_per_page = UINT_MAX; } /* FIXME: Get rid of this junk. */ #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER) SIGWINCH_HANDLER (SIGWINCH); #endif /* If the output is not a terminal, don't paginate it. */ if (!ui_file_isatty (gdb_stdout)) lines_per_page = UINT_MAX; #endif } set_screen_size (); set_width (); } /* Set the screen size based on LINES_PER_PAGE and CHARS_PER_LINE. */ static void set_screen_size (void) { int rows = lines_per_page; int cols = chars_per_line; if (rows <= 0) rows = INT_MAX; if (cols <= 0) cols = INT_MAX; /* Update Readline's idea of the terminal size. */ rl_set_screen_size (rows, cols); } /* Reinitialize WRAP_BUFFER according to the current value of CHARS_PER_LINE. */ static void set_width (void) { if (chars_per_line == 0) init_page_info (); if (!wrap_buffer) { wrap_buffer = (char *) xmalloc (chars_per_line + 2); wrap_buffer[0] = '\0'; } else wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2); wrap_pointer = wrap_buffer; /* Start it at the beginning. */ } static void set_width_command (char *args, int from_tty, struct cmd_list_element *c) { set_screen_size (); set_width (); } static void set_height_command (char *args, int from_tty, struct cmd_list_element *c) { set_screen_size (); } /* Wait, so the user can read what's on the screen. Prompt the user to continue by pressing RETURN. */ static void prompt_for_continue (void) { char *ignore; char cont_prompt[120]; if (annotation_level > 1) printf_unfiltered (("\n\032\032pre-prompt-for-continue\n")); strcpy (cont_prompt, "---Type <return> to continue, or q <return> to quit---"); if (annotation_level > 1) strcat (cont_prompt, "\n\032\032prompt-for-continue\n"); /* We must do this *before* we call gdb_readline, else it will eventually call us -- thinking that we're trying to print beyond the end of the screen. */ reinitialize_more_filter (); immediate_quit++; /* On a real operating system, the user can quit with SIGINT. But not on GO32. 'q' is provided on all systems so users don't have to change habits from system to system, and because telling them what to do in the prompt is more user-friendly than expecting them to think of SIGINT. */ /* Call readline, not gdb_readline, because GO32 readline handles control-C whereas control-C to gdb_readline will cause the user to get dumped out to DOS. */ ignore = gdb_readline_wrapper (cont_prompt); if (annotation_level > 1) printf_unfiltered (("\n\032\032post-prompt-for-continue\n")); if (ignore) { char *p = ignore; while (*p == ' ' || *p == '\t') ++p; if (p[0] == 'q') async_request_quit (0); xfree (ignore); } immediate_quit--; /* Now we have to do this again, so that GDB will know that it doesn't need to save the ---Type <return>--- line at the top of the screen. */ reinitialize_more_filter (); dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */ } /* Reinitialize filter; ie. tell it to reset to original values. */ void reinitialize_more_filter (void) { lines_printed = 0; chars_printed = 0; } /* Indicate that if the next sequence of characters overflows the line, a newline should be inserted here rather than when it hits the end. If INDENT is non-null, it is a string to be printed to indent the wrapped part on the next line. INDENT must remain accessible until the next call to wrap_here() or until a newline is printed through fputs_filtered(). If the line is already overfull, we immediately print a newline and the indentation, and disable further wrapping. If we don't know the width of lines, but we know the page height, we must not wrap words, but should still keep track of newlines that were explicitly printed. INDENT should not contain tabs, as that will mess up the char count on the next line. FIXME. This routine is guaranteed to force out any output which has been squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be used to force out output from the wrap_buffer. */ void wrap_here (char *indent) { /* This should have been allocated, but be paranoid anyway. */ if (!wrap_buffer) internal_error (__FILE__, __LINE__, _("failed internal consistency check")); if (wrap_buffer[0]) { *wrap_pointer = '\0'; fputs_unfiltered (wrap_buffer, gdb_stdout); } wrap_pointer = wrap_buffer; wrap_buffer[0] = '\0'; if (chars_per_line == UINT_MAX) /* No line overflow checking */ { wrap_column = 0; } else if (chars_printed >= chars_per_line) { puts_filtered ("\n"); if (indent != NULL) puts_filtered (indent); wrap_column = 0; } else { wrap_column = chars_printed; if (indent == NULL) wrap_indent = ""; else wrap_indent = indent; } } /* Print