URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [dwarf2read.c] - Rev 855
Go to most recent revision | Compare with Previous | Blame | View Log
/* DWARF 2 debugging format support for GDB. Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology, Inc. with support from Florida State University (under contract with the Ada Joint Program Office), and Silicon Graphics, Inc. Initial contribution by Brent Benson, Harris Computer Systems, Inc., based on Fred Fish's (Cygnus Support) implementation of DWARF 1 support. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "bfd.h" #include "symtab.h" #include "gdbtypes.h" #include "objfiles.h" #include "dwarf2.h" #include "buildsym.h" #include "demangle.h" #include "expression.h" #include "filenames.h" /* for DOSish file names */ #include "macrotab.h" #include "language.h" #include "complaints.h" #include "bcache.h" #include "dwarf2expr.h" #include "dwarf2loc.h" #include "cp-support.h" #include "hashtab.h" #include "command.h" #include "gdbcmd.h" #include "block.h" #include "addrmap.h" #include <fcntl.h> #include "gdb_string.h" #include "gdb_assert.h" #include <sys/types.h> #ifdef HAVE_ZLIB_H #include <zlib.h> #endif #ifdef HAVE_MMAP #include <sys/mman.h> #ifndef MAP_FAILED #define MAP_FAILED ((void *) -1) #endif #endif #if 0 /* .debug_info header for a compilation unit Because of alignment constraints, this structure has padding and cannot be mapped directly onto the beginning of the .debug_info section. */ typedef struct comp_unit_header { unsigned int length; /* length of the .debug_info contribution */ unsigned short version; /* version number -- 2 for DWARF version 2 */ unsigned int abbrev_offset; /* offset into .debug_abbrev section */ unsigned char addr_size; /* byte size of an address -- 4 */ } _COMP_UNIT_HEADER; #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11 #endif /* .debug_pubnames header Because of alignment constraints, this structure has padding and cannot be mapped directly onto the beginning of the .debug_info section. */ typedef struct pubnames_header { unsigned int length; /* length of the .debug_pubnames contribution */ unsigned char version; /* version number -- 2 for DWARF version 2 */ unsigned int info_offset; /* offset into .debug_info section */ unsigned int info_size; /* byte size of .debug_info section portion */ } _PUBNAMES_HEADER; #define _ACTUAL_PUBNAMES_HEADER_SIZE 13 /* .debug_pubnames header Because of alignment constraints, this structure has padding and cannot be mapped directly onto the beginning of the .debug_info section. */ typedef struct aranges_header { unsigned int length; /* byte len of the .debug_aranges contribution */ unsigned short version; /* version number -- 2 for DWARF version 2 */ unsigned int info_offset; /* offset into .debug_info section */ unsigned char addr_size; /* byte size of an address */ unsigned char seg_size; /* byte size of segment descriptor */ } _ARANGES_HEADER; #define _ACTUAL_ARANGES_HEADER_SIZE 12 /* .debug_line statement program prologue Because of alignment constraints, this structure has padding and cannot be mapped directly onto the beginning of the .debug_info section. */ typedef struct statement_prologue { unsigned int total_length; /* byte length of the statement information */ unsigned short version; /* version number -- 2 for DWARF version 2 */ unsigned int prologue_length; /* # bytes between prologue & stmt program */ unsigned char minimum_instruction_length; /* byte size of smallest instr */ unsigned char default_is_stmt; /* initial value of is_stmt register */ char line_base; unsigned char line_range; unsigned char opcode_base; /* number assigned to first special opcode */ unsigned char *standard_opcode_lengths; } _STATEMENT_PROLOGUE; /* When non-zero, dump DIEs after they are read in. */ static int dwarf2_die_debug = 0; static int pagesize; /* When set, the file that we're processing is known to have debugging info for C++ namespaces. GCC 3.3.x did not produce this information, but later versions do. */ static int processing_has_namespace_info; static const struct objfile_data *dwarf2_objfile_data_key; struct dwarf2_section_info { asection *asection; gdb_byte *buffer; bfd_size_type size; int was_mmapped; }; struct dwarf2_per_objfile { struct dwarf2_section_info info; struct dwarf2_section_info abbrev; struct dwarf2_section_info line; struct dwarf2_section_info pubnames; struct dwarf2_section_info aranges; struct dwarf2_section_info loc; struct dwarf2_section_info macinfo; struct dwarf2_section_info str; struct dwarf2_section_info ranges; struct dwarf2_section_info types; struct dwarf2_section_info frame; struct dwarf2_section_info eh_frame; /* A list of all the compilation units. This is used to locate the target compilation unit of a particular reference. */ struct dwarf2_per_cu_data **all_comp_units; /* The number of compilation units in ALL_COMP_UNITS. */ int n_comp_units; /* A chain of compilation units that are currently read in, so that they can be freed later. */ struct dwarf2_per_cu_data *read_in_chain; /* A table mapping .debug_types signatures to its signatured_type entry. This is NULL if the .debug_types section hasn't been read in yet. */ htab_t signatured_types; /* A flag indicating wether this objfile has a section loaded at a VMA of 0. */ int has_section_at_zero; }; static struct dwarf2_per_objfile *dwarf2_per_objfile; /* names of the debugging sections */ /* Note that if the debugging section has been compressed, it might have a name like .zdebug_info. */ #define INFO_SECTION "debug_info" #define ABBREV_SECTION "debug_abbrev" #define LINE_SECTION "debug_line" #define PUBNAMES_SECTION "debug_pubnames" #define ARANGES_SECTION "debug_aranges" #define LOC_SECTION "debug_loc" #define MACINFO_SECTION "debug_macinfo" #define STR_SECTION "debug_str" #define RANGES_SECTION "debug_ranges" #define TYPES_SECTION "debug_types" #define FRAME_SECTION "debug_frame" #define EH_FRAME_SECTION "eh_frame" /* local data types */ /* We hold several abbreviation tables in memory at the same time. */ #ifndef ABBREV_HASH_SIZE #define ABBREV_HASH_SIZE 121 #endif /* The data in a compilation unit header, after target2host translation, looks like this. */ struct comp_unit_head { unsigned int length; short version; unsigned char addr_size; unsigned char signed_addr_p; unsigned int abbrev_offset; /* Size of file offsets; either 4 or 8. */ unsigned int offset_size; /* Size of the length field; either 4 or 12. */ unsigned int initial_length_size; /* Offset to the first byte of this compilation unit header in the .debug_info section, for resolving relative reference dies. */ unsigned int offset; /* Offset to first die in this cu from the start of the cu. This will be the first byte following the compilation unit header. */ unsigned int first_die_offset; }; /* Internal state when decoding a particular compilation unit. */ struct dwarf2_cu { /* The objfile containing this compilation unit. */ struct objfile *objfile; /* The header of the compilation unit. */ struct comp_unit_head header; /* Base address of this compilation unit. */ CORE_ADDR base_address; /* Non-zero if base_address has been set. */ int base_known; struct function_range *first_fn, *last_fn, *cached_fn; /* The language we are debugging. */ enum language language; const struct language_defn *language_defn; const char *producer; /* The generic symbol table building routines have separate lists for file scope symbols and all all other scopes (local scopes). So we need to select the right one to pass to add_symbol_to_list(). We do it by keeping a pointer to the correct list in list_in_scope. FIXME: The original dwarf code just treated the file scope as the first local scope, and all other local scopes as nested local scopes, and worked fine. Check to see if we really need to distinguish these in buildsym.c. */ struct pending **list_in_scope; /* DWARF abbreviation table associated with this compilation unit. */ struct abbrev_info **dwarf2_abbrevs; /* Storage for the abbrev table. */ struct obstack abbrev_obstack; /* Hash table holding all the loaded partial DIEs. */ htab_t partial_dies; /* Storage for things with the same lifetime as this read-in compilation unit, including partial DIEs. */ struct obstack comp_unit_obstack; /* When multiple dwarf2_cu structures are living in memory, this field chains them all together, so that they can be released efficiently. We will probably also want a generation counter so that most-recently-used compilation units are cached... */ struct dwarf2_per_cu_data *read_in_chain; /* Backchain to our per_cu entry if the tree has been built. */ struct dwarf2_per_cu_data *per_cu; /* Pointer to the die -> type map. Although it is stored permanently in per_cu, we copy it here to avoid double indirection. */ htab_t type_hash; /* How many compilation units ago was this CU last referenced? */ int last_used; /* A hash table of die offsets for following references. */ htab_t die_hash; /* Full DIEs if read in. */ struct die_info *dies; /* A set of pointers to dwarf2_per_cu_data objects for compilation units referenced by this one. Only set during full symbol processing; partial symbol tables do not have dependencies. */ htab_t dependencies; /* Header data from the line table, during full symbol processing. */ struct line_header *line_header; /* Mark used when releasing cached dies. */ unsigned int mark : 1; /* This flag will be set if this compilation unit might include inter-compilation-unit references. */ unsigned int has_form_ref_addr : 1; /* This flag will be set if this compilation unit includes any DW_TAG_namespace DIEs. If we know that there are explicit DIEs for namespaces, we don't need to try to infer them from mangled names. */ unsigned int has_namespace_info : 1; }; /* Persistent data held for a compilation unit, even when not processing it. We put a pointer to this structure in the read_symtab_private field of the psymtab. If we encounter inter-compilation-unit references, we also maintain a sorted list of all compilation units. */ struct dwarf2_per_cu_data { /* The start offset and length of this compilation unit. 2**29-1 bytes should suffice to store the length of any compilation unit - if it doesn't, GDB will fall over anyway. NOTE: Unlike comp_unit_head.length, this length includes initial_length_size. */ unsigned int offset; unsigned int length : 29; /* Flag indicating this compilation unit will be read in before any of the current compilation units are processed. */ unsigned int queued : 1; /* This flag will be set if we need to load absolutely all DIEs for this compilation unit, instead of just the ones we think are interesting. It gets set if we look for a DIE in the hash table and don't find it. */ unsigned int load_all_dies : 1; /* Non-zero if this CU is from .debug_types. Otherwise it's from .debug_info. */ unsigned int from_debug_types : 1; /* Set iff currently read in. */ struct dwarf2_cu *cu; /* If full symbols for this CU have been read in, then this field holds a map of DIE offsets to types. It isn't always possible to reconstruct this information later, so we have to preserve it. */ htab_t type_hash; /* The partial symbol table associated with this compilation unit, or NULL for partial units (which do not have an associated symtab). */ struct partial_symtab *psymtab; }; /* Entry in the signatured_types hash table. */ struct signatured_type { ULONGEST signature; /* Offset in .debug_types of the TU (type_unit) for this type. */ unsigned int offset; /* Offset in .debug_types of the type defined by this TU. */ unsigned int type_offset; /* The CU(/TU) of this type. */ struct dwarf2_per_cu_data per_cu; }; /* Struct used to pass misc. parameters to read_die_and_children, et. al. which are used for both .debug_info and .debug_types dies. All parameters here are unchanging for the life of the call. This struct exists to abstract away the constant parameters of die reading. */ struct die_reader_specs { /* The bfd of this objfile. */ bfd* abfd; /* The CU of the DIE we are parsing. */ struct dwarf2_cu *cu; /* Pointer to start of section buffer. This is either the start of .debug_info or .debug_types. */ const gdb_byte *buffer; }; /* The line number information for a compilation unit (found in the .debug_line section) begins with a "statement program header", which contains the following information. */ struct line_header { unsigned int total_length; unsigned short version; unsigned int header_length; unsigned char minimum_instruction_length; unsigned char default_is_stmt; int line_base; unsigned char line_range; unsigned char opcode_base; /* standard_opcode_lengths[i] is the number of operands for the standard opcode whose value is i. This means that standard_opcode_lengths[0] is unused, and the last meaningful element is standard_opcode_lengths[opcode_base - 1]. */ unsigned char *standard_opcode_lengths; /* The include_directories table. NOTE! These strings are not allocated with xmalloc; instead, they are pointers into debug_line_buffer. If you try to free them, `free' will get indigestion. */ unsigned int num_include_dirs, include_dirs_size; char **include_dirs; /* The file_names table. NOTE! These strings are not allocated with xmalloc; instead, they are pointers into debug_line_buffer. Don't try to free them directly. */ unsigned int num_file_names, file_names_size; struct file_entry { char *name; unsigned int dir_index; unsigned int mod_time; unsigned int length; int included_p; /* Non-zero if referenced by the Line Number Program. */ struct symtab *symtab; /* The associated symbol table, if any. */ } *file_names; /* The start and end of the statement program following this header. These point into dwarf2_per_objfile->line_buffer. */ gdb_byte *statement_program_start, *statement_program_end; }; /* When we construct a partial symbol table entry we only need this much information. */ struct partial_die_info { /* Offset of this DIE. */ unsigned int offset; /* DWARF-2 tag for this DIE. */ ENUM_BITFIELD(dwarf_tag) tag : 16; /* Assorted flags describing the data found in this DIE. */ unsigned int has_children : 1; unsigned int is_external : 1; unsigned int is_declaration : 1; unsigned int has_type : 1; unsigned int has_specification : 1; unsigned int has_pc_info : 1; /* Flag set if the SCOPE field of this structure has been computed. */ unsigned int scope_set : 1; /* Flag set if the DIE has a byte_size attribute. */ unsigned int has_byte_size : 1; /* The name of this DIE. Normally the value of DW_AT_name, but sometimes DW_TAG_MIPS_linkage_name or a string computed in some other fashion. */ char *name; /* The scope to prepend to our children. This is generally allocated on the comp_unit_obstack, so will disappear when this compilation unit leaves the cache. */ char *scope; /* The location description associated with this DIE, if any. */ struct dwarf_block *locdesc; /* If HAS_PC_INFO, the PC range associated with this DIE. */ CORE_ADDR lowpc; CORE_ADDR highpc; /* Pointer into the info_buffer (or types_buffer) pointing at the target of DW_AT_sibling, if any. */ gdb_byte *sibling; /* If HAS_SPECIFICATION, the offset of the DIE referred to by DW_AT_specification (or DW_AT_abstract_origin or DW_AT_extension). */ unsigned int spec_offset; /* Pointers to this DIE's parent, first child, and next sibling, if any. */ struct partial_die_info *die_parent, *die_child, *die_sibling; }; /* This data structure holds the information of an abbrev. */ struct abbrev_info { unsigned int number; /* number identifying abbrev */ enum dwarf_tag tag; /* dwarf tag */ unsigned short has_children; /* boolean */ unsigned short num_attrs; /* number of attributes */ struct attr_abbrev *attrs; /* an array of attribute descriptions */ struct abbrev_info *next; /* next in chain */ }; struct attr_abbrev { ENUM_BITFIELD(dwarf_attribute) name : 16; ENUM_BITFIELD(dwarf_form) form : 16; }; /* Attributes have a name and a value */ struct attribute { ENUM_BITFIELD(dwarf_attribute) name : 16; ENUM_BITFIELD(dwarf_form) form : 15; /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This field should be in u.str (existing only for DW_STRING) but it is kept here for better struct attribute alignment. */ unsigned int string_is_canonical : 1; union { char *str; struct dwarf_block *blk; ULONGEST unsnd; LONGEST snd; CORE_ADDR addr; struct signatured_type *signatured_type; } u; }; /* This data structure holds a complete die structure. */ struct die_info { /* DWARF-2 tag for this DIE. */ ENUM_BITFIELD(dwarf_tag) tag : 16; /* Number of attributes */ unsigned short num_attrs; /* Abbrev number */ unsigned int abbrev; /* Offset in .debug_info or .debug_types section. */ unsigned int offset; /* The dies in a compilation unit form an n-ary tree. PARENT points to this die's parent; CHILD points to the first child of this node; and all the children of a given node are chained together via their SIBLING fields, terminated by a die whose tag is zero. */ struct die_info *child; /* Its first child, if any. */ struct die_info *sibling; /* Its next sibling, if any. */ struct die_info *parent; /* Its parent, if any. */ /* An array of attributes, with NUM_ATTRS elements. There may be zero, but it's not common and zero-sized arrays are not sufficiently portable C. */ struct attribute attrs[1]; }; struct function_range { const char *name; CORE_ADDR lowpc, highpc; int seen_line; struct function_range *next; }; /* Get at parts of an attribute structure */ #define DW_STRING(attr) ((attr)->u.str) #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical) #define DW_UNSND(attr) ((attr)->u.unsnd) #define DW_BLOCK(attr) ((attr)->u.blk) #define DW_SND(attr) ((attr)->u.snd) #define DW_ADDR(attr) ((attr)->u.addr) #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type) /* Blocks are a bunch of untyped bytes. */ struct dwarf_block { unsigned int size; gdb_byte *data; }; #ifndef ATTR_ALLOC_CHUNK #define ATTR_ALLOC_CHUNK 4 #endif /* Allocate fields for structs, unions and enums in this size. */ #ifndef DW_FIELD_ALLOC_CHUNK #define DW_FIELD_ALLOC_CHUNK 4 #endif /* A zeroed version of a partial die for initialization purposes. */ static struct partial_die_info zeroed_partial_die; /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte, but this would require a corresponding change in unpack_field_as_long and friends. */ static int bits_per_byte = 8; /* The routines that read and process dies for a C struct or C++ class pass lists of data member fields and lists of member function fields in an instance of a field_info structure, as defined below. */ struct field_info { /* List of data member and baseclasses fields. */ struct nextfield { struct nextfield *next; int accessibility; int virtuality; struct field field; } *fields, *baseclasses; /* Number of fields (including baseclasses). */ int nfields; /* Number of baseclasses. */ int nbaseclasses; /* Set if the accesibility of one of the fields is not public. */ int non_public_fields; /* Member function fields array, entries are allocated in the order they are encountered in the object file. */ struct nextfnfield { struct nextfnfield *next; struct fn_field fnfield; } *fnfields; /* Member function fieldlist array, contains name of possibly overloaded member function, number of overloaded member functions and a pointer to the head of the member function field chain. */ struct fnfieldlist { char *name; int length; struct nextfnfield *head; } *fnfieldlists; /* Number of entries in the fnfieldlists array. */ int nfnfields; }; /* One item on the queue of compilation units to read in full symbols for. */ struct dwarf2_queue_item { struct dwarf2_per_cu_data *per_cu; struct dwarf2_queue_item *next; }; /* The current queue. */ static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail; /* Loaded secondary compilation units are kept in memory until they have not been referenced for the processing of this many compilation units. Set this to zero to disable caching. Cache sizes of up to at least twenty will improve startup time for typical inter-CU-reference binaries, at an obvious memory cost. */ static int dwarf2_max_cache_age = 5; static void show_dwarf2_max_cache_age (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("\ The upper bound on the age of cached dwarf2 compilation units is %s.\n"), value); } /* Various complaints about symbol reading that don't abort the process */ static void dwarf2_statement_list_fits_in_line_number_section_complaint (void) { complaint (&symfile_complaints, _("statement list doesn't fit in .debug_line section")); } static void dwarf2_debug_line_missing_file_complaint (void) { complaint (&symfile_complaints, _(".debug_line section has line data without a file")); } static void dwarf2_debug_line_missing_end_sequence_complaint (void) { complaint (&symfile_complaints, _(".debug_line section has line program sequence without an end")); } static void dwarf2_complex_location_expr_complaint (void) { complaint (&symfile_complaints, _("location expression too complex")); } static void dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2, int arg3) { complaint (&symfile_complaints, _("const value length mismatch for '%s', got %d, expected %d"), arg1, arg2, arg3); } static void dwarf2_macros_too_long_complaint (void) { complaint (&symfile_complaints, _("macro info runs off end of `.debug_macinfo' section")); } static void dwarf2_macro_malformed_definition_complaint (const char *arg1) { complaint (&symfile_complaints, _("macro debug info contains a malformed macro definition:\n`%s'"), arg1); } static void dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2) { complaint (&symfile_complaints, _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2); } /* local function prototypes */ static void dwarf2_locate_sections (bfd *, asection *, void *); #if 0 static void dwarf2_build_psymtabs_easy (struct objfile *); #endif static void dwarf2_create_include_psymtab (char *, struct partial_symtab *, struct objfile *); static void dwarf2_build_include_psymtabs (struct dwarf2_cu *, struct die_info *, struct partial_symtab *); static void dwarf2_build_psymtabs_hard (struct objfile *); static void scan_partial_symbols (struct partial_die_info *, CORE_ADDR *, CORE_ADDR *, int, struct dwarf2_cu *); static void add_partial_symbol (struct partial_die_info *, struct dwarf2_cu *); static int pdi_needs_namespace (enum dwarf_tag tag); static void add_partial_namespace (struct partial_die_info *pdi, CORE_ADDR *lowpc, CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu); static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc, CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu); static void add_partial_enumeration (struct partial_die_info *enum_pdi, struct dwarf2_cu *cu); static void add_partial_subprogram (struct partial_die_info *pdi, CORE_ADDR *lowpc, CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu); static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *buffer, gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu); static void dwarf2_psymtab_to_symtab (struct partial_symtab *); static void psymtab_to_symtab_1 (struct partial_symtab *); static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu); static void dwarf2_free_abbrev_table (void *); static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *, struct dwarf2_cu *); static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int, struct dwarf2_cu *); static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, gdb_byte *, int, struct dwarf2_cu *); static gdb_byte *read_partial_die (struct partial_die_info *, struct abbrev_info *abbrev, unsigned int, bfd *, gdb_byte *, gdb_byte *, struct dwarf2_cu *); static struct partial_die_info *find_partial_die (unsigned int, struct dwarf2_cu *); static void fixup_partial_die (struct partial_die_info *, struct dwarf2_cu *); static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *, bfd *, gdb_byte *, struct dwarf2_cu *); static gdb_byte *read_attribute_value (struct attribute *, unsigned, bfd *, gdb_byte *, struct dwarf2_cu *); static unsigned int read_1_byte (bfd *, gdb_byte *); static int read_1_signed_byte (bfd *, gdb_byte *); static unsigned int read_2_bytes (bfd *, gdb_byte *); static unsigned int read_4_bytes (bfd *, gdb_byte *); static ULONGEST read_8_bytes (bfd *, gdb_byte *); static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *, unsigned int *); static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *); static LONGEST read_checked_initial_length_and_offset (bfd *, gdb_byte *, const struct comp_unit_head *, unsigned int *, unsigned int *); static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *, unsigned int *); static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int); static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int); static char *read_string (bfd *, gdb_byte *, unsigned int *); static char *read_indirect_string (bfd *, gdb_byte *, const struct comp_unit_head *, unsigned int *); static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *); static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *); static gdb_byte *skip_leb128 (bfd *, gdb_byte *); static void set_cu_language (unsigned int, struct dwarf2_cu *); static struct attribute *dwarf2_attr (struct die_info *, unsigned int, struct dwarf2_cu *); static struct attribute *dwarf2_attr_no_follow (struct die_info *, unsigned int, struct dwarf2_cu *); static int dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu); static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu); static struct die_info *die_specification (struct die_info *die, struct dwarf2_cu **); static void free_line_header (struct line_header *lh); static void add_file_name (struct line_header *, char *, unsigned int, unsigned int, unsigned int); static struct line_header *(dwarf_decode_line_header (unsigned int offset, bfd *abfd, struct dwarf2_cu *cu)); static void dwarf_decode_lines (struct line_header *, char *, bfd *, struct dwarf2_cu *, struct partial_symtab *); static void dwarf2_start_subfile (char *, char *, char *); static struct symbol *new_symbol (struct die_info *, struct type *, struct dwarf2_cu *); static void dwarf2_const_value (struct attribute *, struct symbol *, struct dwarf2_cu *); static void dwarf2_const_value_data (struct attribute *attr, struct symbol *sym, int bits); static struct type *die_type (struct die_info *, struct dwarf2_cu *); static int need_gnat_info (struct dwarf2_cu *); static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *); static void set_descriptive_type (struct type *, struct die_info *, struct dwarf2_cu *); static struct type *die_containing_type (struct die_info *, struct dwarf2_cu *); static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *); static struct type *read_type_die (struct die_info *, struct dwarf2_cu *); static char *determine_prefix (struct die_info *die, struct dwarf2_cu *); static char *typename_concat (struct obstack *, const char *prefix, const char *suffix, struct dwarf2_cu *); static void read_file_scope (struct die_info *, struct dwarf2_cu *); static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *); static void read_func_scope (struct die_info *, struct dwarf2_cu *); static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *); static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *, struct partial_symtab *); static int dwarf2_get_pc_bounds (struct die_info *, CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *, struct partial_symtab *); static void get_scope_pc_bounds (struct die_info *, CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *); static void dwarf2_record_block_ranges (struct die_info *, struct block *, CORE_ADDR, struct dwarf2_cu *); static void dwarf2_add_field (struct field_info *, struct die_info *, struct dwarf2_cu *); static void dwarf2_attach_fields_to_type (struct field_info *, struct type *, struct dwarf2_cu *); static void dwarf2_add_member_fn (struct field_info *, struct die_info *, struct type *, struct dwarf2_cu *); static void dwarf2_attach_fn_fields_to_type (struct field_info *, struct type *, struct dwarf2_cu *); static void process_structure_scope (struct die_info *, struct dwarf2_cu *); static const char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu); static void read_common_block (struct die_info *, struct dwarf2_cu *); static void read_namespace (struct die_info *die, struct dwarf2_cu *); static void read_module (struct die_info *die, struct dwarf2_cu *cu); static void read_import_statement (struct die_info *die, struct dwarf2_cu *); static const char *namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *); static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *); static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *); static enum dwarf_array_dim_ordering read_array_order (struct die_info *, struct dwarf2_cu *); static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *); static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader, gdb_byte *info_ptr, gdb_byte **new_info_ptr, struct die_info *parent); static struct die_info *read_die_and_children (const struct die_reader_specs *reader, gdb_byte *info_ptr, gdb_byte **new_info_ptr, struct die_info *parent); static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader, gdb_byte *info_ptr, gdb_byte **new_info_ptr, struct die_info *parent); static gdb_byte *read_full_die (const struct die_reader_specs *reader, struct die_info **, gdb_byte *, int *); static void process_die (struct die_info *, struct dwarf2_cu *); static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *); static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *, struct obstack *); static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *); static struct die_info *dwarf2_extension (struct die_info *die, struct dwarf2_cu **); static char *dwarf_tag_name (unsigned int); static char *dwarf_attr_name (unsigned int); static char *dwarf_form_name (unsigned int); static char *dwarf_stack_op_name (unsigned int); static char *dwarf_bool_name (unsigned int); static char *dwarf_type_encoding_name (unsigned int); #if 0 static char *dwarf_cfi_name (unsigned int); #endif static struct die_info *sibling_die (struct die_info *); static void dump_die_shallow (struct ui_file *, int indent, struct die_info *); static void dump_die_for_error (struct die_info *); static void dump_die_1 (struct ui_file *, int level, int max_level, struct die_info *); /*static*/ void dump_die (struct die_info *, int max_level); static void store_in_ref_table (struct die_info *, struct dwarf2_cu *); static int is_ref_attr (struct attribute *); static unsigned int dwarf2_get_ref_die_offset (struct attribute *); static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int); static struct die_info *follow_die_ref_or_sig (struct die_info *, struct attribute *, struct dwarf2_cu **); static struct die_info *follow_die_ref (struct die_info *, struct attribute *, struct dwarf2_cu **); static struct die_info *follow_die_sig (struct die_info *, struct attribute *, struct dwarf2_cu **); static void read_signatured_type_at_offset (struct objfile *objfile, unsigned int offset); static void read_signatured_type (struct objfile *, struct signatured_type *type_sig); /* memory allocation interface */ static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *); static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *); static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int); static void initialize_cu_func_list (struct dwarf2_cu *); static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR, struct dwarf2_cu *); static void dwarf_decode_macros (struct line_header *, unsigned int, char *, bfd *, struct dwarf2_cu *); static int attr_form_is_block (struct attribute *); static int attr_form_is_section_offset (struct attribute *); static int attr_form_is_constant (struct attribute *); static void dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym, struct dwarf2_cu *cu); static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr, struct abbrev_info *abbrev, struct dwarf2_cu *cu); static void free_stack_comp_unit (void *); static hashval_t partial_die_hash (const void *item); static int partial_die_eq (const void *item_lhs, const void *item_rhs); static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit (unsigned int offset, struct objfile *objfile); static struct dwarf2_per_cu_data *dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile); static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile); static void free_one_comp_unit (void *); static void free_cached_comp_units (void *); static void age_cached_comp_units (void); static void free_one_cached_comp_unit (void *); static struct type *set_die_type (struct die_info *, struct type *, struct dwarf2_cu *); static void create_all_comp_units (struct objfile *); static void load_full_comp_unit (struct dwarf2_per_cu_data *, struct objfile *); static void process_full_comp_unit (struct dwarf2_per_cu_data *); static void dwarf2_add_dependence (struct dwarf2_cu *, struct dwarf2_per_cu_data *); static void dwarf2_mark (struct dwarf2_cu *); static void dwarf2_clear_marks (struct dwarf2_per_cu_data *); static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu); /* Try to locate the sections we need for DWARF 2 debugging information and return true if we have enough to do something. */ int dwarf2_has_info (struct objfile *objfile) { struct dwarf2_per_objfile *data; /* Initialize per-objfile state. */ data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data)); memset (data, 0, sizeof (*data)); set_objfile_data (objfile, dwarf2_objfile_data_key, data); dwarf2_per_objfile = data; bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL); return (data->info.asection != NULL && data->abbrev.asection != NULL); } /* When loading sections, we can either look for ".