URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [gdbserver/] [mem-break.c] - Rev 842
Compare with Previous | Blame | View Log
/* Memory breakpoint operations for the remote server for GDB. Copyright (C) 2002, 2003, 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by MontaVista Software. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "server.h" const unsigned char *breakpoint_data; int breakpoint_len; #define MAX_BREAKPOINT_LEN 8 struct breakpoint { struct breakpoint *next; CORE_ADDR pc; unsigned char old_data[MAX_BREAKPOINT_LEN]; /* Non-zero iff we are stepping over this breakpoint. */ int reinserting; /* Non-NULL iff this breakpoint was inserted to step over another one. Points to the other breakpoint (which is also in the *next chain somewhere). */ struct breakpoint *breakpoint_to_reinsert; /* Function to call when we hit this breakpoint. If it returns 1, the breakpoint will be deleted; 0, it will be reinserted for another round. */ int (*handler) (CORE_ADDR); }; void set_breakpoint_at (CORE_ADDR where, int (*handler) (CORE_ADDR)) { struct process_info *proc = current_process (); struct breakpoint *bp; if (breakpoint_data == NULL) error ("Target does not support breakpoints."); bp = xmalloc (sizeof (struct breakpoint)); memset (bp, 0, sizeof (struct breakpoint)); (*the_target->read_memory) (where, bp->old_data, breakpoint_len); (*the_target->write_memory) (where, breakpoint_data, breakpoint_len); bp->pc = where; bp->handler = handler; bp->next = proc->breakpoints; proc->breakpoints = bp; } static void delete_breakpoint (struct breakpoint *bp) { struct process_info *proc = current_process (); struct breakpoint *cur; if (proc->breakpoints == bp) { proc->breakpoints = bp->next; (*the_target->write_memory) (bp->pc, bp->old_data, breakpoint_len); free (bp); return; } cur = proc->breakpoints; while (cur->next) { if (cur->next == bp) { cur->next = bp->next; (*the_target->write_memory) (bp->pc, bp->old_data, breakpoint_len); free (bp); return; } } warning ("Could not find breakpoint in list."); } static struct breakpoint * find_breakpoint_at (CORE_ADDR where) { struct process_info *proc = current_process (); struct breakpoint *bp = proc->breakpoints; while (bp != NULL) { if (bp->pc == where) return bp; bp = bp->next; } return NULL; } void delete_breakpoint_at (CORE_ADDR addr) { struct breakpoint *bp = find_breakpoint_at (addr); if (bp != NULL) delete_breakpoint (bp); } static int reinsert_breakpoint_handler (CORE_ADDR stop_pc) { struct breakpoint *stop_bp, *orig_bp; stop_bp = find_breakpoint_at (stop_pc); if (stop_bp == NULL) error ("lost the stopping breakpoint."); orig_bp = stop_bp->breakpoint_to_reinsert; if (orig_bp == NULL) error ("no breakpoint to reinsert"); (*the_target->write_memory) (orig_bp->pc, breakpoint_data, breakpoint_len); orig_bp->reinserting = 0; return 1; } void reinsert_breakpoint_by_bp (CORE_ADDR stop_pc, CORE_ADDR stop_at) { struct breakpoint *bp, *orig_bp; orig_bp = find_breakpoint_at (stop_pc); if (orig_bp == NULL) error ("Could not find original breakpoint in list."); set_breakpoint_at (stop_at, reinsert_breakpoint_handler); bp = find_breakpoint_at (stop_at); if (bp == NULL) error ("Could not find breakpoint in list (reinserting by breakpoint)."); bp->breakpoint_to_reinsert = orig_bp; (*the_target->write_memory) (orig_bp->pc, orig_bp->old_data, breakpoint_len); orig_bp->reinserting = 1; } void uninsert_breakpoint (CORE_ADDR stopped_at) { struct breakpoint *bp; bp = find_breakpoint_at (stopped_at); if (bp == NULL) error ("Could not find breakpoint in list (uninserting)."); (*the_target->write_memory) (bp->pc, bp->old_data, breakpoint_len); bp->reinserting = 1; } void reinsert_breakpoint (CORE_ADDR stopped_at) { struct breakpoint *bp; bp = find_breakpoint_at (stopped_at); if (bp == NULL) error ("Could not find breakpoint in list (uninserting)."); if (! bp->reinserting) error ("Breakpoint already inserted at reinsert time."); (*the_target->write_memory) (bp->pc, breakpoint_data, breakpoint_len); bp->reinserting = 0; } int check_breakpoints (CORE_ADDR stop_pc) { struct breakpoint *bp; bp = find_breakpoint_at (stop_pc); if (bp == NULL) return 0; if (bp->reinserting) { warning ("Hit a removed breakpoint?"); return 0; } if ((*bp->handler) (bp->pc)) { delete_breakpoint (bp); return 2; } else return 1; } void set_breakpoint_data (const unsigned char *bp_data, int bp_len) { breakpoint_data = bp_data; breakpoint_len = bp_len; } void check_mem_read (CORE_ADDR mem_addr, unsigned char *buf, int mem_len) { struct process_info *proc = current_process (); struct breakpoint *bp = proc->breakpoints; CORE_ADDR mem_end = mem_addr + mem_len; for (; bp != NULL; bp = bp->next) { CORE_ADDR bp_end = bp->pc + breakpoint_len; CORE_ADDR start, end; int copy_offset, copy_len, buf_offset; if (mem_addr >= bp_end) continue; if (bp->pc >= mem_end) continue; start = bp->pc; if (mem_addr > start) start = mem_addr; end = bp_end; if (end > mem_end) end = mem_end; copy_len = end - start; copy_offset = start - bp->pc; buf_offset = start - mem_addr; memcpy (buf + buf_offset, bp->old_data + copy_offset, copy_len); } } void check_mem_write (CORE_ADDR mem_addr, unsigned char *buf, int mem_len) { struct process_info *proc = current_process (); struct breakpoint *bp = proc->breakpoints; CORE_ADDR mem_end = mem_addr + mem_len; for (; bp != NULL; bp = bp->next) { CORE_ADDR bp_end = bp->pc + breakpoint_len; CORE_ADDR start, end; int copy_offset, copy_len, buf_offset; if (mem_addr >= bp_end) continue; if (bp->pc >= mem_end) continue; start = bp->pc; if (mem_addr > start) start = mem_addr; end = bp_end; if (end > mem_end) end = mem_end; copy_len = end - start; copy_offset = start - bp->pc; buf_offset = start - mem_addr; memcpy (bp->old_data + copy_offset, buf + buf_offset, copy_len); if (bp->reinserting == 0) memcpy (buf + buf_offset, breakpoint_data + copy_offset, copy_len); } } /* Delete all breakpoints, and un-insert them from the inferior. */ void delete_all_breakpoints (void) { struct process_info *proc = current_process (); while (proc->breakpoints) delete_breakpoint (proc->breakpoints); } /* Release all breakpoints, but do not try to un-insert them from the inferior. */ void free_all_breakpoints (struct process_info *proc) { struct breakpoint *bp; while (proc->breakpoints) { bp = proc->breakpoints; proc->breakpoints = bp->next; free (bp); } }