input string to gdb_stdout, filtered, with wrap, arranging strings in columns of n chars. String can be right or left justified in the column. Never prints trailing spaces. String should never be longer than width. FIXME: this could be useful for the EXAMINE command, which currently doesn't tabulate very well */ void puts_filtered_tabular (char *string, int width, int right) { int spaces = 0; int stringlen; char *spacebuf; gdb_assert (chars_per_line > 0); if (chars_per_line == UINT_MAX) { fputs_filtered (string, gdb_stdout); fputs_filtered ("\n", gdb_stdout); return; } if (((chars_printed - 1) / width + 2) * width >= chars_per_line) fputs_filtered ("\n", gdb_stdout); if (width >= chars_per_line) width = chars_per_line - 1; stringlen = strlen (string); if (chars_printed > 0) spaces = width - (chars_printed - 1) % width - 1; if (right) spaces += width - stringlen; spacebuf = alloca (spaces + 1); spacebuf[spaces] = '\0'; while (spaces--) spacebuf[spaces] = ' '; fputs_filtered (spacebuf, gdb_stdout); fputs_filtered (string, gdb_stdout); } /* Ensure that whatever gets printed next, using the filtered output commands, starts at the beginning of the line. I.E. if there is any pending output for the current line, flush it and start a new line. Otherwise do nothing. */ void begin_line (void) { if (chars_printed > 0) { puts_filtered ("\n"); } } /* Like fputs but if FILTER is true, pause after every screenful. Regardless of FILTER can wrap at points other than the final character of a line. Unlike fputs, fputs_maybe_filtered does not return a value. It is OK for LINEBUFFER to be NULL, in which case just don't print anything. Note that a longjmp to top level may occur in this routine (only if FILTER is true) (since prompt_for_continue may do so) so this routine should not be called when cleanups are not in place. */ static void fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream, int filter) { const char *lineptr; if (linebuffer == 0) return; /* Don't do any filtering if it is disabled. */ if ((stream != gdb_stdout) || !pagination_enabled || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX)) { fputs_unfiltered (linebuffer, stream); return; } /* Go through and output each character. Show line extension when this is necessary; prompt user for new page when this is necessary. */ lineptr = linebuffer; while (*lineptr) { /* Possible new page. */ if (filter && (lines_printed >= lines_per_page - 1)) prompt_for_continue (); while (*lineptr && *lineptr != '\n') { /* Print a single line. */ if (*lineptr == '\t') { if (wrap_column) *wrap_pointer++ = '\t'; else fputc_unfiltered ('\t', stream); /* Shifting right by 3 produces the number of tab stops we have already passed, and then adding one and shifting left 3 advances to the next tab stop. */ chars_printed = ((chars_printed >> 3) + 1) << 3; lineptr++; } else { if (wrap_column) *wrap_pointer++ = *lineptr; else fputc_unfiltered (*lineptr, stream); chars_printed++; lineptr++; } if (chars_printed >= chars_per_line) { unsigned int save_chars = chars_printed; chars_printed = 0; lines_printed++; /* If we aren't actually wrapping, don't output newline -- if chars_per_line is right, we probably just overflowed anyway; if it's wrong, let us keep going. */ if (wrap_column) fputc_unfiltered ('\n', stream); /* Possible new page. */ if (lines_printed >= lines_per_page - 1) prompt_for_continue (); /* Now output indentation and wrapped string */ if (wrap_column) { fputs_unfiltered (wrap_indent, stream); *wrap_pointer = '\0'; /* Null-terminate saved stuff */ fputs_unfiltered (wrap_buffer, stream); /* and eject it */ /* FIXME, this strlen is what prevents wrap_indent from containing tabs. However, if we recurse to print it and count its chars, we risk trouble if wrap_indent is longer than (the user settable) chars_per_line. Note also that this can set chars_printed > chars_per_line if we are printing a long string. */ chars_printed = strlen (wrap_indent) + (save_chars - wrap_column); wrap_pointer = wrap_buffer; /* Reset buffer */ wrap_buffer[0] = '\0'; wrap_column = 0; /* And disable fancy wrap */ } } } if (*lineptr == '\n') { chars_printed = 0; wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */ lines_printed++; fputc_unfiltered ('\n', stream); lineptr++; } } } void fputs_filtered (const char *linebuffer, struct ui_file *stream) { fputs_maybe_filtered (linebuffer, stream, 1); } int putchar_unfiltered (int c) { char buf = c; ui_file_write (gdb_stdout, &buf, 1); return c; } /* Write character C to gdb_stdout