<name>", or for * ".z<name>", which indicates a compressed section. */ static int section_is_p (const char *section_name, const char *name) { return (section_name[0] == '.' && (strcmp (section_name + 1, name) == 0 || (section_name[1] == 'z' && strcmp (section_name + 2, name) == 0))); } /* This function is mapped across the sections and remembers the offset and size of each of the debugging sections we are interested in. */ static void dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr) { if (section_is_p (sectp->name, INFO_SECTION)) { dwarf2_per_objfile->info.asection = sectp; dwarf2_per_objfile->info.size = bfd_get_section_size (sectp); } else if (section_is_p (sectp->name, ABBREV_SECTION)) { dwarf2_per_objfile->abbrev.asection = sectp; dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp); } else if (section_is_p (sectp->name, LINE_SECTION)) { dwarf2_per_objfile->line.asection = sectp; dwarf2_per_objfile->line.size = bfd_get_section_size (sectp); } else if (section_is_p (sectp->name, PUBNAMES_SECTION)) { dwarf2_per_objfile->pubnames.asection = sectp; dwarf2_per_objfile->pubnames.size = bfd_get_section_size (sectp); } else if (section_is_p (sectp->name, ARANGES_SECTION)) { dwarf2_per_objfile->aranges.asection = sectp; dwarf2_per_objfile->aranges.size = bfd_get_section_size (sectp); } else if (section_is_p (sectp->name, LOC_SECTION)) { dwarf2_per_objfile->loc.asection = sectp; dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp); } else if (section_is_p (sectp->name, MACINFO_SECTION)) { dwarf2_per_objfile->macinfo.asection = sectp; dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp); } else if (section_is_p (sectp->name, STR_SECTION)) { dwarf2_per_objfile->str.asection = sectp; dwarf2_per_objfile->str.size = bfd_get_section_size (sectp); } else if (section_is_p (sectp->name, FRAME_SECTION)) { dwarf2_per_objfile->frame.asection = sectp; dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp); } else if (section_is_p (sectp->name, EH_FRAME_SECTION)) { flagword aflag = bfd_get_section_flags (ignore_abfd, sectp); if (aflag & SEC_HAS_CONTENTS) { dwarf2_per_objfile->eh_frame.asection = sectp; dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp); } } else if (section_is_p (sectp->name, RANGES_SECTION)) { dwarf2_per_objfile->ranges.asection = sectp; dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp); } else if (section_is_p (sectp->name, TYPES_SECTION)) { dwarf2_per_objfile->types.asection = sectp; dwarf2_per_objfile->types.size = bfd_get_section_size (sectp); } if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD) && bfd_section_vma (abfd, sectp) == 0) dwarf2_per_objfile->has_section_at_zero = 1; } /* Decompress a section that was compressed using zlib. Store the decompressed buffer, and its size, in OUTBUF and OUTSIZE. */ static void zlib_decompress_section (struct objfile *objfile, asection *sectp, gdb_byte **outbuf, bfd_size_type *outsize) { bfd *abfd = objfile->obfd; #ifndef HAVE_ZLIB_H error (_("Support for zlib-compressed DWARF data (from '%s') " "is disabled in this copy of GDB"), bfd_get_filename (abfd)); #else bfd_size_type compressed_size = bfd_get_section_size (sectp); gdb_byte *compressed_buffer = xmalloc (compressed_size); struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer); bfd_size_type uncompressed_size; gdb_byte *uncompressed_buffer; z_stream strm; int rc; int header_size = 12; if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size) error (_("Dwarf Error: Can't read DWARF data from '%s'"), bfd_get_filename (abfd)); /* Read the zlib header. In this case, it should be "ZLIB" followed by the uncompressed section size, 8 bytes in big-endian order. */ if (compressed_size < header_size || strncmp (compressed_buffer, "ZLIB", 4) != 0) error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"), bfd_get_filename (abfd)); uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8; uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8; uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8; uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8; uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8; uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8; uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8; uncompressed_size += compressed_buffer[11]; /* It is possible the section consists of several compressed buffers concatenated together, so we uncompress in a loop. */ strm.zalloc = NULL; strm.zfree = NULL; strm.opaque = NULL; strm.avail_in = compressed_size - header_size; strm.next_in = (Bytef*) compressed_buffer + header_size; strm.avail_out = uncompressed_size; uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack, uncompressed_size); rc = inflateInit (&strm); while (strm.avail_in > 0) { if (rc != Z_OK) error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"), bfd_get_filename (abfd), rc); strm.next_out = ((Bytef*) uncompressed_buffer + (uncompressed_size - strm.avail_out)); rc = inflate (&strm, Z_FINISH); if (rc != Z_STREAM_END) error (_("Dwarf Error: zlib error uncompressing from '%s': %d"), bfd_get_filename (abfd), rc); rc = inflateReset (&strm); } rc = inflateEnd (&strm); if (rc != Z_OK || strm.avail_out != 0) error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"), bfd_get_filename (abfd), rc); do_cleanups (cleanup); *outbuf = uncompressed_buffer; *outsize = uncompressed_size; #endif } /* Read the contents of the section SECTP from object file specified by OBJFILE, store info about the section into INFO. If the section is compressed, uncompress it before returning. */ static void dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info) { bfd *abfd = objfile->obfd; asection *sectp = info->asection; gdb_byte *buf, *retbuf; unsigned char header[4]; info->buffer = NULL; info->was_mmapped = 0; if (info->asection == NULL || info->size == 0) return; /* Check if the file has a 4-byte header indicating compression. */ if (info->size > sizeof (header) && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0 && bfd_bread (header, sizeof (header), abfd) == sizeof (header)) { /* Upon decompression, update the buffer and its size. */ if (strncmp (header, "ZLIB", sizeof (header)) == 0) { zlib_decompress_section (objfile, sectp, &info->buffer, &info->size); return; } } #ifdef HAVE_MMAP if (pagesize == 0) pagesize = getpagesize (); /* Only try to mmap sections which are large enough: we don't want to waste space due to fragmentation. Also, only try mmap for sections without relocations. */ if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0) { off_t pg_offset = sectp->filepos & ~(pagesize - 1); size_t map_length = info->size + sectp->filepos - pg_offset; caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ, MAP_PRIVATE, pg_offset); if (retbuf != MAP_FAILED) { info->was_mmapped = 1; info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ; return; } } #endif /* If we get here, we are a normal, not-compressed section. */ info->buffer = buf = obstack_alloc (&objfile->objfile_obstack, info->size); /* When debugging .o files, we may need to apply relocations; see http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html . We never compress sections in .o files, so we only need to try this when the section is not compressed. */ retbuf = symfile_relocate_debug_section (objfile, sectp, buf); if (retbuf != NULL) { info->buffer = retbuf; return; } if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0 || bfd_bread (buf, info->size, abfd) != info->size) error (_("Dwarf Error: Can't read DWARF data from '%s'"), bfd_get_filename (abfd)); } /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and SECTION_NAME. */ void dwarf2_get_section_info (struct objfile *objfile, const char *section_name, asection **sectp, gdb_byte **bufp, bfd_size_type *sizep) { struct dwarf2_per_objfile *data = objfile_data (objfile, dwarf2_objfile_data_key); struct dwarf2_section_info *info; if (section_is_p (section_name, EH_FRAME_SECTION)) info = &data->eh_frame; else if (section_is_p (section_name, FRAME_SECTION)) info = &data->frame; else gdb_assert (0); if (info->asection != NULL && info->size != 0 && info->buffer == NULL) /* We haven't read this section in yet. Do it now. */ dwarf2_read_section (objfile, info); *sectp = info->asection; *bufp = info->buffer; *sizep = info->size; } /* Build a partial symbol table. */ void dwarf2_build_psymtabs (struct objfile *objfile) { dwarf2_read_section (objfile, &dwarf2_per_objfile->info); dwarf2_read_section (objfile, &dwarf2_per_objfile->abbrev); dwarf2_read_section (objfile, &dwarf2_per_objfile->line); dwarf2_read_section (objfile, &dwarf2_per_objfile->str); dwarf2_read_section (objfile, &dwarf2_per_objfile->macinfo); dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges); dwarf2_read_section (objfile, &dwarf2_per_objfile->types); dwarf2_read_section (objfile, &dwarf2_per_objfile->loc); dwarf2_read_section (objfile, &dwarf2_per_objfile->eh_frame); dwarf2_read_section (objfile, &dwarf2_per_objfile->frame); if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0) { init_psymbol_list (objfile, 1024); } #if 0 if (dwarf_aranges_offset && dwarf_pubnames_offset) { /* Things are significantly easier if we have .debug_aranges and .debug_pubnames sections */ dwarf2_build_psymtabs_easy (objfile); } else #endif /* only test this case for now */ { /* In this case we have to work a bit harder */ dwarf2_build_psymtabs_hard (objfile); } } #if 0 /* Build the partial symbol table from the information in the .debug_pubnames and .debug_aranges sections. */ static void dwarf2_build_psymtabs_easy (struct objfile *objfile) { bfd *abfd = objfile->obfd; char *aranges_buffer, *pubnames_buffer; char *aranges_ptr, *pubnames_ptr; unsigned int entry_length, version, info_offset, info_size; pubnames_buffer = dwarf2_read_section (objfile, dwarf_pubnames_section); pubnames_ptr = pubnames_buffer; while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames.size) { unsigned int bytes_read; entry_length = read_initial_length (abfd, pubnames_ptr, &bytes_read); pubnames_ptr += bytes_read; version = read_1_byte (abfd, pubnames_ptr); pubnames_ptr += 1; info_offset = read_4_bytes (abfd, pubnames_ptr); pubnames_ptr += 4; info_size = read_4_bytes (abfd, pubnames_ptr); pubnames_ptr += 4; } aranges_buffer = dwarf2_read_section (objfile, dwarf_aranges_section); } #endif /* Return TRUE if OFFSET is within CU_HEADER. */ static inline int offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset) { unsigned int bottom = cu_header->offset; unsigned int top = (cu_header->offset + cu_header->length + cu_header->initial_length_size); return (offset >= bottom && offset < top); } /* Read in the comp unit header information from the debug_info at info_ptr. NOTE: This leaves members offset, first_die_offset to be filled in by the caller. */ static gdb_byte * read_comp_unit_head (struct comp_unit_head *cu_header, gdb_byte *info_ptr, bfd *abfd) { int signed_addr; unsigned int bytes_read; cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read); cu_header->initial_length_size = bytes_read; cu_header->offset_size = (bytes_read == 4) ? 4 : 8; info_ptr += bytes_read; cu_header->version = read_2_bytes (abfd, info_ptr); info_ptr += 2; cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read); info_ptr += bytes_read; cu_header->addr_size = read_1_byte (abfd, info_ptr); info_ptr += 1; signed_addr = bfd_get_sign_extend_vma (abfd); if (signed_addr < 0) internal_error (__FILE__, __LINE__, _("read_comp_unit_head: dwarf from non elf file")); cu_header->signed_addr_p = signed_addr; return info_ptr; } static gdb_byte * partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr, gdb_byte *buffer, unsigned int buffer_size, bfd *abfd) { gdb_byte *beg_of_comp_unit = info_ptr; info_ptr = read_comp_unit_head (header, info_ptr, abfd); if (header->version != 2 && header->version != 3) error (_("Dwarf Error: wrong version in compilation unit header " "(is %d, should be %d) [in module %s]"), header->version, 2, bfd_get_filename (abfd)); if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size) error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header " "(offset 0x%lx + 6) [in module %s]"), (long) header->abbrev_offset, (long) (beg_of_comp_unit - buffer), bfd_get_filename (abfd)); if (beg_of_comp_unit + header->length + header->initial_length_size > buffer + buffer_size) error (_("Dwarf Error: bad length (0x%lx) in compilation unit header " "(offset 0x%lx + 0) [in module %s]"), (long) header->length, (long) (beg_of_comp_unit - buffer), bfd_get_filename (abfd)); return info_ptr; } /* Read in the types comp unit header information from .debug_types entry at types_ptr. The result is a pointer to one past the end of the header. */ static gdb_byte * read_type_comp_unit_head (struct comp_unit_head *cu_header, ULONGEST *signature, gdb_byte *types_ptr, bfd *abfd) { unsigned int bytes_read; gdb_byte *initial_types_ptr = types_ptr; cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer; types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd); *signature = read_8_bytes (abfd, types_ptr); types_ptr += 8; types_ptr += cu_header->offset_size; cu_header->first_die_offset = types_ptr - initial_types_ptr; return types_ptr; } /* Allocate a new partial symtab for file named NAME and mark this new partial symtab as being an include of PST. */ static void dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst, struct objfile *objfile) { struct partial_symtab *subpst = allocate_psymtab (name, objfile); subpst->section_offsets = pst->section_offsets; subpst->textlow = 0; subpst->texthigh = 0; subpst->dependencies = (struct partial_symtab **) obstack_alloc (&objfile->objfile_obstack, sizeof (struct partial_symtab *)); subpst->dependencies[0] = pst; subpst->number_of_dependencies = 1; subpst->globals_offset = 0; subpst->n_global_syms = 0; subpst->statics_offset = 0; subpst->n_static_syms = 0; subpst->symtab = NULL; subpst->read_symtab = pst->read_symtab; subpst->readin = 0; /* No private part is necessary for include psymtabs. This property can be used to differentiate between such include psymtabs and the regular ones. */ subpst->read_symtab_private = NULL; } /* Read the Line Number Program data and extract the list of files included by the source file represented by PST. Build an include partial symtab for each of these included files. */ static void dwarf2_build_include_psymtabs (struct dwarf2_cu *cu, struct die_info *die, struct partial_symtab *pst) { struct objfile *objfile = cu->objfile; bfd *abfd = objfile->obfd; struct line_header *lh = NULL; struct attribute *attr; attr = dwarf2_attr (die, DW_AT_stmt_list, cu); if (attr) { unsigned int line_offset = DW_UNSND (attr); lh = dwarf_decode_line_header (line_offset, abfd, cu); } if (lh == NULL) return; /* No linetable, so no includes. */ dwarf_decode_lines (lh, NULL, abfd, cu, pst); free_line_header (lh); } static hashval_t hash_type_signature (const void *item) { const struct signatured_type *type_sig = item; /* This drops the top 32 bits of the signature, but is ok for a hash. */ return type_sig->signature; } static int eq_type_signature (const void *item_lhs, const void *item_rhs) { const struct signatured_type *lhs = item_lhs; const struct signatured_type *rhs = item_rhs; return lhs->signature == rhs->signature; } /* Create the hash table of all entries in the .debug_types section. The result is zero if there is an error (e.g. missing .debug_types section), otherwise non-zero. */ static int create_debug_types_hash_table (struct objfile *objfile) { gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer; htab_t types_htab; if (info_ptr == NULL) { dwarf2_per_objfile->signatured_types = NULL; return 0; } types_htab = htab_create_alloc_ex (41, hash_type_signature, eq_type_signature, NULL, &objfile->objfile_obstack, hashtab_obstack_allocate, dummy_obstack_deallocate); if (dwarf2_die_debug) fprintf_unfiltered (gdb_stdlog, "Signatured types:\n"); while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size) { unsigned int offset; unsigned int offset_size; unsigned int type_offset; unsigned int length, initial_length_size; unsigned short version; ULONGEST signature; struct signatured_type *type_sig; void **slot; gdb_byte *ptr = info_ptr; offset = ptr - dwarf2_per_objfile->types.buffer; /* We need to read the type's signature in order to build the hash table, but we don't need to read anything else just yet. */ /* Sanity check to ensure entire cu is present. */ length = read_initial_length (objfile->obfd, ptr, &initial_length_size); if (ptr + length + initial_length_size > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size) { complaint (&symfile_complaints, _("debug type entry runs off end of `.debug_types' section, ignored")); break; } offset_size = initial_length_size == 4 ? 4 : 8; ptr += initial_length_size; version = bfd_get_16 (objfile->obfd, ptr); ptr += 2; ptr += offset_size; /* abbrev offset */ ptr += 1; /* address size */ signature = bfd_get_64 (objfile->obfd, ptr); ptr += 8; type_offset = read_offset_1 (objfile->obfd, ptr, offset_size); type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig)); memset (type_sig, 0, sizeof (*type_sig)); type_sig->signature = signature; type_sig->offset = offset; type_sig->type_offset = type_offset; slot = htab_find_slot (types_htab, type_sig, INSERT); gdb_assert (slot != NULL); *slot = type_sig; if (dwarf2_die_debug) fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n", offset, phex (signature, sizeof (signature))); info_ptr = info_ptr + initial_length_size + length; } dwarf2_per_objfile->signatured_types = types_htab; return 1; } /* Lookup a signature based type. Returns NULL if SIG is not present in the table. */ static struct signatured_type * lookup_signatured_type (struct objfile *objfile, ULONGEST sig) { struct signatured_type find_entry, *entry; if (dwarf2_per_objfile->signatured_types == NULL) { complaint (&symfile_complaints, _("missing `.debug_types' section for DW_FORM_sig8 die")); return 0; } find_entry.signature = sig; entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry); return entry; } /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */ static void init_cu_die_reader (struct die_reader_specs *reader, struct dwarf2_cu *cu) { reader->abfd = cu->objfile->obfd; reader->cu = cu; if (cu->per_cu->from_debug_types) reader->buffer = dwarf2_per_objfile->types.buffer; else reader->buffer = dwarf2_per_objfile->info.buffer; } /* Find the base address of the compilation unit for range lists and location lists. It will normally be specified by DW_AT_low_pc. In DWARF-3 draft 4, the base address could be overridden by DW_AT_entry_pc. It's been removed, but GCC still uses this for compilation units with discontinuous ranges. */ static void dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu) { struct attribute *attr; cu->base_known = 0; cu->base_address = 0; attr = dwarf2_attr (die, DW_AT_entry_pc, cu); if (attr) { cu->base_address = DW_ADDR (attr); cu->base_known = 1; } else { attr = dwarf2_attr (die, DW_AT_low_pc, cu); if (attr) { cu->base_address = DW_ADDR (attr); cu->base_known = 1; } } } /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard to combine the common parts. Process a compilation unit for a psymtab. BUFFER is a pointer to the beginning of the dwarf section buffer, either .debug_info or debug_types. INFO_PTR is a pointer to the start of the CU. Returns a pointer to the next CU. */ static gdb_byte * process_psymtab_comp_unit (struct objfile *objfile, struct dwarf2_per_cu_data *this_cu, gdb_byte *buffer, gdb_byte *info_ptr, unsigned int buffer_size) { bfd *abfd = objfile->obfd; gdb_byte *beg_of_comp_unit = info_ptr; struct die_info *comp_unit_die; struct partial_symtab *pst; CORE_ADDR baseaddr; struct cleanup *back_to_inner; struct dwarf2_cu cu; unsigned int bytes_read; int has_children, has_pc_info; struct attribute *attr; const char *name; CORE_ADDR best_lowpc = 0, best_highpc = 0; struct die_reader_specs reader_specs; memset (&cu, 0, sizeof (cu)); cu.objfile = objfile; obstack_init (&cu.comp_unit_obstack); back_to_inner = make_cleanup (free_stack_comp_unit, &cu); info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, buffer, buffer_size, abfd); /* Complete the cu_header. */ cu.header.offset = beg_of_comp_unit - buffer; cu.header.first_die_offset = info_ptr - beg_of_comp_unit; cu.list_in_scope = &file_symbols; /* If this compilation unit was already read in, free the cached copy in order to read it in again. This is necessary because we skipped some symbols when we first read in the compilation unit (see load_partial_dies). This problem could be avoided, but the benefit is unclear. */ if (this_cu->cu != NULL) free_one_cached_comp_unit (this_cu->cu); /* Note that this is a pointer to our stack frame, being added to a global data structure. It will be cleaned up in free_stack_comp_unit when we finish with this compilation unit. */ this_cu->cu = &cu; cu.per_cu = this_cu; /* Read the abbrevs for this compilation unit into a table. */ dwarf2_read_abbrevs (abfd, &cu); make_cleanup (dwarf2_free_abbrev_table, &cu); /* Read the compilation unit die. */ if (this_cu->from_debug_types) info_ptr += 8 /*signature*/ + cu.header.offset_size; init_cu_die_reader (&reader_specs, &cu); info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr, &has_children); if (this_cu->from_debug_types) { /* offset,length haven't been set yet for type units. */ this_cu->offset = cu.header.offset; this_cu->length = cu.header.length + cu.header.initial_length_size; } else if (comp_unit_die->tag == DW_TAG_partial_unit) { info_ptr = (beg_of_comp_unit + cu.header.length + cu.header.initial_length_size); do_cleanups (back_to_inner); return info_ptr; } /* Set the language we're debugging. */ attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu); if (attr) set_cu_language (DW_UNSND (attr), &cu); else set_cu_language (language_minimal, &cu); /* Allocate a new partial symbol table structure. */ attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu); pst = start_psymtab_common (objfile, objfile->section_offsets, (attr != NULL) ? DW_STRING (attr) : "", /* TEXTLOW and TEXTHIGH are set below. */ 0, objfile->global_psymbols.next, objfile->static_psymbols.next); attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu); if (attr != NULL) pst->dirname = DW_STRING (attr); pst->read_symtab_private = (char *) this_cu; baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); /* Store the function that reads in the rest of the symbol table */ pst->read_symtab = dwarf2_psymtab_to_symtab; this_cu->psymtab = pst; dwarf2_find_base_address (comp_unit_die, &cu); /* Possibly set the default values of LOWPC and HIGHPC from `DW_AT_ranges'. */ has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc, &best_highpc, &cu, pst); if (has_pc_info == 1 && best_lowpc < best_highpc) /* Store the contiguous range if it is not empty; it can be empty for CUs with no code. */ addrmap_set_empty (objfile->psymtabs_addrmap, best_lowpc + baseaddr, best_highpc + baseaddr - 1, pst); /* Check if comp unit has_children. If so, read the rest of the partial symbols from this comp unit. If not, there's no more debug_info for this comp unit. */ if (has_children) { struct partial_die_info *first_die; CORE_ADDR lowpc, highpc; lowpc = ((CORE_ADDR) -1); highpc = ((CORE_ADDR) 0); first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu); scan_partial_symbols (first_die, &lowpc, &highpc, ! has_pc_info, &cu); /* If we didn't find a lowpc, set it to highpc to avoid complaints from `maint check'. */ if (lowpc == ((CORE_ADDR) -1)) lowpc = highpc; /* If the compilation unit didn't have an explicit address range, then use the information extracted from its child dies. */ if (! has_pc_info) { best_lowpc = lowpc; best_highpc = highpc; } } pst->textlow = best_lowpc + baseaddr; pst->texthigh = best_highpc + baseaddr; pst->n_global_syms = objfile->global_psymbols.next - (objfile->global_psymbols.list + pst->globals_offset); pst->n_static_syms = objfile->static_psymbols.next - (objfile->static_psymbols.list + pst->statics_offset); sort_pst_symbols (pst); info_ptr = (beg_of_comp_unit + cu.header.length + cu.header.initial_length_size); if (this_cu->from_debug_types) { /* It's not clear we want to do anything with stmt lists here. Waiting to see what gcc ultimately does. */ } else { /* Get the list of files included in the current compilation unit, and build a psymtab for each of them. */ dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst); } do_cleanups (back_to_inner); return info_ptr; } /* Traversal function for htab_traverse_noresize. Process one .debug_types comp-unit. */ static int process_type_comp_unit (void **slot, void *info) { struct signatured_type *entry = (struct signatured_type *) *slot; struct objfile *objfile = (struct objfile *) info; struct dwarf2_per_cu_data *this_cu; this_cu = &entry->per_cu; this_cu->from_debug_types = 1; process_psymtab_comp_unit (objfile, this_cu, dwarf2_per_objfile->types.buffer, dwarf2_per_objfile->types.buffer + entry->offset, dwarf2_per_objfile->types.size); return 1; } /* Subroutine of dwarf2_build_psymtabs_hard to simplify it. Build partial symbol tables for the .debug_types comp-units. */ static void build_type_psymtabs (struct objfile *objfile) { if (! create_debug_types_hash_table (objfile)) return; htab_traverse_noresize (dwarf2_per_objfile->signatured_types, process_type_comp_unit, objfile); } /* Build the partial symbol table by doing a quick pass through the .debug_info and .debug_abbrev sections. */ static void dwarf2_build_psymtabs_hard (struct objfile *objfile) { /* Instead of reading this into a big buffer, we should probably use mmap() on architectures that support it. (FIXME) */ bfd *abfd = objfile->obfd; gdb_byte *info_ptr; struct cleanup *back_to; info_ptr = dwarf2_per_objfile->info.buffer; /* Any cached compilation units will be linked by the per-objfile read_in_chain. Make sure to free them when we're done. */ back_to = make_cleanup (free_cached_comp_units, NULL); build_type_psymtabs (objfile); create_all_comp_units (objfile); objfile->psymtabs_addrmap = addrmap_create_mutable (&objfile->objfile_obstack); /* Since the objects we're extracting from .debug_info vary in length, only the individual functions to extract them (like read_comp_unit_head and load_partial_die) can really know whether the buffer is large enough to hold another complete object. At the moment, they don't actually check that. If .debug_info holds just one extra byte after the last compilation unit's dies, then read_comp_unit_head will happily read off the end of the buffer. read_partial_die is similarly casual. Those functions should be fixed. For this loop condition, simply checking whether there's any data left at all should be sufficient. */ while (info_ptr < (dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)) { struct dwarf2_per_cu_data *this_cu; this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer, objfile); info_ptr = process_psymtab_comp_unit (objfile, this_cu, dwarf2_per_objfile->info.buffer, info_ptr, dwarf2_per_objfile->info.size); } objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap, &objfile->objfile_obstack); do_cleanups (back_to); } /* Load the partial DIEs for a secondary CU into memory. */ static void load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile) { bfd *abfd = objfile->obfd; gdb_byte *info_ptr, *beg_of_comp_unit; struct die_info *comp_unit_die; struct dwarf2_cu *cu; unsigned int bytes_read; struct cleanup *back_to; struct attribute *attr; int has_children; struct die_reader_specs reader_specs; gdb_assert (! this_cu->from_debug_types); info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset; beg_of_comp_unit = info_ptr; cu = alloc_one_comp_unit (objfile); /* ??? Missing cleanup for CU? */ /* Link this compilation unit into the compilation unit tree. */ this_cu->cu = cu; cu->per_cu = this_cu; cu->type_hash = this_cu->type_hash; info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, dwarf2_per_objfile->info.buffer, dwarf2_per_objfile->info.size, abfd); /* Complete the cu_header. */ cu->header.offset = this_cu->offset; cu->header.first_die_offset = info_ptr - beg_of_comp_unit; /* Read the abbrevs for this compilation unit into a table. */ dwarf2_read_abbrevs (abfd, cu); back_to = make_cleanup (dwarf2_free_abbrev_table, cu); /* Read the compilation unit die. */ init_cu_die_reader (&reader_specs, cu); info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr, &has_children); /* Set the language we're debugging. */ attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu); if (attr) set_cu_language (DW_UNSND (attr), cu); else set_cu_language (language_minimal, cu); /* Check if comp unit has_children. If so, read the rest of the partial symbols from this comp unit. If not, there's no more debug_info for this comp unit. */ if (has_children) load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu); do_cleanups (back_to); } /* Create a list of all compilation units in OBJFILE. We do this only if an inter-comp-unit reference is found; presumably if there is one, there will be many, and one will occur early in the .debug_info section. So there's no point in building this list incrementally. */ static void create_all_comp_units (struct objfile *objfile) { int n_allocated; int n_comp_units; struct dwarf2_per_cu_data **all_comp_units; gdb_byte *info_ptr = dwarf2_per_objfile->info.buffer; n_comp_units = 0; n_allocated = 10; all_comp_units = xmalloc (n_allocated * sizeof (struct dwarf2_per_cu_data *)); while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size) { unsigned int length, initial_length_size; gdb_byte *beg_of_comp_unit; struct dwarf2_per_cu_data *this_cu; unsigned int offset; offset = info_ptr - dwarf2_per_objfile->info.buffer; /* Read just enough information to find out where the next compilation unit is. */ length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size); /* Save the compilation unit for later lookup. */ this_cu = obstack_alloc (&objfile->objfile_obstack, sizeof (struct dwarf2_per_cu_data)); memset (this_cu, 0, sizeof (*this_cu)); this_cu->offset = offset; this_cu->length = length + initial_length_size; if (n_comp_units == n_allocated) { n_allocated *= 2; all_comp_units = xrealloc (all_comp_units, n_allocated * sizeof (struct dwarf2_per_cu_data *)); } all_comp_units[n_comp_units++] = this_cu; info_ptr = info_ptr + this_cu->length; } dwarf2_per_objfile->all_comp_units = obstack_alloc (&objfile->objfile_obstack, n_comp_units * sizeof (struct dwarf2_per_cu_data *)); memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units, n_comp_units * sizeof (struct dwarf2_per_cu_data *)); xfree (all_comp_units); dwarf2_per_objfile->n_comp_units = n_comp_units; } /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or DW_AT_ranges). If NEED_PC is set, then this function will set *LOWPC and *HIGHPC to the lowest and highest PC values found in CU and record the covered ranges in the addrmap. */ static void scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc, CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; bfd *abfd = objfile->obfd; struct partial_die_info *pdi; /* Now, march along the PDI's, descending into ones which have interesting children but skipping the children of the other ones, until we reach the end of the compilation unit. */ pdi = first_die; while (pdi != NULL) { fixup_partial_die (pdi, cu); /* Anonymous namespaces have no name but have interesting children, so we need to look at them. Ditto for anonymous enums. */ if (pdi->name != NULL || pdi->tag == DW_TAG_namespace || pdi->tag == DW_TAG_enumeration_type) { switch (pdi->tag) { case DW_TAG_subprogram: add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu); break; case DW_TAG_variable: case DW_TAG_typedef: case DW_TAG_union_type: if (!pdi->is_declaration) { add_partial_symbol (pdi, cu); } break; case DW_TAG_class_type: case DW_TAG_interface_type: case DW_TAG_structure_type: if (!pdi->is_declaration) { add_partial_symbol (pdi, cu); } break; case DW_TAG_enumeration_type: if (!pdi->is_declaration) add_partial_enumeration (pdi, cu); break; case DW_TAG_base_type: case DW_TAG_subrange_type: /* File scope base type definitions are added to the partial symbol table. */ add_partial_symbol (pdi, cu); break; case DW_TAG_namespace: add_partial_namespace (pdi, lowpc, highpc, need_pc, cu); break; case DW_TAG_module: add_partial_module (pdi, lowpc, highpc, need_pc, cu); break; default: break; } } /* If the die has a sibling, skip to the sibling. */ pdi = pdi->die_sibling; } } /* Functions used to compute the fully scoped name of a partial DIE. Normally, this is simple. For C++, the parent DIE's fully scoped name is concatenated with "::" and the partial DIE's name. For Java, the same thing occurs except that "." is used instead of "::". Enumerators are an exception; they use the scope of their parent enumeration type, i.e. the name of the enumeration type is not prepended to the enumerator. There are two complexities. One is DW_AT_specification; in this case "parent" means the parent of the target of the specification, instead of the direct parent of the DIE. The other is compilers which do not emit DW_TAG_namespace; in this case we try to guess the fully qualified name of structure types from their members' linkage names. This must be done using the DIE's children rather than the children of any DW_AT_specification target. We only need to do this for structures at the top level, i.e. if the target of any DW_AT_specification (if any; otherwise the DIE itself) does not have a parent. */ /* Compute the scope prefix associated with PDI's parent, in compilation unit CU. The result will be allocated on CU's comp_unit_obstack, or a copy of the already allocated PDI->NAME field. NULL is returned if no prefix is necessary. */ static char * partial_die_parent_scope (struct partial_die_info *pdi, struct dwarf2_cu *cu) { char *grandparent_scope; struct partial_die_info *parent, *real_pdi; /* We need to look at our parent DIE; if we have a DW_AT_specification, then this means the parent of the specification DIE. */ real_pdi = pdi; while (real_pdi->has_specification) real_pdi = find_partial_die (real_pdi->spec_offset, cu); parent = real_pdi->die_parent; if (parent == NULL) return NULL; if (parent->scope_set) return parent->scope; fixup_partial_die (parent, cu); grandparent_scope = partial_die_parent_scope (parent, cu); if (parent->tag == DW_TAG_namespace || parent->tag == DW_TAG_structure_type || parent->tag == DW_TAG_class_type || parent->tag == DW_TAG_interface_type || parent->tag == DW_TAG_union_type || parent->tag == DW_TAG_enumeration_type) { if (grandparent_scope == NULL) parent->scope = parent->name; else parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope, parent->name, cu); } else if (parent->tag == DW_TAG_enumerator) /* Enumerators should not get the name of the enumeration as a prefix. */ parent->scope = grandparent_scope; else { /* FIXME drow/2004-04-01: What should we be doing with function-local names? For partial symbols, we should probably be ignoring them. */ complaint (&symfile_complaints, _("unhandled containing DIE tag %d for DIE at %d"), parent->tag, pdi->offset); parent->scope = grandparent_scope; } parent->scope_set = 1; return parent->scope; } /* Return the fully scoped name associated with PDI, from compilation unit CU. The result will be allocated with malloc. */ static char * partial_die_full_name (struct partial_die_info *pdi, struct dwarf2_cu *cu) { char *parent_scope; parent_scope = partial_die_parent_scope (pdi, cu); if (parent_scope == NULL) return NULL; else return typename_concat (NULL, parent_scope, pdi->name, cu); } static void add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; CORE_ADDR addr = 0; char *actual_name = NULL; const char *my_prefix; const struct partial_symbol *psym = NULL; CORE_ADDR baseaddr; int built_actual_name = 0; baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); if (pdi_needs_namespace (pdi->tag)) { actual_name = partial_die_full_name (pdi, cu); if (actual_name) built_actual_name = 1; } if (actual_name == NULL) actual_name = pdi->name; switch (pdi->tag) { case DW_TAG_subprogram: if (pdi->is_external || cu->language == language_ada) { /* brobecker/2007-12-26: Normally, only "external" DIEs are part of the global scope. But in Ada, we want to be able to access nested procedures globally. So all Ada subprograms are stored in the global scope. */ /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr, mst_text, objfile); */ psym = add_psymbol_to_list (actual_name, strlen (actual_name), built_actual_name, VAR_DOMAIN, LOC_BLOCK, &objfile->global_psymbols, 0, pdi->lowpc + baseaddr, cu->language, objfile); } else { /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr, mst_file_text, objfile); */ psym = add_psymbol_to_list (actual_name, strlen (actual_name), built_actual_name, VAR_DOMAIN, LOC_BLOCK, &objfile->static_psymbols, 0, pdi->lowpc + baseaddr, cu->language, objfile); } break; case DW_TAG_variable: if (pdi->is_external) { /* Global Variable. Don't enter into the minimal symbol tables as there is a minimal symbol table entry from the ELF symbols already. Enter into partial symbol table if it has a location descriptor or a type. If the location descriptor is missing, new_symbol will create a LOC_UNRESOLVED symbol, the address of the variable will then be determined from the minimal symbol table whenever the variable is referenced. The address for the partial symbol table entry is not used by GDB, but it comes in handy for debugging partial symbol table building. */ if (pdi->locdesc) addr = decode_locdesc (pdi->locdesc, cu); if (pdi->locdesc || pdi->has_type) psym = add_psymbol_to_list (actual_name, strlen (actual_name), built_actual_name, VAR_DOMAIN, LOC_STATIC, &objfile->global_psymbols, 0, addr + baseaddr, cu->language, objfile); } else { /* Static Variable. Skip symbols without location descriptors. */ if (pdi->locdesc == NULL) { if (built_actual_name) xfree (actual_name); return; } addr = decode_locdesc (pdi->locdesc, cu); /*prim_record_minimal_symbol (actual_name, addr + baseaddr, mst_file_data, objfile); */ psym = add_psymbol_to_list (actual_name, strlen (actual_name), built_actual_name, VAR_DOMAIN, LOC_STATIC, &objfile->static_psymbols, 0, addr + baseaddr, cu->language, objfile); } break; case DW_TAG_typedef: case DW_TAG_base_type: case DW_TAG_subrange_type: add_psymbol_to_list (actual_name, strlen (actual_name), built_actual_name, VAR_DOMAIN, LOC_TYPEDEF, &objfile->static_psymbols, 0, (CORE_ADDR) 0, cu->language, objfile); break; case DW_TAG_namespace: add_psymbol_to_list (actual_name, strlen (actual_name), built_actual_name, VAR_DOMAIN, LOC_TYPEDEF, &objfile->global_psymbols, 0, (CORE_ADDR) 0, cu->language, objfile); break; case DW_TAG_class_type: case DW_TAG_interface_type: case DW_TAG_structure_type: case DW_TAG_union_type: case DW_TAG_enumeration_type: /* Skip external references. The DWARF standard says in the section about "Structure, Union, and Class Type Entries": "An incomplete structure, union or class type is represented by a structure, union or class entry that does not have a byte size attribute and that has a DW_AT_declaration attribute." */ if (!pdi->has_byte_size && pdi->is_declaration) { if (built_actual_name) xfree (actual_name); return; } /* NOTE: carlton/2003-10-07: See comment in new_symbol about static vs. global. */ add_psymbol_to_list (actual_name, strlen (actual_name), built_actual_name, STRUCT_DOMAIN, LOC_TYPEDEF, (cu->language == language_cplus || cu->language == language_java) ? &objfile->global_psymbols : &objfile->static_psymbols, 0, (CORE_ADDR) 0, cu->language, objfile); break; case DW_TAG_enumerator: add_psymbol_to_list (actual_name, strlen (actual_name), built_actual_name, VAR_DOMAIN, LOC_CONST, (cu->language == language_cplus || cu->language == language_java) ? &objfile->global_psymbols : &objfile->static_psymbols, 0, (CORE_ADDR) 0, cu->language, objfile); break; default: break; } /* Check to see if we should scan the name for possible namespace info. Only do this if this is C++, if we don't have namespace debugging info in the file, if the psym is of an appropriate type (otherwise we'll have psym == NULL), and if we actually had a mangled name to begin with. */ /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the cases which do not set PSYM above? */ if (cu->language == language_cplus && cu->has_namespace_info == 0 && psym != NULL && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL) cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym), objfile); if (built_actual_name) xfree (actual_name); } /* Determine whether a die of type TAG living in a C++ class or namespace needs to have the name of the scope prepended to the name listed in the die. */ static int pdi_needs_namespace (enum dwarf_tag tag) { switch (tag) { case DW_TAG_namespace: case DW_TAG_typedef: case DW_TAG_class_type: case DW_TAG_interface_type: case DW_TAG_structure_type: case DW_TAG_union_type: case DW_TAG_enumeration_type: case DW_TAG_enumerator: return 1; default: return 0; } } /* Read a partial die corresponding to a namespace; also, add a symbol corresponding to that namespace to the symbol table. NAMESPACE is the name of the enclosing namespace. */ static void add_partial_namespace (struct partial_die_info *pdi, CORE_ADDR *lowpc, CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; /* Add a symbol for the namespace. */ add_partial_symbol (pdi, cu); /* Now scan partial symbols in that namespace. */ if (pdi->has_children) scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu); } /* Read a partial die corresponding to a Fortran module. */ static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc, CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu) { /* Now scan partial symbols in that module. FIXME: Support the separate Fortran module namespaces. */ if (pdi->has_children) scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu); } /* Read a partial die corresponding to a subprogram and create a partial symbol for that subprogram. When the CU language allows it, this routine also defines a partial symbol for each nested subprogram that this subprogram contains. DIE my also be a lexical block, in which case we simply search recursively for suprograms defined inside that lexical block. Again, this is only performed when the CU language allows this type of definitions. */ static void add_partial_subprogram (struct partial_die_info *pdi, CORE_ADDR *lowpc, CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu) { if (pdi->tag == DW_TAG_subprogram) { if (pdi->has_pc_info) { if (pdi->lowpc < *lowpc) *lowpc = pdi->lowpc; if (pdi->highpc > *highpc) *highpc = pdi->highpc; if (need_pc) { CORE_ADDR baseaddr; struct objfile *objfile = cu->objfile; baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); addrmap_set_empty (objfile->psymtabs_addrmap, pdi->lowpc + baseaddr, pdi->highpc - 1 + baseaddr, cu->per_cu->psymtab); } if (!pdi->is_declaration) add_partial_symbol (pdi, cu); } } if (! pdi->has_children) return; if (cu->language == language_ada) { pdi = pdi->die_child; while (pdi != NULL) { fixup_partial_die (pdi, cu); if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_lexical_block) add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu); pdi = pdi->die_sibling; } } } /* See if we can figure out if the class lives in a namespace. We do this by looking for a member function; its demangled name will contain namespace info, if there is any. */ static void guess_structure_name (struct partial_die_info *struct_pdi, struct dwarf2_cu *cu) { if ((cu->language == language_cplus || cu->language == language_java) && cu->has_namespace_info == 0 && struct_pdi->has_children) { /* NOTE: carlton/2003-10-07: Getting the info this way changes what template types look like, because the demangler frequently doesn't give the same name as the debug info. We could fix this by only using the demangled name to get the prefix (but see comment in read_structure_type). */ struct partial_die_info *child_pdi = struct_pdi->die_child; struct partial_die_info *real_pdi; /* If this DIE (this DIE's specification, if any) has a parent, then we should not do this. We'll prepend the parent's fully qualified name when we create the partial symbol. */ real_pdi = struct_pdi; while (real_pdi->has_specification) real_pdi = find_partial_die (real_pdi->spec_offset, cu); if (real_pdi->die_parent != NULL) return; while (child_pdi != NULL) { if (child_pdi->tag == DW_TAG_subprogram) { char *actual_class_name = language_class_name_from_physname (cu->language_defn, child_pdi->name); if (actual_class_name != NULL) { struct_pdi->name = obsavestring (actual_class_name, strlen (actual_class_name), &cu->objfile->objfile_obstack); xfree (actual_class_name); } break; } child_pdi = child_pdi->die_sibling; } } } /* Read a partial die corresponding to an enumeration type. */ static void add_partial_enumeration (struct partial_die_info *enum_pdi, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; bfd *abfd = objfile->obfd; struct partial_die_info *pdi; if (enum_pdi->name != NULL) add_partial_symbol (enum_pdi, cu); pdi = enum_pdi->die_child; while (pdi) { if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL) complaint (&symfile_complaints, _("malformed enumerator DIE ignored")); else add_partial_symbol (pdi, cu); pdi = pdi->die_sibling; } } /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU. Return the corresponding abbrev, or NULL if the number is zero (indicating an empty DIE). In either case *BYTES_READ will be set to the length of the initial number. */ static struct abbrev_info * peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read, struct dwarf2_cu *cu) { bfd *abfd = cu->objfile->obfd; unsigned int abbrev_number; struct abbrev_info *abbrev; abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read); if (abbrev_number == 0) return NULL; abbrev = dwarf2_lookup_abbrev (abbrev_number, cu); if (!abbrev) { error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number, bfd_get_filename (abfd)); } return abbrev; } /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER. Returns a pointer to the end of a series of DIEs, terminated by an empty DIE. Any children of the skipped DIEs will also be skipped. */ static gdb_byte * skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu) { struct abbrev_info *abbrev; unsigned int bytes_read; while (1) { abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu); if (abbrev == NULL) return info_ptr + bytes_read; else info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu); } } /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER. INFO_PTR should point just after the initial uleb128 of a DIE, and the abbrev corresponding to that skipped uleb128 should be passed in ABBREV. Returns a pointer to this DIE's sibling, skipping any children. */ static gdb_byte * skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr, struct abbrev_info *abbrev, struct dwarf2_cu *cu) { unsigned int bytes_read; struct attribute attr; bfd *abfd = cu->objfile->obfd; unsigned int form, i; for (i = 0; i < abbrev->num_attrs; i++) { /* The only abbrev we care about is DW_AT_sibling. */ if (abbrev->attrs[i].name == DW_AT_sibling) { read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu); if (attr.form == DW_FORM_ref_addr) complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling")); else return buffer + dwarf2_get_ref_die_offset (&attr); } /* If it isn't DW_AT_sibling, skip this attribute. */ form = abbrev->attrs[i].form; skip_attribute: switch (form) { case DW_FORM_ref_addr: /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3 and later it is offset sized. */ if (cu->header.version == 2) info_ptr += cu->header.addr_size; else info_ptr += cu->header.offset_size; break; case DW_FORM_addr: info_ptr += cu->header.addr_size; break; case DW_FORM_data1: case DW_FORM_ref1: case DW_FORM_flag: info_ptr += 1; break; case DW_FORM_data2: case DW_FORM_ref2: info_ptr += 2; break; case DW_FORM_data4: case DW_FORM_ref4: info_ptr += 4; break; case DW_FORM_data8: case DW_FORM_ref8: case DW_FORM_sig8: info_ptr += 8; break; case DW_FORM_string: read_string (abfd, info_ptr, &bytes_read); info_ptr += bytes_read; break; case DW_FORM_strp: info_ptr += cu->header.offset_size; break; case DW_FORM_block: info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read); info_ptr += bytes_read; break; case DW_FORM_block1: info_ptr += 1 + read_1_byte (abfd, info_ptr); break; case DW_FORM_block2: info_ptr += 2 + read_2_bytes (abfd, info_ptr); break; case DW_FORM_block4: info_ptr += 4 + read_4_bytes (abfd, info_ptr); break; case DW_FORM_sdata: case DW_FORM_udata: case DW_FORM_ref_udata: info_ptr = skip_leb128 (abfd, info_ptr); break; case DW_FORM_indirect: form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); info_ptr += bytes_read; /* We need to continue parsing from here, so just go back to the top. */ goto skip_attribute; default: error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"), dwarf_form_name (form), bfd_get_filename (abfd)); } } if (abbrev->has_children) return skip_children (buffer, info_ptr, cu); else return info_ptr; } /* Locate ORIG_PDI's sibling. INFO_PTR should point to the start of the next DIE after ORIG_PDI in BUFFER. */ static gdb_byte * locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *buffer, gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu) { /* Do we know the sibling already? */ if (orig_pdi->sibling) return orig_pdi->sibling; /* Are there any children to deal with? */ if (!orig_pdi->has_children) return info_ptr; /* Skip the children the long way. */ return skip_children (buffer, info_ptr, cu); } /* Expand this partial symbol table into a full symbol table. */ static void dwarf2_psymtab_to_symtab (struct partial_symtab *pst) { /* FIXME: This is barely more than a stub. */ if (pst != NULL) { if (pst->readin) { warning (_("bug: psymtab for %s is already read in."), pst->filename); } else { if (info_verbose) { printf_filtered (_("Reading in symbols for %s..."), pst->filename); gdb_flush (gdb_stdout); } /* Restore our global data. */ dwarf2_per_objfile = objfile_data (pst->objfile, dwarf2_objfile_data_key); /* If this psymtab is constructed from a debug-only objfile, the has_section_at_zero flag will not necessarily be correct. We can get the correct value for this flag by looking at the data associated with the (presumably stripped) associated objfile. */ if (pst->objfile->separate_debug_objfile_backlink) { struct dwarf2_per_objfile *dpo_backlink = objfile_data (pst->objfile->separate_debug_objfile_backlink, dwarf2_objfile_data_key); dwarf2_per_objfile->has_section_at_zero = dpo_backlink->has_section_at_zero; } psymtab_to_symtab_1 (pst); /* Finish up the debug error message. */ if (info_verbose) printf_filtered (_("done.\n")); } } } /* Add PER_CU to the queue. */ static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile) { struct dwarf2_queue_item *item; per_cu->queued = 1; item = xmalloc (sizeof (*item)); item->per_cu = per_cu; item->next = NULL; if (dwarf2_queue == NULL) dwarf2_queue = item; else dwarf2_queue_tail->next = item; dwarf2_queue_tail = item; } /* Process the queue. */ static void process_queue (struct objfile *objfile) { struct dwarf2_queue_item *item, *next_item; /* The queue starts out with one item, but following a DIE reference may load a new CU, adding it to the end of the queue. */ for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item) { if (item->per_cu->psymtab && !item->per_cu->psymtab->readin) process_full_comp_unit (item->per_cu); item->per_cu->queued = 0; next_item = item->next; xfree (item); } dwarf2_queue_tail = NULL; } /* Free all allocated queue entries. This function only releases anything if an error was thrown; if the queue was processed then it would have been freed as we went along. */ static void dwarf2_release_queue (void *dummy) { struct dwarf2_queue_item *item, *last; item = dwarf2_queue; while (item) { /* Anything still marked queued is likely to be in an inconsistent state, so discard it. */ if (item->per_cu->queued) { if (item->per_cu->cu != NULL) free_one_cached_comp_unit (item->per_cu->cu); item->per_cu->queued = 0; } last = item; item = item->next; xfree (last); } dwarf2_queue = dwarf2_queue_tail = NULL; } /* Read in full symbols for PST, and anything it depends on. */ static void psymtab_to_symtab_1 (struct partial_symtab *pst) { struct dwarf2_per_cu_data *per_cu; struct cleanup *back_to; int i; for (i = 0; i < pst->number_of_dependencies; i++) if (!pst->dependencies[i]->readin) { /* Inform about additional files that need to be read in. */ if (info_verbose) { /* FIXME: i18n: Need to make this a single string. */ fputs_filtered (" ", gdb_stdout); wrap_here (""); fputs_filtered ("and ", gdb_stdout); wrap_here (""); printf_filtered ("%s...", pst->dependencies[i]->filename); wrap_here (""); /* Flush output */ gdb_flush (gdb_stdout); } psymtab_to_symtab_1 (pst->dependencies[i]); } per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private; if (per_cu == NULL) { /* It's an include file, no symbols to read for it. Everything is in the parent symtab. */ pst->readin = 1; return; } back_to = make_cleanup (dwarf2_release_queue, NULL); queue_comp_unit (per_cu, pst->objfile); if (per_cu->from_debug_types) read_signatured_type_at_offset (pst->objfile, per_cu->offset); else load_full_comp_unit (per_cu, pst->objfile); process_queue (pst->objfile); /* Age the cache, releasing compilation units that have not been used recently. */ age_cached_comp_units (); do_cleanups (back_to); } /* Load the DIEs associated with PER_CU into memory. */ static void load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile) { bfd *abfd = objfile->obfd; struct dwarf2_cu *cu; unsigned int offset; gdb_byte *info_ptr, *beg_of_comp_unit; struct cleanup *back_to, *free_cu_cleanup; struct attribute *attr; CORE_ADDR baseaddr; gdb_assert (! per_cu->from_debug_types); /* Set local variables from the partial symbol table info. */ offset = per_cu->offset; info_ptr = dwarf2_per_objfile->info.buffer + offset; beg_of_comp_unit = info_ptr; cu = alloc_one_comp_unit (objfile); /* If an error occurs while loading, release our storage. */ free_cu_cleanup = make_cleanup (free_one_comp_unit, cu); /* Read in the comp_unit header. */ info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd); /* Complete the cu_header. */ cu->header.offset = offset; cu->header.first_die_offset = info_ptr - beg_of_comp_unit; /* Read the abbrevs for this compilation unit. */ dwarf2_read_abbrevs (abfd, cu); back_to = make_cleanup (dwarf2_free_abbrev_table, cu); /* Link this compilation unit into the compilation unit tree. */ per_cu->cu = cu; cu->per_cu = per_cu; cu->type_hash = per_cu->type_hash; cu->dies = read_comp_unit (info_ptr, cu); /* We try not to read any attributes in this function, because not all objfiles needed for references have been loaded yet, and symbol table processing isn't initialized. But we have to set the CU language, or we won't be able to build types correctly. */ attr = dwarf2_attr (cu->dies, DW_AT_language, cu); if (attr) set_cu_language (DW_UNSND (attr), cu); else set_cu_language (language_minimal, cu); /* Link this CU into read_in_chain. */ per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain; dwarf2_per_objfile->read_in_chain = per_cu; do_cleanups (back_to); /* We've successfully allocated this compilation unit. Let our caller clean it up when finished with it. */ discard_cleanups (free_cu_cleanup); } /* Generate full symbol information for PST and CU, whose DIEs have already been loaded into memory. */ static void process_full_comp_unit (struct dwarf2_per_cu_data *per_cu) { struct partial_symtab *pst = per_cu->psymtab; struct dwarf2_cu *cu = per_cu->cu; struct objfile *objfile = pst->objfile; bfd *abfd = objfile->obfd; CORE_ADDR lowpc, highpc; struct symtab *symtab; struct cleanup *back_to; CORE_ADDR baseaddr; baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); buildsym_init (); back_to = make_cleanup (really_free_pendings, NULL); cu->list_in_scope = &file_symbols; dwarf2_find_base_address (cu->dies, cu); /* Do line number decoding in read_file_scope () */ process_die (cu->dies, cu); /* Some compilers don't define a DW_AT_high_pc attribute for the compilation unit. If the DW_AT_high_pc is missing, synthesize it, by scanning the DIE's below the compilation unit. */ get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu); symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile)); /* Set symtab language to language from DW_AT_language. If the compilation is from a C file generated by language preprocessors, do not set the language if it was already deduced by start_subfile. */ if (symtab != NULL && !(cu->language == language_c && symtab->language != language_c)) { symtab->language = cu->language; } pst->symtab = symtab; pst->readin = 1; do_cleanups (back_to); } /* Process a die and its children. */ static void process_die (struct die_info *die, struct dwarf2_cu *cu) { switch (die->tag) { case DW_TAG_padding: break; case DW_TAG_compile_unit: read_file_scope (die, cu); break; case DW_TAG_type_unit: read_type_unit_scope (die, cu); break; case DW_TAG_subprogram: case DW_TAG_inlined_subroutine: read_func_scope (die, cu); break; case DW_TAG_lexical_block: case DW_TAG_try_block: case DW_TAG_catch_block: read_lexical_block_scope (die, cu); break; case DW_TAG_class_type: case DW_TAG_interface_type: case DW_TAG_structure_type: case DW_TAG_union_type: process_structure_scope (die, cu); break; case DW_TAG_enumeration_type: process_enumeration_scope (die, cu); break; /* These dies have a type, but processing them does not create a symbol or recurse to process the children. Therefore we can read them on-demand through read_type_die. */ case DW_TAG_subroutine_type: case DW_TAG_set_type: case DW_TAG_array_type: case DW_TAG_pointer_type: case DW_TAG_ptr_to_member_type: case DW_TAG_reference_type: case DW_TAG_string_type: break; case DW_TAG_base_type: case DW_TAG_subrange_type: case DW_TAG_typedef: /* Add a typedef symbol for the type definition, if it has a DW_AT_name. */ new_symbol (die, read_type_die (die, cu), cu); break; case DW_TAG_common_block: read_common_block (die, cu); break; case DW_TAG_common_inclusion: break; case DW_TAG_namespace: processing_has_namespace_info = 1; read_namespace (die, cu); break; case DW_TAG_module: read_module (die, cu); break; case DW_TAG_imported_declaration: case DW_TAG_imported_module: processing_has_namespace_info = 1; if (die->child != NULL && (die->tag == DW_TAG_imported_declaration || cu->language != language_fortran)) complaint (&symfile_complaints, _("Tag '%s' has unexpected children"), dwarf_tag_name (die->tag)); read_import_statement (die, cu); break; default: new_symbol (die, NULL, cu); break; } } /* Return the fully qualified name of DIE, based on its DW_AT_name. If scope qualifiers are appropriate they will be added. The result will be allocated on the objfile_obstack, or NULL if the DIE does not have a name. */ static const char * dwarf2_full_name (struct die_info *die, struct dwarf2_cu *cu) { struct attribute *attr; char *prefix, *name; struct ui_file *buf = NULL; name = dwarf2_name (die, cu); if (!name) return NULL; /* These are the only languages we know how to qualify names in. */ if (cu->language != language_cplus && cu->language != language_java) return name; /* If no prefix is necessary for this type of DIE, return the unqualified name. The other three tags listed could be handled in pdi_needs_namespace, but that requires broader changes. */ if (!pdi_needs_namespace (die->tag) && die->tag != DW_TAG_subprogram && die->tag != DW_TAG_variable && die->tag != DW_TAG_member) return name; prefix = determine_prefix (die, cu); if (*prefix != '\0') name = typename_concat (&cu->objfile->objfile_obstack, prefix, name, cu); return name; } /* Read the import statement specified by the given die and record it. */ static void read_import_statement (struct die_info *die, struct dwarf2_cu *cu) { struct attribute *import_attr; struct die_info *imported_die; struct dwarf2_cu *imported_cu; const char *imported_name; const char *imported_name_prefix; char *import_alias; const char *import_prefix; char *canonical_name; import_attr = dwarf2_attr (die, DW_AT_import, cu); if (import_attr == NULL) { complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"), dwarf_tag_name (die->tag)); return; } imported_cu = cu; imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu); imported_name = dwarf2_name (imported_die, imported_cu); if (imported_name == NULL) { /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524 The import in the following code: namespace A { typedef int B; } int main () { using A::B; B b; return b; } ... <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration) <52> DW_AT_decl_file : 1 <53> DW_AT_decl_line : 6 <54> DW_AT_import : <0x75> <2><58>: Abbrev Number: 4 (DW_TAG_typedef) <59> DW_AT_name : B <5b> DW_AT_decl_file : 1 <5c> DW_AT_decl_line : 2 <5d> DW_AT_type : <0x6e> ... <1><75>: Abbrev Number: 7 (DW_TAG_base_type) <76> DW_AT_byte_size : 4 <77> DW_AT_encoding : 5 (signed) imports the wrong die ( 0x75 instead of 0x58 ). This case will be ignored until the gcc bug is fixed. */ return; } /* Figure out the local name after import. */ import_alias = dwarf2_name (die, cu); /* Figure out where the statement is being imported to. */ import_prefix = determine_prefix (die, cu); /* Figure out what the scope of the imported die is and prepend it to the name of the imported die. */ imported_name_prefix = determine_prefix (imported_die, imported_cu); if (strlen (imported_name_prefix) > 0) { canonical_name = alloca (strlen (imported_name_prefix) + 2 + strlen (imported_name) + 1); strcpy (canonical_name, imported_name_prefix); strcat (canonical_name, "::"); strcat (canonical_name, imported_name); } else { canonical_name = alloca (strlen (imported_name) + 1); strcpy (canonical_name, imported_name); } using_directives = cp_add_using (import_prefix, canonical_name, import_alias, using_directives); } static void initialize_cu_func_list (struct dwarf2_cu *cu) { cu->first_fn = cu->last_fn = cu->cached_fn = NULL; } static void free_cu_line_header (void *arg) { struct dwarf2_cu *cu = arg; free_line_header (cu->line_header); cu->line_header = NULL; } static void read_file_scope (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct comp_unit_head *cu_header = &cu->header; struct cleanup *back_to = make_cleanup (null_cleanup, 0); CORE_ADDR lowpc = ((CORE_ADDR) -1); CORE_ADDR highpc = ((CORE_ADDR) 0); struct attribute *attr; char *name = NULL; char *comp_dir = NULL; struct die_info *child_die; bfd *abfd = objfile->obfd; struct line_header *line_header = 0; CORE_ADDR baseaddr; baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); get_scope_pc_bounds (die, &lowpc, &highpc, cu); /* If we didn't find a lowpc, set it to highpc to avoid complaints from finish_block. */ if (lowpc == ((CORE_ADDR) -1)) lowpc = highpc; lowpc += baseaddr; highpc += baseaddr; /* Find the filename. Do not use dwarf2_name here, since the filename is not a source language identifier. */ attr = dwarf2_attr (die, DW_AT_name, cu); if (attr) { name = DW_STRING (attr); } attr = dwarf2_attr (die, DW_AT_comp_dir, cu); if (attr) comp_dir = DW_STRING (attr); else if (name != NULL && IS_ABSOLUTE_PATH (name)) { comp_dir = ldirname (name); if (comp_dir != NULL) make_cleanup (xfree, comp_dir); } if (comp_dir != NULL) { /* Irix 6.2 native cc prepends <machine>.: to the compilation directory, get rid of it. */ char *cp = strchr (comp_dir, ':'); if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/') comp_dir = cp + 1; } if (name == NULL) name = "<unknown>"; attr = dwarf2_attr (die, DW_AT_language, cu); if (attr) { set_cu_language (DW_UNSND (attr), cu); } attr = dwarf2_attr (die, DW_AT_producer, cu); if (attr) cu->producer = DW_STRING (attr); /* We assume that we're processing GCC output. */ processing_gcc_compilation = 2; processing_has_namespace_info = 0; start_symtab (name, comp_dir, lowpc); record_debugformat ("DWARF 2"); record_producer (cu->producer); initialize_cu_func_list (cu); /* Decode line number information if present. We do this before processing child DIEs, so that the line header table is available for DW_AT_decl_file. */ attr = dwarf2_attr (die, DW_AT_stmt_list, cu); if (attr) { unsigned int line_offset = DW_UNSND (attr); line_header = dwarf_decode_line_header (line_offset, abfd, cu); if (line_header) { cu->line_header = line_header; make_cleanup (free_cu_line_header, cu); dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL); } } /* Process all dies in compilation unit. */ if (die->child != NULL) { child_die = die->child; while (child_die && child_die->tag) { process_die (child_die, cu); child_die = sibling_die (child_die); } } /* Decode macro information, if present. Dwarf 2 macro information refers to information in the line number info statement program header, so we can only read it if we've read the header successfully. */ attr = dwarf2_attr (die, DW_AT_macro_info, cu); if (attr && line_header) { unsigned int macro_offset = DW_UNSND (attr); dwarf_decode_macros (line_header, macro_offset, comp_dir, abfd, cu); } do_cleanups (back_to); } /* For TUs we want to skip the first top level sibling if it's not the actual type being defined by this TU. In this case the first top level sibling is there to provide context only. */ static void read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct cleanup *back_to = make_cleanup (null_cleanup, 0); CORE_ADDR lowpc; struct attribute *attr; char *name = NULL; char *comp_dir = NULL; struct die_info *child_die; bfd *abfd = objfile->obfd; struct line_header *line_header = 0; /* start_symtab needs a low pc, but we don't really have one. Do what read_file_scope would do in the absence of such info. */ lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); /* Find the filename. Do not use dwarf2_name here, since the filename is not a source language identifier. */ attr = dwarf2_attr (die, DW_AT_name, cu); if (attr) name = DW_STRING (attr); attr = dwarf2_attr (die, DW_AT_comp_dir, cu); if (attr) comp_dir = DW_STRING (attr); else if (name != NULL && IS_ABSOLUTE_PATH (name)) { comp_dir = ldirname (name); if (comp_dir != NULL) make_cleanup (xfree, comp_dir); } if (name == NULL) name = "<unknown>"; attr = dwarf2_attr (die, DW_AT_language, cu); if (attr) set_cu_language (DW_UNSND (attr), cu); /* This isn't technically needed today. It is done for symmetry with read_file_scope. */ attr = dwarf2_attr (die, DW_AT_producer, cu); if (attr) cu->producer = DW_STRING (attr); /* We assume that we're processing GCC output. */ processing_gcc_compilation = 2; processing_has_namespace_info = 0; start_symtab (name, comp_dir, lowpc); record_debugformat ("DWARF 2"); record_producer (cu->producer); /* Process the dies in the type unit. */ if (die->child == NULL) { dump_die_for_error (die); error (_("Dwarf Error: Missing children for type unit [in module %s]"), bfd_get_filename (abfd)); } child_die = die->child; while (child_die && child_die->tag) { process_die (child_die, cu); child_die = sibling_die (child_die); } do_cleanups (back_to); } static void add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc, struct dwarf2_cu *cu) { struct function_range *thisfn; thisfn = (struct function_range *) obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range)); thisfn->name = name; thisfn->lowpc = lowpc; thisfn->highpc = highpc; thisfn->seen_line = 0; thisfn->next = NULL; if (cu->last_fn == NULL) cu->first_fn = thisfn; else cu->last_fn->next = thisfn; cu->last_fn = thisfn; } /* qsort helper for inherit_abstract_dies. */ static int unsigned_int_compar (const void *ap, const void *bp) { unsigned int a = *(unsigned int *) ap; unsigned int b = *(unsigned int *) bp; return (a > b) - (b > a); } /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes). Inherit only the children of the DW_AT_abstract_origin DIE not being already referenced by DW_AT_abstract_origin from the children of the current DIE. */ static void inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu) { struct die_info *child_die; unsigned die_children_count; /* CU offsets which were referenced by children of the current DIE. */ unsigned *offsets; unsigned *offsets_end, *offsetp; /* Parent of DIE - referenced by DW_AT_abstract_origin. */ struct die_info *origin_die; /* Iterator of the ORIGIN_DIE children. */ struct die_info *origin_child_die; struct cleanup *cleanups; struct attribute *attr; attr = dwarf2_attr (die, DW_AT_abstract_origin, cu); if (!attr) return; origin_die = follow_die_ref (die, attr, &cu); if (die->tag != origin_die->tag && !(die->tag == DW_TAG_inlined_subroutine && origin_die->tag == DW_TAG_subprogram)) complaint (&symfile_complaints, _("DIE 0x%x and its abstract origin 0x%x have different tags"), die->offset, origin_die->offset); child_die = die->child; die_children_count = 0; while (child_die && child_die->tag) { child_die = sibling_die (child_die); die_children_count++; } offsets = xmalloc (sizeof (*offsets) * die_children_count); cleanups = make_cleanup (xfree, offsets); offsets_end = offsets; child_die = die->child; while (child_die && child_die->tag) { /* For each CHILD_DIE, find the corresponding child of ORIGIN_DIE. If there is more than one layer of DW_AT_abstract_origin, follow them all; there shouldn't be, but GCC versions at least through 4.4 generate this (GCC PR 40573). */ struct die_info *child_origin_die = child_die; while (1) { attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu); if (attr == NULL) break; child_origin_die = follow_die_ref (child_origin_die, attr, &cu); } /* According to DWARF3 3.3.8.2 #3 new entries without their abstract counterpart may exist. */ if (child_origin_die != child_die) { if (child_die->tag != child_origin_die->tag && !(child_die->tag == DW_TAG_inlined_subroutine && child_origin_die->tag == DW_TAG_subprogram)) complaint (&symfile_complaints, _("Child DIE 0x%x and its abstract origin 0x%x have " "different tags"), child_die->offset, child_origin_die->offset); if (child_origin_die->parent != origin_die) complaint (&symfile_complaints, _("Child DIE 0x%x and its abstract origin 0x%x have " "different parents"), child_die->offset, child_origin_die->offset); else *offsets_end++ = child_origin_die->offset; } child_die = sibling_die (child_die); } qsort (offsets, offsets_end - offsets, sizeof (*offsets), unsigned_int_compar); for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++) if (offsetp[-1] == *offsetp) complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer " "to DIE 0x%x as their abstract origin"), die->offset, *offsetp); offsetp = offsets; origin_child_die = origin_die->child; while (origin_child_die && origin_child_die->tag) { /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */ while (offsetp < offsets_end && *offsetp < origin_child_die->offset) offsetp++; if (offsetp >= offsets_end || *offsetp > origin_child_die->offset) { /* Found that ORIGIN_CHILD_DIE is really not referenced. */ process_die (origin_child_die, cu); } origin_child_die = sibling_die (origin_child_die); } do_cleanups (cleanups); } static void read_func_scope (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct context_stack *new; CORE_ADDR lowpc; CORE_ADDR highpc; struct die_info *child_die; struct attribute *attr, *call_line, *call_file; char *name; CORE_ADDR baseaddr; struct block *block; int inlined_func = (die->tag == DW_TAG_inlined_subroutine); if (inlined_func) { /* If we do not have call site information, we can't show the caller of this inlined function. That's too confusing, so only use the scope for local variables. */ call_line = dwarf2_attr (die, DW_AT_call_line, cu); call_file = dwarf2_attr (die, DW_AT_call_file, cu); if (call_line == NULL || call_file == NULL) { read_lexical_block_scope (die, cu); return; } } baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); name = dwarf2_linkage_name (die, cu); /* Ignore functions with missing or empty names and functions with missing or invalid low and high pc attributes. */ if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)) return; lowpc += baseaddr; highpc += baseaddr; /* Record the function range for dwarf_decode_lines. */ add_to_cu_func_list (name, lowpc, highpc, cu); new = push_context (0, lowpc); new->name = new_symbol (die, read_type_die (die, cu), cu); /* If there is a location expression for DW_AT_frame_base, record it. */ attr = dwarf2_attr (die, DW_AT_frame_base, cu); if (attr) /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location expression is being recorded directly in the function's symbol and not in a separate frame-base object. I guess this hack is to avoid adding some sort of frame-base adjunct/annex to the function's symbol :-(. The problem with doing this is that it results in a function symbol with a location expression that has nothing to do with the location of the function, ouch! The relationship should be: a function's symbol has-a frame base; a frame-base has-a location expression. */ dwarf2_symbol_mark_computed (attr, new->name, cu); cu->list_in_scope = &local_symbols; if (die->child != NULL) { child_die = die->child; while (child_die && child_die->tag) { process_die (child_die, cu); child_die = sibling_die (child_die); } } inherit_abstract_dies (die, cu); new = pop_context (); /* Make a block for the local symbols within. */ block = finish_block (new->name, &local_symbols, new->old_blocks, lowpc, highpc, objfile); /* For C++, set the block's scope. */ if (cu->language == language_cplus) cp_set_block_scope (new->name, block, &objfile->objfile_obstack, determine_prefix (die, cu), processing_has_namespace_info); /* If we have address ranges, record them. */ dwarf2_record_block_ranges (die, block, baseaddr, cu); /* In C++, we can have functions nested inside functions (e.g., when a function declares a class that has methods). This means that when we finish processing a function scope, we may need to go back to building a containing block's symbol lists. */ local_symbols = new->locals; param_symbols = new->params; using_directives = new->using_directives; /* If we've finished processing a top-level function, subsequent symbols go in the file symbol list. */ if (outermost_context_p ()) cu->list_in_scope = &file_symbols; } /* Process all the DIES contained within a lexical block scope. Start a new scope, process the dies, and then close the scope. */ static void read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct context_stack *new; CORE_ADDR lowpc, highpc; struct die_info *child_die; CORE_ADDR baseaddr; baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); /* Ignore blocks with missing or invalid low and high pc attributes. */ /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges as multiple lexical blocks? Handling children in a sane way would be nasty. Might be easier to properly extend generic blocks to describe ranges. */ if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)) return; lowpc += baseaddr; highpc += baseaddr; push_context (0, lowpc); if (die->child != NULL) { child_die = die->child; while (child_die && child_die->tag) { process_die (child_die, cu); child_die = sibling_die (child_die); } } new = pop_context (); if (local_symbols != NULL || using_directives != NULL) { struct block *block = finish_block (0, &local_symbols, new->old_blocks, new->start_addr, highpc, objfile); /* Note that recording ranges after traversing children, as we do here, means that recording a parent's ranges entails walking across all its children's ranges as they appear in the address map, which is quadratic behavior. It would be nicer to record the parent's ranges before traversing its children, simply overriding whatever you find there. But since we don't even decide whether to create a block until after we've traversed its children, that's hard to do. */ dwarf2_record_block_ranges (die, block, baseaddr, cu); } local_symbols = new->locals; using_directives = new->using_directives; } /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET. Return 1 if the attributes are present and valid, otherwise, return 0. If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */ static int dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return, CORE_ADDR *high_return, struct dwarf2_cu *cu, struct partial_symtab *ranges_pst) { struct objfile *objfile = cu->objfile; struct comp_unit_head *cu_header = &cu->header; bfd *obfd = objfile->obfd; unsigned int addr_size = cu_header->addr_size; CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1)); /* Base address selection entry. */ CORE_ADDR base; int found_base; unsigned int dummy; gdb_byte *buffer; CORE_ADDR marker; int low_set; CORE_ADDR low = 0; CORE_ADDR high = 0; CORE_ADDR baseaddr; found_base = cu->base_known; base = cu->base_address; if (offset >= dwarf2_per_objfile->ranges.size) { complaint (&symfile_complaints, _("Offset %d out of bounds for DW_AT_ranges attribute"), offset); return 0; } buffer = dwarf2_per_objfile->ranges.buffer + offset; /* Read in the largest possible address. */ marker = read_address (obfd, buffer, cu, &dummy); if ((marker & mask) == mask) { /* If we found the largest possible address, then read the base address. */ base = read_address (obfd, buffer + addr_size, cu, &dummy); buffer += 2 * addr_size; offset += 2 * addr_size; found_base = 1; } low_set = 0; baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); while (1) { CORE_ADDR range_beginning, range_end; range_beginning = read_address (obfd, buffer, cu, &dummy); buffer += addr_size; range_end = read_address (obfd, buffer, cu, &dummy); buffer += addr_size; offset += 2 * addr_size; /* An end of list marker is a pair of zero addresses. */ if (range_beginning == 0 && range_end == 0) /* Found the end of list entry. */ break; /* Each base address selection entry is a pair of 2 values. The first is the largest possible address, the second is the base address. Check for a base address here. */ if ((range_beginning & mask) == mask) { /* If we found the largest possible address, then read the base address. */ base = read_address (obfd, buffer + addr_size, cu, &dummy); found_base = 1; continue; } if (!found_base) { /* We have no valid base address for the ranges data. */ complaint (&symfile_complaints, _("Invalid .debug_ranges data (no base address)")); return 0; } range_beginning += base; range_end += base; if (ranges_pst != NULL && range_beginning < range_end) addrmap_set_empty (objfile->psymtabs_addrmap, range_beginning + baseaddr, range_end - 1 + baseaddr, ranges_pst); /* FIXME: This is recording everything as a low-high segment of consecutive addresses. We should have a data structure for discontiguous block ranges instead. */ if (! low_set) { low = range_beginning; high = range_end; low_set = 1; } else { if (range_beginning < low) low = range_beginning; if (range_end > high) high = range_end; } } if (! low_set) /* If the first entry is an end-of-list marker, the range describes an empty scope, i.e. no instructions. */ return 0; if (low_return) *low_return = low; if (high_return) *high_return = high; return 1; } /* Get low and high pc attributes from a die. Return 1 if the attributes are present and valid, otherwise, return 0. Return -1 if the range is discontinuous, i.e. derived from DW_AT_ranges information. */ static int dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc, CORE_ADDR *highpc, struct dwarf2_cu *cu, struct partial_symtab *pst) { struct attribute *attr; CORE_ADDR low = 0; CORE_ADDR high = 0; int ret = 0; attr = dwarf2_attr (die, DW_AT_high_pc, cu); if (attr) { high = DW_ADDR (attr); attr = dwarf2_attr (die, DW_AT_low_pc, cu); if (attr) low = DW_ADDR (attr); else /* Found high w/o low attribute. */ return 0; /* Found consecutive range of addresses. */ ret = 1; } else { attr = dwarf2_attr (die, DW_AT_ranges, cu); if (attr != NULL) { /* Value of the DW_AT_ranges attribute is the offset in the .debug_ranges section. */ if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst)) return 0; /* Found discontinuous range of addresses. */ ret = -1; } } if (high < low) return 0; /* When using the GNU linker, .gnu.linkonce. sections are used to eliminate duplicate copies of functions and vtables and such. The linker will arbitrarily choose one and discard the others. The AT_*_pc values for such functions refer to local labels in these sections. If the section from that file was discarded, the labels are not in the output, so the relocs get a value of 0. If this is a discarded function, mark the pc bounds as invalid, so that GDB will ignore it. */ if (low == 0 && !dwarf2_per_objfile->has_section_at_zero) return 0; *lowpc = low; *highpc = high; return ret; } /* Assuming that DIE represents a subprogram DIE or a lexical block, get its low and high PC addresses. Do nothing if these addresses could not be determined. Otherwise, set LOWPC to the low address if it is smaller, and HIGHPC to the high address if greater than HIGHPC. */ static void dwarf2_get_subprogram_pc_bounds (struct die_info *die, CORE_ADDR *lowpc, CORE_ADDR *highpc, struct dwarf2_cu *cu) { CORE_ADDR low, high; struct die_info *child = die->child; if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL)) { *lowpc = min (*lowpc, low); *highpc = max (*highpc, high); } /* If the language does not allow nested subprograms (either inside subprograms or lexical blocks), we're done. */ if (cu->language != language_ada) return; /* Check all the children of the given DIE. If it contains nested subprograms, then check their pc bounds. Likewise, we need to check lexical blocks as well, as they may also contain subprogram definitions. */ while (child && child->tag) { if (child->tag == DW_TAG_subprogram || child->tag == DW_TAG_lexical_block) dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu); child = sibling_die (child); } } /* Get the low and high pc's represented by the scope DIE, and store them in *LOWPC and *HIGHPC. If the correct values can't be determined, set *LOWPC to -1 and *HIGHPC to 0. */ static void get_scope_pc_bounds (struct die_info *die, CORE_ADDR *lowpc, CORE_ADDR *highpc, struct dwarf2_cu *cu) { CORE_ADDR best_low = (CORE_ADDR) -1; CORE_ADDR best_high = (CORE_ADDR) 0; CORE_ADDR current_low, current_high; if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)) { best_low = current_low; best_high = current_high; } else { struct die_info *child = die->child; while (child && child->tag) { switch (child->tag) { case DW_TAG_subprogram: dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu); break; case DW_TAG_namespace: /* FIXME: carlton/2004-01-16: Should we do this for DW_TAG_class_type/DW_TAG_structure_type, too? I think that current GCC's always emit the DIEs corresponding to definitions of methods of classes as children of a DW_TAG_compile_unit or DW_TAG_namespace (as opposed to the DIEs giving the declarations, which could be anywhere). But I don't see any reason why the standards says that they have to be there. */ get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu); if (current_low != ((CORE_ADDR) -1)) { best_low = min (best_low, current_low); best_high = max (best_high, current_high); } break; default: /* Ignore. */ break; } child = sibling_die (child); } } *lowpc = best_low; *highpc = best_high; } /* Record the address ranges for BLOCK, offset by BASEADDR, as given in DIE. */ static void dwarf2_record_block_ranges (struct die_info *die, struct block *block, CORE_ADDR baseaddr, struct dwarf2_cu *cu) { struct attribute *attr; attr = dwarf2_attr (die, DW_AT_high_pc, cu); if (attr) { CORE_ADDR high = DW_ADDR (attr); attr = dwarf2_attr (die, DW_AT_low_pc, cu); if (attr) { CORE_ADDR low = DW_ADDR (attr); record_block_range (block, baseaddr + low, baseaddr + high - 1); } } attr = dwarf2_attr (die, DW_AT_ranges, cu); if (attr) { bfd *obfd = cu->objfile->obfd; /* The value of the DW_AT_ranges attribute is the offset of the address range list in the .debug_ranges section. */ unsigned long offset = DW_UNSND (attr); gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset; /* For some target architectures, but not others, the read_address function sign-extends the addresses it returns. To recognize base address selection entries, we need a mask. */ unsigned int addr_size = cu->header.addr_size; CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1)); /* The base address, to which the next pair is relative. Note that this 'base' is a DWARF concept: most entries in a range list are relative, to reduce the number of relocs against the debugging information. This is separate from this function's 'baseaddr' argument, which GDB uses to relocate debugging information from a shared library based on the address at which the library was loaded. */ CORE_ADDR base = cu->base_address; int base_known = cu->base_known; if (offset >= dwarf2_per_objfile->ranges.size) { complaint (&symfile_complaints, _("Offset %lu out of bounds for DW_AT_ranges attribute"), offset); return; } for (;;) { unsigned int bytes_read; CORE_ADDR start, end; start = read_address (obfd, buffer, cu, &bytes_read); buffer += bytes_read; end = read_address (obfd, buffer, cu, &bytes_read); buffer += bytes_read; /* Did we find the end of the range list? */ if (start == 0 && end == 0) break; /* Did we find a base address selection entry? */ else if ((start & base_select_mask) == base_select_mask) { base = end; base_known = 1; } /* We found an ordinary address range. */ else { if (!base_known) { complaint (&symfile_complaints, _("Invalid .debug_ranges data (no base address)")); return; } record_block_range (block, baseaddr + base + start, baseaddr + base + end - 1); } } } } /* Add an aggregate field to the field list. */ static void dwarf2_add_field (struct field_info *fip, struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct gdbarch *gdbarch = get_objfile_arch (objfile); struct nextfield *new_field; struct attribute *attr; struct field *fp; char *fieldname = ""; /* Allocate a new field list entry and link it in. */ new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield)); make_cleanup (xfree, new_field); memset (new_field, 0, sizeof (struct nextfield)); if (die->tag == DW_TAG_inheritance) { new_field->next = fip->baseclasses; fip->baseclasses = new_field; } else { new_field->next = fip->fields; fip->fields = new_field; } fip->nfields++; /* Handle accessibility and virtuality of field. The default accessibility for members is public, the default accessibility for inheritance is private. */ if (die->tag != DW_TAG_inheritance) new_field->accessibility = DW_ACCESS_public; else new_field->accessibility = DW_ACCESS_private; new_field->virtuality = DW_VIRTUALITY_none; attr = dwarf2_attr (die, DW_AT_accessibility, cu); if (attr) new_field->accessibility = DW_UNSND (attr); if (new_field->accessibility != DW_ACCESS_public) fip->non_public_fields = 1; attr = dwarf2_attr (die, DW_AT_virtuality, cu); if (attr) new_field->virtuality = DW_UNSND (attr); fp = &new_field->field; if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu)) { /* Data member other than a C++ static data member. */ /* Get type of field. */ fp->type = die_type (die, cu); SET_FIELD_BITPOS (*fp, 0); /* Get bit size of field (zero if none). */ attr = dwarf2_attr (die, DW_AT_bit_size, cu); if (attr) { FIELD_BITSIZE (*fp) = DW_UNSND (attr); } else { FIELD_BITSIZE (*fp) = 0; } /* Get bit offset of field. */ attr = dwarf2_attr (die, DW_AT_data_member_location, cu); if (attr) { int byte_offset = 0; if (attr_form_is_section_offset (attr)) dwarf2_complex_location_expr_complaint (); else if (attr_form_is_constant (attr)) byte_offset = dwarf2_get_attr_constant_value (attr, 0); else if (attr_form_is_block (attr)) byte_offset = decode_locdesc (DW_BLOCK (attr), cu); else dwarf2_complex_location_expr_complaint (); SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte); } attr = dwarf2_attr (die, DW_AT_bit_offset, cu); if (attr) { if (gdbarch_bits_big_endian (gdbarch)) { /* For big endian bits, the DW_AT_bit_offset gives the additional bit offset from the MSB of the containing anonymous object to the MSB of the field. We don't have to do anything special since we don't need to know the size of the anonymous object. */ FIELD_BITPOS (*fp) += DW_UNSND (attr); } else { /* For little endian bits, compute the bit offset to the MSB of the anonymous object, subtract off the number of bits from the MSB of the field to the MSB of the object, and then subtract off the number of bits of the field itself. The result is the bit offset of the LSB of the field. */ int anonymous_size; int bit_offset = DW_UNSND (attr); attr = dwarf2_attr (die, DW_AT_byte_size, cu); if (attr) { /* The size of the anonymous object containing the bit field is explicit, so use the indicated size (in bytes). */ anonymous_size = DW_UNSND (attr); } else { /* The size of the anonymous object containing the bit field must be inferred from the type attribute of the data member containing the bit field. */ anonymous_size = TYPE_LENGTH (fp->type); } FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte - bit_offset - FIELD_BITSIZE (*fp); } } /* Get name of field. */ fieldname = dwarf2_name (die, cu); if (fieldname == NULL) fieldname = ""; /* The name is already allocated along with this objfile, so we don't need to duplicate it for the type. */ fp->name = fieldname; /* Change accessibility for artificial fields (e.g. virtual table pointer or virtual base class pointer) to private. */ if (dwarf2_attr (die, DW_AT_artificial, cu)) { FIELD_ARTIFICIAL (*fp) = 1; new_field->accessibility = DW_ACCESS_private; fip->non_public_fields = 1; } } else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable) { /* C++ static member. */ /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that is a declaration, but all versions of G++ as of this writing (so through at least 3.2.1) incorrectly generate DW_TAG_variable tags. */ char *physname; /* Get name of field. */ fieldname = dwarf2_name (die, cu); if (fieldname == NULL) return; /* Get physical name. */ physname = dwarf2_linkage_name (die, cu); /* The name is already allocated along with this objfile, so we don't need to duplicate it for the type. */ SET_FIELD_PHYSNAME (*fp, physname ? physname : ""); FIELD_TYPE (*fp) = die_type (die, cu); FIELD_NAME (*fp) = fieldname; } else if (die->tag == DW_TAG_inheritance) { /* C++ base class field. */ attr = dwarf2_attr (die, DW_AT_data_member_location, cu); if (attr) { int byte_offset = 0; if (attr_form_is_section_offset (attr)) dwarf2_complex_location_expr_complaint (); else if (attr_form_is_constant (attr)) byte_offset = dwarf2_get_attr_constant_value (attr, 0); else if (attr_form_is_block (attr)) byte_offset = decode_locdesc (DW_BLOCK (attr), cu); else dwarf2_complex_location_expr_complaint (); SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte); } FIELD_BITSIZE (*fp) = 0; FIELD_TYPE (*fp) = die_type (die, cu); FIELD_NAME (*fp) = type_name_no_tag (fp->type); fip->nbaseclasses++; } } /* Create the vector of fields, and attach it to the type. */ static void dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type, struct dwarf2_cu *cu) { int nfields = fip->nfields; /* Record the field count, allocate space for the array of fields, and create blank accessibility bitfields if necessary. */ TYPE_NFIELDS (type) = nfields; TYPE_FIELDS (type) = (struct field *) TYPE_ALLOC (type, sizeof (struct field) * nfields); memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields); if (fip->non_public_fields && cu->language != language_ada) { ALLOCATE_CPLUS_STRUCT_TYPE (type); TYPE_FIELD_PRIVATE_BITS (type) = (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields)); B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields); TYPE_FIELD_PROTECTED_BITS (type) = (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields)); B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields); TYPE_FIELD_IGNORE_BITS (type) = (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields)); B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields); } /* If the type has baseclasses, allocate and clear a bit vector for TYPE_FIELD_VIRTUAL_BITS. */ if (fip->nbaseclasses && cu->language != language_ada) { int num_bytes = B_BYTES (fip->nbaseclasses); unsigned char *pointer; ALLOCATE_CPLUS_STRUCT_TYPE (type); pointer = TYPE_ALLOC (type, num_bytes); TYPE_FIELD_VIRTUAL_BITS (type) = pointer; B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses); TYPE_N_BASECLASSES (type) = fip->nbaseclasses; } /* Copy the saved-up fields into the field vector. Start from the head of the list, adding to the tail of the field array, so that they end up in the same order in the array in which they were added to the list. */ while (nfields-- > 0) { struct nextfield *fieldp; if (fip->fields) { fieldp = fip->fields; fip->fields = fieldp->next; } else { fieldp = fip->baseclasses; fip->baseclasses = fieldp->next; } TYPE_FIELD (type, nfields) = fieldp->field; switch (fieldp->accessibility) { case DW_ACCESS_private: if (cu->language != language_ada) SET_TYPE_FIELD_PRIVATE (type, nfields); break; case DW_ACCESS_protected: if (cu->language != language_ada) SET_TYPE_FIELD_PROTECTED (type, nfields); break; case DW_ACCESS_public: break; default: /* Unknown accessibility. Complain and treat it as public. */ { complaint (&symfile_complaints, _("unsupported accessibility %d"), fieldp->accessibility); } break; } if (nfields < fip->nbaseclasses) { switch (fieldp->virtuality) { case DW_VIRTUALITY_virtual: case DW_VIRTUALITY_pure_virtual: if (cu->language == language_ada) error ("unexpected virtuality in component of Ada type"); SET_TYPE_FIELD_VIRTUAL (type, nfields); break; } } } } /* Add a member function to the proper fieldlist. */ static void dwarf2_add_member_fn (struct field_info *fip, struct die_info *die, struct type *type, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct attribute *attr; struct fnfieldlist *flp; int i; struct fn_field *fnp; char *fieldname; char *physname; struct nextfnfield *new_fnfield; struct type *this_type; if (cu->language == language_ada) error ("unexpected member function in Ada type"); /* Get name of member function. */ fieldname = dwarf2_name (die, cu); if (fieldname == NULL) return; /* Get the mangled name. */ physname = dwarf2_linkage_name (die, cu); /* Look up member function name in fieldlist. */ for (i = 0; i < fip->nfnfields; i++) { if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0) break; } /* Create new list element if necessary. */ if (i < fip->nfnfields) flp = &fip->fnfieldlists[i]; else { if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0) { fip->fnfieldlists = (struct fnfieldlist *) xrealloc (fip->fnfieldlists, (fip->nfnfields + DW_FIELD_ALLOC_CHUNK) * sizeof (struct fnfieldlist)); if (fip->nfnfields == 0) make_cleanup (free_current_contents, &fip->fnfieldlists); } flp = &fip->fnfieldlists[fip->nfnfields]; flp->name = fieldname; flp->length = 0; flp->head = NULL; fip->nfnfields++; } /* Create a new member function field and chain it to the field list entry. */ new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield)); make_cleanup (xfree, new_fnfield); memset (new_fnfield, 0, sizeof (struct nextfnfield)); new_fnfield->next = flp->head; flp->head = new_fnfield; flp->length++; /* Fill in the member function field info. */ fnp = &new_fnfield->fnfield; /* The name is already allocated along with this objfile, so we don't need to duplicate it for the type. */ fnp->physname = physname ? physname : ""; fnp->type = alloc_type (objfile); this_type = read_type_die (die, cu); if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC) { int nparams = TYPE_NFIELDS (this_type); /* TYPE is the domain of this method, and THIS_TYPE is the type of the method itself (TYPE_CODE_METHOD). */ smash_to_method_type (fnp->type, type, TYPE_TARGET_TYPE (this_type), TYPE_FIELDS (this_type), TYPE_NFIELDS (this_type), TYPE_VARARGS (this_type)); /* Handle static member functions. Dwarf2 has no clean way to discern C++ static and non-static member functions. G++ helps GDB by marking the first parameter for non-static member functions (which is the this pointer) as artificial. We obtain this information from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */ if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0) fnp->voffset = VOFFSET_STATIC; } else complaint (&symfile_complaints, _("member function type missing for '%s'"), physname); /* Get fcontext from DW_AT_containing_type if present. */ if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL) fnp->fcontext = die_containing_type (die, cu); /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */ /* Get accessibility. */ attr = dwarf2_attr (die, DW_AT_accessibility, cu); if (attr) { switch (DW_UNSND (attr)) { case DW_ACCESS_private: fnp->is_private = 1; break; case DW_ACCESS_protected: fnp->is_protected = 1; break; } } /* Check for artificial methods. */ attr = dwarf2_attr (die, DW_AT_artificial, cu); if (attr && DW_UNSND (attr) != 0) fnp->is_artificial = 1; /* Get index in virtual function table if it is a virtual member function. For GCC, this is an offset in the appropriate virtual table, as specified by DW_AT_containing_type. For everyone else, it is an expression to be evaluated relative to the object address. */ attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu); if (attr && fnp->fcontext) { /* Support the .debug_loc offsets */ if (attr_form_is_block (attr)) { fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2; } else if (attr_form_is_section_offset (attr)) { dwarf2_complex_location_expr_complaint (); } else { dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location", fieldname); } } else if (attr) { /* We only support trivial expressions here. This hack will work for v3 classes, which always start with the vtable pointer. */ if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0 && DW_BLOCK (attr)->data[0] == DW_OP_deref) { struct dwarf_block blk; blk.size = DW_BLOCK (attr)->size - 1; blk.data = DW_BLOCK (attr)->data + 1; fnp->voffset = decode_locdesc (&blk, cu); if ((fnp->voffset % cu->header.addr_size) != 0) dwarf2_complex_location_expr_complaint (); else fnp->voffset /= cu->header.addr_size; fnp->voffset += 2; fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0)); } else dwarf2_complex_location_expr_complaint (); } else { attr = dwarf2_attr (die, DW_AT_virtuality, cu); if (attr && DW_UNSND (attr)) { /* GCC does this, as of 2008-08-25; PR debug/37237. */ complaint (&symfile_complaints, _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"), fieldname, die->offset); TYPE_CPLUS_DYNAMIC (type) = 1; } } } /* Create the vector of member function fields, and attach it to the type. */ static void dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type, struct dwarf2_cu *cu) { struct fnfieldlist *flp; int total_length = 0; int i; if (cu->language == language_ada) error ("unexpected member functions in Ada type"); ALLOCATE_CPLUS_STRUCT_TYPE (type); TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *) TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields); for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++) { struct nextfnfield *nfp = flp->head; struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i); int k; TYPE_FN_FIELDLIST_NAME (type, i) = flp->name; TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length; fn_flp->fn_fields = (struct fn_field *) TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length); for (k = flp->length; (k--, nfp); nfp = nfp->next) fn_flp->fn_fields[k] = nfp->fnfield; total_length += flp->length; } TYPE_NFN_FIELDS (type) = fip->nfnfields; TYPE_NFN_FIELDS_TOTAL (type) = total_length; } /* Returns non-zero if NAME is the name of a vtable member in CU's language, zero otherwise. */ static int is_vtable_name (const char *name, struct dwarf2_cu *cu) { static const char vptr[] = "_vptr"; static const char vtable[] = "vtable"; /* Look for the C++ and Java forms of the vtable. */ if ((cu->language == language_java && strncmp (name, vtable, sizeof (vtable) - 1) == 0) || (strncmp (name, vptr, sizeof (vptr) - 1) == 0 && is_cplus_marker (name[sizeof (vptr) - 1]))) return 1; return 0; } /* GCC outputs unnamed structures that are really pointers to member functions, with the ABI-specified layout. If TYPE describes such a structure, smash it into a member function type. GCC shouldn't do this; it should just output pointer to member DIEs. This is GCC PR debug/28767. */ static void quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile) { struct type *pfn_type, *domain_type, *new_type; /* Check for a structure with no name and two children. */ if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2) return; /* Check for __pfn and __delta members. */ if (TYPE_FIELD_NAME (type, 0) == NULL || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0 || TYPE_FIELD_NAME (type, 1) == NULL || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0) return; /* Find the type of the method. */ pfn_type = TYPE_FIELD_TYPE (type, 0); if (pfn_type == NULL || TYPE_CODE (pfn_type) != TYPE_CODE_PTR || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC) return; /* Look for the "this" argument. */ pfn_type = TYPE_TARGET_TYPE (pfn_type); if (TYPE_NFIELDS (pfn_type) == 0 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */ || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR) return; domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0)); new_type = alloc_type (objfile); smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type), TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type), TYPE_VARARGS (pfn_type)); smash_to_methodptr_type (type, new_type); } /* Called when we find the DIE that starts a structure or union scope (definition) to process all dies that define the members of the structure or union. NOTE: we need to call struct_type regardless of whether or not the DIE has an at_name attribute, since it might be an anonymous structure or union. This gets the type entered into our set of user defined types. However, if the structure is incomplete (an opaque struct/union) then suppress creating a symbol table entry for it since gdb only wants to find the one with the complete definition. Note that if it is complete, we just call new_symbol, which does it's own checking about whether the struct/union is anonymous or not (and suppresses creating a symbol table entry itself). */ static struct type * read_structure_type (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct type *type; struct attribute *attr; char *name; struct cleanup *back_to = make_cleanup (null_cleanup, 0); /* If the definition of this type lives in .debug_types, read that type. Don't follow DW_AT_specification though, that will take us back up the chain and we want to go down. */ attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu); if (attr) { struct dwarf2_cu *type_cu = cu; struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu); /* We could just recurse on read_structure_type, but we need to call get_die_type to ensure only one type for this DIE is created. This is important, for example, because for c++ classes we need TYPE_NAME set which is only done by new_symbol. Blech. */ type = read_type_die (type_die, type_cu); return set_die_type (die, type, cu); } type = alloc_type (objfile); INIT_CPLUS_SPECIFIC (type); name = dwarf2_name (die, cu); if (name != NULL) { if (cu->language == language_cplus || cu->language == language_java) { const char *new_prefix = determine_class_name (die, cu); TYPE_TAG_NAME (type) = (char *) new_prefix; } else { /* The name is already allocated along with this objfile, so we don't need to duplicate it for the type. */ TYPE_TAG_NAME (type) = name; } } if (die->tag == DW_TAG_structure_type) { TYPE_CODE (type) = TYPE_CODE_STRUCT; } else if (die->tag == DW_TAG_union_type) { TYPE_CODE (type) = TYPE_CODE_UNION; } else { TYPE_CODE (type) = TYPE_CODE_CLASS; } if (cu->language == language_cplus && die->tag == DW_TAG_class_type) TYPE_DECLARED_CLASS (type) = 1; attr = dwarf2_attr (die, DW_AT_byte_size, cu); if (attr) { TYPE_LENGTH (type) = DW_UNSND (attr); } else { TYPE_LENGTH (type) = 0; } TYPE_STUB_SUPPORTED (type) = 1; if (die_is_declaration (die, cu)) TYPE_STUB (type) = 1; set_descriptive_type (type, die, cu); /* We need to add the type field to the die immediately so we don't infinitely recurse when dealing with pointers to the structure type within the structure itself. */ set_die_type (die, type, cu); if (die->child != NULL && ! die_is_declaration (die, cu)) { struct field_info fi; struct die_info *child_die; memset (&fi, 0, sizeof (struct field_info)); child_die = die->child; while (child_die && child_die->tag) { if (child_die->tag == DW_TAG_member || child_die->tag == DW_TAG_variable) { /* NOTE: carlton/2002-11-05: A C++ static data member should be a DW_TAG_member that is a declaration, but all versions of G++ as of this writing (so through at least 3.2.1) incorrectly generate DW_TAG_variable tags for them instead. */ dwarf2_add_field (&fi, child_die, cu); } else if (child_die->tag == DW_TAG_subprogram) { /* C++ member function. */ dwarf2_add_member_fn (&fi, child_die, type, cu); } else if (child_die->tag == DW_TAG_inheritance) { /* C++ base class field. */ dwarf2_add_field (&fi, child_die, cu); } child_die = sibling_die (child_die); } /* Attach fields and member functions to the type. */ if (fi.nfields) dwarf2_attach_fields_to_type (&fi, type, cu); if (fi.nfnfields) { dwarf2_attach_fn_fields_to_type (&fi, type, cu); /* Get the type which refers to the base class (possibly this class itself) which contains the vtable pointer for the current class from the DW_AT_containing_type attribute. This use of DW_AT_containing_type is a GNU extension. */ if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL) { struct type *t = die_containing_type (die, cu); TYPE_VPTR_BASETYPE (type) = t; if (type == t) { int i; /* Our own class provides vtbl ptr. */ for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i) { char *fieldname = TYPE_FIELD_NAME (t, i); if (is_vtable_name (fieldname, cu)) { TYPE_VPTR_FIELDNO (type) = i; break; } } /* Complain if virtual function table field not found. */ if (i < TYPE_N_BASECLASSES (t)) complaint (&symfile_complaints, _("virtual function table pointer not found when defining class '%s'"), TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : ""); } else { TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t); } } else if (cu->producer && strncmp (cu->producer, "IBM(R) XL C/C++ Advanced Edition", 32) == 0) { /* The IBM XLC compiler does not provide direct indication of the containing type, but the vtable pointer is always named __vfp. */ int i; for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); --i) { if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0) { TYPE_VPTR_FIELDNO (type) = i; TYPE_VPTR_BASETYPE (type) = type; break; } } } } } quirk_gcc_member_function_pointer (type, cu->objfile); do_cleanups (back_to); return type; } static void process_structure_scope (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct die_info *child_die = die->child; struct type *this_type; this_type = get_die_type (die, cu); if (this_type == NULL) this_type = read_structure_type (die, cu); /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its snapshots) has been known to create a die giving a declaration for a class that has, as a child, a die giving a definition for a nested class. So we have to process our children even if the current die is a declaration. Normally, of course, a declaration won't have any children at all. */ while (child_die != NULL && child_die->tag) { if (child_die->tag == DW_TAG_member || child_die->tag == DW_TAG_variable || child_die->tag == DW_TAG_inheritance) { /* Do nothing. */ } else process_die (child_die, cu); child_die = sibling_die (child_die); } /* Do not consider external references. According to the DWARF standard, these DIEs are identified by the fact that they have no byte_size attribute, and a declaration attribute. */ if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL || !die_is_declaration (die, cu)) new_symbol (die, this_type, cu); } /* Given a DW_AT_enumeration_type die, set its type. We do not complete the type's fields yet, or create any symbols. */ static struct type * read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct type *type; struct attribute *attr; const char *name; /* If the definition of this type lives in .debug_types, read that type. Don't follow DW_AT_specification though, that will take us back up the chain and we want to go down. */ attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu); if (attr) { struct dwarf2_cu *type_cu = cu; struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu); type = read_type_die (type_die, type_cu); return set_die_type (die, type, cu); } type = alloc_type (objfile); TYPE_CODE (type) = TYPE_CODE_ENUM; name = dwarf2_full_name (die, cu); if (name != NULL) TYPE_TAG_NAME (type) = (char *) name; attr = dwarf2_attr (die, DW_AT_byte_size, cu); if (attr) { TYPE_LENGTH (type) = DW_UNSND (attr); } else { TYPE_LENGTH (type) = 0; } /* The enumeration DIE can be incomplete. In Ada, any type can be declared as private in the package spec, and then defined only inside the package body. Such types are known as Taft Amendment Types. When another package uses such a type, an incomplete DIE may be generated by the compiler. */ if (die_is_declaration (die, cu)) TYPE_STUB (type) = 1; return set_die_type (die, type, cu); } /* Determine the name of the type represented by DIE, which should be a named C++ or Java compound type. Return the name in question, allocated on the objfile obstack. */ static const char * determine_class_name (struct die_info *die, struct dwarf2_cu *cu) { const char *new_prefix = NULL; /* If we don't have namespace debug info, guess the name by trying to demangle the names of members, just like we did in guess_structure_name. */ if (!processing_has_namespace_info) { struct die_info *child; for (child = die->child; child != NULL && child->tag != 0; child = sibling_die (child)) { if (child->tag == DW_TAG_subprogram) { char *phys_prefix = language_class_name_from_physname (cu->language_defn, dwarf2_linkage_name (child, cu)); if (phys_prefix != NULL) { new_prefix = obsavestring (phys_prefix, strlen (phys_prefix), &cu->objfile->objfile_obstack); xfree (phys_prefix); break; } } } } if (new_prefix == NULL) new_prefix = dwarf2_full_name (die, cu); return new_prefix; } /* Given a pointer to a die which begins an enumeration, process all the dies that define the members of the enumeration, and create the symbol for the enumeration type. NOTE: We reverse the order of the element list. */ static void process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct die_info *child_die; struct field *fields; struct symbol *sym; int num_fields; int unsigned_enum = 1; char *name; struct type *this_type; num_fields = 0; fields = NULL; this_type = get_die_type (die, cu); if (this_type == NULL) this_type = read_enumeration_type (die, cu); if (die->child != NULL) { child_die = die->child; while (child_die && child_die->tag) { if (child_die->tag != DW_TAG_enumerator) { process_die (child_die, cu); } else { name = dwarf2_name (child_die, cu); if (name) { sym = new_symbol (child_die, this_type, cu); if (SYMBOL_VALUE (sym) < 0) unsigned_enum = 0; if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0) { fields = (struct field *) xrealloc (fields, (num_fields + DW_FIELD_ALLOC_CHUNK) * sizeof (struct field)); } FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym); FIELD_TYPE (fields[num_fields]) = NULL; SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym)); FIELD_BITSIZE (fields[num_fields]) = 0; num_fields++; } } child_die = sibling_die (child_die); } if (num_fields) { TYPE_NFIELDS (this_type) = num_fields; TYPE_FIELDS (this_type) = (struct field *) TYPE_ALLOC (this_type, sizeof (struct field) * num_fields); memcpy (TYPE_FIELDS (this_type), fields, sizeof (struct field) * num_fields); xfree (fields); } if (unsigned_enum) TYPE_UNSIGNED (this_type) = 1; } new_symbol (die, this_type, cu); } /* Extract all information from a DW_TAG_array_type DIE and put it in the DIE's type field. For now, this only handles one dimensional arrays. */ static struct type * read_array_type (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct die_info *child_die; struct type *type = NULL; struct type *element_type, *range_type, *index_type; struct type **range_types = NULL; struct attribute *attr; int ndim = 0; struct cleanup *back_to; char *name; element_type = die_type (die, cu); /* Irix 6.2 native cc creates array types without children for arrays with unspecified length. */ if (die->child == NULL) { index_type = objfile_type (objfile)->builtin_int; range_type = create_range_type (NULL, index_type, 0, -1); type = create_array_type (NULL, element_type, range_type); return set_die_type (die, type, cu); } back_to = make_cleanup (null_cleanup, NULL); child_die = die->child; while (child_die && child_die->tag) { if (child_die->tag == DW_TAG_subrange_type) { struct type *child_type = read_type_die (child_die, cu); if (child_type != NULL) { /* The range type was succesfully read. Save it for the array type creation. */ if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0) { range_types = (struct type **) xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK) * sizeof (struct type *)); if (ndim == 0) make_cleanup (free_current_contents, &range_types); } range_types[ndim++] = child_type; } } child_die = sibling_die (child_die); } /* Dwarf2 dimensions are output from left to right, create the necessary array types in backwards order. */ type = element_type; if (read_array_order (die, cu) == DW_ORD_col_major) { int i = 0; while (i < ndim) type = create_array_type (NULL, type, range_types[i++]); } else { while (ndim-- > 0) type = create_array_type (NULL, type, range_types[ndim]); } /* Understand Dwarf2 support for vector types (like they occur on the PowerPC w/ AltiVec). Gcc just adds another attribute to the array type. This is not part of the Dwarf2/3 standard yet, but a custom vendor extension. The main difference between a regular array and the vector variant is that vectors are passed by value to functions. */ attr = dwarf2_attr (die, DW_AT_GNU_vector, cu); if (attr) make_vector_type (type); name = dwarf2_name (die, cu); if (name) TYPE_NAME (type) = name; set_descriptive_type (type, die, cu); do_cleanups (back_to); /* Install the type in the die. */ return set_die_type (die, type, cu); } static enum dwarf_array_dim_ordering read_array_order (struct die_info *die, struct dwarf2_cu *cu) { struct attribute *attr; attr = dwarf2_attr (die, DW_AT_ordering, cu); if (attr) return DW_SND (attr); /* GNU F77 is a special case, as at 08/2004 array type info is the opposite order to the dwarf2 specification, but data is still laid out as per normal fortran. FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need version checking. */ if (cu->language == language_fortran && cu->producer && strstr (cu->producer, "GNU F77")) { return DW_ORD_row_major; } switch (cu->language_defn->la_array_ordering) { case array_column_major: return DW_ORD_col_major; case array_row_major: default: return DW_ORD_row_major; }; } /* Extract all information from a DW_TAG_set_type DIE and put it in the DIE's type field. */ static struct type * read_set_type (struct die_info *die, struct dwarf2_cu *cu) { struct type *set_type = create_set_type (NULL, die_type (die, cu)); return set_die_type (die, set_type, cu); } /* First cut: install each common block member as a global variable. */ static void read_common_block (struct die_info *die, struct dwarf2_cu *cu) { struct die_info *child_die; struct attribute *attr; struct symbol *sym; CORE_ADDR base = (CORE_ADDR) 0; attr = dwarf2_attr (die, DW_AT_location, cu); if (attr) { /* Support the .debug_loc offsets */ if (attr_form_is_block (attr)) { base = decode_locdesc (DW_BLOCK (attr), cu); } else if (attr_form_is_section_offset (attr)) { dwarf2_complex_location_expr_complaint (); } else { dwarf2_invalid_attrib_class_complaint ("DW_AT_location", "common block member"); } } if (die->child != NULL) { child_die = die->child; while (child_die && child_die->tag) { sym = new_symbol (child_die, NULL, cu); attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu); if (attr) { CORE_ADDR byte_offset = 0; if (attr_form_is_section_offset (attr)) dwarf2_complex_location_expr_complaint (); else if (attr_form_is_constant (attr)) byte_offset = dwarf2_get_attr_constant_value (attr, 0); else if (attr_form_is_block (attr)) byte_offset = decode_locdesc (DW_BLOCK (attr), cu); else dwarf2_complex_location_expr_complaint (); SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset; add_symbol_to_list (sym, &global_symbols); } child_die = sibling_die (child_die); } } } /* Create a type for a C++ namespace. */ static struct type * read_namespace_type (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; const char *previous_prefix, *name; int is_anonymous; struct type *type; /* For extensions, reuse the type of the original namespace. */ if (dwarf2_attr (die, DW_AT_extension, cu) != NULL) { struct die_info *ext_die; struct dwarf2_cu *ext_cu = cu; ext_die = dwarf2_extension (die, &ext_cu); type = read_type_die (ext_die, ext_cu); return set_die_type (die, type, cu); } name = namespace_name (die, &is_anonymous, cu); /* Now build the name of the current namespace. */ previous_prefix = determine_prefix (die, cu); if (previous_prefix[0] != '\0') name = typename_concat (&objfile->objfile_obstack, previous_prefix, name, cu); /* Create the type. */ type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL, objfile); TYPE_NAME (type) = (char *) name; TYPE_TAG_NAME (type) = TYPE_NAME (type); set_die_type (die, type, cu); return type; } /* Read a C++ namespace. */ static void read_namespace (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; const char *name; int is_anonymous; /* Add a symbol associated to this if we haven't seen the namespace before. Also, add a using directive if it's an anonymous namespace. */ if (dwarf2_attr (die, DW_AT_extension, cu) == NULL) { struct type *type; type = read_type_die (die, cu); new_symbol (die, type, cu); name = namespace_name (die, &is_anonymous, cu); if (is_anonymous) { const char *previous_prefix = determine_prefix (die, cu); cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL); } } if (die->child != NULL) { struct die_info *child_die = die->child; while (child_die && child_die->tag) { process_die (child_die, cu); child_die = sibling_die (child_die); } } } /* Read a Fortran module. */ static void read_module (struct die_info *die, struct dwarf2_cu *cu) { struct die_info *child_die = die->child; /* FIXME: Support the separate Fortran module namespaces. */ while (child_die && child_die->tag) { process_die (child_die, cu); child_die = sibling_die (child_die); } } /* Return the name of the namespace represented by DIE. Set *IS_ANONYMOUS to tell whether or not the namespace is an anonymous namespace. */ static const char * namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu) { struct die_info *current_die; const char *name = NULL; /* Loop through the extensions until we find a name. */ for (current_die = die; current_die != NULL; current_die = dwarf2_extension (die, &cu)) { name = dwarf2_name (current_die, cu); if (name != NULL) break; } /* Is it an anonymous namespace? */ *is_anonymous = (name == NULL); if (*is_anonymous) name = "(anonymous namespace)"; return name; } /* Extract all information from a DW_TAG_pointer_type DIE and add to the user defined type vector. */ static struct type * read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu) { struct gdbarch *gdbarch = get_objfile_arch (cu->objfile); struct comp_unit_head *cu_header = &cu->header; struct type *type; struct attribute *attr_byte_size; struct attribute *attr_address_class; int byte_size, addr_class; type = lookup_pointer_type (die_type (die, cu)); attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu); if (attr_byte_size) byte_size = DW_UNSND (attr_byte_size); else byte_size = cu_header->addr_size; attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu); if (attr_address_class) addr_class = DW_UNSND (attr_address_class); else addr_class = DW_ADDR_none; /* If the pointer size or address class is different than the default, create a type variant marked as such and set the length accordingly. */ if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none) { if (gdbarch_address_class_type_flags_p (gdbarch)) { int type_flags; type_flags = gdbarch_address_class_type_flags (gdbarch, byte_size, addr_class); gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL) == 0); type = make_type_with_address_space (type, type_flags); } else if (TYPE_LENGTH (type) != byte_size) { complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size); } else { /* Should we also complain about unhandled address classes? */ } } TYPE_LENGTH (type) = byte_size; return set_die_type (die, type, cu); } /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to the user defined type vector. */ static struct type * read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct type *type; struct type *to_type; struct type *domain; to_type = die_type (die, cu); domain = die_containing_type (die, cu); if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD) type = lookup_methodptr_type (to_type); else type = lookup_memberptr_type (to_type, domain); return set_die_type (die, type, cu); } /* Extract all information from a DW_TAG_reference_type DIE and add to the user defined type vector. */ static struct type * read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu) { struct comp_unit_head *cu_header = &cu->header; struct type *type; struct attribute *attr; type = lookup_reference_type (die_type (die, cu)); attr = dwarf2_attr (die, DW_AT_byte_size, cu); if (attr) { TYPE_LENGTH (type) = DW_UNSND (attr); } else { TYPE_LENGTH (type) = cu_header->addr_size; } return set_die_type (die, type, cu); } static struct type * read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu) { struct type *base_type, *cv_type; base_type = die_type (die, cu); cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0); return set_die_type (die, cv_type, cu); } static struct type * read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu) { struct type *base_type, *cv_type; base_type = die_type (die, cu); cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0); return set_die_type (die, cv_type, cu); } /* Extract all information from a DW_TAG_string_type DIE and add to the user defined type vector. It isn't really a user defined type, but it behaves like one, with other DIE's using an AT_user_def_type attribute to reference it. */ static struct type * read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct gdbarch *gdbarch = get_objfile_arch (objfile); struct