using GDB's paging mechanism and return C. May return nonlocally. */ int putchar_filtered (int c) { return fputc_filtered (c, gdb_stdout); } int fputc_unfiltered (int c, struct ui_file *stream) { char buf = c; ui_file_write (stream, &buf, 1); return c; } int fputc_filtered (int c, struct ui_file *stream) { char buf[2]; buf[0] = c; buf[1] = 0; fputs_filtered (buf, stream); return c; } /* puts_debug is like fputs_unfiltered, except it prints special characters in printable fashion. */ void puts_debug (char *prefix, char *string, char *suffix) { int ch; /* Print prefix and suffix after each line. */ static int new_line = 1; static int return_p = 0; static char *prev_prefix = ""; static char *prev_suffix = ""; if (*string == '\n') return_p = 0; /* If the prefix is changing, print the previous suffix, a new line, and the new prefix. */ if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line) { fputs_unfiltered (prev_suffix, gdb_stdlog); fputs_unfiltered ("\n", gdb_stdlog); fputs_unfiltered (prefix, gdb_stdlog); } /* Print prefix if we printed a newline during the previous call. */ if (new_line) { new_line = 0; fputs_unfiltered (prefix, gdb_stdlog); } prev_prefix = prefix; prev_suffix = suffix; /* Output characters in a printable format. */ while ((ch = *string++) != '\0') { switch (ch) { default: if (isprint (ch)) fputc_unfiltered (ch, gdb_stdlog); else fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff); break; case '\\': fputs_unfiltered ("\\\\", gdb_stdlog); break; case '\b': fputs_unfiltered ("\\b", gdb_stdlog); break; case '\f': fputs_unfiltered ("\\f", gdb_stdlog); break; case '\n': new_line = 1; fputs_unfiltered ("\\n", gdb_stdlog); break; case '\r': fputs_unfiltered ("\\r", gdb_stdlog); break; case '\t': fputs_unfiltered ("\\t", gdb_stdlog); break; case '\v': fputs_unfiltered ("\\v", gdb_stdlog); break; } return_p = ch == '\r'; } /* Print suffix if we printed a newline. */ if (new_line) { fputs_unfiltered (suffix, gdb_stdlog); fputs_unfiltered ("\n", gdb_stdlog); } } /* Print a variable number of ARGS using format FORMAT. If this information is going to put the amount written (since the last call to REINITIALIZE_MORE_FILTER or the last page break) over the page size, call prompt_for_continue to get the users permision to continue. Unlike fprintf, this function does not return a value. We implement three variants, vfprintf (takes a vararg list and stream), fprintf (takes a stream to write on), and printf (the usual). Note also that a longjmp to top level may occur in this routine (since prompt_for_continue may do so) so this routine should not be called when cleanups are not in place. */ static void vfprintf_maybe_filtered (struct ui_file *stream, const char *format, va_list args, int filter) { char *linebuffer; struct cleanup *old_cleanups; linebuffer = xstrvprintf (format, args); old_cleanups = make_cleanup (xfree, linebuffer); fputs_maybe_filtered (linebuffer, stream, filter); do_cleanups (old_cleanups); } void vfprintf_filtered (struct ui_file *stream, const char *format, va_list args) { vfprintf_maybe_filtered (stream, format, args, 1); } void vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args) { char *linebuffer; struct cleanup *old_cleanups; linebuffer = xstrvprintf (format, args); old_cleanups = make_cleanup (xfree, linebuffer); fputs_unfiltered (linebuffer, stream); do_cleanups (old_cleanups); } void vprintf_filtered (const char *format, va_list args) { vfprintf_maybe_filtered (gdb_stdout, format, args, 1); } void vprintf_unfiltered (const char *format, va_list args) { vfprintf_unfiltered (gdb_stdout, format, args); } void fprintf_filtered (struct ui_file *stream, const char *format, ...) { va_list args; va_start (args, format); vfprintf_filtered (stream, format, args); va_end (args); } void fprintf_unfiltered (struct ui_file *stream, const char *format, ...) { va_list args; va_start (args, format); vfprintf_unfiltered (stream, format, args); va_end (args); } /* Like fprintf_filtered, but prints its result indented. Called as fprintfi_filtered (spaces, stream, format, ...); */ void fprintfi_filtered (int spaces, struct ui_file *stream, const char *format, ...) { va_list args; va_start (args, format); print_spaces_filtered (spaces, stream); vfprintf_filtered (stream, format, args); va_end (args); } void printf_filtered (const char *format, ...) { va_list args; va_start (args, format); vfprintf_filtered (gdb_stdout, format, args); va_end (args); } void printf_unfiltered (const char *format, ...) { va_list args; va_start (args, format); vfprintf_unfiltered (gdb_stdout, format, args); va_end (args); } /* Like printf_filtered, but prints it's result indented. Called as printfi_filtered (spaces, format, ...); */ void printfi_filtered (int spaces, const char *format, ...) { va_list args; va_start (args, format); print_spaces_filtered (spaces, gdb_stdout); vfprintf_filtered (gdb_stdout, format, args); va_end (args); } /* Easy -- but watch out! This routine is *not* a replacement for puts()! puts() appends a newline. This one doesn't, and had better not! */ void puts_filtered (const char *string) { fputs_filtered (string, gdb_stdout); } void puts_unfiltered (const char *string) { fputs_unfiltered (string, gdb_stdout); } /* Return a pointer to N spaces and a null. The pointer is good until the next call to here. */ char * n_spaces (int n) { char *t; static char *spaces = 0; static int max_spaces = -1; if (n > max_spaces) { if (spaces) xfree (spaces); spaces = (char *) xmalloc (n + 1); for (t = spaces + n; t != spaces;) *--t = ' '; spaces[n] = '\0'; max_spaces = n; } return spaces + max_spaces - n; } /* Print N spaces. */ void print_spaces_filtered (int n, struct ui_file *stream) { fputs_filtered (n_spaces (n), stream); } /* C++/ObjC demangler stuff. */ /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language LANG, using demangling args ARG_MODE, and print it filtered to STREAM. If the name is not mangled, or the language for the name is unknown, or demangling is off, the name is printed in its "raw" form. */ void fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang, int arg_mode) { char *demangled; if (name != NULL) { /* If user wants to see raw output, no problem. */ if (!demangle) { fputs_filtered (name, stream); } else { demangled = language_demangle (language_def (lang), name, arg_mode); fputs_filtered (demangled ? demangled : name, stream); if (demangled != NULL) { xfree (demangled); } } } } /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any differences in whitespace. Returns 0 if they match, non-zero if they don't (slightly different than strcmp()'s range of return values). As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO". This "feature" is useful when searching for matching C++ function names (such as if the user types 'break FOO', where FOO is a mangled C++ function). */ int strcmp_iw (const char *string1, const char *string2) { while ((*string1 != '\0') && (*string2 != '\0')) { while (isspace (*string1)) { string1++; } while (isspace (*string2)) { string2++; } if (*string1 != *string2) { break; } if (*string1 != '\0') { string1++; string2++; } } return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0'); } /* This is like strcmp except that it ignores whitespace and treats '(' as the first non-NULL character in terms of ordering. Like strcmp (and unlike strcmp_iw), it returns negative if STRING1 < STRING2, 0 if STRING2 = STRING2, and positive if STRING1 > STRING2 according to that ordering. If a list is sorted according to this function and if you want to find names in the list that match some fixed NAME according to strcmp_iw(LIST_ELT, NAME), then the place to start looking is right where this function would put NAME. Here are some examples of why using strcmp to sort is a bad idea: Whitespace example: Say your partial symtab contains: "foo<char *>", "goo". Then, if we try to do a search for "foo<char*>", strcmp will locate this after "foo<char *>" and before "goo". Then lookup_partial_symbol will start looking at strings beginning with "goo", and will never see the correct match of "foo<char *>". Parenthesis example: In practice, this is less like to be an issue, but I'll give it a shot. Let's assume that '$' is a legitimate character to occur in symbols. (Which may well even be the case on some systems.) Then say that the partial symbol table contains "foo$" and "foo(int)". strcmp will put them in this order, since '$' < '('. Now, if the user searches for "foo", then strcmp will sort "foo" before "foo$". Then lookup_partial_symbol will notice that strcmp_iw("foo$", "foo") is false, so it won't proceed to the actual match of "foo(int)" with "foo". */ int strcmp_iw_ordered (const char *string1, const char *string2) { while ((*string1 != '\0') && (*string2 != '\0')) { while (isspace (*string1)) { string1++; } while (isspace (*string2)) { string2++; } if (*string1 != *string2) { break; } if (*string1 != '\0') { string1++; string2++; } } switch (*string1) { /* Characters are non-equal unless they're both '\0'; we want to make