type *type, *range_type, *index_type, *char_type; struct attribute *attr; unsigned int length; attr = dwarf2_attr (die, DW_AT_string_length, cu); if (attr) { length = DW_UNSND (attr); } else { /* check for the DW_AT_byte_size attribute */ attr = dwarf2_attr (die, DW_AT_byte_size, cu); if (attr) { length = DW_UNSND (attr); } else { length = 1; } } index_type = objfile_type (objfile)->builtin_int; range_type = create_range_type (NULL, index_type, 1, length); char_type = language_string_char_type (cu->language_defn, gdbarch); type = create_string_type (NULL, char_type, range_type); return set_die_type (die, type, cu); } /* Handle DIES due to C code like: struct foo { int (*funcp)(int a, long l); int b; }; ('funcp' generates a DW_TAG_subroutine_type DIE) */ static struct type * read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu) { struct type *type; /* Type that this function returns */ struct type *ftype; /* Function that returns above type */ struct attribute *attr; type = die_type (die, cu); ftype = lookup_function_type (type); /* All functions in C++, Pascal and Java have prototypes. */ attr = dwarf2_attr (die, DW_AT_prototyped, cu); if ((attr && (DW_UNSND (attr) != 0)) || cu->language == language_cplus || cu->language == language_java || cu->language == language_pascal) TYPE_PROTOTYPED (ftype) = 1; /* Store the calling convention in the type if it's available in the subroutine die. Otherwise set the calling convention to the default value DW_CC_normal. */ attr = dwarf2_attr (die, DW_AT_calling_convention, cu); TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal; /* We need to add the subroutine type to the die immediately so we don't infinitely recurse when dealing with parameters declared as the same subroutine type. */ set_die_type (die, ftype, cu); if (die->child != NULL) { struct die_info *child_die; int nparams = 0; int iparams = 0; /* Count the number of parameters. FIXME: GDB currently ignores vararg functions, but knows about vararg member functions. */ child_die = die->child; while (child_die && child_die->tag) { if (child_die->tag == DW_TAG_formal_parameter) nparams++; else if (child_die->tag == DW_TAG_unspecified_parameters) TYPE_VARARGS (ftype) = 1; child_die = sibling_die (child_die); } /* Allocate storage for parameters and fill them in. */ TYPE_NFIELDS (ftype) = nparams; TYPE_FIELDS (ftype) = (struct field *) TYPE_ZALLOC (ftype, nparams * sizeof (struct field)); child_die = die->child; while (child_die && child_die->tag) { if (child_die->tag == DW_TAG_formal_parameter) { /* Dwarf2 has no clean way to discern C++ static and non-static member functions. G++ helps GDB by marking the first parameter for non-static member functions (which is the this pointer) as artificial. We pass this information to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */ attr = dwarf2_attr (child_die, DW_AT_artificial, cu); if (attr) TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr); else TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0; TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu); iparams++; } child_die = sibling_die (child_die); } } return ftype; } static struct type * read_typedef (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct attribute *attr; const char *name = NULL; struct type *this_type; name = dwarf2_full_name (die, cu); this_type = init_type (TYPE_CODE_TYPEDEF, 0, TYPE_FLAG_TARGET_STUB, NULL, objfile); TYPE_NAME (this_type) = (char *) name; set_die_type (die, this_type, cu); TYPE_TARGET_TYPE (this_type) = die_type (die, cu); return this_type; } /* Find a representation of a given base type and install it in the TYPE field of the die. */ static struct type * read_base_type (struct die_info *die, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct type *type; struct attribute *attr; int encoding = 0, size = 0; char *name; enum type_code code = TYPE_CODE_INT; int type_flags = 0; struct type *target_type = NULL; attr = dwarf2_attr (die, DW_AT_encoding, cu); if (attr) { encoding = DW_UNSND (attr); } attr = dwarf2_attr (die, DW_AT_byte_size, cu); if (attr) { size = DW_UNSND (attr); } name = dwarf2_name (die, cu); if (!name) { complaint (&symfile_complaints, _("DW_AT_name missing from DW_TAG_base_type")); } switch (encoding) { case DW_ATE_address: /* Turn DW_ATE_address into a void * pointer. */ code = TYPE_CODE_PTR; type_flags |= TYPE_FLAG_UNSIGNED; target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile); break; case DW_ATE_boolean: code = TYPE_CODE_BOOL; type_flags |= TYPE_FLAG_UNSIGNED; break; case DW_ATE_complex_float: code = TYPE_CODE_COMPLEX; target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile); break; case DW_ATE_decimal_float: code = TYPE_CODE_DECFLOAT; break; case DW_ATE_float: code = TYPE_CODE_FLT; break; case DW_ATE_signed: break; case DW_ATE_unsigned: type_flags |= TYPE_FLAG_UNSIGNED; break; case DW_ATE_signed_char: if (cu->language == language_ada || cu->language == language_m2 || cu->language == language_pascal) code = TYPE_CODE_CHAR; break; case DW_ATE_unsigned_char: if (cu->language == language_ada || cu->language == language_m2 || cu->language == language_pascal) code = TYPE_CODE_CHAR; type_flags |= TYPE_FLAG_UNSIGNED; break; default: complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"), dwarf_type_encoding_name (encoding)); break; } type = init_type (code, size, type_flags, NULL, objfile); TYPE_NAME (type) = name; TYPE_TARGET_TYPE (type) = target_type; if (name && strcmp (name, "char") == 0) TYPE_NOSIGN (type) = 1; return set_die_type (die, type, cu); } /* Read the given DW_AT_subrange DIE. */ static struct type * read_subrange_type (struct die_info *die, struct dwarf2_cu *cu) { struct gdbarch *gdbarch = get_objfile_arch (cu->objfile); struct type *base_type; struct type *range_type; struct attribute *attr; LONGEST low = 0; LONGEST high = -1; char *name; LONGEST negative_mask; base_type = die_type (die, cu); if (TYPE_CODE (base_type) == TYPE_CODE_VOID) { complaint (&symfile_complaints, _("DW_AT_type missing from DW_TAG_subrange_type")); base_type = init_type (TYPE_CODE_INT, gdbarch_addr_bit (gdbarch) / 8, 0, NULL, cu->objfile); } if (cu->language == language_fortran) { /* FORTRAN implies a lower bound of 1, if not given. */ low = 1; } /* FIXME: For variable sized arrays either of these could be a variable rather than a constant value. We'll allow it, but we don't know how to handle it. */ attr = dwarf2_attr (die, DW_AT_lower_bound, cu); if (attr) low = dwarf2_get_attr_constant_value (attr, 0); attr = dwarf2_attr (die, DW_AT_upper_bound, cu); if (attr) { if (attr->form == DW_FORM_block1) { /* GCC encodes arrays with unspecified or dynamic length with a DW_FORM_block1 attribute. FIXME: GDB does not yet know how to handle dynamic arrays properly, treat them as arrays with unspecified length for now. FIXME: jimb/2003-09-22: GDB does not really know how to handle arrays of unspecified length either; we just represent them as zero-length arrays. Choose an appropriate upper bound given the lower bound we've computed above. */ high = low - 1; } else high = dwarf2_get_attr_constant_value (attr, 1); } negative_mask = (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1); if (!TYPE_UNSIGNED (base_type) && (low & negative_mask)) low |= negative_mask; if (!TYPE_UNSIGNED (base_type) && (high & negative_mask)) high |= negative_mask; range_type = create_range_type (NULL, base_type, low, high); name = dwarf2_name (die, cu); if (name) TYPE_NAME (range_type) = name; attr = dwarf2_attr (die, DW_AT_byte_size, cu); if (attr) TYPE_LENGTH (range_type) = DW_UNSND (attr); set_descriptive_type (range_type, die, cu); return set_die_type (die, range_type, cu); } static struct type * read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu) { struct type *type; /* For now, we only support the C meaning of an unspecified type: void. */ type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile); TYPE_NAME (type) = dwarf2_name (die, cu); return set_die_type (die, type, cu); } /* Trivial hash function for die_info: the hash value of a DIE is its offset in .debug_info for this objfile. */ static hashval_t die_hash (const void *item) { const struct die_info *die = item; return die->offset; } /* Trivial comparison function for die_info structures: two DIEs are equal if they have the same offset. */ static int die_eq (const void *item_lhs, const void *item_rhs) { const struct die_info *die_lhs = item_lhs; const struct die_info *die_rhs = item_rhs; return die_lhs->offset == die_rhs->offset; } /* Read a whole compilation unit into a linked list of dies. */ static struct die_info * read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu) { struct die_reader_specs reader_specs; gdb_assert (cu->die_hash == NULL); cu->die_hash = htab_create_alloc_ex (cu->header.length / 12, die_hash, die_eq, NULL, &cu->comp_unit_obstack, hashtab_obstack_allocate, dummy_obstack_deallocate); init_cu_die_reader (&reader_specs, cu); return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL); } /* Main entry point for reading a DIE and all children. Read the DIE and dump it if requested. */ static struct die_info * read_die_and_children (const struct die_reader_specs *reader, gdb_byte *info_ptr, gdb_byte **new_info_ptr, struct die_info *parent) { struct die_info *result = read_die_and_children_1 (reader, info_ptr, new_info_ptr, parent); if (dwarf2_die_debug) { fprintf_unfiltered (gdb_stdlog, "\nRead die from %s of %s:\n", reader->buffer == dwarf2_per_objfile->info.buffer ? ".debug_info" : reader->buffer == dwarf2_per_objfile->types.buffer ? ".debug_types" : "unknown section", reader->abfd->filename); dump_die (result, dwarf2_die_debug); } return result; } /* Read a single die and all its descendents. Set the die's sibling field to NULL; set other fields in the die correctly, and set all of the descendents' fields correctly. Set *NEW_INFO_PTR to the location of the info_ptr after reading all of those dies. PARENT is the parent of the die in question. */ static struct die_info * read_die_and_children_1 (const struct die_reader_specs *reader, gdb_byte *info_ptr, gdb_byte **new_info_ptr, struct die_info *parent) { struct die_info *die; gdb_byte *cur_ptr; int has_children; cur_ptr = read_full_die (reader, &die, info_ptr, &has_children); if (die == NULL) { *new_info_ptr = cur_ptr; return NULL; } store_in_ref_table (die, reader->cu); if (has_children) die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die); else { die->child = NULL; *new_info_ptr = cur_ptr; } die->sibling = NULL; die->parent = parent; return die; } /* Read a die, all of its descendents, and all of its siblings; set all of the fields of all of the dies correctly. Arguments are as in read_die_and_children. */ static struct die_info * read_die_and_siblings (const struct die_reader_specs *reader, gdb_byte *info_ptr, gdb_byte **new_info_ptr, struct die_info *parent) { struct die_info *first_die, *last_sibling; gdb_byte *cur_ptr; cur_ptr = info_ptr; first_die = last_sibling = NULL; while (1) { struct die_info *die = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent); if (die == NULL) { *new_info_ptr = cur_ptr; return first_die; } if (!first_die) first_die = die; else last_sibling->sibling = die; last_sibling = die; } } /* Read the die from the .debug_info section buffer. Set DIEP to point to a newly allocated die with its information, except for its child, sibling, and parent fields. Set HAS_CHILDREN to tell whether the die has children or not. */ static gdb_byte * read_full_die (const struct die_reader_specs *reader, struct die_info **diep, gdb_byte *info_ptr, int *has_children) { unsigned int abbrev_number, bytes_read, i, offset; struct abbrev_info *abbrev; struct die_info *die; struct dwarf2_cu *cu = reader->cu; bfd *abfd = reader->abfd; offset = info_ptr - reader->buffer; abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); info_ptr += bytes_read; if (!abbrev_number) { *diep = NULL; *has_children = 0; return info_ptr; } abbrev = dwarf2_lookup_abbrev (abbrev_number, cu); if (!abbrev) error (_("Dwarf Error: could not find abbrev number %d [in module %s]"), abbrev_number, bfd_get_filename (abfd)); die = dwarf_alloc_die (cu, abbrev->num_attrs); die->offset = offset; die->tag = abbrev->tag; die->abbrev = abbrev_number; die->num_attrs = abbrev->num_attrs; for (i = 0; i < abbrev->num_attrs; ++i) info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i], abfd, info_ptr, cu); *diep = die; *has_children = abbrev->has_children; return info_ptr; } /* In DWARF version 2, the description of the debugging information is stored in a separate .debug_abbrev section. Before we read any dies from a section we read in all abbreviations and install them in a hash table. This function also sets flags in CU describing the data found in the abbrev table. */ static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu) { struct comp_unit_head *cu_header = &cu->header; gdb_byte *abbrev_ptr; struct abbrev_info *cur_abbrev; unsigned int abbrev_number, bytes_read, abbrev_name; unsigned int abbrev_form, hash_number; struct attr_abbrev *cur_attrs; unsigned int allocated_attrs; /* Initialize dwarf2 abbrevs */ obstack_init (&cu->abbrev_obstack); cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack, (ABBREV_HASH_SIZE * sizeof (struct abbrev_info *))); memset (cu->dwarf2_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *)); abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset; abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); abbrev_ptr += bytes_read; allocated_attrs = ATTR_ALLOC_CHUNK; cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev)); /* loop until we reach an abbrev number of 0 */ while (abbrev_number) { cur_abbrev = dwarf_alloc_abbrev (cu); /* read in abbrev header */ cur_abbrev->number = abbrev_number; cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); abbrev_ptr += bytes_read; cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr); abbrev_ptr += 1; if (cur_abbrev->tag == DW_TAG_namespace) cu->has_namespace_info = 1; /* now read in declarations */ abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); abbrev_ptr += bytes_read; abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); abbrev_ptr += bytes_read; while (abbrev_name) { if (cur_abbrev->num_attrs == allocated_attrs) { allocated_attrs += ATTR_ALLOC_CHUNK; cur_attrs = xrealloc (cur_attrs, (allocated_attrs * sizeof (struct attr_abbrev))); } /* Record whether this compilation unit might have inter-compilation-unit references. If we don't know what form this attribute will have, then it might potentially be a DW_FORM_ref_addr, so we conservatively expect inter-CU references. */ if (abbrev_form == DW_FORM_ref_addr || abbrev_form == DW_FORM_indirect) cu->has_form_ref_addr = 1; cur_attrs[cur_abbrev->num_attrs].name = abbrev_name; cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form; abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); abbrev_ptr += bytes_read; abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); abbrev_ptr += bytes_read; } cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack, (cur_abbrev->num_attrs * sizeof (struct attr_abbrev))); memcpy (cur_abbrev->attrs, cur_attrs, cur_abbrev->num_attrs * sizeof (struct attr_abbrev)); hash_number = abbrev_number % ABBREV_HASH_SIZE; cur_abbrev->next = cu->dwarf2_abbrevs[hash_number]; cu->dwarf2_abbrevs[hash_number] = cur_abbrev; /* Get next abbreviation. Under Irix6 the abbreviations for a compilation unit are not always properly terminated with an abbrev number of 0. Exit loop if we encounter an abbreviation which we have already read (which means we are about to read the abbreviations for the next compile unit) or if the end of the abbreviation table is reached. */ if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer) >= dwarf2_per_objfile->abbrev.size) break; abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); abbrev_ptr += bytes_read; if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL) break; } xfree (cur_attrs); } /* Release the memory used by the abbrev table for a compilation unit. */ static void dwarf2_free_abbrev_table (void *ptr_to_cu) { struct dwarf2_cu *cu = ptr_to_cu; obstack_free (&cu->abbrev_obstack, NULL); cu->dwarf2_abbrevs = NULL; } /* Lookup an abbrev_info structure in the abbrev hash table. */ static struct abbrev_info * dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu) { unsigned int hash_number; struct abbrev_info *abbrev; hash_number = number % ABBREV_HASH_SIZE; abbrev = cu->dwarf2_abbrevs[hash_number]; while (abbrev) { if (abbrev->number == number) return abbrev; else abbrev = abbrev->next; } return NULL; } /* Returns nonzero if TAG represents a type that we might generate a partial symbol for. */ static int is_type_tag_for_partial (int tag) { switch (tag) { #if 0 /* Some types that would be reasonable to generate partial symbols for, that we don't at present. */ case DW_TAG_array_type: case DW_TAG_file_type: case DW_TAG_ptr_to_member_type: case DW_TAG_set_type: case DW_TAG_string_type: case DW_TAG_subroutine_type: #endif case DW_TAG_base_type: case DW_TAG_class_type: case DW_TAG_interface_type: case DW_TAG_enumeration_type: case DW_TAG_structure_type: case DW_TAG_subrange_type: case DW_TAG_typedef: case DW_TAG_union_type: return 1; default: return 0; } } /* Load all DIEs that are interesting for partial symbols into memory. */ static struct partial_die_info * load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr, int building_psymtab, struct dwarf2_cu *cu) { struct partial_die_info *part_die; struct partial_die_info *parent_die, *last_die, *first_die = NULL; struct abbrev_info *abbrev; unsigned int bytes_read; unsigned int load_all = 0; int nesting_level = 1; parent_die = NULL; last_die = NULL; if (cu->per_cu && cu->per_cu->load_all_dies) load_all = 1; cu->partial_dies = htab_create_alloc_ex (cu->header.length / 12, partial_die_hash, partial_die_eq, NULL, &cu->comp_unit_obstack, hashtab_obstack_allocate, dummy_obstack_deallocate); part_die = obstack_alloc (&cu->comp_unit_obstack, sizeof (struct partial_die_info)); while (1) { abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu); /* A NULL abbrev means the end of a series of children. */ if (abbrev == NULL) { if (--nesting_level == 0) { /* PART_DIE was probably the last thing allocated on the comp_unit_obstack, so we could call obstack_free here. We don't do that because the waste is small, and will be cleaned up when we're done with this compilation unit. This way, we're also more robust against other users of the comp_unit_obstack. */ return first_die; } info_ptr += bytes_read; last_die = parent_die; parent_die = parent_die->die_parent; continue; } /* Check whether this DIE is interesting enough to save. Normally we would not be interested in members here, but there may be later variables referencing them via DW_AT_specification (for static members). */ if (!load_all && !is_type_tag_for_partial (abbrev->tag) && abbrev->tag != DW_TAG_enumerator && abbrev->tag != DW_TAG_subprogram && abbrev->tag != DW_TAG_lexical_block && abbrev->tag != DW_TAG_variable && abbrev->tag != DW_TAG_namespace && abbrev->tag != DW_TAG_member) { /* Otherwise we skip to the next sibling, if any. */ info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu); continue; } info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd, buffer, info_ptr, cu); /* This two-pass algorithm for processing partial symbols has a high cost in cache pressure. Thus, handle some simple cases here which cover the majority of C partial symbols. DIEs which neither have specification tags in them, nor could have specification tags elsewhere pointing at them, can simply be processed and discarded. This segment is also optional; scan_partial_symbols and add_partial_symbol will handle these DIEs if we chain them in normally. When compilers which do not emit large quantities of duplicate debug information are more common, this code can probably be removed. */ /* Any complete simple types at the top level (pretty much all of them, for a language without namespaces), can be processed directly. */ if (parent_die == NULL && part_die->has_specification == 0 && part_die->is_declaration == 0 && (part_die->tag == DW_TAG_typedef || part_die->tag == DW_TAG_base_type || part_die->tag == DW_TAG_subrange_type)) { if (building_psymtab && part_die->name != NULL) add_psymbol_to_list (part_die->name, strlen (part_die->name), 0, VAR_DOMAIN, LOC_TYPEDEF, &cu->objfile->static_psymbols, 0, (CORE_ADDR) 0, cu->language, cu->objfile); info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu); continue; } /* If we're at the second level, and we're an enumerator, and our parent has no specification (meaning possibly lives in a namespace elsewhere), then we can add the partial symbol now instead of queueing it. */ if (part_die->tag == DW_TAG_enumerator && parent_die != NULL && parent_die->die_parent == NULL && parent_die->tag == DW_TAG_enumeration_type && parent_die->has_specification == 0) { if (part_die->name == NULL) complaint (&symfile_complaints, _("malformed enumerator DIE ignored")); else if (building_psymtab) add_psymbol_to_list (part_die->name, strlen (part_die->name), 0, VAR_DOMAIN, LOC_CONST, (cu->language == language_cplus || cu->language == language_java) ? &cu->objfile->global_psymbols : &cu->objfile->static_psymbols, 0, (CORE_ADDR) 0, cu->language, cu->objfile); info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu); continue; } /* We'll save this DIE so link it in. */ part_die->die_parent = parent_die; part_die->die_sibling = NULL; part_die->die_child = NULL; if (last_die && last_die == parent_die) last_die->die_child = part_die; else if (last_die) last_die->die_sibling = part_die; last_die = part_die; if (first_die == NULL) first_die = part_die; /* Maybe add the DIE to the hash table. Not all DIEs that we find interesting need to be in the hash table, because we also have the parent/sibling/child chains; only those that we might refer to by offset later during partial symbol reading. For now this means things that might have be the target of a DW_AT_specification, DW_AT_abstract_origin, or DW_AT_extension. DW_AT_extension will refer only to namespaces; DW_AT_abstract_origin refers to functions (and many things under the function DIE, but we do not recurse into function DIEs during partial symbol reading) and possibly variables as well; DW_AT_specification refers to declarations. Declarations ought to have the DW_AT_declaration flag. It happens that GCC forgets to put it in sometimes, but only for functions, not for types. Adding more things than necessary to the hash table is harmless except for the performance cost. Adding too few will result in wasted time in find_partial_die, when we reread the compilation unit with load_all_dies set. */ if (load_all || abbrev->tag == DW_TAG_subprogram || abbrev->tag == DW_TAG_variable || abbrev->tag == DW_TAG_namespace || part_die->is_declaration) { void **slot; slot = htab_find_slot_with_hash (cu->partial_dies, part_die, part_die->offset, INSERT); *slot = part_die; } part_die = obstack_alloc (&cu->comp_unit_obstack, sizeof (struct partial_die_info)); /* For some DIEs we want to follow their children (if any). For C we have no reason to follow the children of structures; for other languages we have to, both so that we can get at method physnames to infer fully qualified class names, and for DW_AT_specification. For Ada, we need to scan the children of subprograms and lexical blocks as well because Ada allows the definition of nested entities that could be interesting for the debugger, such as nested subprograms for instance. */ if (last_die->has_children && (load_all || last_die->tag == DW_TAG_namespace || last_die->tag == DW_TAG_enumeration_type || (cu->language != language_c && (last_die->tag == DW_TAG_class_type || last_die->tag == DW_TAG_interface_type || last_die->tag == DW_TAG_structure_type || last_die->tag == DW_TAG_union_type)) || (cu->language == language_ada && (last_die->tag == DW_TAG_subprogram || last_die->tag == DW_TAG_lexical_block)))) { nesting_level++; parent_die = last_die; continue; } /* Otherwise we skip to the next sibling, if any. */ info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu); /* Back to the top, do it again. */ } } /* Read a minimal amount of information into the minimal die structure. */ static gdb_byte * read_partial_die (struct partial_die_info *part_die, struct abbrev_info *abbrev, unsigned int abbrev_len, bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu) { unsigned int bytes_read, i; struct attribute attr; int has_low_pc_attr = 0; int has_high_pc_attr = 0; memset (part_die, 0, sizeof (struct partial_die_info)); part_die->offset = info_ptr - buffer; info_ptr += abbrev_len; if (abbrev == NULL) return info_ptr; part_die->tag = abbrev->tag; part_die->has_children = abbrev->has_children; for (i = 0; i < abbrev->num_attrs; ++i) { info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu); /* Store the data if it is of an attribute we want to keep in a partial symbol table. */ switch (attr.name) { case DW_AT_name: switch (part_die->tag) { case DW_TAG_compile_unit: case DW_TAG_type_unit: /* Compilation units have a DW_AT_name that is a filename, not a source language identifier. */ case DW_TAG_enumeration_type: case DW_TAG_enumerator: /* These tags always have simple identifiers already; no need to canonicalize them. */ part_die->name = DW_STRING (&attr); break; default: part_die->name = dwarf2_canonicalize_name (DW_STRING (&attr), cu, &cu->objfile->objfile_obstack); break; } break; case DW_AT_MIPS_linkage_name: part_die->name = DW_STRING (&attr); break; case DW_AT_low_pc: has_low_pc_attr = 1; part_die->lowpc = DW_ADDR (&attr); break; case DW_AT_high_pc: has_high_pc_attr = 1; part_die->highpc = DW_ADDR (&attr); break; case DW_AT_location: /* Support the .debug_loc offsets */ if (attr_form_is_block (&attr)) { part_die->locdesc = DW_BLOCK (&attr); } else if (attr_form_is_section_offset (&attr)) { dwarf2_complex_location_expr_complaint (); } else { dwarf2_invalid_attrib_class_complaint ("DW_AT_location", "partial symbol information"); } break; case DW_AT_external: part_die->is_external = DW_UNSND (&attr); break; case DW_AT_declaration: part_die->is_declaration = DW_UNSND (&attr); break; case DW_AT_type: part_die->has_type = 1; break; case DW_AT_abstract_origin: case DW_AT_specification: case DW_AT_extension: part_die->has_specification = 1; part_die->spec_offset = dwarf2_get_ref_die_offset (&attr); break; case DW_AT_sibling: /* Ignore absolute siblings, they might point outside of the current compile unit. */ if (attr.form == DW_FORM_ref_addr) complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling")); else part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr); break; case DW_AT_byte_size: part_die->has_byte_size = 1; break; case DW_AT_calling_convention: /* DWARF doesn't provide a way to identify a program's source-level entry point. DW_AT_calling_convention attributes are only meant to describe functions' calling conventions. However, because it's a necessary piece of information in Fortran, and because DW_CC_program is the only piece of debugging information whose definition refers to a 'main program' at all, several compilers have begun marking Fortran main programs with DW_CC_program --- even when those functions use the standard calling conventions. So until DWARF specifies a way to provide this information and compilers pick up the new representation, we'll support this practice. */ if (DW_UNSND (&attr) == DW_CC_program && cu->language == language_fortran) set_main_name (part_die->name); break; default: break; } } /* When using the GNU linker, .gnu.linkonce. sections are used to eliminate duplicate copies of functions and vtables and such. The linker will arbitrarily choose one and discard the others. The AT_*_pc values for such functions refer to local labels in these sections. If the section from that file was discarded, the labels are not in the output, so the relocs get a value of 0. If this is a discarded function, mark the pc bounds as invalid, so that GDB will ignore it. */ if (has_low_pc_attr && has_high_pc_attr && part_die->lowpc < part_die->highpc && (part_die->lowpc != 0 || dwarf2_per_objfile->has_section_at_zero)) part_die->has_pc_info = 1; return info_ptr; } /* Find a cached partial DIE at OFFSET in CU. */ static struct partial_die_info * find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu) { struct partial_die_info *lookup_die = NULL; struct partial_die_info part_die; part_die.offset = offset; lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset); return lookup_die; } /* Find a partial DIE at OFFSET, which may or may not be in CU, except in the case of .debug_types DIEs which do not reference outside their CU (they do however referencing other types via DW_FORM_sig8). */ static struct partial_die_info * find_partial_die (unsigned int offset, struct dwarf2_cu *cu) { struct dwarf2_per_cu_data *per_cu = NULL; struct partial_die_info *pd = NULL; if (cu->per_cu->from_debug_types) { pd = find_partial_die_in_comp_unit (offset, cu); if (pd != NULL) return pd; goto not_found; } if (offset_in_cu_p (&cu->header, offset)) { pd = find_partial_die_in_comp_unit (offset, cu); if (pd != NULL) return pd; } per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile); if (per_cu->cu == NULL) { load_partial_comp_unit (per_cu, cu->objfile); per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain; dwarf2_per_objfile->read_in_chain = per_cu; } per_cu->cu->last_used = 0; pd = find_partial_die_in_comp_unit (offset, per_cu->cu); if (pd == NULL && per_cu->load_all_dies == 0) { struct cleanup *back_to; struct partial_die_info comp_unit_die; struct abbrev_info *abbrev; unsigned int bytes_read; char *info_ptr; per_cu->load_all_dies = 1; /* Re-read the DIEs. */ back_to = make_cleanup (null_cleanup, 0); if (per_cu->cu->dwarf2_abbrevs == NULL) { dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu); make_cleanup (dwarf2_free_abbrev_table, per_cu->cu); } info_ptr = (dwarf2_per_objfile->info.buffer + per_cu->cu->header.offset + per_cu->cu->header.first_die_offset); abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu); info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read, per_cu->cu->objfile->obfd, dwarf2_per_objfile->info.buffer, info_ptr, per_cu->cu); if (comp_unit_die.has_children) load_partial_dies (per_cu->cu->objfile->obfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, per_cu->cu); do_cleanups (back_to); pd = find_partial_die_in_comp_unit (offset, per_cu->cu); } not_found: if (pd == NULL) internal_error (__FILE__, __LINE__, _("could not find partial DIE 0x%x in cache [from module %s]\n"), offset, bfd_get_filename (cu->objfile->obfd)); return pd; } /* Adjust PART_DIE before generating a symbol for it. This function may set the is_external flag or change the DIE's name. */ static void fixup_partial_die (struct partial_die_info *part_die, struct dwarf2_cu *cu) { /* If we found a reference attribute and the DIE has no name, try to find a name in the referred to DIE. */ if (part_die->name == NULL && part_die->has_specification) { struct partial_die_info *spec_die; spec_die = find_partial_die (part_die->spec_offset, cu); fixup_partial_die (spec_die, cu); if (spec_die->name) { part_die->name = spec_die->name; /* Copy DW_AT_external attribute if it is set. */ if (spec_die->is_external) part_die->is_external = spec_die->is_external; } } /* Set default names for some unnamed DIEs. */ if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type || part_die->tag == DW_TAG_class_type)) part_die->name = "(anonymous class)"; if (part_die->name == NULL && part_die->tag == DW_TAG_namespace) part_die->name = "(anonymous namespace)"; if (part_die->tag == DW_TAG_structure_type || part_die->tag == DW_TAG_class_type || part_die->tag == DW_TAG_union_type) guess_structure_name (part_die, cu); } /* Read an attribute value described by an attribute form. */ static gdb_byte * read_attribute_value (struct attribute *attr, unsigned form, bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu) { struct comp_unit_head *cu_header = &cu->header; unsigned int bytes_read; struct dwarf_block *blk; attr->form = form; switch (form) { case DW_FORM_ref_addr: if (cu->header.version == 2) DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read); else DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read); info_ptr += bytes_read; break; case DW_FORM_addr: DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read); info_ptr += bytes_read; break; case DW_FORM_block2: blk = dwarf_alloc_block (cu); blk->size = read_2_bytes (abfd, info_ptr); info_ptr += 2; blk->data = read_n_bytes (abfd, info_ptr, blk->size); info_ptr += blk->size; DW_BLOCK (attr) = blk; break; case DW_FORM_block4: blk = dwarf_alloc_block (cu); blk->size = read_4_bytes (abfd, info_ptr); info_ptr += 4; blk->data = read_n_bytes (abfd, info_ptr, blk->size); info_ptr += blk->size; DW_BLOCK (attr) = blk; break; case DW_FORM_data2: DW_UNSND (attr) = read_2_bytes (abfd, info_ptr); info_ptr += 2; break; case DW_FORM_data4: DW_UNSND (attr) = read_4_bytes (abfd, info_ptr); info_ptr += 4; break; case DW_FORM_data8: DW_UNSND (attr) = read_8_bytes (abfd, info_ptr); info_ptr += 8; break; case DW_FORM_string: DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read); DW_STRING_IS_CANONICAL (attr) = 0; info_ptr += bytes_read; break; case DW_FORM_strp: DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header, &bytes_read); DW_STRING_IS_CANONICAL (attr) = 0; info_ptr += bytes_read; break; case DW_FORM_block: blk = dwarf_alloc_block (cu); blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); info_ptr += bytes_read; blk->data = read_n_bytes (abfd, info_ptr, blk->size); info_ptr += blk->size; DW_BLOCK (attr) = blk; break; case DW_FORM_block1: blk = dwarf_alloc_block (cu); blk->size = read_1_byte (abfd, info_ptr); info_ptr += 1; blk->data = read_n_bytes (abfd, info_ptr, blk->size); info_ptr += blk->size; DW_BLOCK (attr) = blk; break; case DW_FORM_data1: DW_UNSND (attr) = read_1_byte (abfd, info_ptr); info_ptr += 1; break; case DW_FORM_flag: DW_UNSND (attr) = read_1_byte (abfd, info_ptr); info_ptr += 1; break; case DW_FORM_sdata: DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read); info_ptr += bytes_read; break; case DW_FORM_udata: DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); info_ptr += bytes_read; break; case DW_FORM_ref1: DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr); info_ptr += 1; break; case DW_FORM_ref2: DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr); info_ptr += 2; break; case DW_FORM_ref4: DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr); info_ptr += 4; break; case DW_FORM_ref8: DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr); info_ptr += 8; break; case DW_FORM_sig8: /* Convert the signature to something we can record in DW_UNSND for later lookup. NOTE: This is NULL if the type wasn't found. */ DW_SIGNATURED_TYPE (attr) = lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr)); info_ptr += 8; break; case DW_FORM_ref_udata: DW_ADDR (attr) = (cu->header.offset + read_unsigned_leb128 (abfd, info_ptr, &bytes_read)); info_ptr += bytes_read; break; case DW_FORM_indirect: form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); info_ptr += bytes_read; info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu); break; default: error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"), dwarf_form_name (form), bfd_get_filename (abfd)); } /* We have seen instances where the compiler tried to emit a byte size attribute of -1 which ended up being encoded as an unsigned 0xffffffff. Although 0xffffffff is technically a valid size value, an object of this size seems pretty unlikely so we can relatively safely treat these cases as if the size attribute was invalid and treat them as zero by default. */ if (attr->name == DW_AT_byte_size && form == DW_FORM_data4 && DW_UNSND (attr) >= 0xffffffff) { complaint (&symfile_complaints, _("Suspicious DW_AT_byte_size value treated as zero instead of %s"), hex_string (DW_UNSND (attr))); DW_UNSND (attr) = 0; } return info_ptr; } /* Read an attribute described by an abbreviated attribute. */ static gdb_byte * read_attribute (struct attribute *attr, struct attr_abbrev *abbrev, bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu) { attr->name = abbrev->name; return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu); } /* read dwarf information from a buffer */ static unsigned int read_1_byte (bfd *abfd, gdb_byte *buf) { return bfd_get_8 (abfd, buf); } static int read_1_signed_byte (bfd *abfd, gdb_byte *buf) { return bfd_get_signed_8 (abfd, buf); } static unsigned int read_2_bytes (bfd *abfd, gdb_byte *buf) { return bfd_get_16 (abfd, buf); } static int read_2_signed_bytes (bfd *abfd, gdb_byte *buf) { return bfd_get_signed_16 (abfd, buf); } static unsigned int read_4_bytes (bfd *abfd, gdb_byte *buf) { return bfd_get_32 (abfd, buf); } static int read_4_signed_bytes (bfd *abfd, gdb_byte *buf) { return bfd_get_signed_32 (abfd, buf); } static ULONGEST read_8_bytes (bfd *abfd, gdb_byte *buf) { return bfd_get_64 (abfd, buf); } static CORE_ADDR read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu, unsigned int *bytes_read) { struct comp_unit_head *cu_header = &cu->header; CORE_ADDR retval = 0; if (cu_header->signed_addr_p) { switch (cu_header->addr_size) { case 2: retval = bfd_get_signed_16 (abfd, buf); break; case 4: retval = bfd_get_signed_32 (abfd, buf); break; case 8: retval = bfd_get_signed_64 (abfd, buf); break; default: internal_error (__FILE__, __LINE__, _("read_address: bad switch, signed [in module %s]"), bfd_get_filename (abfd)); } } else { switch (cu_header->addr_size) { case 2: retval = bfd_get_16 (abfd, buf); break; case 4: retval = bfd_get_32 (abfd, buf); break; case 8: retval = bfd_get_64 (abfd, buf); break; default: internal_error (__FILE__, __LINE__, _("read_address: bad switch, unsigned [in module %s]"), bfd_get_filename (abfd)); } } *bytes_read = cu_header->addr_size; return retval; } /* Read the initial length from a section. The (draft) DWARF 3 specification allows the initial length to take up either 4 bytes or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8 bytes describe the length and all offsets will be 8 bytes in length instead of 4. An older, non-standard 64-bit format is also handled by this function. The older format in question stores the initial length as an 8-byte quantity without an escape value. Lengths greater than 2^32 aren't very common which means that the initial 4 bytes is almost always zero. Since a length value of zero doesn't make sense for the 32-bit format, this initial zero can be considered to be an escape value which indicates the presence of the older 64-bit format. As written, the code can't detect (old format) lengths greater than 4GB. If it becomes necessary to handle lengths somewhat larger than 4GB, we could allow other small values (such as the non-sensical values of 1, 2, and 3) to also be used as escape values indicating the presence of the old format. The value returned via bytes_read should be used to increment the relevant pointer after calling read_initial_length(). [ Note: read_initial_length() and read_offset() are based on the document entitled "DWARF Debugging Information Format", revision 3, draft 8, dated November 19, 2001. This document was obtained from: http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf This document is only a draft and is subject to change. (So beware.) Details regarding the older, non-standard 64-bit format were determined empirically by examining 64-bit ELF files produced by the SGI toolchain on an IRIX 6.5 machine. - Kevin, July 16, 2002 ] */ static LONGEST read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read) { LONGEST length = bfd_get_32 (abfd, buf); if (length == 0xffffffff) { length = bfd_get_64 (abfd, buf + 4); *bytes_read = 12; } else if (length == 0) { /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */ length = bfd_get_64 (abfd, buf); *bytes_read = 8; } else { *bytes_read = 4; } return length; } /* Cover function for read_initial_length. Returns the length of the object at BUF, and stores the size of the initial length in *BYTES_READ and stores the size that offsets will be in *OFFSET_SIZE. If the initial length size is not equivalent to that specified in CU_HEADER then issue a complaint. This is useful when reading non-comp-unit headers. */ static LONGEST read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header, unsigned int *bytes_read, unsigned int *offset_size) { LONGEST length = read_initial_length (abfd, buf, bytes_read); gdb_assert (cu_header->initial_length_size == 4 || cu_header->initial_length_size == 8 || cu_header->initial_length_size == 12); if (cu_header->initial_length_size != *bytes_read) complaint (&symfile_complaints, _("intermixed 32-bit and 64-bit DWARF sections")); *offset_size = (*bytes_read == 4) ? 4 : 8; return length; } /* Read an offset from the data stream. The size of the offset is given by cu_header->offset_size. */ static LONGEST read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header, unsigned int *bytes_read) { LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size); *bytes_read = cu_header->offset_size; return offset; } /* Read an offset from the data stream. */ static LONGEST read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size) { LONGEST retval = 0; switch (offset_size) { case 4: retval = bfd_get_32 (abfd, buf); break; case 8: retval = bfd_get_64 (abfd, buf); break; default: internal_error (__FILE__, __LINE__, _("read_offset_1: bad switch [in module %s]"), bfd_get_filename (abfd)); } return retval; } static gdb_byte * read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size) { /* If the size of a host char is 8 bits, we can return a pointer to the buffer, otherwise we have to copy the data to a buffer allocated on the temporary obstack. */ gdb_assert (HOST_CHAR_BIT == 8); return buf; } static char * read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) { /* If the size of a host char is 8 bits, we can return a pointer to the string, otherwise we have to copy the string to a buffer allocated on the temporary obstack. */ gdb_assert (HOST_CHAR_BIT == 8); if (*buf == '\0') { *bytes_read_ptr = 1; return NULL; } *bytes_read_ptr = strlen ((char *) buf) + 1; return (char *) buf; } static char * read_indirect_string (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header, unsigned int *bytes_read_ptr) { LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr); if (dwarf2_per_objfile->str.buffer == NULL) { error (_("DW_FORM_strp used without .debug_str section [in module %s]"), bfd_get_filename (abfd)); return NULL; } if (str_offset >= dwarf2_per_objfile->str.size) { error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"), bfd_get_filename (abfd)); return NULL; } gdb_assert (HOST_CHAR_BIT == 8); if (dwarf2_per_objfile->str.buffer[str_offset] == '\0') return NULL; return (char *) (dwarf2_per_objfile->str.buffer + str_offset); } static unsigned long read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) { unsigned long result; unsigned int num_read; int i, shift; unsigned char byte; result = 0; shift = 0; num_read = 0; i = 0; while (1) { byte = bfd_get_8 (abfd, buf); buf++; num_read++; result |= ((unsigned long)(byte & 127) << shift); if ((byte & 128) == 0) { break; } shift += 7; } *bytes_read_ptr = num_read; return result; } static long read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) { long result; int i, shift, num_read; unsigned char byte; result = 0; shift = 0; num_read = 0; i = 0; while (1) { byte = bfd_get_8 (abfd, buf); buf++; num_read++; result |= ((long)(byte & 127) << shift); shift += 7; if ((byte & 128) == 0) { break; } } if ((shift < 8 * sizeof (result)) && (byte & 0x40)) result |= -(((long)1) << shift); *bytes_read_ptr = num_read; return result; } /* Return a pointer to just past the end of an LEB128 number in BUF. */ static gdb_byte * skip_leb128 (bfd *abfd, gdb_byte *buf) { int byte; while (1) { byte = bfd_get_8 (abfd, buf); buf++; if ((byte & 128) == 0) return buf; } } static void set_cu_language (unsigned int lang, struct dwarf2_cu *cu) { switch (lang) { case DW_LANG_C89: case DW_LANG_C99: case DW_LANG_C: cu->language = language_c; break; case DW_LANG_C_plus_plus: cu->language = language_cplus; break; case DW_LANG_Fortran77: case DW_LANG_Fortran90: case DW_LANG_Fortran95: cu->language = language_fortran; break; case DW_LANG_Mips_Assembler: cu->language = language_asm; break; case DW_LANG_Java: cu->language = language_java; break; case DW_LANG_Ada83: case DW_LANG_Ada95: cu->language = language_ada; break; case DW_LANG_Modula2: cu->language = language_m2; break; case DW_LANG_Pascal83: cu->language = language_pascal; break; case DW_LANG_ObjC: cu->language = language_objc; break; case DW_LANG_Cobol74: case DW_LANG_Cobol85: default: cu->language = language_minimal; break; } cu->language_defn = language_def (cu->language); } /* Return the named attribute or NULL if not there. */ static struct attribute * dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu) { unsigned int i; struct attribute *spec = NULL; for (i = 0; i < die->num_attrs; ++i) { if (die->attrs[i].name == name) return &die->attrs[i]; if (die->attrs[i].name == DW_AT_specification || die->attrs[i].name == DW_AT_abstract_origin) spec = &die->attrs[i]; } if (spec) { die = follow_die_ref (die, spec, &cu); return dwarf2_attr (die, name, cu); } return NULL; } /* Return the named attribute or NULL if not there, but do not follow DW_AT_specification, etc. This is for use in contexts where we're reading .debug_types dies. Following DW_AT_specification, DW_AT_abstract_origin will take us back up the chain, and we want to go down. */ static struct attribute * dwarf2_attr_no_follow (struct die_info *die, unsigned int name, struct dwarf2_cu *cu) { unsigned int i; for (i = 0; i < die->num_attrs; ++i) if (die->attrs[i].name == name) return &die->attrs[i]; return NULL; } /* Return non-zero iff the attribute NAME is defined for the given DIE, and holds a non-zero value. This function should only be used for DW_FORM_flag attributes. */ static int dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu) { struct attribute *attr = dwarf2_attr (die, name, cu); return (attr && DW_UNSND (attr)); } static int die_is_declaration (struct die_info *die, struct dwarf2_cu *cu) { /* A DIE is a declaration if it has a DW_AT_declaration attribute which value is non-zero. However, we have to be careful with DIEs having a DW_AT_specification attribute, because dwarf2_attr() (via dwarf2_flag_true_p) follows this attribute. So we may end up accidently finding a declaration attribute that belongs to a different DIE referenced by the specification attribute, even though the given DIE does not have a declaration attribute. */ return (dwarf2_flag_true_p (die, DW_AT_declaration, cu) && dwarf2_attr (die, DW_AT_specification, cu) == NULL); } /* Return the die giving the specification for DIE, if there is one. *SPEC_CU is the CU containing DIE on input, and the CU containing the return value on output. If there is no specification, but there is an abstract origin, that is returned. */ static struct die_info * die_specification (struct die_info *die, struct dwarf2_cu **spec_cu) { struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, *spec_cu); if (spec_attr == NULL) spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu); if (spec_attr == NULL) return NULL; else return follow_die_ref (die, spec_attr, spec_cu); } /* Free the line_header structure *LH, and any arrays and strings it refers to. */ static void free_line_header (struct line_header *lh) { if (lh->standard_opcode_lengths) xfree (lh->standard_opcode_lengths); /* Remember that all the lh->file_names[i].name pointers are pointers into debug_line_buffer, and don't need to be freed. */ if (lh->file_names) xfree (lh->file_names); /* Similarly for the include directory names. */ if (lh->include_dirs) xfree (lh->include_dirs); xfree (lh); } /* Add an entry to LH's include directory table. */ static void add_include_dir (struct line_header *lh, char *include_dir) { /* Grow the array if necessary. */ if (lh->include_dirs_size == 0) { lh->include_dirs_size = 1; /* for testing */ lh->include_dirs = xmalloc (lh->include_dirs_size * sizeof (*lh->include_dirs)); } else if (lh->num_include_dirs >= lh->include_dirs_size) { lh->include_dirs_size *= 2; lh->include_dirs = xrealloc (lh->include_dirs, (lh->include_dirs_size * sizeof (*lh->include_dirs))); } lh->include_dirs[lh->num_include_dirs++] = include_dir; } /* Add an entry to LH's file name table. */ static void add_file_name (struct line_header *lh, char *name, unsigned int dir_index, unsigned int mod_time, unsigned int length) { struct file_entry *fe; /* Grow the array if necessary. */ if (lh->file_names_size == 0) { lh->file_names_size = 1; /* for testing */ lh->file_names = xmalloc (lh->file_names_size * sizeof (*lh->file_names)); } else if (lh->num_file_names >= lh->file_names_size) { lh->file_names_size *= 2; lh->file_names = xrealloc (lh->file_names, (lh->file_names_size * sizeof (*lh->file_names))); } fe = &lh->file_names[lh->num_file_names++]; fe->name = name; fe->dir_index = dir_index; fe->mod_time = mod_time; fe->length = length; fe->included_p = 0; fe->symtab = NULL; } /* Read the statement program header starting at OFFSET in .debug_line, according to the endianness of ABFD. Return a pointer to a struct line_header, allocated using xmalloc. NOTE: the strings in the include directory and file name tables of the returned object point into debug_line_buffer, and must not be freed. */ static struct line_header * dwarf_decode_line_header (unsigned int offset, bfd *abfd, struct dwarf2_cu *cu) { struct cleanup *back_to; struct line_header *lh; gdb_byte *line_ptr; unsigned int bytes_read, offset_size; int i; char *cur_dir, *cur_file; if (dwarf2_per_objfile->line.buffer == NULL) { complaint (&symfile_complaints, _("missing .debug_line section")); return 0; } /* Make sure that at least there's room for the total_length field. That could be 12 bytes long, but we're just going to fudge that. */ if (offset + 4 >= dwarf2_per_objfile->line.size) { dwarf2_statement_list_fits_in_line_number_section_complaint (); return 0; } lh = xmalloc (sizeof (*lh)); memset (lh, 0, sizeof (*lh)); back_to = make_cleanup ((make_cleanup_ftype *) free_line_header, (void *) lh); line_ptr = dwarf2_per_objfile->line.buffer + offset; /* Read in the header. */ lh->total_length = read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header, &bytes_read, &offset_size); line_ptr += bytes_read; if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer + dwarf2_per_objfile->line.size)) { dwarf2_statement_list_fits_in_line_number_section_complaint (); return 0; } lh->statement_program_end = line_ptr + lh->total_length; lh->version = read_2_bytes (abfd, line_ptr); line_ptr += 2; lh->header_length = read_offset_1 (abfd, line_ptr, offset_size); line_ptr += offset_size; lh->minimum_instruction_length = read_1_byte (abfd, line_ptr); line_ptr += 1; lh->default_is_stmt = read_1_byte (abfd, line_ptr); line_ptr += 1; lh->line_base = read_1_signed_byte (abfd, line_ptr); line_ptr += 1; lh->line_range = read_1_byte (abfd, line_ptr); line_ptr += 1; lh->opcode_base = read_1_byte (abfd, line_ptr); line_ptr += 1; lh->standard_opcode_lengths = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0])); lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */ for (i = 1; i < lh->opcode_base; ++i) { lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr); line_ptr += 1; } /* Read directory table. */ while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL) { line_ptr += bytes_read; add_include_dir (lh, cur_dir); } line_ptr += bytes_read; /* Read file name table. */ while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL) { unsigned int dir_index, mod_time, length; line_ptr += bytes_read; dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; add_file_name (lh, cur_file, dir_index, mod_time, length); } line_ptr += bytes_read; lh->statement_program_start = line_ptr; if (line_ptr > (dwarf2_per_objfile->line.buffer + dwarf2_per_objfile->line.size)) complaint (&symfile_complaints, _("line number info header doesn't fit in `.debug_line' section")); discard_cleanups (back_to); return lh; } /* This function exists to work around a bug in certain compilers (particularly GCC 2.95), in which the first line number marker of a function does not show up until after the prologue, right before the second line number marker. This function shifts ADDRESS down to the beginning of the function if necessary, and is called on addresses passed to record_line. */ static CORE_ADDR check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu) { struct function_range *fn; /* Find the function_range containing address. */ if (!cu->first_fn) return address; if (!cu->cached_fn) cu->cached_fn = cu->first_fn; fn = cu->cached_fn; while (fn) if (fn->lowpc <= address && fn->highpc > address) goto found; else fn = fn->next; fn = cu->first_fn; while (fn && fn != cu->cached_fn) if (fn->lowpc <= address && fn->highpc > address) goto found; else fn = fn->next; return address; found: if (fn->seen_line) return address; if (address != fn->lowpc) complaint (&symfile_complaints, _("misplaced first line number at 0x%lx for '%s'"), (unsigned long) address, fn->name); fn->seen_line = 1; return fn->lowpc; } /* Decode the Line Number Program (LNP) for the given line_header structure and CU. The actual information extracted and the type of structures created from the LNP depends on the value of PST. 1. If PST is NULL, then this procedure uses the data from the program to create all necessary symbol tables, and their linetables. The compilation directory of the file is passed in COMP_DIR, and must not be NULL. 2. If PST is not NULL, this procedure reads the program to determine the list of files included by the unit represented by PST, and builds all the associated partial symbol tables. In this case, the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR is not used to compute the full name of the symtab, and therefore omitting it when building the partial symtab does not introduce the potential for inconsistency - a partial symtab and its associated symbtab having a different fullname -). */ static void dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd, struct dwarf2_cu *cu, struct partial_symtab *pst) { gdb_byte *line_ptr, *extended_end; gdb_byte *line_end; unsigned int bytes_read, extended_len; unsigned char op_code, extended_op, adj_opcode; CORE_ADDR baseaddr; struct objfile *objfile = cu->objfile; struct gdbarch *gdbarch = get_objfile_arch (objfile); const int decode_for_pst_p = (pst != NULL); struct subfile *last_subfile = NULL, *first_subfile = current_subfile; baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); line_ptr = lh->statement_program_start; line_end = lh->statement_program_end; /* Read the statement sequences until there's nothing left. */ while (line_ptr < line_end) { /* state machine registers */ CORE_ADDR address = 0; unsigned int file = 1; unsigned int line = 1; unsigned int column = 0; int is_stmt = lh->default_is_stmt; int basic_block = 0; int end_sequence = 0; CORE_ADDR addr; if (!decode_for_pst_p && lh->num_file_names >= file) { /* Start a subfile for the current file of the state machine. */ /* lh->include_dirs and lh->file_names are 0-based, but the directory and file name numbers in the statement program are 1-based. */ struct file_entry *fe = &lh->file_names[file - 1]; char *dir = NULL; if (fe->dir_index) dir = lh->include_dirs[fe->dir_index - 1]; dwarf2_start_subfile (fe->name, dir, comp_dir); } /* Decode the table. */ while (!end_sequence) { op_code = read_1_byte (abfd, line_ptr); line_ptr += 1; if (line_ptr > line_end) { dwarf2_debug_line_missing_end_sequence_complaint (); break; } if (op_code >= lh->opcode_base) { /* Special operand. */ adj_opcode = op_code - lh->opcode_base; address += (adj_opcode / lh->line_range) * lh->minimum_instruction_length; line += lh->line_base + (adj_opcode % lh->line_range); if (lh->num_file_names < file || file == 0) dwarf2_debug_line_missing_file_complaint (); else { lh->file_names[file - 1].included_p = 1; if (!decode_for_pst_p && is_stmt) { if (last_subfile != current_subfile) { addr = gdbarch_addr_bits_remove (gdbarch, address); if (last_subfile) record_line (last_subfile, 0, addr); last_subfile = current_subfile; } /* Append row to matrix using current values. */ addr = check_cu_functions (address, cu); addr = gdbarch_addr_bits_remove (gdbarch, addr); record_line (current_subfile, line, addr); } } basic_block = 0; } else switch (op_code) { case DW_LNS_extended_op: extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; extended_end = line_ptr + extended_len; extended_op = read_1_byte (abfd, line_ptr); line_ptr += 1; switch (extended_op) { case DW_LNE_end_sequence: end_sequence = 1; break; case DW_LNE_set_address: address = read_address (abfd, line_ptr, cu, &bytes_read); line_ptr += bytes_read; address += baseaddr; break; case DW_LNE_define_file: { char *cur_file; unsigned int dir_index, mod_time, length; cur_file = read_string (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; add_file_name (lh, cur_file, dir_index, mod_time, length); } break; case DW_LNE_set_discriminator: /* The discriminator is not interesting to the debugger; just ignore it. */ line_ptr = extended_end; break; default: complaint (&symfile_complaints, _("mangled .debug_line section")); return; } /* Make sure that we parsed the extended op correctly. If e.g. we expected a different address size than the producer used, we may have read the wrong number of bytes. */ if (line_ptr != extended_end) { complaint (&symfile_complaints, _("mangled .debug_line section")); return; } break; case DW_LNS_copy: if (lh->num_file_names < file || file == 0) dwarf2_debug_line_missing_file_complaint (); else { lh->file_names[file - 1].included_p = 1; if (!decode_for_pst_p && is_stmt) { if (last_subfile != current_subfile) { addr = gdbarch_addr_bits_remove (gdbarch, address); if (last_subfile) record_line (last_subfile, 0, addr); last_subfile = current_subfile; } addr = check_cu_functions (address, cu); addr = gdbarch_addr_bits_remove (gdbarch, addr); record_line (current_subfile, line, addr); } } basic_block = 0; break; case DW_LNS_advance_pc: address += lh->minimum_instruction_length * read_unsigned_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; break; case DW_LNS_advance_line: line += read_signed_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; break; case DW_LNS_set_file: { /* The arrays lh->include_dirs and lh->file_names are 0-based, but the directory and file name numbers in the statement program are 1-based. */ struct file_entry *fe; char *dir = NULL; file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; if (lh->num_file_names < file || file == 0) dwarf2_debug_line_missing_file_complaint (); else { fe = &lh->file_names[file - 1]; if (fe->dir_index) dir = lh->include_dirs[fe->dir_index - 1]; if (!decode_for_pst_p) { last_subfile = current_subfile; dwarf2_start_subfile (fe->name, dir, comp_dir); } } } break; case DW_LNS_set_column: column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; break; case DW_LNS_negate_stmt: is_stmt = (!is_stmt); break; case DW_LNS_set_basic_block: basic_block = 1; break; /* Add to the address register of the state machine the address increment value corresponding to special opcode 255. I.e., this value is scaled by the minimum instruction length since special opcode 255 would have scaled the the increment. */ case DW_LNS_const_add_pc: address += (lh->minimum_instruction_length * ((255 - lh->opcode_base) / lh->line_range)); break; case DW_LNS_fixed_advance_pc: address += read_2_bytes (abfd, line_ptr); line_ptr += 2; break; default: { /* Unknown standard opcode, ignore it. */ int i; for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++) { (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read); line_ptr += bytes_read; } } } } if (lh->num_file_names < file || file == 0) dwarf2_debug_line_missing_file_complaint (); else { lh->file_names[file - 1].included_p = 1; if (!decode_for_pst_p) { addr = gdbarch_addr_bits_remove (gdbarch, address); record_line (current_subfile, 0, addr); } } } if (decode_for_pst_p) { int file_index; /* Now that we're done scanning the Line Header Program, we can create the psymtab of each included file. */ for (file_index = 0; file_index < lh->num_file_names; file_index++) if (lh->file_names[file_index].included_p == 1) { const struct file_entry fe = lh->file_names [file_index]; char *include_name = fe.name; char *dir_name = NULL; char *pst_filename = pst->filename; if (fe.dir_index) dir_name = lh->include_dirs[fe.dir_index - 1]; if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL) { include_name = concat (dir_name, SLASH_STRING, include_name, (char *)NULL); make_cleanup (xfree, include_name); } if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL) { pst_filename = concat (pst->dirname, SLASH_STRING, pst_filename, (char *)NULL); make_cleanup (xfree, pst_filename); } if (strcmp (include_name, pst_filename) != 0) dwarf2_create_include_psymtab (include_name, pst, objfile); } } else { /* Make sure a symtab is created for every file, even files which contain only variables (i.e. no code with associated line numbers). */ int i; struct file_entry *fe; for (i = 0; i < lh->num_file_names; i++) { char *dir = NULL; fe = &lh->file_names[i]; if (fe->dir_index) dir = lh->include_dirs[fe->dir_index - 1]; dwarf2_start_subfile (fe->name, dir, comp_dir); /* Skip the main file; we don't need it, and it must be allocated last, so that it will show up before the non-primary symtabs in the objfile's symtab list. */ if (current_subfile == first_subfile) continue; if (current_subfile->symtab == NULL) current_subfile->symtab = allocate_symtab (current_subfile->name, cu->objfile); fe->symtab = current_subfile->symtab; } } } /* Start a subfile for DWARF. FILENAME is the name of the file and DIRNAME the name of the source directory which contains FILENAME or NULL if not known. COMP_DIR is the compilation directory for the linetable's compilation unit or NULL if not known. This routine tries to keep line numbers from identical absolute and relative file names in a common subfile. Using the `list' example from the GDB testsuite, which resides in /srcdir and compiling it with Irix6.2 cc in /compdir using a filename of /srcdir/list0.c yields the following debugging information for list0.c: DW_AT_name: /srcdir/list0.c DW_AT_comp_dir: /compdir files.files[0].name: list0.h files.files[0].dir: /srcdir files.files[1].name: list0.c files.files[1].dir: /srcdir The line number information for list0.c has to end up in a single subfile, so that `break /srcdir/list0.c:1' works as expected. start_subfile will ensure that this happens provided that we pass the concatenation of files.files[1].dir and files.files[1].name as the subfile's name. */ static void dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir) { char *fullname; /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir). `start_symtab' will always pass the contents of DW_AT_comp_dir as second argument to start_subfile. To be consistent, we do the same here. In order not to lose the line information directory, we concatenate it to the filename when it makes sense. Note that the Dwarf3 standard says (speaking of filenames in line information): ``The directory index is ignored for file names that represent full path names''. Thus ignoring dirname in the `else' branch below isn't an issue. */ if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL) fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL); else fullname = filename; start_subfile (fullname, comp_dir); if (fullname != filename) xfree (fullname); } static void var_decode_location (struct attribute *attr, struct symbol *sym, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct comp_unit_head *cu_header = &cu->header; /* NOTE drow/2003-01-30: There used to be a comment and some special code here to turn a symbol with DW_AT_external and a SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux with some versions of binutils) where shared libraries could have relocations against symbols in their debug information - the minimal symbol would have the right address, but the debug info would not. It's no longer necessary, because we will explicitly apply relocations when we read in the debug information now. */ /* A DW_AT_location attribute with no contents indicates that a variable has been optimized away. */ if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0) { SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; return; } /* Handle one degenerate form of location expression specially, to preserve GDB's previous behavior when section offsets are specified. If this is just a DW_OP_addr then mark this symbol as LOC_STATIC. */ if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 1 + cu_header->addr_size && DW_BLOCK (attr)->data[0] == DW_OP_addr) { unsigned int dummy; SYMBOL_VALUE_ADDRESS (sym) = read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy); SYMBOL_CLASS (sym) = LOC_STATIC; fixup_symbol_section (sym, objfile); SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets, SYMBOL_SECTION (sym)); return; } /* NOTE drow/2002-01-30: It might be worthwhile to have a static expression evaluator, and use LOC_COMPUTED only when necessary (i.e. when the value of a register or memory location is referenced, or a thread-local block, etc.). Then again, it might not be worthwhile. I'm assuming that it isn't unless performance or memory numbers show me otherwise. */ dwarf2_symbol_mark_computed (attr, sym, cu); SYMBOL_CLASS (sym) = LOC_COMPUTED; } /* Given a pointer to a DWARF information entry, figure out if we need to make a symbol table entry for it, and if so, create a new entry and return a pointer to it. If TYPE is NULL, determine symbol type from the die, otherwise used the passed type. */ static struct symbol * new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct symbol *sym = NULL; char *name; struct attribute *attr = NULL; struct attribute *attr2 = NULL; CORE_ADDR baseaddr; int inlined_func = (die->tag == DW_TAG_inlined_subroutine); baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); if (die->tag != DW_TAG_namespace) name = dwarf2_linkage_name (die, cu); else name = TYPE_NAME (type); if (name) { sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol)); OBJSTAT (objfile, n_syms++); memset (sym, 0, sizeof (struct symbol)); /* Cache this symbol's name and the name's demangled form (if any). */ SYMBOL_LANGUAGE (sym) = cu->language; SYMBOL_SET_NAMES (sym, name, strlen (name), 0, objfile); /* Default assumptions. Use the passed type or decode it from the die. */ SYMBOL_DOMAIN (sym) = VAR_DOMAIN; SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; if (type != NULL) SYMBOL_TYPE (sym) = type; else SYMBOL_TYPE (sym) = die_type (die, cu); attr = dwarf2_attr (die, inlined_func ? DW_AT_call_line : DW_AT_decl_line, cu); if (attr) { SYMBOL_LINE (sym) = DW_UNSND (attr); } attr = dwarf2_attr (die, inlined_func ? DW_AT_call_file : DW_AT_decl_file, cu); if (attr) { int file_index = DW_UNSND (attr); if (cu->line_header == NULL || file_index > cu->line_header->num_file_names) complaint (&symfile_complaints, _("file index out of range")); else if (file_index > 0) { struct file_entry *fe; fe = &cu->line_header->file_names[file_index - 1]; SYMBOL_SYMTAB (sym) = fe->symtab; } } switch (die->tag) { case DW_TAG_label: attr = dwarf2_attr (die, DW_AT_low_pc, cu); if (attr) { SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr; } SYMBOL_CLASS (sym) = LOC_LABEL; break; case DW_TAG_subprogram: /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by finish_block. */ SYMBOL_CLASS (sym) = LOC_BLOCK; attr2 = dwarf2_attr (die, DW_AT_external, cu); if ((attr2 && (DW_UNSND (attr2) != 0)) || cu->language == language_ada) { /* Subprograms marked external are stored as a global symbol. Ada subprograms, whether marked external or not, are always stored as a global symbol, because we want to be able to access them globally. For instance, we want to be able to break on a nested subprogram without having to specify the context. */ add_symbol_to_list (sym, &global_symbols); } else { add_symbol_to_list (sym, cu->list_in_scope); } break; case DW_TAG_inlined_subroutine: /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by finish_block. */ SYMBOL_CLASS (sym) = LOC_BLOCK; SYMBOL_INLINED (sym) = 1; /* Do not add the symbol to any lists. It will be found via BLOCK_FUNCTION from the blockvector. */ break; case DW_TAG_variable: /* Compilation with minimal debug info may result in variables with missing type entries. Change the misleading `void' type to something sensible. */ if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID) SYMBOL_TYPE (sym) = objfile_type (objfile)->nodebug_data_symbol; attr = dwarf2_attr (die, DW_AT_const_value, cu); if (attr) { dwarf2_const_value (attr, sym, cu); attr2 = dwarf2_attr (die, DW_AT_external, cu); if (attr2 && (DW_UNSND (attr2) != 0)) add_symbol_to_list (sym, &global_symbols); else add_symbol_to_list (sym, cu->list_in_scope); break; } attr = dwarf2_attr (die, DW_AT_location, cu); if (attr) { var_decode_location (attr, sym, cu); attr2 = dwarf2_attr (die, DW_AT_external, cu); if (attr2 && (DW_UNSND (attr2) != 0)) add_symbol_to_list (sym, &global_symbols); else add_symbol_to_list (sym, cu->list_in_scope); } else { /* We do not know the address of this symbol. If it is an external symbol and we have type information for it, enter the symbol as a LOC_UNRESOLVED symbol. The address of the variable will then be determined from the minimal symbol table whenever the variable is referenced. */ attr2 = dwarf2_attr (die, DW_AT_external, cu); if (attr2 && (DW_UNSND (attr2) != 0) && dwarf2_attr (die, DW_AT_type, cu) != NULL) { struct pending **list_to_add; /* A variable with DW_AT_external is never static, but it may be block-scoped. */ list_to_add = (cu->list_in_scope == &file_symbols ? &global_symbols : cu->list_in_scope); SYMBOL_CLASS (sym) = LOC_UNRESOLVED; add_symbol_to_list (sym, list_to_add); } else if (!die_is_declaration (die, cu)) { /* Use the default LOC_OPTIMIZED_OUT class. */ gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT); add_symbol_to_list (sym, cu->list_in_scope); } } break; case DW_TAG_formal_parameter: /* If we are inside a function, mark this as an argument. If not, we might be looking at an argument to an inlined function when we do not have enough information to show inlined frames; pretend it's a local variable in that case so that the user can still see it. */ if (context_stack_depth > 0 && context_stack[context_stack_depth - 1].name != NULL) SYMBOL_IS_ARGUMENT (sym) = 1; attr = dwarf2_attr (die, DW_AT_location, cu); if (attr) { var_decode_location (attr, sym, cu); } attr = dwarf2_attr (die, DW_AT_const_value, cu); if (attr) { dwarf2_const_value (attr, sym, cu); } add_symbol_to_list (sym, cu->list_in_scope); break; case DW_TAG_unspecified_parameters: /* From varargs functions; gdb doesn't seem to have any interest in this information, so just ignore it for now. (FIXME?) */ break; case DW_TAG_class_type: case DW_TAG_interface_type: case DW_TAG_structure_type: case DW_TAG_union_type: case DW_TAG_set_type: case DW_TAG_enumeration_type: SYMBOL_CLASS (sym) = LOC_TYPEDEF; SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN; /* Make sure that the symbol includes appropriate enclosing classes/namespaces in its name. These are calculated in read_structure_type, and the correct name is saved in the type. */ if (cu->language == language_cplus || cu->language == language_java) { struct type *type = SYMBOL_TYPE (sym); if (TYPE_TAG_NAME (type) != NULL) { /* FIXME: carlton/2003-11-10: Should this use SYMBOL_SET_NAMES instead? (The same problem also arises further down in this function.) */ /* The type's name is already allocated along with this objfile, so we don't need to duplicate it for the symbol. */ SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type); } } { /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't really ever be static objects: otherwise, if you try to, say, break of a class's method and you're in a file which doesn't mention that class, it won't work unless the check for all static symbols in lookup_symbol_aux saves you. See the OtherFileClass tests in gdb.c++/namespace.exp. */ struct pending **list_to_add; list_to_add = (cu->list_in_scope == &file_symbols && (cu->language == language_cplus || cu->language == language_java) ? &global_symbols : cu->list_in_scope); add_symbol_to_list (sym, list_to_add); /* The semantics of C++ state that "struct foo { ... }" also defines a typedef for "foo". A Java class declaration also defines a typedef for the class. */ if (cu->language == language_cplus || cu->language == language_java || cu->language == language_ada) { /* The symbol's name is already allocated along with this objfile, so we don't need to duplicate it for the type. */ if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0) TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym); } } break; case DW_TAG_typedef: SYMBOL_LINKAGE_NAME (sym) = (char *) dwarf2_full_name (die, cu); SYMBOL_CLASS (sym) = LOC_TYPEDEF; SYMBOL_DOMAIN (sym) = VAR_DOMAIN; add_symbol_to_list (sym, cu->list_in_scope); break; case DW_TAG_base_type: case DW_TAG_subrange_type: SYMBOL_CLASS (sym) = LOC_TYPEDEF; SYMBOL_DOMAIN (sym) = VAR_DOMAIN; add_symbol_to_list (sym, cu->list_in_scope); break; case DW_TAG_enumerator: SYMBOL_LINKAGE_NAME (sym) = (char *) dwarf2_full_name (die, cu); attr = dwarf2_attr (die, DW_AT_const_value, cu); if (attr) { dwarf2_const_value (attr, sym, cu); } { /* NOTE: carlton/2003-11-10: See comment above in the DW_TAG_class_type, etc. block. */ struct pending **list_to_add; list_to_add = (cu->list_in_scope == &file_symbols && (cu->language == language_cplus || cu->language == language_java) ? &global_symbols : cu->list_in_scope); add_symbol_to_list (sym, list_to_add); } break; case DW_TAG_namespace: SYMBOL_CLASS (sym) = LOC_TYPEDEF; add_symbol_to_list (sym, &global_symbols); break; default: /* Not a tag we recognize. Hopefully we aren't processing trash data, but since we must specifically ignore things we don't recognize, there is nothing else we should do at this point. */ complaint (&symfile_complaints, _("unsupported tag: '%s'"), dwarf_tag_name (die->tag)); break; } /* For the benefit of old versions of GCC, check for anonymous namespaces based on the demangled name. */ if (!processing_has_namespace_info && cu->language == language_cplus && dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu) != NULL) cp_scan_for_anonymous_namespaces (sym); } return (sym); } /* Copy constant value from an attribute to a symbol. */ static void dwarf2_const_value (struct attribute *attr, struct symbol *sym, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct comp_unit_head *cu_header = &cu->header; enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE; struct dwarf_block *blk; switch (attr->form) { case DW_FORM_addr: if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size) dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym), cu_header->addr_size, TYPE_LENGTH (SYMBOL_TYPE (sym))); SYMBOL_VALUE_BYTES (sym) = obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size); /* NOTE: cagney/2003-05-09: In-lined store_address call with it's body - store_unsigned_integer. */ store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size, byte_order, DW_ADDR (attr)); SYMBOL_CLASS (sym) = LOC_CONST_BYTES; break; case DW_FORM_string: case DW_FORM_strp: /* DW_STRING is already allocated on the obstack, point directly to it. */ SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr); SYMBOL_CLASS (sym) = LOC_CONST_BYTES; break; case DW_FORM_block1: case DW_FORM_block2: case DW_FORM_block4: case DW_FORM_block: blk = DW_BLOCK (attr); if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size) dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym), blk->size, TYPE_LENGTH (SYMBOL_TYPE (sym))); SYMBOL_VALUE_BYTES (sym) = obstack_alloc (&objfile->objfile_obstack, blk->size); memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size); SYMBOL_CLASS (sym) = LOC_CONST_BYTES; break; /* The DW_AT_const_value attributes are supposed to carry the symbol's value "represented as it would be on the target architecture." By the time we get here, it's already been converted to host endianness, so we just need to sign- or zero-extend it as appropriate. */ case DW_FORM_data1: dwarf2_const_value_data (attr, sym, 8); break; case DW_FORM_data2: dwarf2_const_value_data (attr, sym, 16); break; case DW_FORM_data4: dwarf2_const_value_data (attr, sym, 32); break; case DW_FORM_data8: dwarf2_const_value_data (attr, sym, 64); break; case DW_FORM_sdata: SYMBOL_VALUE (sym) = DW_SND (attr); SYMBOL_CLASS (sym) = LOC_CONST; break; case DW_FORM_udata: SYMBOL_VALUE (sym) = DW_UNSND (attr); SYMBOL_CLASS (sym) = LOC_CONST; break; default: complaint (&symfile_complaints, _("unsupported const value attribute form: '%s'"), dwarf_form_name (attr->form)); SYMBOL_VALUE (sym) = 0; SYMBOL_CLASS (sym) = LOC_CONST; break; } } /* Given an attr with a DW_FORM_dataN value in host byte order, sign- or zero-extend it as appropriate for the symbol's type. */ static void dwarf2_const_value_data (struct attribute *attr, struct symbol *sym, int bits) { LONGEST l = DW_UNSND (attr); if (bits < sizeof (l) * 8) { if (TYPE_UNSIGNED (SYMBOL_TYPE (sym))) l &= ((LONGEST) 1 << bits) - 1; else l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits); } SYMBOL_VALUE (sym) = l; SYMBOL_CLASS (sym) = LOC_CONST; } /* Return the type of the die in question using its DW_AT_type attribute. */ static struct type * die_type (struct die_info *die, struct dwarf2_cu *cu) { struct type *type; struct attribute *type_attr; struct die_info *type_die; type_attr = dwarf2_attr (die, DW_AT_type, cu); if (!type_attr) { /* A missing DW_AT_type represents a void type. */ return objfile_type (cu->objfile)->builtin_void; } type_die = follow_die_ref_or_sig (die, type_attr, &cu); type = tag_type_to_type (type_die, cu); if (!type) { dump_die_for_error (type_die); error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"), cu->objfile->name); } return type; } /* True iff CU's producer generates GNAT Ada auxiliary information that allows to find parallel types through that information instead of having to do expensive parallel lookups by type name. */ static int need_gnat_info (struct dwarf2_cu *cu) { /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version of GNAT produces this auxiliary information, without any indication that it is produced. Part of enhancing the FSF version of GNAT to produce that information will be to put in place an indicator that we can use in order to determine whether the descriptive type info is available or not. One suggestion that has been made is to use a new attribute, attached to the CU die. For now, assume that the descriptive type info is not available. */ return 0; } /* Return the auxiliary type of the die in question using its DW_AT_GNAT_descriptive_type attribute. Returns NULL if the attribute is not present. */ static struct type * die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu) { struct type *type; struct attribute *type_attr; struct die_info *type_die; type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu); if (!type_attr) return NULL; type_die = follow_die_ref (die, type_attr, &cu); type = tag_type_to_type (type_die, cu); if (!type) { dump_die_for_error (type_die); error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"), cu->objfile->name); } return type; } /* If DIE has a descriptive_type attribute, then set the TYPE's descriptive type accordingly. */ static void set_descriptive_type (struct type *type, struct die_info *die, struct dwarf2_cu *cu) { struct type *descriptive_type = die_descriptive_type (die, cu); if (descriptive_type) { ALLOCATE_GNAT_AUX_TYPE (type); TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type; } } /* Return the containing type of the die in question using its DW_AT_containing_type attribute. */ static struct type * die_containing_type (struct die_info *die, struct dwarf2_cu *cu) { struct type *type = NULL; struct attribute *type_attr; struct die_info *type_die = NULL; type_attr = dwarf2_attr (die, DW_AT_containing_type, cu); if (type_attr) { type_die = follow_die_ref_or_sig (die, type_attr, &cu); type = tag_type_to_type (type_die, cu); } if (!type) { if (type_die) dump_die_for_error (type_die); error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"), cu->objfile->name); } return type; } static struct type * tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu) { struct type *this_type; this_type = read_type_die (die, cu); if (!this_type) { dump_die_for_error (die); error (_("Dwarf Error: Cannot find type of die [in module %s]"), cu->objfile->name); } return this_type; } static struct type * read_type_die (struct die_info *die, struct dwarf2_cu *cu) { struct type *this_type; this_type = get_die_type (die, cu); if (this_type) return this_type; switch (die->tag) { case DW_TAG_class_type: case DW_TAG_interface_type: case DW_TAG_structure_type: case DW_TAG_union_type: this_type = read_structure_type (die, cu); break; case DW_TAG_enumeration_type: this_type = read_enumeration_type (die, cu); break; case DW_TAG_subprogram: case DW_TAG_subroutine_type: case DW_TAG_inlined_subroutine: this_type = read_subroutine_type (die, cu); break; case DW_TAG_array_type: this_type = read_array_type (die, cu); break; case DW_TAG_set_type: this_type = read_set_type (die, cu); break; case DW_TAG_pointer_type: this_type = read_tag_pointer_type (die, cu); break; case DW_TAG_ptr_to_member_type: this_type = read_tag_ptr_to_member_type (die, cu); break; case DW_TAG_reference_type: this_type = read_tag_reference_type (die, cu); break; case DW_TAG_const_type: this_type = read_tag_const_type (die, cu); break; case DW_TAG_volatile_type: this_type = read_tag_volatile_type (die, cu); break; case DW_TAG_string_type: this_type = read_tag_string_type (die, cu); break; case DW_TAG_typedef: this_type = read_typedef (die, cu); break; case DW_TAG_subrange_type: this_type = read_subrange_type (die, cu); break; case DW_TAG_base_type: this_type = read_base_type (die, cu); break; case DW_TAG_unspecified_type: this_type = read_unspecified_type (die, cu); break; case DW_TAG_namespace: this_type = read_namespace_type (die, cu); break; default: complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"), dwarf_tag_name (die->tag)); break; } return this_type; } /* Return the name of the namespace/class that DIE is defined within, or "" if we can't tell. The caller should not xfree the result. For example, if we're within the method foo() in the following code: namespace N { class C { void foo () { } }; } then determine_prefix on foo's die will return "N::C". */ static char * determine_prefix (struct die_info *die, struct dwarf2_cu *cu) { struct die_info *parent, *spec_die; struct dwarf2_cu *spec_cu; struct type *parent_type; if (cu->language != language_cplus && cu->language != language_java) return ""; /* We have to be careful in the presence of DW_AT_specification. For example, with GCC 3.4, given the code namespace N { void foo() { // Definition of N::foo. } } then we'll have a tree of DIEs like this: 1: DW_TAG_compile_unit 2: DW_TAG_namespace // N 3: DW_TAG_subprogram // declaration of N::foo 4: DW_TAG_subprogram // definition of N::foo DW_AT_specification // refers to die #3 Thus, when processing die #4, we have to pretend that we're in the context of its DW_AT_specification, namely the contex of die #3. */ spec_cu = cu; spec_die = die_specification (die, &spec_cu); if (spec_die == NULL) parent = die->parent; else { parent = spec_die->parent; cu = spec_cu; } if (parent == NULL) return ""; else switch (parent->tag) { case DW_TAG_namespace: parent_type = read_type_die (parent, cu); /* We give a name to even anonymous namespaces. */ return TYPE_TAG_NAME (parent_type); case DW_TAG_class_type: case DW_TAG_interface_type: case DW_TAG_structure_type: case DW_TAG_union_type: parent_type = read_type_die (parent, cu); if (TYPE_TAG_NAME (parent_type) != NULL) return TYPE_TAG_NAME (parent_type); else /* An anonymous structure is only allowed non-static data members; no typedefs, no member functions, et cetera. So it does not need a prefix. */ return ""; default: return determine_prefix (parent, cu); } } /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform an obconcat, otherwise allocate storage for the result. The CU argument is used to determine the language and hence, the appropriate separator. */ #define MAX_SEP_LEN 2 /* sizeof ("::") */ static char * typename_concat (struct obstack *obs, const char *prefix, const char *suffix, struct dwarf2_cu *cu) { char *sep; if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0') sep = ""; else if (cu->language == language_java) sep = "."; else sep = "::"; if (prefix == NULL) prefix = ""; if (suffix == NULL) suffix = ""; if (obs == NULL) { char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1); strcpy (retval, prefix); strcat (retval, sep); strcat (retval, suffix); return retval; } else { /* We have an obstack. */ return obconcat (obs, prefix, sep, suffix); } } /* Return sibling of die, NULL if no sibling. */ static struct die_info * sibling_die (struct die_info *die) { return die->sibling; } /* Get linkage name of a die, return NULL if not found. */ static char * dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu) { struct attribute *attr; attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu); if (attr && DW_STRING (attr)) return DW_STRING (attr); return dwarf2_name (die, cu); } /* Get name of a die, return NULL if not found. */ static char * dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu, struct obstack *obstack) { if (name && cu->language == language_cplus) { char *canon_name = cp_canonicalize_string (name); if (canon_name != NULL) { if (strcmp (canon_name, name) != 0) name = obsavestring (canon_name, strlen (canon_name), obstack); xfree (canon_name); } } return name; } /* Get name of a die, return NULL if not found. */ static char * dwarf2_name (struct die_info *die, struct dwarf2_cu *cu) { struct attribute *attr; attr = dwarf2_attr (die, DW_AT_name, cu); if (!attr || !DW_STRING (attr)) return NULL; switch (die->tag) { case DW_TAG_compile_unit: /* Compilation units have a DW_AT_name that is a filename, not a source language identifier. */ case DW_TAG_enumeration_type: case DW_TAG_enumerator: /* These tags always have simple identifiers already; no need to canonicalize them. */ return DW_STRING (attr); default: if (!DW_STRING_IS_CANONICAL (attr)) { DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu, &cu->objfile->objfile_obstack); DW_STRING_IS_CANONICAL (attr) = 1; } return DW_STRING (attr); } } /* Return the die that this die in an extension of, or NULL if there is none. *EXT_CU is the CU containing DIE on input, and the CU containing the return value on output. */ static struct die_info * dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu) { struct attribute *attr; attr = dwarf2_attr (die, DW_AT_extension, *ext_cu); if (attr == NULL) return NULL; return follow_die_ref (die, attr, ext_cu); } /* Convert a DIE tag into its string name. */ static char * dwarf_tag_name (unsigned tag) { switch (tag) { case DW_TAG_padding: return "DW_TAG_padding"; case DW_TAG_array_type: return "DW_TAG_array_type"; case DW_TAG_class_type: return "DW_TAG_class_type"; case DW_TAG_entry_point: return "DW_TAG_entry_point"; case DW_TAG_enumeration_type: return "DW_TAG_enumeration_type"; case DW_TAG_formal_parameter: return "DW_TAG_formal_parameter"; case DW_TAG_imported_declaration: return "DW_TAG_imported_declaration"; case DW_TAG_label: return "DW_TAG_label"; case DW_TAG_lexical_block: return "DW_TAG_lexical_block"; case DW_TAG_member: return "DW_TAG_member"; case DW_TAG_pointer_type: return "DW_TAG_pointer_type"; case DW_TAG_reference_type: return "DW_TAG_reference_type"; case DW_TAG_compile_unit: return "DW_TAG_compile_unit"; case DW_TAG_string_type: return "DW_TAG_string_type"; case DW_TAG_structure_type: return "DW_TAG_structure_type"; case DW_TAG_subroutine_type: return "DW_TAG_subroutine_type"; case DW_TAG_typedef: return "DW_TAG_typedef"; case DW_TAG_union_type: return "DW_TAG_union_type"; case DW_TAG_unspecified_parameters: return "DW_TAG_unspecified_parameters"; case DW_TAG_variant: return "DW_TAG_variant"; case DW_TAG_common_block: return "DW_TAG_common_block"; case DW_TAG_common_inclusion: return "DW_TAG_common_inclusion"; case DW_TAG_inheritance: return "DW_TAG_inheritance"; case DW_TAG_inlined_subroutine: return "DW_TAG_inlined_subroutine"; case DW_TAG_module: return "DW_TAG_module"; case DW_TAG_ptr_to_member_type: return "DW_TAG_ptr_to_member_type"; case DW_TAG_set_type: return "DW_TAG_set_type"; case DW_TAG_subrange_type: return "DW_TAG_subrange_type"; case DW_TAG_with_stmt: return "DW_TAG_with_stmt"; case DW_TAG_access_declaration: return "DW_TAG_access_declaration"; case DW_TAG_base_type: return "DW_TAG_base_type"; case DW_TAG_catch_block: return "DW_TAG_catch_block"; case DW_TAG_const_type: return "DW_TAG_const_type"; case DW_TAG_constant: return "DW_TAG_constant"; case DW_TAG_enumerator: return "DW_TAG_enumerator"; case DW_TAG_file_type: return "DW_TAG_file_type"; case DW_TAG_friend: return "DW_TAG_friend"; case DW_TAG_namelist: return "DW_TAG_namelist"; case DW_TAG_namelist_item: return "DW_TAG_namelist_item"; case DW_TAG_packed_type: return "DW_TAG_packed_type"; case DW_TAG_subprogram: return "DW_TAG_subprogram"; case DW_TAG_template_type_param: return "DW_TAG_template_type_param"; case DW_TAG_template_value_param: return "DW_TAG_template_value_param"; case DW_TAG_thrown_type: return "DW_TAG_thrown_type"; case DW_TAG_try_block: return "DW_TAG_try_block"; case DW_TAG_variant_part: return "DW_TAG_variant_part"; case DW_TAG_variable: return "DW_TAG_variable"; case DW_TAG_volatile_type: return "DW_TAG_volatile_type"; case DW_TAG_dwarf_procedure: return "DW_TAG_dwarf_procedure"; case DW_TAG_restrict_type: return "DW_TAG_restrict_type"; case DW_TAG_interface_type: return "DW_TAG_interface_type"; case DW_TAG_namespace: return "DW_TAG_namespace"; case DW_TAG_imported_module: return "DW_TAG_imported_module"; case DW_TAG_unspecified_type: return "DW_TAG_unspecified_type"; case DW_TAG_partial_unit: return "DW_TAG_partial_unit"; case DW_TAG_imported_unit: return "DW_TAG_imported_unit"; case DW_TAG_condition: return "DW_TAG_condition"; case DW_TAG_shared_type: return "DW_TAG_shared_type"; case DW_TAG_type_unit: return "DW_TAG_type_unit"; case DW_TAG_MIPS_loop: return "DW_TAG_MIPS_loop"; case DW_TAG_HP_array_descriptor: return "DW_TAG_HP_array_descriptor"; case DW_TAG_format_label: return "DW_TAG_format_label"; case DW_TAG_function_template: return "DW_TAG_function_template"; case DW_TAG_class_template: return "DW_TAG_class_template"; case DW_TAG_GNU_BINCL: return "DW_TAG_GNU_BINCL"; case DW_TAG_GNU_EINCL: return "DW_TAG_GNU_EINCL"; case DW_TAG_upc_shared_type: return "DW_TAG_upc_shared_type"; case DW_TAG_upc_strict_type: return "DW_TAG_upc_strict_type"; case DW_TAG_upc_relaxed_type: return "DW_TAG_upc_relaxed_type"; case DW_TAG_PGI_kanji_type: return "DW_TAG_PGI_kanji_type"; case DW_TAG_PGI_interface_block: return "DW_TAG_PGI_interface_block"; default: return "DW_TAG_<unknown>"; } } /* Convert a DWARF attribute code into its string name. */ static char * dwarf_attr_name (unsigned attr) { switch (attr) { case DW_AT_sibling: return "DW_AT_sibling"; case DW_AT_location: return "DW_AT_location"; case DW_AT_name: return "DW_AT_name"; case DW_AT_ordering: return "DW_AT_ordering"; case DW_AT_subscr_data: return "DW_AT_subscr_data"; case DW_AT_byte_size: return "DW_AT_byte_size"; case DW_AT_bit_offset: return "DW_AT_bit_offset"; case DW_AT_bit_size: return "DW_AT_bit_size"; case DW_AT_element_list: return "DW_AT_element_list"; case DW_AT_stmt_list: return "DW_AT_stmt_list"; case DW_AT_low_pc: return "DW_AT_low_pc"; case DW_AT_high_pc: return "DW_AT_high_pc"; case DW_AT_language: return "DW_AT_language"; case DW_AT_member: return "DW_AT_member"; case DW_AT_discr: return "DW_AT_discr"; case DW_AT_discr_value: return "DW_AT_discr_value"; case DW_AT_visibility: return "DW_AT_visibility"; case DW_AT_import: return "DW_AT_import"; case DW_AT_string_length: return "DW_AT_string_length"; case DW_AT_common_reference: return "DW_AT_common_reference"; case DW_AT_comp_dir: return "DW_AT_comp_dir"; case DW_AT_const_value: return "DW_AT_const_value"; case DW_AT_containing_type: return "DW_AT_containing_type"; case DW_AT_default_value: return "DW_AT_default_value"; case DW_AT_inline: return "DW_AT_inline"; case DW_AT_is_optional: return "DW_AT_is_optional"; case DW_AT_lower_bound: return "DW_AT_lower_bound"; case DW_AT_producer: return "DW_AT_producer"; case DW_AT_prototyped: return "DW_AT_prototyped"; case DW_AT_return_addr: return "DW_AT_return_addr"; case DW_AT_start_scope: return "DW_AT_start_scope"; case DW_AT_bit_stride: return "DW_AT_bit_stride"; case DW_AT_upper_bound: return "DW_AT_upper_bound"; case DW_AT_abstract_origin: return "DW_AT_abstract_origin"; case DW_AT_accessibility: return "DW_AT_accessibility"; case DW_AT_address_class: return "DW_AT_address_class"; case DW_AT_artificial: return "DW_AT_artificial"; case DW_AT_base_types: return "DW_AT_base_types"; case DW_AT_calling_convention: return "DW_AT_calling_convention"; case DW_AT_count: return "DW_AT_count"; case DW_AT_data_member_location: return "DW_AT_data_member_location"; case DW_AT_decl_column: return "DW_AT_decl_column"; case DW_AT_decl_file: return "DW_AT_decl_file"; case DW_AT_decl_line: return "DW_AT_decl_line"; case DW_AT_declaration: return "DW_AT_declaration"; case DW_AT_discr_list: return "DW_AT_discr_list"; case DW_AT_encoding: return "DW_AT_encoding"; case DW_AT_external: return "DW_AT_external"; case DW_AT_frame_base: return "DW_AT_frame_base"; case DW_AT_friend: return "DW_AT_friend"; case DW_AT_identifier_case: return "DW_AT_identifier_case"; case DW_AT_macro_info: return "DW_AT_macro_info"; case DW_AT_namelist_items: return "DW_AT_namelist_items"; case DW_AT_priority: return "DW_AT_priority"; case DW_AT_segment: return "DW_AT_segment"; case DW_AT_specification: return "DW_AT_specification"; case DW_AT_static_link: return "DW_AT_static_link"; case DW_AT_type: return "DW_AT_type"; case DW_AT_use_location: return "DW_AT_use_location"; case DW_AT_variable_parameter: return "DW_AT_variable_parameter"; case DW_AT_virtuality: return "DW_AT_virtuality"; case DW_AT_vtable_elem_location: return "DW_AT_vtable_elem_location"; /* DWARF 3 values. */ case DW_AT_allocated: return "DW_AT_allocated"; case DW_AT_associated: return "DW_AT_associated"; case DW_AT_data_location: return "DW_AT_data_location"; case DW_AT_byte_stride: return "DW_AT_byte_stride"; case DW_AT_entry_pc: return "DW_AT_entry_pc"; case DW_AT_use_UTF8: return "DW_AT_use_UTF8"; case DW_AT_extension: return "DW_AT_extension"; case DW_AT_ranges: return "DW_AT_ranges"; case DW_AT_trampoline: return "DW_AT_trampoline"; case DW_AT_call_column: return "DW_AT_call_column"; case DW_AT_call_file: return "DW_AT_call_file"; case DW_AT_call_line: return "DW_AT_call_line"; case DW_AT_description: return "DW_AT_description"; case DW_AT_binary_scale: return "DW_AT_binary_scale"; case DW_AT_decimal_scale: return "DW_AT_decimal_scale"; case DW_AT_small: return "DW_AT_small"; case DW_AT_decimal_sign: return "DW_AT_decimal_sign"; case DW_AT_digit_count: return "DW_AT_digit_count"; case DW_AT_picture_string: return "DW_AT_picture_string"; case DW_AT_mutable: return "DW_AT_mutable"; case DW_AT_threads_scaled: return "DW_AT_threads_scaled"; case DW_AT_explicit: return "DW_AT_explicit"; case DW_AT_object_pointer: return "DW_AT_object_pointer"; case DW_AT_endianity: return "DW_AT_endianity"; case DW_AT_elemental: return "DW_AT_elemental"; case DW_AT_pure: return "DW_AT_pure"; case DW_AT_recursive: return "DW_AT_recursive"; /* DWARF 4 values. */ case DW_AT_signature: return "DW_AT_signature"; /* SGI/MIPS extensions. */ #ifdef MIPS /* collides with DW_AT_HP_block_index */ case DW_AT_MIPS_fde: return "DW_AT_MIPS_fde"; #endif case DW_AT_MIPS_loop_begin: return "DW_AT_MIPS_loop_begin"; case DW_AT_MIPS_tail_loop_begin: return "DW_AT_MIPS_tail_loop_begin"; case DW_AT_MIPS_epilog_begin: return "DW_AT_MIPS_epilog_begin"; case DW_AT_MIPS_loop_unroll_factor: return "DW_AT_MIPS_loop_unroll_factor"; case DW_AT_MIPS_software_pipeline_depth: return "DW_AT_MIPS_software_pipeline_depth"; case DW_AT_MIPS_linkage_name: return "DW_AT_MIPS_linkage_name"; case DW_AT_MIPS_stride: return "DW_AT_MIPS_stride"; case DW_AT_MIPS_abstract_name: return "DW_AT_MIPS_abstract_name"; case DW_AT_MIPS_clone_origin: return "DW_AT_MIPS_clone_origin"; case DW_AT_MIPS_has_inlines: return "DW_AT_MIPS_has_inlines"; /* HP extensions. */ #ifndef MIPS /* collides with DW_AT_MIPS_fde */ case DW_AT_HP_block_index: return "DW_AT_HP_block_index"; #endif case DW_AT_HP_unmodifiable: return "DW_AT_HP_unmodifiable"; case DW_AT_HP_actuals_stmt_list: return "DW_AT_HP_actuals_stmt_list"; case DW_AT_HP_proc_per_section: return "DW_AT_HP_proc_per_section"; case DW_AT_HP_raw_data_ptr: return "DW_AT_HP_raw_data_ptr"; case DW_AT_HP_pass_by_reference: return "DW_AT_HP_pass_by_reference"; case DW_AT_HP_opt_level: return "DW_AT_HP_opt_level"; case DW_AT_HP_prof_version_id: return "DW_AT_HP_prof_version_id"; case DW_AT_HP_opt_flags: return "DW_AT_HP_opt_flags"; case DW_AT_HP_cold_region_low_pc: return "DW_AT_HP_cold_region_low_pc"; case DW_AT_HP_cold_region_high_pc: return "DW_AT_HP_cold_region_high_pc"; case DW_AT_HP_all_variables_modifiable: return "DW_AT_HP_all_variables_modifiable"; case DW_AT_HP_linkage_name: return "DW_AT_HP_linkage_name"; case DW_AT_HP_prof_flags: return "DW_AT_HP_prof_flags"; /* GNU extensions. */ case DW_AT_sf_names: return "DW_AT_sf_names"; case DW_AT_src_info: return "DW_AT_src_info"; case DW_AT_mac_info: return "DW_AT_mac_info"; case DW_AT_src_coords: return "DW_AT_src_coords"; case DW_AT_body_begin: return "DW_AT_body_begin"; case DW_AT_body_end: return "DW_AT_body_end"; case DW_AT_GNU_vector: return "DW_AT_GNU_vector"; /* VMS extensions. */ case DW_AT_VMS_rtnbeg_pd_address: return "DW_AT_VMS_rtnbeg_pd_address"; /* UPC extension. */ case DW_AT_upc_threads_scaled: return "DW_AT_upc_threads_scaled"; /* PGI (STMicroelectronics) extensions. */ case DW_AT_PGI_lbase: return "DW_AT_PGI_lbase"; case DW_AT_PGI_soffset: return "DW_AT_PGI_soffset"; case DW_AT_PGI_lstride: return "DW_AT_PGI_lstride"; default: return "DW_AT_<unknown>"; } } /* Convert a DWARF value form code into its string name. */ static char * dwarf_form_name (unsigned form) { switch (form) { case DW_FORM_addr: return "DW_FORM_addr"; case DW_FORM_block2: return "DW_FORM_block2"; case DW_FORM_block4: return "DW_FORM_block4"; case DW_FORM_data2: return "DW_FORM_data2"; case DW_FORM_data4: return "DW_FORM_data4"; case DW_FORM_data8: return "DW_FORM_data8"; case DW_FORM_string: return "DW_FORM_string"; case DW_FORM_block: return "DW_FORM_block"; case DW_FORM_block1: return "DW_FORM_block1"; case DW_FORM_data1: return "DW_FORM_data1"; case DW_FORM_flag: return "DW_FORM_flag"; case DW_FORM_sdata: return "DW_FORM_sdata"; case DW_FORM_strp: return "DW_FORM_strp"; case DW_FORM_udata: return "DW_FORM_udata"; case DW_FORM_ref_addr: return "DW_FORM_ref_addr"; case DW_FORM_ref1: return "DW_FORM_ref1"; case DW_FORM_ref2: return "DW_FORM_ref2"; case DW_FORM_ref4: return "DW_FORM_ref4"; case DW_FORM_ref8: return "DW_FORM_ref8"; case DW_FORM_ref_udata: return "DW_FORM_ref_udata"; case DW_FORM_indirect: return "DW_FORM_indirect"; case DW_FORM_sec_offset: return "DW_FORM_sec_offset"; case DW_FORM_exprloc: return "DW_FORM_exprloc"; case DW_FORM_flag_present: return "DW_FORM_flag_present"; case DW_FORM_sig8: return "DW_FORM_sig8"; default: return "DW_FORM_<unknown>"; } } /* Convert a DWARF stack opcode into its string name. */ static char * dwarf_stack_op_name (unsigned op) { switch (op) { case DW_OP_addr: return "DW_OP_addr"; case DW_OP_deref: return "DW_OP_deref"; case DW_OP_const1u: return "DW_OP_const1u"; case DW_OP_const1s: return "DW_OP_const1s"; case DW_OP_const2u: return "DW_OP_const2u"; case DW_OP_const2s: return "DW_OP_const2s"; case DW_OP_const4u: return "DW_OP_const4u"; case DW_OP_const4s: return "DW_OP_const4s"; case DW_OP_const8u: return "DW_OP_const8u"; case DW_OP_const8s: return "DW_OP_const8s"; case DW_OP_constu: return "DW_OP_constu"; case DW_OP_consts: return "DW_OP_consts"; case DW_OP_dup: return "DW_OP_dup"; case DW_OP_drop: return "DW_OP_drop"; case DW_OP_over: return "DW_OP_over"; case DW_OP_pick: return "DW_OP_pick"; case DW_OP_swap: return "DW_OP_swap"; case DW_OP_rot: return "DW_OP_rot"; case DW_OP_xderef: return "DW_OP_xderef"; case DW_OP_abs: return "DW_OP_abs"; case DW_OP_and: return "DW_OP_and"; case DW_OP_div: return "DW_OP_div"; case DW_OP_minus: return "DW_OP_minus"; case DW_OP_mod: return "DW_OP_mod"; case DW_OP_mul: return "DW_OP_mul"; case DW_OP_neg: return "DW_OP_neg"; case DW_OP_not: return "DW_OP_not"; case DW_OP_or: return "DW_OP_or"; case DW_OP_plus: return "DW_OP_plus"; case DW_OP_plus_uconst: return "DW_OP_plus_uconst"; case DW_OP_shl: return "DW_OP_shl"; case DW_OP_shr: return "DW_OP_shr"; case DW_OP_shra: return "DW_OP_shra"; case DW_OP_xor: return "DW_OP_xor"; case DW_OP_bra: return "DW_OP_bra"; case DW_OP_eq: return "DW_OP_eq"; case DW_OP_ge: return "DW_OP_ge"; case DW_OP_gt: return "DW_OP_gt"; case DW_OP_le: return "DW_OP_le"; case DW_OP_lt: return "DW_OP_lt"; case DW_OP_ne: return "DW_OP_ne"; case DW_OP_skip: return "DW_OP_skip"; case DW_OP_lit0: return "DW_OP_lit0"; case DW_OP_lit1: return "DW_OP_lit1"; case DW_OP_lit2: return "DW_OP_lit2"; case DW_OP_lit3: return "DW_OP_lit3"; case DW_OP_lit4: return "DW_OP_lit4"; case DW_OP_lit5: return "DW_OP_lit5"; case DW_OP_lit6: return "DW_OP_lit6"; case DW_OP_lit7: return "DW_OP_lit7"; case DW_OP_lit8: return "DW_OP_lit8"; case DW_OP_lit9: return "DW_OP_lit9"; case DW_OP_lit10: return "DW_OP_lit10"; case DW_OP_lit11: return "DW_OP_lit11"; case DW_OP_lit12: return "DW_OP_lit12"; case DW_OP_lit13: return "DW_OP_lit13"; case DW_OP_lit14: return "DW_OP_lit14"; case DW_OP_lit15: return "DW_OP_lit15"; case DW_OP_lit16: return "DW_OP_lit16"; case DW_OP_lit17: return "DW_OP_lit17"; case DW_OP_lit18: return "DW_OP_lit18"; case DW_OP_lit19: return "DW_OP_lit19"; case DW_OP_lit20: return "DW_OP_lit20"; case DW_OP_lit21: return "DW_OP_lit21"; case DW_OP_lit22: return "DW_OP_lit22"; case DW_OP_lit23: return "DW_OP_lit23"; case DW_OP_lit24: return "DW_OP_lit24"; case DW_OP_lit25: return "DW_OP_lit25"; case DW_OP_lit26: return "DW_OP_lit26"; case DW_OP_lit27: return "DW_OP_lit27"; case DW_OP_lit28: return "DW_OP_lit28"; case DW_OP_lit29: return "DW_OP_lit29"; case DW_OP_lit30: return "DW_OP_lit30"; case DW_OP_lit31: return "DW_OP_lit31"; case DW_OP_reg0: return "DW_OP_reg0"; case DW_OP_reg1: return "DW_OP_reg1"; case DW_OP_reg2: return "DW_OP_reg2"; case DW_OP_reg3: return "DW_OP_reg3"; case DW_OP_reg4: return "DW_OP_reg4"; case DW_OP_reg5: return "DW_OP_reg5"; case DW_OP_reg6: return "DW_OP_reg6"; case DW_OP_reg7: return "DW_OP_reg7"; case DW_OP_reg8: return "DW_OP_reg8"; case DW_OP_reg9: return "DW_OP_reg9"; case DW_OP_reg10: return "DW_OP_reg10"; case DW_OP_reg11: return "DW_OP_reg11"; case DW_OP_reg12: return "DW_OP_reg12"; case DW_OP_reg13: return "DW_OP_reg13"; case DW_OP_reg14: return "DW_OP_reg14"; case DW_OP_reg15: return "DW_OP_reg15"; case DW_OP_reg16: return "DW_OP_reg16"; case DW_OP_reg17: return "DW_OP_reg17"; case DW_OP_reg18: return "DW_OP_reg18"; case DW_OP_reg19: return "DW_OP_reg19"; case DW_OP_reg20: return "DW_OP_reg20"; case DW_OP_reg21: return "DW_OP_reg21"; case DW_OP_reg22: return "DW_OP_reg22"; case DW_OP_reg23: return "DW_OP_reg23"; case DW_OP_reg24: return "DW_OP_reg24"; case DW_OP_reg25: return "DW_OP_reg25"; case DW_OP_reg26: return "DW_OP_reg26"; case DW_OP_reg27: return "DW_OP_reg27"; case DW_OP_reg28: return "DW_OP_reg28"; case DW_OP_reg29: return "DW_OP_reg29"; case DW_OP_reg30: return "DW_OP_reg30"; case DW_OP_reg31: return "DW_OP_reg31"; case DW_OP_breg0: return "DW_OP_breg0"; case DW_OP_breg1: return "DW_OP_breg1"; case DW_OP_breg2: return "DW_OP_breg2"; case DW_OP_breg3: return "DW_OP_breg3"; case DW_OP_breg4: return "DW_OP_breg4"; case DW_OP_breg5: return "DW_OP_breg5"; case DW_OP_breg6: return "DW_OP_breg6"; case DW_OP_breg7: return "DW_OP_breg7"; case DW_OP_breg8: return "DW_OP_breg8"; case DW_OP_breg9: return "DW_OP_breg9"; case DW_OP_breg10: return "DW_OP_breg10"; case DW_OP_breg11: return "DW_OP_breg11"; case DW_OP_breg12: return "DW_OP_breg12"; case DW_OP_breg13: return "DW_OP_breg13"; case DW_OP_breg14: return "DW_OP_breg14"; case DW_OP_breg15: return "DW_OP_breg15"; case DW_OP_breg16: return "DW_OP_breg16"; case DW_OP_breg17: return "DW_OP_breg17"; case DW_OP_breg18: return "DW_OP_breg18"; case DW_OP_breg19: return "DW_OP_breg19"; case DW_OP_breg20: return "DW_OP_breg20"; case DW_OP_breg21: return "DW_OP_breg21"; case DW_OP_breg22: return "DW_OP_breg22"; case DW_OP_breg23: return "DW_OP_breg23"; case DW_OP_breg24: return "DW_OP_breg24"; case DW_OP_breg25: return "DW_OP_breg25"; case DW_OP_breg26: return "DW_OP_breg26"; case DW_OP_breg27: return "DW_OP_breg27"; case DW_OP_breg28: return "DW_OP_breg28"; case DW_OP_breg29: return "DW_OP_breg29"; case DW_OP_breg30: return "DW_OP_breg30"; case DW_OP_breg31: return "DW_OP_breg31"; case DW_OP_regx: return "DW_OP_regx"; case DW_OP_fbreg: return "DW_OP_fbreg"; case DW_OP_bregx: return "DW_OP_bregx"; case DW_OP_piece: return "DW_OP_piece"; case DW_OP_deref_size: return "DW_OP_deref_size"; case DW_OP_xderef_size: return "DW_OP_xderef_size"; case DW_OP_nop: return "DW_OP_nop"; /* DWARF 3 extensions. */ case DW_OP_push_object_address: return "DW_OP_push_object_address"; case DW_OP_call2: return "DW_OP_call2"; case DW_OP_call4: return "DW_OP_call4"; case DW_OP_call_ref: return "DW_OP_call_ref"; /* GNU extensions. */ case DW_OP_form_tls_address: return "DW_OP_form_tls_address"; case DW_OP_call_frame_cfa: return "DW_OP_call_frame_cfa"; case DW_OP_bit_piece: return "DW_OP_bit_piece"; case DW_OP_GNU_push_tls_address: return "DW_OP_GNU_push_tls_address"; case DW_OP_GNU_uninit: return "DW_OP_GNU_uninit"; /* HP extensions. */ case DW_OP_HP_is_value: return "DW_OP_HP_is_value"; case DW_OP_HP_fltconst4: return "DW_OP_HP_fltconst4"; case DW_OP_HP_fltconst8: return "DW_OP_HP_fltconst8"; case DW_OP_HP_mod_range: return "DW_OP_HP_mod_range"; case DW_OP_HP_unmod_range: return "DW_OP_HP_unmod_range"; case DW_OP_HP_tls: return "DW_OP_HP_tls"; default: return "OP_<unknown>"; } } static char * dwarf_bool_name (unsigned mybool) { if (mybool) return "TRUE"; else return "FALSE"; } /* Convert a DWARF type code into its string name. */ static char * dwarf_type_encoding_name (unsigned enc) { switch (enc) { case DW_ATE_void: return "DW_ATE_void"; case DW_ATE_address: return "DW_ATE_address"; case DW_ATE_boolean: return "DW_ATE_boolean"; case DW_ATE_complex_float: return "DW_ATE_complex_float"; case DW_ATE_float: return "DW_ATE_float"; case DW_ATE_signed: return "DW_ATE_signed"; case DW_ATE_signed_char: return "DW_ATE_signed_char"; case DW_ATE_unsigned: return "DW_ATE_unsigned"; case DW_ATE_unsigned_char: return "DW_ATE_unsigned_char"; /* DWARF 3. */ case DW_ATE_imaginary_float: return "DW_ATE_imaginary_float"; case DW_ATE_packed_decimal: return "DW_ATE_packed_decimal"; case DW_ATE_numeric_string: return "DW_ATE_numeric_string"; case DW_ATE_edited: return "DW_ATE_edited"; case DW_ATE_signed_fixed: return "DW_ATE_signed_fixed"; case DW_ATE_unsigned_fixed: return "DW_ATE_unsigned_fixed"; case DW_ATE_decimal_float: return "DW_ATE_decimal_float"; /* HP extensions. */ case DW_ATE_HP_float80: return "DW_ATE_HP_float80"; case DW_ATE_HP_complex_float80: return "DW_ATE_HP_complex_float80"; case DW_ATE_HP_float128: return "DW_ATE_HP_float128"; case DW_ATE_HP_complex_float128: return "DW_ATE_HP_complex_float128"; case DW_ATE_HP_floathpintel: return "DW_ATE_HP_floathpintel"; case DW_ATE_HP_imaginary_float80: return "DW_ATE_HP_imaginary_float80"; case DW_ATE_HP_imaginary_float128: return "DW_ATE_HP_imaginary_float128"; default: return "DW_ATE_<unknown>"; } } /* Convert a DWARF call frame info operation to its string name. */ #if 0 static char * dwarf_cfi_name (unsigned cfi_opc) { switch (cfi_opc) { case DW_CFA_advance_loc: return "DW_CFA_advance_loc"; case DW_CFA_offset: return "DW_CFA_offset"; case DW_CFA_restore: return "DW_CFA_restore"; case DW_CFA_nop: return "DW_CFA_nop"; case DW_CFA_set_loc: return "DW_CFA_set_loc"; case DW_CFA_advance_loc1: return "DW_CFA_advance_loc1"; case DW_CFA_advance_loc2: return "DW_CFA_advance_loc2"; case DW_CFA_advance_loc4: return "DW_CFA_advance_loc4"; case DW_CFA_offset_extended: return "DW_CFA_offset_extended"; case DW_CFA_restore_extended: return "DW_CFA_restore_extended"; case DW_CFA_undefined: return "DW_CFA_undefined"; case DW_CFA_same_value: return "DW_CFA_same_value"; case DW_CFA_register: return "DW_CFA_register"; case DW_CFA_remember_state: return "DW_CFA_remember_state"; case DW_CFA_restore_state: return "DW_CFA_restore_state"; case DW_CFA_def_cfa: return "DW_CFA_def_cfa"; case DW_CFA_def_cfa_register: return "DW_CFA_def_cfa_register"; case DW_CFA_def_cfa_offset: return "DW_CFA_def_cfa_offset"; /* DWARF 3. */ case DW_CFA_def_cfa_expression: return "DW_CFA_def_cfa_expression"; case DW_CFA_expression: return "DW_CFA_expression"; case DW_CFA_offset_extended_sf: return "DW_CFA_offset_extended_sf"; case DW_CFA_def_cfa_sf: return "DW_CFA_def_cfa_sf"; case DW_CFA_def_cfa_offset_sf: return "DW_CFA_def_cfa_offset_sf"; case DW_CFA_val_offset: return "DW_CFA_val_offset"; case DW_CFA_val_offset_sf: return "DW_CFA_val_offset_sf"; case DW_CFA_val_expression: return "DW_CFA_val_expression"; /* SGI/MIPS specific. */ case DW_CFA_MIPS_advance_loc8: return "DW_CFA_MIPS_advance_loc8"; /* GNU extensions. */ case DW_CFA_GNU_window_save: return "DW_CFA_GNU_window_save"; case DW_CFA_GNU_args_size: return "DW_CFA_GNU_args_size"; case DW_CFA_GNU_negative_offset_extended: return "DW_CFA_GNU_negative_offset_extended"; default: return "DW_CFA_<unknown>"; } } #endif static void dump_die_shallow (struct ui_file *f, int indent, struct die_info *die) { unsigned int i; print_spaces (indent, f); fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n", dwarf_tag_name (die->tag), die->abbrev, die->offset); if (die->parent != NULL) { print_spaces (indent, f); fprintf_unfiltered (f, " parent at offset: 0x%x\n", die->parent->offset); } print_spaces (indent, f); fprintf_unfiltered (f, " has children: %s\n", dwarf_bool_name (die->child != NULL)); print_spaces (indent, f); fprintf_unfiltered (f, " attributes:\n"); for (i = 0; i < die->num_attrs; ++i) { print_spaces (indent, f); fprintf_unfiltered (f, " %s (%s) ", dwarf_attr_name (die->attrs[i].name), dwarf_form_name (die->attrs[i].form)); switch (die->attrs[i].form) { case DW_FORM_ref_addr: case DW_FORM_addr: fprintf_unfiltered (f, "address: "); fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f); break; case DW_FORM_block2: case DW_FORM_block4: case DW_FORM_block: case DW_FORM_block1: fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size); break; case DW_FORM_ref1: case DW_FORM_ref2: case DW_FORM_ref4: fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)", (long) (DW_ADDR (&die->attrs[i]))); break; case DW_FORM_data1: case DW_FORM_data2: case DW_FORM_data4: case DW_FORM_data8: case DW_FORM_udata: case DW_FORM_sdata: fprintf_unfiltered (f, "constant: %s", pulongest (DW_UNSND (&die->attrs[i]))); break; case DW_FORM_sig8: if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL) fprintf_unfiltered (f, "signatured type, offset: 0x%x", DW_SIGNATURED_TYPE (&die->attrs[i])->offset); else fprintf_unfiltered (f, "signatured type, offset: unknown"); break; case DW_FORM_string: case DW_FORM_strp: fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)", DW_STRING (&die->attrs[i]) ? DW_STRING (&die->attrs[i]) : "", DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not"); break; case DW_FORM_flag: if (DW_UNSND (&die->attrs[i])) fprintf_unfiltered (f, "flag: TRUE"); else fprintf_unfiltered (f, "flag: FALSE"); break; case DW_FORM_indirect: /* the reader will have reduced the indirect form to the "base form" so this form should not occur */ fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect"); break; default: fprintf_unfiltered (f, "unsupported attribute form: %d.", die->attrs[i].form); break; } fprintf_unfiltered (f, "\n"); } } static void dump_die_for_error (struct die_info *die) { dump_die_shallow (gdb_stderr, 0, die); } static void dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die) { int indent = level * 4; gdb_assert (die != NULL); if (level >= max_level) return; dump_die_shallow (f, indent, die); if (die->child != NULL) { print_spaces (indent, f); fprintf_unfiltered (f, " Children:"); if (level + 1 < max_level) { fprintf_unfiltered (f, "\n"); dump_die_1 (f, level + 1, max_level, die->child); } else { fprintf_unfiltered (f, " [not printed, max nesting level reached]\n"); } } if (die->sibling != NULL && level > 0) { dump_die_1 (f, level, max_level, die->sibling); } } /* This is called from the pdie macro in gdbinit.in. It's not static so gcc will keep a copy callable from gdb. */ void dump_die (struct die_info *die, int max_level) { dump_die_1 (gdb_stdlog, 0, max_level, die); } static void store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu) { void **slot; slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT); *slot = die; } static int is_ref_attr (struct attribute *attr) { switch (attr->form) { case DW_FORM_ref_addr: case DW_FORM_ref1: case DW_FORM_ref2: case DW_FORM_ref4: case DW_FORM_ref8: case DW_FORM_ref_udata: return 1; default: return 0; } } static unsigned int dwarf2_get_ref_die_offset (struct attribute *attr) { if (is_ref_attr (attr)) return DW_ADDR (attr); complaint (&symfile_complaints, _("unsupported die ref attribute form: '%s'"), dwarf_form_name (attr->form)); return 0; } /* Return the constant value held by ATTR. Return DEFAULT_VALUE if * the value held by the attribute is not constant. */ static LONGEST dwarf2_get_attr_constant_value (struct attribute *attr, int default_value) { if (attr->form == DW_FORM_sdata) return DW_SND (attr); else if (attr->form == DW_FORM_udata || attr->form == DW_FORM_data1 || attr->form == DW_FORM_data2 || attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8) return DW_UNSND (attr); else { complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"), dwarf_form_name (attr->form)); return default_value; } } /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation unit and add it to our queue. The result is non-zero if PER_CU was queued, otherwise the result is zero meaning either PER_CU is already queued or it is already loaded. */ static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu, struct dwarf2_per_cu_data *per_cu) { /* Mark the dependence relation so that we don't flush PER_CU too early. */ dwarf2_add_dependence (this_cu, per_cu); /* If it's already on the queue, we have nothing to do. */ if (per_cu->queued) return 0; /* If the compilation unit is already loaded, just mark it as used. */ if (per_cu->cu != NULL) { per_cu->cu->last_used = 0; return 0; } /* Add it to the queue. */ queue_comp_unit (per_cu, this_cu->objfile); return 1; } /* Follow reference or signature attribute ATTR of SRC_DIE. On entry *REF_CU is the CU of SRC_DIE. On exit *REF_CU is the CU of the result. */ static struct die_info * follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr, struct dwarf2_cu **ref_cu) { struct die_info *die; if (is_ref_attr (attr)) die = follow_die_ref (src_die, attr, ref_cu); else if (attr->form == DW_FORM_sig8) die = follow_die_sig (src_die, attr, ref_cu); else { dump_die_for_error (src_die); error (_("Dwarf Error: Expected reference attribute [in module %s]"), (*ref_cu)->objfile->name); } return die; } /* Follow reference attribute ATTR of SRC_DIE. On entry *REF_CU is the CU of SRC_DIE. On exit *REF_CU is the CU of the result. */ static struct die_info * follow_die_ref (struct die_info *src_die, struct attribute *attr, struct dwarf2_cu **ref_cu) { struct die_info *die; unsigned int offset; struct die_info temp_die; struct dwarf2_cu *target_cu, *cu = *ref_cu; gdb_assert (cu->per_cu != NULL); offset = dwarf2_get_ref_die_offset (attr); if (cu->per_cu->from_debug_types) { /* .debug_types CUs cannot reference anything outside their CU. If they need to, they have to reference a signatured type via DW_FORM_sig8. */ if (! offset_in_cu_p (&cu->header, offset)) goto not_found; target_cu = cu; } else if (! offset_in_cu_p (&cu->header, offset)) { struct dwarf2_per_cu_data *per_cu; per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile); /* If necessary, add it to the queue and load its DIEs. */ if (maybe_queue_comp_unit (cu, per_cu)) load_full_comp_unit (per_cu, cu->objfile); target_cu = per_cu->cu; } else target_cu = cu; *ref_cu = target_cu; temp_die.offset = offset; die = htab_find_with_hash (target_cu->die_hash, &temp_die, offset); if (die) return