sure we get the comparison right according to our comparison in the cases where one of them is '\0' or '('. */ case '\0': if (*string2 == '\0') return 0; else return -1; case '(': if (*string2 == '\0') return 1; else return -1; default: if (*string2 == '(') return 1; else return *string1 - *string2; } } /* A simple comparison function with opposite semantics to strcmp. */ int streq (const char *lhs, const char *rhs) { return !strcmp (lhs, rhs); } /* ** subset_compare() ** Answer whether string_to_compare is a full or partial match to ** template_string. The partial match must be in sequence starting ** at index 0. */ int subset_compare (char *string_to_compare, char *template_string) { int match; if (template_string != (char *) NULL && string_to_compare != (char *) NULL && strlen (string_to_compare) <= strlen (template_string)) match = (strncmp (template_string, string_to_compare, strlen (string_to_compare)) == 0); else match = 0; return match; } static void pagination_on_command (char *arg, int from_tty) { pagination_enabled = 1; } static void pagination_off_command (char *arg, int from_tty) { pagination_enabled = 0; } void initialize_utils (void) { struct cmd_list_element *c; add_setshow_uinteger_cmd ("width", class_support, &chars_per_line, _("\ Set number of characters gdb thinks are in a line."), _("\ Show number of characters gdb thinks are in a line."), NULL, set_width_command, show_chars_per_line, &setlist, &showlist); add_setshow_uinteger_cmd ("height", class_support, &lines_per_page, _("\ Set number of lines gdb thinks are in a page."), _("\ Show number of lines gdb thinks are in a page."), NULL, set_height_command, show_lines_per_page, &setlist, &showlist); init_page_info (); add_setshow_boolean_cmd ("demangle", class_support, &demangle, _("\ Set demangling of encoded C++/ObjC names when displaying symbols."), _("\ Show demangling of encoded C++/ObjC names when displaying symbols."), NULL, NULL, show_demangle, &setprintlist, &showprintlist); add_setshow_boolean_cmd ("pagination", class_support, &pagination_enabled, _("\ Set state of pagination."), _("\ Show state of pagination."), NULL, NULL, show_pagination_enabled, &setlist, &showlist); if (xdb_commands) { add_com ("am", class_support, pagination_on_command, _("Enable pagination")); add_com ("sm", class_support, pagination_off_command, _("Disable pagination")); } add_setshow_boolean_cmd ("sevenbit-strings", class_support, &sevenbit_strings, _("\ Set printing of 8-bit characters in strings as \\nnn."), _("\ Show printing of 8-bit characters in strings as \\nnn."), NULL, NULL, show_sevenbit_strings, &setprintlist, &showprintlist); add_setshow_boolean_cmd ("asm-demangle", class_support, &asm_demangle, _("\ Set demangling of C++/ObjC names in disassembly listings."), _("\ Show demangling of C++/ObjC names in disassembly listings."), NULL, NULL, show_asm_demangle, &setprintlist, &showprintlist); } /* Machine specific function to handle SIGWINCH signal. */ #ifdef SIGWINCH_HANDLER_BODY SIGWINCH_HANDLER_BODY #endif /* print routines to handle variable size regs, etc. */ /* temporary storage using circular buffer */ #define NUMCELLS 16 #define CELLSIZE 50 static char * get_cell (void) { static char buf[NUMCELLS][CELLSIZE]; static int cell = 0; if (++cell >= NUMCELLS) cell = 0; return buf[cell]; } int strlen_paddr (void) { return (gdbarch_addr_bit (current_gdbarch) / 8 * 2); } char * paddr (CORE_ADDR addr) { return phex (addr, gdbarch_addr_bit (current_gdbarch) / 8); } char * paddr_nz (CORE_ADDR addr) { return phex_nz (addr, gdbarch_addr_bit (current_gdbarch) / 8); } const char * paddress (CORE_ADDR addr) { /* Truncate address to the size of a target address, avoiding shifts larger or equal than the width of a CORE_ADDR. The local variable ADDR_BIT stops the compiler reporting a shift overflow when it won't occur. */ /* NOTE: This assumes that the significant address information is kept in the least significant bits of ADDR - the upper bits were either zero or sign extended. Should gdbarch_address_to_pointer or some ADDRESS_TO_PRINTABLE() be used to do the conversion? */ int addr_bit = gdbarch_addr_bit (current_gdbarch); if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) addr &= ((CORE_ADDR) 1 << addr_bit) - 1; return hex_string (addr); } static char * decimal2str (char *sign, ULONGEST addr, int width) { /* Steal code from valprint.c:print_decimal(). Should this worry about the real size of addr as the above does? */ unsigned long temp[3]; char *str = get_cell (); int i = 0; do { temp[i] = addr % (1000 * 1000 * 1000); addr /= (1000 * 1000 * 1000); i++; width -= 9; } while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0]))); width += 9; if (width < 0) width = 0; switch (i) { case 1: xsnprintf (str, CELLSIZE, "%s%0*lu", sign, width, temp[0]); break; case 2: xsnprintf (str, CELLSIZE, "%s%0*lu%09lu", sign, width, temp[1], temp[0]); break; case 3: xsnprintf (str, CELLSIZE, "%s%0*lu%09lu%09lu", sign, width, temp[2], temp[1], temp[0]); break; default: internal_error (__FILE__, __LINE__, _("failed internal consistency check")); } return str; } static char * octal2str (ULONGEST addr, int width) { unsigned long temp[3]; char *str = get_cell (); int i = 0; do { temp[i] = addr % (0100000 * 0100000); addr /= (0100000 * 0100000); i++; width -= 10; } while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0]))); width += 10; if (width < 0) width = 0; switch (i) { case 1: if (temp[0] == 0) xsnprintf (str, CELLSIZE, "%*o", width, 0); else xsnprintf (str, CELLSIZE, "0%0*lo", width, temp[0]); break; case 2: xsnprintf (str, CELLSIZE, "0%0*lo%010lo", width, temp[1], temp[0]); break; case 3: xsnprintf (str, CELLSIZE, "0%0*lo%010lo%010lo", width, temp[2], temp[1], temp[0]); break; default: internal_error (__FILE__, __LINE__, _("failed internal consistency check")); } return str; } char * paddr_u (CORE_ADDR addr) { return decimal2str ("", addr, 0); } char * paddr_d (LONGEST addr) { if (addr < 0) return decimal2str ("-", -addr, 0); else return decimal2str ("", addr, 0); } /* Eliminate warning from compiler on 32-bit systems. */ static int thirty_two = 32; char * phex (ULONGEST l, int sizeof_l) { char *str; switch (sizeof_l) { case 8: str = get_cell (); xsnprintf (str, CELLSIZE, "%08lx%08lx", (unsigned long) (l >> thirty_two), (unsigned long) (l & 0xffffffff)); break; case 4: str = get_cell (); xsnprintf (str, CELLSIZE, "%08lx", (unsigned long) l); break; case 2: str = get_cell (); xsnprintf (str, CELLSIZE, "%04x", (unsigned short) (l & 0xffff)); break; default: str = phex (l, sizeof (l)); break; } return str; } char * phex_nz (ULONGEST l, int sizeof_l) { char *str; switch (sizeof_l) { case 8: { unsigned long high = (unsigned long) (l >> thirty_two); str = get_cell (); if (high == 0) xsnprintf (str, CELLSIZE, "%lx", (unsigned long) (l & 0xffffffff)); else xsnprintf (str, CELLSIZE, "%lx%08lx", high, (unsigned long) (l & 0xffffffff)); break; } case 4: str = get_cell (); xsnprintf (str, CELLSIZE, "%lx", (unsigned long) l); break; case 2: str = get_cell (); xsnprintf (str, CELLSIZE, "%x", (unsigned short) (l & 0xffff)); break; default: str = phex_nz (l, sizeof (l)); break; } return str; } /* Converts a LONGEST to a C-format hexadecimal literal and stores it in a static string. Returns a pointer to this string. */ char * hex_string (LONGEST num) { char *result = get_cell (); xsnprintf (result, CELLSIZE, "0x%s", phex_nz (num, sizeof (num))); return result; } /* Converts a LONGEST number to a C-format hexadecimal literal and stores it in a static string. Returns a pointer to this string that is valid until the next call. The number is padded on the left with 0s to at least WIDTH characters. */ char * hex_string_custom (LONGEST num, int width) { char *result = get_cell (); char *result_end = result + CELLSIZE - 1; const char *hex = phex_nz (num, sizeof (num)); int hex_len = strlen (hex); if (hex_len > width) width = hex_len; if (width + 2 >= CELLSIZE) internal_error (__FILE__, __LINE__, _("hex_string_custom: insufficient space to store result")); strcpy (result_end - width - 2, "0x"); memset (result_end - width, '0', width); strcpy (result_end - hex_len, hex); return result_end - width - 2; } /* Convert VAL to a numeral in the given radix. For * radix 10, IS_SIGNED may be true, indicating a signed quantity; * otherwise VAL is interpreted as unsigned. If WIDTH is supplied, * it is the minimum width (0-padded if needed). USE_C_FORMAT means * to use C format in all cases. If it is false, then 'x' * and 'o' formats do not include a prefix (0x or leading 0). */ char * int_string (LONGEST val, int radix, int is_signed, int width, int use_c_format) { switch (radix) { case 16: { char *result; if (width == 0) result = hex_string (val); else result = hex_string_custom (val, width); if (! use_c_format) result += 2; return result; } case 10: { if (is_signed && val < 0) return decimal2str ("-", -val, width); else return decimal2str ("", val, width); } case 8: { char *result = octal2str (val, width); if (use_c_format || val == 0) return result; else return