die; not_found: error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE " "at 0x%x [in module %s]"), offset, src_die->offset, cu->objfile->name); } /* Follow the signature attribute ATTR in SRC_DIE. On entry *REF_CU is the CU of SRC_DIE. On exit *REF_CU is the CU of the result. */ static struct die_info * follow_die_sig (struct die_info *src_die, struct attribute *attr, struct dwarf2_cu **ref_cu) { struct objfile *objfile = (*ref_cu)->objfile; struct die_info temp_die; struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr); struct dwarf2_cu *sig_cu; struct die_info *die; /* sig_type will be NULL if the signatured type is missing from the debug info. */ if (sig_type == NULL) error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE " "at 0x%x [in module %s]"), src_die->offset, objfile->name); /* If necessary, add it to the queue and load its DIEs. */ if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu)) read_signatured_type (objfile, sig_type); gdb_assert (sig_type->per_cu.cu != NULL); sig_cu = sig_type->per_cu.cu; temp_die.offset = sig_cu->header.offset + sig_type->type_offset; die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset); if (die) { *ref_cu = sig_cu; return die; } error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE " "at 0x%x [in module %s]"), sig_type->type_offset, src_die->offset, objfile->name); } /* Given an offset of a signatured type, return its signatured_type. */ static struct signatured_type * lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset) { gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset; unsigned int length, initial_length_size; unsigned int sig_offset; struct signatured_type find_entry, *type_sig; length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size); sig_offset = (initial_length_size + 2 /*version*/ + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/ + 1 /*address_size*/); find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset); type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry); /* This is only used to lookup previously recorded types. If we didn't find it, it's our bug. */ gdb_assert (type_sig != NULL); gdb_assert (offset == type_sig->offset); return type_sig; } /* Read in signatured type at OFFSET and build its CU and die(s). */ static void read_signatured_type_at_offset (struct objfile *objfile, unsigned int offset) { struct signatured_type *type_sig; /* We have the section offset, but we need the signature to do the hash table lookup. */ type_sig = lookup_signatured_type_at_offset (objfile, offset); gdb_assert (type_sig->per_cu.cu == NULL); read_signatured_type (objfile, type_sig); gdb_assert (type_sig->per_cu.cu != NULL); } /* Read in a signatured type and build its CU and DIEs. */ static void read_signatured_type (struct objfile *objfile, struct signatured_type *type_sig) { gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset; struct die_reader_specs reader_specs; struct dwarf2_cu *cu; ULONGEST signature; struct cleanup *back_to, *free_cu_cleanup; struct attribute *attr; gdb_assert (type_sig->per_cu.cu == NULL); cu = xmalloc (sizeof (struct dwarf2_cu)); memset (cu, 0, sizeof (struct dwarf2_cu)); obstack_init (&cu->comp_unit_obstack); cu->objfile = objfile; type_sig->per_cu.cu = cu; cu->per_cu = &type_sig->per_cu; /* If an error occurs while loading, release our storage. */ free_cu_cleanup = make_cleanup (free_one_comp_unit, cu); types_ptr = read_type_comp_unit_head (&cu->header, &signature, types_ptr, objfile->obfd); gdb_assert (signature == type_sig->signature); cu->die_hash = htab_create_alloc_ex (cu->header.length / 12, die_hash, die_eq, NULL, &cu->comp_unit_obstack, hashtab_obstack_allocate, dummy_obstack_deallocate); dwarf2_read_abbrevs (cu->objfile->obfd, cu); back_to = make_cleanup (dwarf2_free_abbrev_table, cu); init_cu_die_reader (&reader_specs, cu); cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr, NULL /*parent*/); /* We try not to read any attributes in this function, because not all objfiles needed for references have been loaded yet, and symbol table processing isn't initialized. But we have to set the CU language, or we won't be able to build types correctly. */ attr = dwarf2_attr (cu->dies, DW_AT_language, cu); if (attr) set_cu_language (DW_UNSND (attr), cu); else set_cu_language (language_minimal, cu); do_cleanups (back_to); /* We've successfully allocated this compilation unit. Let our caller clean it up when finished with it. */ discard_cleanups (free_cu_cleanup); type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain; dwarf2_per_objfile->read_in_chain = &type_sig->per_cu; } /* Decode simple location descriptions. Given a pointer to a dwarf block that defines a location, compute the location and return the value. NOTE drow/2003-11-18: This function is called in two situations now: for the address of static or global variables (partial symbols only) and for offsets into structures which are expected to be (more or less) constant. The partial symbol case should go away, and only the constant case should remain. That will let this function complain more accurately. A few special modes are allowed without complaint for global variables (for instance, global register values and thread-local values). A location description containing no operations indicates that the object is optimized out. The return value is 0 for that case. FIXME drow/2003-11-16: No callers check for this case any more; soon all callers will only want a very basic result and this can become a complaint. Note that stack[0] is unused except as a default error return. Note that stack overflow is not yet handled. */ static CORE_ADDR decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu) { struct objfile *objfile = cu->objfile; struct comp_unit_head *cu_header = &cu->header; int i; int size = blk->size; gdb_byte *data = blk->data; CORE_ADDR stack[64]; int stacki; unsigned int bytes_read, unsnd; gdb_byte op; i = 0; stacki = 0; stack[stacki] = 0; while (i < size) { op = data[i++]; switch (op) { case DW_OP_lit0: case DW_OP_lit1: case DW_OP_lit2: case DW_OP_lit3: case DW_OP_lit4: case DW_OP_lit5: case DW_OP_lit6: case DW_OP_lit7: case DW_OP_lit8: case DW_OP_lit9: case DW_OP_lit10: case DW_OP_lit11: case DW_OP_lit12: case DW_OP_lit13: case DW_OP_lit14: case DW_OP_lit15: case DW_OP_lit16: case DW_OP_lit17: case DW_OP_lit18: case DW_OP_lit19: case DW_OP_lit20: case DW_OP_lit21: case DW_OP_lit22: case DW_OP_lit23: case DW_OP_lit24: case DW_OP_lit25: case DW_OP_lit26: case DW_OP_lit27: case DW_OP_lit28: case DW_OP_lit29: case DW_OP_lit30: case DW_OP_lit31: stack[++stacki] = op - DW_OP_lit0; break; case DW_OP_reg0: case DW_OP_reg1: case DW_OP_reg2: case DW_OP_reg3: case DW_OP_reg4: case DW_OP_reg5: case DW_OP_reg6: case DW_OP_reg7: case DW_OP_reg8: case DW_OP_reg9: case DW_OP_reg10: case DW_OP_reg11: case DW_OP_reg12: case DW_OP_reg13: case DW_OP_reg14: case DW_OP_reg15: case DW_OP_reg16: case DW_OP_reg17: case DW_OP_reg18: case DW_OP_reg19: case DW_OP_reg20: case DW_OP_reg21: case DW_OP_reg22: case DW_OP_reg23: case DW_OP_reg24: case DW_OP_reg25: case DW_OP_reg26: case DW_OP_reg27: case DW_OP_reg28: case DW_OP_reg29: case DW_OP_reg30: case DW_OP_reg31: stack[++stacki] = op - DW_OP_reg0; if (i < size) dwarf2_complex_location_expr_complaint (); break; case DW_OP_regx: unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read); i += bytes_read; stack[++stacki] = unsnd; if (i < size) dwarf2_complex_location_expr_complaint (); break; case DW_OP_addr: stack[++stacki] = read_address (objfile->obfd, &data[i], cu, &bytes_read); i += bytes_read; break; case DW_OP_const1u: stack[++stacki] = read_1_byte (objfile->obfd, &data[i]); i += 1; break; case DW_OP_const1s: stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]); i += 1; break; case DW_OP_const2u: stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]); i += 2; break; case DW_OP_const2s: stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]); i += 2; break; case DW_OP_const4u: stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]); i += 4; break; case DW_OP_const4s: stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]); i += 4; break; case DW_OP_constu: stack[++stacki] = read_unsigned_leb128 (NULL, (data + i), &bytes_read); i += bytes_read; break; case DW_OP_consts: stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read); i += bytes_read; break; case DW_OP_dup: stack[stacki + 1] = stack[stacki]; stacki++; break; case DW_OP_plus: stack[stacki - 1] += stack[stacki]; stacki--; break; case DW_OP_plus_uconst: stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read); i += bytes_read; break; case DW_OP_minus: stack[stacki - 1] -= stack[stacki]; stacki--; break; case DW_OP_deref: /* If we're not the last op, then we definitely can't encode this using GDB's address_class enum. This is valid for partial global symbols, although the variable's address will be bogus in the psymtab. */ if (i < size) dwarf2_complex_location_expr_complaint (); break; case DW_OP_GNU_push_tls_address: /* The top of the stack has the offset from the beginning of the thread control block at which the variable is located. */ /* Nothing should follow this operator, so the top of stack would be returned. */ /* This is valid for partial global symbols, but the variable's address will be bogus in the psymtab. */ if (i < size) dwarf2_complex_location_expr_complaint (); break; case DW_OP_GNU_uninit: break; default: complaint (&symfile_complaints, _("unsupported stack op: '%s'"), dwarf_stack_op_name (op)); return (stack[stacki]); } } return (stack[stacki]); } /* memory allocation interface */ static struct dwarf_block * dwarf_alloc_block (struct dwarf2_cu *cu) { struct dwarf_block *blk; blk = (struct dwarf_block *) obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block)); return (blk); } static struct abbrev_info * dwarf_alloc_abbrev (struct dwarf2_cu *cu) { struct abbrev_info *abbrev; abbrev = (struct abbrev_info *) obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info)); memset (abbrev, 0, sizeof (struct abbrev_info)); return (abbrev); } static struct die_info * dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs) { struct die_info *die; size_t size = sizeof (struct die_info); if (num_attrs > 1) size += (num_attrs - 1) * sizeof (struct attribute); die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size); memset (die, 0, sizeof (struct die_info)); return (die); } /* Macro support. */ /* Return the full name of file number I in *LH's file name table. Use COMP_DIR as the name of the current directory of the compilation. The result is allocated using xmalloc; the caller is responsible for freeing it. */ static char * file_full_name (int file, struct line_header *lh, const char *comp_dir) { /* Is the file number a valid index into the line header's file name table? Remember that file numbers start with one, not zero. */ if (1 <= file && file <= lh->num_file_names) { struct file_entry *fe = &lh->file_names[file - 1]; if (IS_ABSOLUTE_PATH (fe->name)) return xstrdup (fe->name); else { const char *dir; int dir_len; char *full_name; if (fe->dir_index) dir = lh->include_dirs[fe->dir_index - 1]; else dir = comp_dir; if (dir) { dir_len = strlen (dir); full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1); strcpy (full_name, dir); full_name[dir_len] = '/'; strcpy (full_name + dir_len + 1, fe->name); return full_name; } else return xstrdup (fe->name); } } else { /* The compiler produced a bogus file number. We can at least record the macro definitions made in the file, even if we won't be able to find the file by name. */ char fake_name[80]; sprintf (fake_name, "<bad macro file number %d>", file); complaint (&symfile_complaints, _("bad file number in macro information (%d)"), file); return xstrdup (fake_name); } } static struct macro_source_file * macro_start_file (int file, int line, struct macro_source_file *current_file, const char *comp_dir, struct line_header *lh, struct objfile *objfile) { /* The full name of this source file. */ char *full_name = file_full_name (file, lh, comp_dir); /* We don't create a macro table for this compilation unit at all until we actually get a filename. */ if (! pending_macros) pending_macros = new_macro_table (&objfile->objfile_obstack, objfile->macro_cache); if (! current_file) /* If we have no current file, then this must be the start_file directive for the compilation unit's main source file. */ current_file = macro_set_main (pending_macros, full_name); else current_file = macro_include (current_file, line, full_name); xfree (full_name); return current_file; } /* Copy the LEN characters at BUF to a xmalloc'ed block of memory, followed by a null byte. */ static char * copy_string (const char *buf, int len) { char *s = xmalloc (len + 1); memcpy (s, buf, len); s[len] = '\0'; return s; } static const char * consume_improper_spaces (const char *p, const char *body) { if (*p == ' ') { complaint (&symfile_complaints, _("macro definition contains spaces in formal argument list:\n`%s'"), body); while (*p == ' ') p++; } return p; } static void parse_macro_definition (struct macro_source_file *file, int line, const char *body) { const char *p; /* The body string takes one of two forms. For object-like macro definitions, it should be: <macro name> " " <definition> For function-like macro definitions, it should be: <macro name> "() " <definition> or <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition> Spaces may appear only where explicitly indicated, and in the <definition>. The Dwarf 2 spec says that an object-like macro's name is always followed by a space, but versions of GCC around March 2002 omit the space when the macro's definition is the empty string. The Dwarf 2 spec says that there should be no spaces between the formal arguments in a function-like macro's formal argument list, but versions of GCC around March 2002 include spaces after the commas. */ /* Find the extent of the macro name. The macro name is terminated by either a space or null character (for an object-like macro) or an opening paren (for a function-like macro). */ for (p = body; *p; p++) if (*p == ' ' || *p == '(') break; if (*p == ' ' || *p == '\0') { /* It's an object-like macro. */ int name_len = p - body; char *name = copy_string (body, name_len); const char *replacement; if (*p == ' ') replacement = body + name_len + 1; else { dwarf2_macro_malformed_definition_complaint (body); replacement = body + name_len; } macro_define_object (file, line, name, replacement); xfree (name); } else if (*p == '(') { /* It's a function-like macro. */ char *name = copy_string (body, p - body); int argc = 0; int argv_size = 1; char **argv = xmalloc (argv_size * sizeof (*argv)); p++; p = consume_improper_spaces (p, body); /* Parse the formal argument list. */ while (*p && *p != ')') { /* Find the extent of the current argument name. */ const char *arg_start = p; while (*p && *p != ',' && *p != ')' && *p != ' ') p++; if (! *p || p == arg_start) dwarf2_macro_malformed_definition_complaint (body); else { /* Make sure argv has room for the new argument. */ if (argc >= argv_size) { argv_size *= 2; argv = xrealloc (argv, argv_size * sizeof (*argv)); } argv[argc++] = copy_string (arg_start, p - arg_start); } p = consume_improper_spaces (p, body); /* Consume the comma, if present. */ if (*p == ',') { p++; p = consume_improper_spaces (p, body); } } if (*p == ')') { p++; if (*p == ' ') /* Perfectly formed definition, no complaints. */ macro_define_function (file, line, name, argc, (const char **) argv, p + 1); else if (*p == '\0') { /* Complain, but do define it. */ dwarf2_macro_malformed_definition_complaint (body); macro_define_function (file, line, name, argc, (const char **) argv, p); } else /* Just complain. */ dwarf2_macro_malformed_definition_complaint (body); } else /* Just complain. */ dwarf2_macro_malformed_definition_complaint (body); xfree (name); { int i; for (i = 0; i < argc; i++) xfree (argv[i]); } xfree (argv); } else dwarf2_macro_malformed_definition_complaint (body); } static void dwarf_decode_macros (struct line_header *lh, unsigned int offset, char *comp_dir, bfd *abfd, struct dwarf2_cu *cu) { gdb_byte *mac_ptr, *mac_end; struct macro_source_file *current_file = 0; enum dwarf_macinfo_record_type macinfo_type; int at_commandline; if (dwarf2_per_objfile->macinfo.buffer == NULL) { complaint (&symfile_complaints, _("missing .debug_macinfo section")); return; } /* First pass: Find the name of the base filename. This filename is needed in order to process all macros whose definition (or undefinition) comes from the command line. These macros are defined before the first DW_MACINFO_start_file entry, and yet still need to be associated to the base file. To determine the base file name, we scan the macro definitions until we reach the first DW_MACINFO_start_file entry. We then initialize CURRENT_FILE accordingly so that any macro definition found before the first DW_MACINFO_start_file can still be associated to the base file. */ mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset; mac_end = dwarf2_per_objfile->macinfo.buffer + dwarf2_per_objfile->macinfo.size; do { /* Do we at least have room for a macinfo type byte? */ if (mac_ptr >= mac_end) { /* Complaint is printed during the second pass as GDB will probably stop the first pass earlier upon finding DW_MACINFO_start_file. */ break; } macinfo_type = read_1_byte (abfd, mac_ptr); mac_ptr++; switch (macinfo_type) { /* A zero macinfo type indicates the end of the macro information. */ case 0: break; case DW_MACINFO_define: case DW_MACINFO_undef: /* Only skip the data by MAC_PTR. */ { unsigned int bytes_read; read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; read_string (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; } break; case DW_MACINFO_start_file: { unsigned int bytes_read; int line, file; line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; current_file = macro_start_file (file, line, current_file, comp_dir, lh, cu->objfile); } break; case DW_MACINFO_end_file: /* No data to skip by MAC_PTR. */ break; case DW_MACINFO_vendor_ext: /* Only skip the data by MAC_PTR. */ { unsigned int bytes_read; read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; read_string (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; } break; default: break; } } while (macinfo_type != 0 && current_file == NULL); /* Second pass: Process all entries. Use the AT_COMMAND_LINE flag to determine whether we are still processing command-line macro definitions/undefinitions. This flag is unset when we reach the first DW_MACINFO_start_file entry. */ mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset; /* Determines if GDB is still before first DW_MACINFO_start_file. If true GDB is still reading the definitions from command line. First DW_MACINFO_start_file will need to be ignored as it was already executed to create CURRENT_FILE for the main source holding also the command line definitions. On first met DW_MACINFO_start_file this flag is reset to normally execute all the remaining DW_MACINFO_start_file macinfos. */ at_commandline = 1; do { /* Do we at least have room for a macinfo type byte? */ if (mac_ptr >= mac_end) { dwarf2_macros_too_long_complaint (); break; } macinfo_type = read_1_byte (abfd, mac_ptr); mac_ptr++; switch (macinfo_type) { /* A zero macinfo type indicates the end of the macro information. */ case 0: break; case DW_MACINFO_define: case DW_MACINFO_undef: { unsigned int bytes_read; int line; char *body; line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; body = read_string (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; if (! current_file) { /* DWARF violation as no main source is present. */ complaint (&symfile_complaints, _("debug info with no main source gives macro %s " "on line %d: %s"), macinfo_type == DW_MACINFO_define ? _("definition") : macinfo_type == DW_MACINFO_undef ? _("undefinition") : _("something-or-other"), line, body); break; } if ((line == 0 && !at_commandline) || (line != 0 && at_commandline)) complaint (&symfile_complaints, _("debug info gives %s macro %s with %s line %d: %s"), at_commandline ? _("command-line") : _("in-file"), macinfo_type == DW_MACINFO_define ? _("definition") : macinfo_type == DW_MACINFO_undef ? _("undefinition") : _("something-or-other"), line == 0 ? _("zero") : _("non-zero"), line, body); if (macinfo_type == DW_MACINFO_define) parse_macro_definition (current_file, line, body); else if (macinfo_type == DW_MACINFO_undef) macro_undef (current_file, line, body); } break; case DW_MACINFO_start_file: { unsigned int bytes_read; int line, file; line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; if ((line == 0 && !at_commandline) || (line != 0 && at_commandline)) complaint (&symfile_complaints, _("debug info gives source %d included " "from %s at %s line %d"), file, at_commandline ? _("command-line") : _("file"), line == 0 ? _("zero") : _("non-zero"), line); if (at_commandline) { /* This DW_MACINFO_start_file was executed in the pass one. */ at_commandline = 0; } else current_file = macro_start_file (file, line, current_file, comp_dir, lh, cu->objfile); } break; case DW_MACINFO_end_file: if (! current_file) complaint (&symfile_complaints, _("macro debug info has an unmatched `close_file' directive")); else { current_file = current_file->included_by; if (! current_file) { enum dwarf_macinfo_record_type next_type; /* GCC circa March 2002 doesn't produce the zero type byte marking the end of the compilation unit. Complain if it's not there, but exit no matter what. */ /* Do we at least have room for a macinfo type byte? */ if (mac_ptr >= mac_end) { dwarf2_macros_too_long_complaint (); return; } /* We don't increment mac_ptr here, so this is just a look-ahead. */ next_type = read_1_byte (abfd, mac_ptr); if (next_type != 0) complaint (&symfile_complaints, _("no terminating 0-type entry for macros in `.debug_macinfo' section")); return; } } break; case DW_MACINFO_vendor_ext: { unsigned int bytes_read; int constant; char *string; constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; string = read_string (abfd, mac_ptr, &bytes_read); mac_ptr += bytes_read; /* We don't recognize any vendor extensions. */ } break; } } while (macinfo_type != 0); } /* Check if the attribute's form is a DW_FORM_block* if so return true else false. */ static int attr_form_is_block (struct attribute *attr) { return (attr == NULL ? 0 : attr->form == DW_FORM_block1 || attr->form == DW_FORM_block2 || attr->form == DW_FORM_block4 || attr->form == DW_FORM_block); } /* Return non-zero if ATTR's value is a section offset --- classes lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise. You may use DW_UNSND (attr) to retrieve such offsets. Section 7.5.4, "Attribute Encodings", explains that no attribute may have a value that belongs to more than one of these classes; it would be ambiguous if we did, because we use the same forms for all of them. */ static int attr_form_is_section_offset (struct attribute *attr) { return (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8); } /* Return non-zero if ATTR's value falls in the 'constant' class, or zero otherwise. When this function returns true, you can apply dwarf2_get_attr_constant_value to it. However, note that for some attributes you must check attr_form_is_section_offset before using this test. DW_FORM_data4 and DW_FORM_data8 are members of both the constant class, and of the classes that contain offsets into other debug sections (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says that, if an attribute's can be either a constant or one of the section offset classes, DW_FORM_data4 and DW_FORM_data8 should be taken as section offsets, not constants. */ static int attr_form_is_constant (struct attribute *attr) { switch (attr->form) { case DW_FORM_sdata: case DW_FORM_udata: case DW_FORM_data1: case DW_FORM_data2: case DW_FORM_data4: case DW_FORM_data8: return 1; default: return 0; } } static void dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym, struct dwarf2_cu *cu) { if (attr_form_is_section_offset (attr) /* ".debug_loc" may not exist at all, or the offset may be outside the section. If so, fall through to the complaint in the other branch. */ && DW_UNSND (attr) < dwarf2_per_objfile->loc.size) { struct dwarf2_loclist_baton *baton; baton = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (struct dwarf2_loclist_baton)); baton->per_cu = cu->per_cu; gdb_assert (baton->per_cu); /* We don't know how long the location list is, but make sure we don't run off the edge of the section. */ baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr); baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr); baton->base_address = cu->base_address; if (cu->base_known == 0) complaint (&symfile_complaints, _("Location list used without specifying the CU base address.")); SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs; SYMBOL_LOCATION_BATON (sym) = baton; } else { struct dwarf2_locexpr_baton *baton; baton = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (struct dwarf2_locexpr_baton)); baton->per_cu = cu->per_cu; gdb_assert (baton->per_cu); if (attr_form_is_block (attr)) { /* Note that we're just copying the block's data pointer here, not the actual data. We're still pointing into the info_buffer for SYM's objfile; right now we never release that buffer, but when we do clean up properly this may need to change. */ baton->size = DW_BLOCK (attr)->size; baton->data = DW_BLOCK (attr)->data; } else { dwarf2_invalid_attrib_class_complaint ("location description", SYMBOL_NATURAL_NAME (sym)); baton->size = 0; baton->data = NULL; } SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs; SYMBOL_LOCATION_BATON (sym) = baton; } } /* Return the OBJFILE associated with the compilation unit CU. */ struct objfile * dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu) { struct objfile *objfile = per_cu->psymtab->objfile; /* Return the master objfile, so that we can report and look up the correct file containing this variable. */ if (objfile->separate_debug_objfile_backlink) objfile = objfile->separate_debug_objfile_backlink; return objfile; } /* Return the address size given in the compilation unit header for CU. */ CORE_ADDR dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu) { if (per_cu->cu) return per_cu->cu->header.addr_size; else { /* If the CU is not currently read in, we re-read its header. */ struct objfile *objfile = per_cu->psymtab->objfile; struct dwarf2_per_objfile *per_objfile = objfile_data (objfile, dwarf2_objfile_data_key); gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset; struct comp_unit_head cu_header; memset (&cu_header, 0, sizeof cu_header); read_comp_unit_head (&cu_header, info_ptr, objfile->obfd); return cu_header.addr_size; } } /* Locate the .debug_info compilation unit from CU's objfile which contains the DIE at OFFSET. Raises an error on failure. */ static struct dwarf2_per_cu_data * dwarf2_find_containing_comp_unit (unsigned int offset, struct objfile *objfile) { struct dwarf2_per_cu_data *this_cu; int low, high; low = 0; high = dwarf2_per_objfile->n_comp_units - 1; while (high > low) { int mid = low + (high - low) / 2; if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset) high = mid; else low = mid + 1; } gdb_assert (low == high); if (dwarf2_per_objfile->all_comp_units[low]->offset > offset) { if (low == 0) error (_("Dwarf Error: could not find partial DIE containing " "offset 0x%lx [in module %s]"), (long) offset, bfd_get_filename (objfile->obfd)); gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset); return dwarf2_per_objfile->all_comp_units[low-1]; } else { this_cu = dwarf2_per_objfile->all_comp_units[low]; if (low == dwarf2_per_objfile->n_comp_units - 1 && offset >= this_cu->offset + this_cu->length) error (_("invalid dwarf2 offset %u"), offset); gdb_assert (offset < this_cu->offset + this_cu->length); return this_cu; } } /* Locate the compilation unit from OBJFILE which is located at exactly OFFSET. Raises an error on failure. */ static struct dwarf2_per_cu_data * dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile) { struct dwarf2_per_cu_data *this_cu; this_cu = dwarf2_find_containing_comp_unit (offset, objfile); if (this_cu->offset != offset) error (_("no compilation unit with offset %u."), offset); return this_cu; } /* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */ static struct dwarf2_cu * alloc_one_comp_unit (struct objfile *objfile) { struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu)); cu->objfile = objfile; obstack_init (&cu->comp_unit_obstack); return cu; } /* Release one cached compilation unit, CU. We unlink it from the tree of compilation units, but we don't remove it from the read_in_chain; the caller is responsible for that. NOTE: DATA is a void * because this function is also used as a cleanup routine. */ static void free_one_comp_unit (void *data) { struct dwarf2_cu *cu = data; if (cu->per_cu != NULL) cu->per_cu->cu = NULL; cu->per_cu = NULL; obstack_free (&cu->comp_unit_obstack, NULL); xfree (cu); } /* This cleanup function is passed the address of a dwarf2_cu on the stack when we're finished with it. We can't free the pointer itself, but be sure to unlink it from the cache. Also release any associated storage and perform cache maintenance. Only used during partial symbol parsing. */ static void free_stack_comp_unit (void *data) { struct dwarf2_cu *cu = data; obstack_free (&cu->comp_unit_obstack, NULL); cu->partial_dies = NULL; if (cu->per_cu != NULL) { /* This compilation unit is on the stack in our caller, so we should not xfree it. Just unlink it. */ cu->per_cu->cu = NULL; cu->per_cu = NULL; /* If we had a per-cu pointer, then we may have other compilation units loaded, so age them now. */ age_cached_comp_units (); } } /* Free all cached compilation units. */ static void free_cached_comp_units (void *data) { struct dwarf2_per_cu_data *per_cu, **last_chain; per_cu = dwarf2_per_objfile->read_in_chain; last_chain = &dwarf2_per_objfile->read_in_chain; while (per_cu != NULL) { struct dwarf2_per_cu_data *next_cu; next_cu = per_cu->cu->read_in_chain; free_one_comp_unit (per_cu->cu); *last_chain = next_cu; per_cu = next_cu; } } /* Increase the age counter on each cached compilation unit, and free any that are too old. */ static void age_cached_comp_units (void) { struct dwarf2_per_cu_data *per_cu, **last_chain; dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain); per_cu = dwarf2_per_objfile->read_in_chain; while (per_cu != NULL) { per_cu->cu->last_used ++; if (per_cu->cu->last_used <= dwarf2_max_cache_age) dwarf2_mark (per_cu->cu); per_cu = per_cu->cu->read_in_chain; } per_cu = dwarf2_per_objfile->read_in_chain; last_chain = &dwarf2_per_objfile->read_in_chain; while (per_cu != NULL) { struct dwarf2_per_cu_data *next_cu; next_cu = per_cu->cu->read_in_chain; if (!per_cu->cu->mark) { free_one_comp_unit (per_cu->cu); *last_chain = next_cu; } else last_chain = &per_cu->cu->read_in_chain; per_cu = next_cu; } } /* Remove a single compilation unit from the cache. */ static void free_one_cached_comp_unit (void *target_cu) { struct dwarf2_per_cu_data *per_cu, **last_chain; per_cu = dwarf2_per_objfile->read_in_chain; last_chain = &dwarf2_per_objfile->read_in_chain; while (per_cu != NULL) { struct dwarf2_per_cu_data *next_cu; next_cu = per_cu->cu->read_in_chain; if (per_cu->cu == target_cu) { free_one_comp_unit (per_cu->cu); *last_chain = next_cu; break; } else last_chain = &per_cu->cu->read_in_chain; per_cu = next_cu; } } /* Release all extra memory associated with OBJFILE. */ void dwarf2_free_objfile (struct objfile *objfile) { dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key); if (dwarf2_per_objfile == NULL) return; /* Cached DIE trees use xmalloc and the comp_unit_obstack. */ free_cached_comp_units (NULL); /* Everything else should be on the objfile obstack. */ } /* A pair of DIE offset and GDB type pointer. We store these in a hash table separate from the DIEs, and preserve them when the DIEs are flushed out of cache. */ struct dwarf2_offset_and_type { unsigned int offset; struct type *type; }; /* Hash function for a dwarf2_offset_and_type. */ static hashval_t offset_and_type_hash (const void *item) { const struct dwarf2_offset_and_type *ofs = item; return ofs->offset; } /* Equality function for a dwarf2_offset_and_type. */ static int offset_and_type_eq (const void *item_lhs, const void *item_rhs) { const struct dwarf2_offset_and_type *ofs_lhs = item_lhs; const struct dwarf2_offset_and_type *ofs_rhs = item_rhs; return ofs_lhs->offset == ofs_rhs->offset; } /* Set the type associated with DIE to TYPE. Save it in CU's hash table if necessary. For convenience, return TYPE. */ static struct type * set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu) { struct dwarf2_offset_and_type **slot, ofs; /* For Ada types, make sure that the gnat-specific data is always initialized (if not already set). There are a few types where we should not be doing so, because the type-specific area is already used to hold some other piece of info (eg: TYPE_CODE_FLT where the type-specific area is used to store the floatformat). But this is not a problem, because the gnat-specific information is actually not needed for these types. */ if (need_gnat_info (cu) && TYPE_CODE (type) != TYPE_CODE_FUNC && TYPE_CODE (type) != TYPE_CODE_FLT && !HAVE_GNAT_AUX_INFO (type)) INIT_GNAT_SPECIFIC (type); if (cu->type_hash == NULL) { gdb_assert (cu->per_cu != NULL); cu->per_cu->type_hash = htab_create_alloc_ex (cu->header.length / 24, offset_and_type_hash, offset_and_type_eq, NULL, &cu->objfile->objfile_obstack, hashtab_obstack_allocate, dummy_obstack_deallocate); cu->type_hash = cu->per_cu->type_hash; } ofs.offset = die->offset; ofs.type = type; slot = (struct dwarf2_offset_and_type **) htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT); *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot)); **slot = ofs; return type; } /* Find the type for DIE in CU's type_hash, or return NULL if DIE does not have a saved type. */ static struct type * get_die_type (struct die_info *die, struct dwarf2_cu *cu) { struct dwarf2_offset_and_type *slot, ofs; htab_t type_hash = cu->type_hash; if (type_hash == NULL) return NULL; ofs.offset = die->offset; slot = htab_find_with_hash (type_hash, &ofs, ofs.offset); if (slot) return slot->type; else return NULL; } /* Add a dependence relationship from CU to REF_PER_CU. */ static void dwarf2_add_dependence (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *ref_per_cu) { void **slot; if (cu->dependencies == NULL) cu->dependencies = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer, NULL, &cu->comp_unit_obstack, hashtab_obstack_allocate, dummy_obstack_deallocate); slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT); if (*slot == NULL) *slot = ref_per_cu; } /* Subroutine of dwarf2_mark to pass to htab_traverse. Set the mark field in every compilation unit in the cache that we must keep because we are keeping CU. */ static int dwarf2_mark_helper (void **slot, void *data) { struct dwarf2_per_cu_data *per_cu; per_cu = (struct dwarf2_per_cu_data *) *slot; if (per_cu->cu->mark) return 1; per_cu->cu->mark = 1; if (per_cu->cu->dependencies != NULL) htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL); return 1; } /* Set the mark field in CU and in every other compilation unit in the cache that we must keep because we are keeping CU. */ static void dwarf2_mark (struct dwarf2_cu *cu) { if (cu->mark) return; cu->mark = 1; if (cu->dependencies != NULL) htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL); } static void dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu) { while (per_cu) { per_cu->cu->mark = 0; per_cu = per_cu->cu->read_in_chain; } } /* Trivial hash function for partial_die_info: the hash value of a DIE is its offset in .debug_info for this objfile. */ static hashval_t partial_die_hash (const void *item) { const struct partial_die_info *part_die = item; return part_die->offset; } /* Trivial comparison function for partial_die_info structures: two DIEs are equal if they have the same offset. */ static int partial_die_eq (const void *item_lhs, const void *item_rhs) { const struct partial_die_info *part_die_lhs = item_lhs; const struct partial_die_info *part_die_rhs = item_rhs; return part_die_lhs->offset == part_die_rhs->offset; } static struct cmd_list_element *set_dwarf2_cmdlist; static struct cmd_list_element *show_dwarf2_cmdlist; static void set_dwarf2_cmd (char *args, int from_tty) { help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout); } static void show_dwarf2_cmd (char *args, int from_tty) { cmd_show_list (show_dwarf2_cmdlist, from_tty, ""); } /* If section described by INFO was mmapped, munmap it now. */ static void munmap_section_buffer (struct dwarf2_section_info *info) { if (info->was_mmapped) { #ifdef HAVE_MMAP intptr_t begin = (intptr_t) info->buffer; intptr_t map_begin = begin & ~(pagesize - 1); size_t map_length = info->size + begin - map_begin; gdb_assert (munmap ((void *) map_begin, map_length) == 0); #else /* Without HAVE_MMAP, we should never be here to begin with. */ gdb_assert (0); #endif } } /* munmap debug sections for OBJFILE, if necessary. */ static void dwarf2_per_objfile_free (struct objfile *objfile, void *d) { struct dwarf2_per_objfile *data = d; munmap_section_buffer (&data->info); munmap_section_buffer (&data->abbrev); munmap_section_buffer (&data->line); munmap_section_buffer (&data->str); munmap_section_buffer (&data->macinfo); munmap_section_buffer (&data->ranges); munmap_section_buffer (&data->loc); munmap_section_buffer (&data->frame); munmap_section_buffer (&data->eh_frame); } void _initialize_dwarf2_read (void); void _initialize_dwarf2_read (void) { dwarf2_objfile_data_key = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free); add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\ Set DWARF 2 specific variables.\n\ Configure DWARF 2 variables such as the cache size"), &set_dwarf2_cmdlist, "maintenance set dwarf2 ", 0/*allow-unknown*/, &maintenance_set_cmdlist); add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\ Show DWARF 2 specific variables\n\ Show DWARF 2 variables such as the cache size"), &show_dwarf2_cmdlist, "maintenance show dwarf2 ", 0/*allow-unknown*/, &maintenance_show_cmdlist); add_setshow_zinteger_cmd ("max-cache-age", class_obscure, &dwarf2_max_cache_age, _("\ Set the upper bound on the age of cached dwarf2 compilation units."), _("\ Show the upper bound on the age of cached dwarf2 compilation units."), _("\ A higher limit means that cached compilation units will be stored\n\ in memory longer, and more total memory will be used. Zero disables\n\ caching, which can slow down startup."), NULL, show_dwarf2_max_cache_age, &set_dwarf2_cmdlist, &show_dwarf2_cmdlist); add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\ Set debugging of the dwarf2 DIE reader."), _("\ Show debugging of the dwarf2 DIE reader."), _("\ When enabled (non-zero), DIEs are dumped after they are read in.\n\ The value is the maximum depth to print."), NULL, NULL, &setdebuglist, &showdebuglist); }
Go to most recent revision | Compare with Previous | Blame | View Log