result + 1; } default: internal_error (__FILE__, __LINE__, _("failed internal consistency check")); } } /* Convert a CORE_ADDR into a string. */ const char * core_addr_to_string (const CORE_ADDR addr) { char *str = get_cell (); strcpy (str, "0x"); strcat (str, phex (addr, sizeof (addr))); return str; } const char * core_addr_to_string_nz (const CORE_ADDR addr) { char *str = get_cell (); strcpy (str, "0x"); strcat (str, phex_nz (addr, sizeof (addr))); return str; } /* Convert a string back into a CORE_ADDR. */ CORE_ADDR string_to_core_addr (const char *my_string) { int addr_bit = gdbarch_addr_bit (current_gdbarch); CORE_ADDR addr = 0; if (my_string[0] == '0' && tolower (my_string[1]) == 'x') { /* Assume that it is in hex. */ int i; for (i = 2; my_string[i] != '\0'; i++) { if (isdigit (my_string[i])) addr = (my_string[i] - '0') + (addr * 16); else if (isxdigit (my_string[i])) addr = (tolower (my_string[i]) - 'a' + 0xa) + (addr * 16); else error (_("invalid hex \"%s\""), my_string); } /* Not very modular, but if the executable format expects addresses to be sign-extended, then do so if the address was specified with only 32 significant bits. Really this should be determined by the target architecture, not by the object file. */ if (i - 2 == addr_bit / 4 && exec_bfd && bfd_get_sign_extend_vma (exec_bfd)) addr = (addr ^ ((CORE_ADDR) 1 << (addr_bit - 1))) - ((CORE_ADDR) 1 << (addr_bit - 1)); } else { /* Assume that it is in decimal. */ int i; for (i = 0; my_string[i] != '\0'; i++) { if (isdigit (my_string[i])) addr = (my_string[i] - '0') + (addr * 10); else error (_("invalid decimal \"%s\""), my_string); } } return addr; } char * gdb_realpath (const char *filename) { /* Method 1: The system has a compile time upper bound on a filename path. Use that and realpath() to canonicalize the name. This is the most common case. Note that, if there isn't a compile time upper bound, you want to avoid realpath() at all costs. */ #if defined(HAVE_REALPATH) { # if defined (PATH_MAX) char buf[PATH_MAX]; # define USE_REALPATH # elif defined (MAXPATHLEN) char buf[MAXPATHLEN]; # define USE_REALPATH # endif # if defined (USE_REALPATH) const char *rp = realpath (filename, buf); if (rp == NULL) rp = filename; return xstrdup (rp); # endif } #endif /* HAVE_REALPATH */ /* Method 2: The host system (i.e., GNU) has the function canonicalize_file_name() which malloc's a chunk of memory and returns that, use that. */ #if defined(HAVE_CANONICALIZE_FILE_NAME) { char *rp = canonicalize_file_name (filename); if (rp == NULL) return xstrdup (filename); else return rp; } #endif /* FIXME: cagney/2002-11-13: Method 2a: Use realpath() with a NULL buffer. Some systems, due to the problems described in in method 3, have modified their realpath() implementation so that it will allocate a buffer when NULL is passed in. Before this can be used, though, some sort of configure time test would need to be added. Otherwize the code will likely core dump. */ /* Method 3: Now we're getting desperate! The system doesn't have a compile time buffer size and no alternative function. Query the OS, using pathconf(), for the buffer limit. Care is needed though, some systems do not limit PATH_MAX (return -1 for pathconf()) making it impossible to pass a correctly sized buffer to realpath() (it could always overflow). On those systems, we skip this. */ #if defined (HAVE_REALPATH) && defined (HAVE_UNISTD_H) && defined(HAVE_ALLOCA) { /* Find out the max path size. */ long path_max = pathconf ("/", _PC_PATH_MAX); if (path_max > 0) { /* PATH_MAX is bounded. */ char *buf = alloca (path_max); char *rp = realpath (filename, buf); return xstrdup (rp ? rp : filename); } } #endif /* This system is a lost cause, just dup the buffer. */ return xstrdup (filename); } /* Return a copy of FILENAME, with its directory prefix canonicalized by gdb_realpath. */ char * xfullpath (const char *filename) { const char *base_name = lbasename (filename); char *dir_name; char *real_path; char *result; /* Extract the basename of filename, and return immediately a copy of filename if it does not contain any directory prefix. */ if (base_name == filename) return xstrdup (filename); dir_name = alloca ((size_t) (base_name - filename + 2)); /* Allocate enough space to store the dir_name + plus one extra character sometimes needed under Windows (see below), and then the closing \000 character */ strncpy (dir_name, filename, base_name - filename); dir_name[base_name - filename] = '\000'; #ifdef HAVE_DOS_BASED_FILE_SYSTEM /* We need to be careful when filename is of the form 'd:foo', which is equivalent of d:./foo, which is totally different from d:/foo. */ if (strlen (dir_name) == 2 && isalpha (dir_name[0]) && dir_name[1] == ':') { dir_name[2] = '.'; dir_name[3] = '\000'; } #endif /* Canonicalize the directory prefix, and build the resulting filename. If the dirname realpath already contains an ending directory separator, avoid doubling it. */ real_path = gdb_realpath (dir_name); if (IS_DIR_SEPARATOR (real_path[strlen (real_path) - 1])) result = concat (real_path, base_name, (char *)NULL); else result = concat (real_path, SLASH_STRING, base_name, (char *)NULL); xfree (real_path); return result; } /* This is the 32-bit CRC function used by the GNU separate debug facility. An executable may contain a section named .gnu_debuglink, which holds the name of a separate executable file containing its debug info, and a checksum of that file's contents, computed using this function. */ unsigned long gnu_debuglink_crc32 (unsigned long crc, unsigned char *buf, size_t len) { static const unsigned long crc32_table[256] = { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d }; unsigned char *end; crc = ~crc & 0xffffffff; for (end = buf + len; buf < end; ++buf) crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8); return ~crc & 0xffffffff;; } ULONGEST align_up (ULONGEST v, int n) { /* Check that N is really a power of two. */ gdb_assert (n && (n & (n-1)) == 0); return (v + n - 1) & -n; } ULONGEST align_down (ULONGEST v, int n) { /* Check that N is really a power of two. */ gdb_assert (n && (n & (n-1)) == 0); return (v & -n); } /* Allocation function for the libiberty hash table which uses an obstack. The obstack is passed as DATA. */ void * hashtab_obstack_allocate (void *data, size_t size, size_t count) { unsigned int total = size * count; void *ptr = obstack_alloc ((struct obstack *) data, total); memset (ptr, 0, total); return ptr; } /* Trivial deallocation function for the libiberty splay tree and hash table - don't deallocate anything. Rely on later deletion of the obstack. DATA will be the obstack, although it is not needed here. */ void dummy_obstack_deallocate (void *object, void *data) { return; } /* The bit offset of the highest byte in a ULONGEST, for overflow checking. */ #define HIGH_BYTE_POSN ((sizeof (ULONGEST) - 1) * HOST_CHAR_BIT) /* True (non-zero) iff DIGIT is a valid digit in radix BASE, where 2 <= BASE <= 36. */ static int is_digit_in_base (unsigned char digit, int base) { if (!isalnum (digit)) return 0; if (base <= 10) return (isdigit (digit) && digit < base + '0'); else return (isdigit (digit) || tolower (digit) < base - 10 + 'a'); } static int digit_to_int (unsigned char c) { if (isdigit (c)) return c - '0'; else return tolower (c) - 'a' + 10; } /* As for strtoul, but for ULONGEST results. */ ULONGEST strtoulst (const char *num, const char **trailer, int base) { unsigned int high_part; ULONGEST result; int minus = 0; int i = 0; /* Skip leading whitespace. */ while (isspace (num[i])) i++; /* Handle prefixes. */ if (num[i] == '+') i++; else if (num[i] == '-') { minus = 1; i++; } if (base == 0 || base == 16) { if (num[i] == '0' && (num[i + 1] == 'x' || num[i + 1] == 'X')) { i += 2; if (base == 0) base = 16; } } if (base == 0 && num[i] == '0') base = 8; if (base == 0) base = 10; if (base < 2 || base > 36) { errno = EINVAL; return 0; } result = high_part = 0; for (; is_digit_in_base (num[i], base); i += 1) { result = result * base + digit_to_int (num[i]); high_part = high_part * base + (unsigned int) (result >> HIGH_BYTE_POSN); result &= ((ULONGEST) 1 << HIGH_BYTE_POSN) - 1; if (high_part > 0xff) { errno = ERANGE; result = ~ (ULONGEST) 0; high_part = 0; minus = 0; break; } } if (trailer != NULL) *trailer = &num[i]; result = result + ((ULONGEST) high_part << HIGH_BYTE_POSN); if (minus) return -result; else return result; } /* Simple, portable version of dirname that does not modify its argument. */ char * ldirname (const char *filename) { const char *base = lbasename (filename); char *dirname; while (base > filename && IS_DIR_SEPARATOR (base[-1])) --base; if (base == filename) return NULL; dirname = xmalloc (base - filename + 2); memcpy (dirname, filename, base - filename); /* On DOS based file systems, convert "d:foo" to "d:.", so that we create "d:./bar" later instead of the (different) "d:/bar". */ if (base - filename == 2 && IS_ABSOLUTE_PATH (base) && !IS_DIR_SEPARATOR (filename[0])) dirname[base++ - filename] = '.'; dirname[base - filename] = '\0'; return dirname; }