URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [sim/] [lm32/] [sem-switch.c] - Rev 833
Go to most recent revision | Compare with Previous | Blame | View Log
/* Simulator instruction semantics for lm32bf. THIS FILE IS MACHINE GENERATED WITH CGEN. Copyright 1996-2010 Free Software Foundation, Inc. This file is part of the GNU simulators. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #ifdef DEFINE_LABELS /* The labels have the case they have because the enum of insn types is all uppercase and in the non-stdc case the insn symbol is built into the enum name. */ static struct { int index; void *label; } labels[] = { { LM32BF_INSN_X_INVALID, && case_sem_INSN_X_INVALID }, { LM32BF_INSN_X_AFTER, && case_sem_INSN_X_AFTER }, { LM32BF_INSN_X_BEFORE, && case_sem_INSN_X_BEFORE }, { LM32BF_INSN_X_CTI_CHAIN, && case_sem_INSN_X_CTI_CHAIN }, { LM32BF_INSN_X_CHAIN, && case_sem_INSN_X_CHAIN }, { LM32BF_INSN_X_BEGIN, && case_sem_INSN_X_BEGIN }, { LM32BF_INSN_ADD, && case_sem_INSN_ADD }, { LM32BF_INSN_ADDI, && case_sem_INSN_ADDI }, { LM32BF_INSN_AND, && case_sem_INSN_AND }, { LM32BF_INSN_ANDI, && case_sem_INSN_ANDI }, { LM32BF_INSN_ANDHII, && case_sem_INSN_ANDHII }, { LM32BF_INSN_B, && case_sem_INSN_B }, { LM32BF_INSN_BI, && case_sem_INSN_BI }, { LM32BF_INSN_BE, && case_sem_INSN_BE }, { LM32BF_INSN_BG, && case_sem_INSN_BG }, { LM32BF_INSN_BGE, && case_sem_INSN_BGE }, { LM32BF_INSN_BGEU, && case_sem_INSN_BGEU }, { LM32BF_INSN_BGU, && case_sem_INSN_BGU }, { LM32BF_INSN_BNE, && case_sem_INSN_BNE }, { LM32BF_INSN_CALL, && case_sem_INSN_CALL }, { LM32BF_INSN_CALLI, && case_sem_INSN_CALLI }, { LM32BF_INSN_CMPE, && case_sem_INSN_CMPE }, { LM32BF_INSN_CMPEI, && case_sem_INSN_CMPEI }, { LM32BF_INSN_CMPG, && case_sem_INSN_CMPG }, { LM32BF_INSN_CMPGI, && case_sem_INSN_CMPGI }, { LM32BF_INSN_CMPGE, && case_sem_INSN_CMPGE }, { LM32BF_INSN_CMPGEI, && case_sem_INSN_CMPGEI }, { LM32BF_INSN_CMPGEU, && case_sem_INSN_CMPGEU }, { LM32BF_INSN_CMPGEUI, && case_sem_INSN_CMPGEUI }, { LM32BF_INSN_CMPGU, && case_sem_INSN_CMPGU }, { LM32BF_INSN_CMPGUI, && case_sem_INSN_CMPGUI }, { LM32BF_INSN_CMPNE, && case_sem_INSN_CMPNE }, { LM32BF_INSN_CMPNEI, && case_sem_INSN_CMPNEI }, { LM32BF_INSN_DIVU, && case_sem_INSN_DIVU }, { LM32BF_INSN_LB, && case_sem_INSN_LB }, { LM32BF_INSN_LBU, && case_sem_INSN_LBU }, { LM32BF_INSN_LH, && case_sem_INSN_LH }, { LM32BF_INSN_LHU, && case_sem_INSN_LHU }, { LM32BF_INSN_LW, && case_sem_INSN_LW }, { LM32BF_INSN_MODU, && case_sem_INSN_MODU }, { LM32BF_INSN_MUL, && case_sem_INSN_MUL }, { LM32BF_INSN_MULI, && case_sem_INSN_MULI }, { LM32BF_INSN_NOR, && case_sem_INSN_NOR }, { LM32BF_INSN_NORI, && case_sem_INSN_NORI }, { LM32BF_INSN_OR, && case_sem_INSN_OR }, { LM32BF_INSN_ORI, && case_sem_INSN_ORI }, { LM32BF_INSN_ORHII, && case_sem_INSN_ORHII }, { LM32BF_INSN_RCSR, && case_sem_INSN_RCSR }, { LM32BF_INSN_SB, && case_sem_INSN_SB }, { LM32BF_INSN_SEXTB, && case_sem_INSN_SEXTB }, { LM32BF_INSN_SEXTH, && case_sem_INSN_SEXTH }, { LM32BF_INSN_SH, && case_sem_INSN_SH }, { LM32BF_INSN_SL, && case_sem_INSN_SL }, { LM32BF_INSN_SLI, && case_sem_INSN_SLI }, { LM32BF_INSN_SR, && case_sem_INSN_SR }, { LM32BF_INSN_SRI, && case_sem_INSN_SRI }, { LM32BF_INSN_SRU, && case_sem_INSN_SRU }, { LM32BF_INSN_SRUI, && case_sem_INSN_SRUI }, { LM32BF_INSN_SUB, && case_sem_INSN_SUB }, { LM32BF_INSN_SW, && case_sem_INSN_SW }, { LM32BF_INSN_USER, && case_sem_INSN_USER }, { LM32BF_INSN_WCSR, && case_sem_INSN_WCSR }, { LM32BF_INSN_XOR, && case_sem_INSN_XOR }, { LM32BF_INSN_XORI, && case_sem_INSN_XORI }, { LM32BF_INSN_XNOR, && case_sem_INSN_XNOR }, { LM32BF_INSN_XNORI, && case_sem_INSN_XNORI }, { LM32BF_INSN_BREAK, && case_sem_INSN_BREAK }, { LM32BF_INSN_SCALL, && case_sem_INSN_SCALL }, { 0, 0 } }; int i; for (i = 0; labels[i].label != 0; ++i) { #if FAST_P CPU_IDESC (current_cpu) [labels[i].index].sem_fast_lab = labels[i].label; #else CPU_IDESC (current_cpu) [labels[i].index].sem_full_lab = labels[i].label; #endif } #undef DEFINE_LABELS #endif /* DEFINE_LABELS */ #ifdef DEFINE_SWITCH /* If hyper-fast [well not unnecessarily slow] execution is selected, turn off frills like tracing and profiling. */ /* FIXME: A better way would be to have TRACE_RESULT check for something that can cause it to be optimized out. Another way would be to emit special handlers into the instruction "stream". */ #if FAST_P #undef TRACE_RESULT #define TRACE_RESULT(cpu, abuf, name, type, val) #endif #undef GET_ATTR #define GET_ATTR(cpu, num, attr) CGEN_ATTR_VALUE (NULL, abuf->idesc->attrs, CGEN_INSN_##attr) { #if WITH_SCACHE_PBB /* Branch to next handler without going around main loop. */ #define NEXT(vpc) goto * SEM_ARGBUF (vpc) -> semantic.sem_case SWITCH (sem, SEM_ARGBUF (vpc) -> semantic.sem_case) #else /* ! WITH_SCACHE_PBB */ #define NEXT(vpc) BREAK (sem) #ifdef __GNUC__ #if FAST_P SWITCH (sem, SEM_ARGBUF (sc) -> idesc->sem_fast_lab) #else SWITCH (sem, SEM_ARGBUF (sc) -> idesc->sem_full_lab) #endif #else SWITCH (sem, SEM_ARGBUF (sc) -> idesc->num) #endif #endif /* ! WITH_SCACHE_PBB */ { CASE (sem, INSN_X_INVALID) : /* --invalid-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { /* Update the recorded pc in the cpu state struct. Only necessary for WITH_SCACHE case, but to avoid the conditional compilation .... */ SET_H_PC (pc); /* Virtual insns have zero size. Overwrite vpc with address of next insn using the default-insn-bitsize spec. When executing insns in parallel we may want to queue the fault and continue execution. */ vpc = SEM_NEXT_VPC (sem_arg, pc, 4); vpc = sim_engine_invalid_insn (current_cpu, pc, vpc); } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_AFTER) : /* --after-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_LM32BF lm32bf_pbb_after (current_cpu, sem_arg); #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_BEFORE) : /* --before-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_LM32BF lm32bf_pbb_before (current_cpu, sem_arg); #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_CTI_CHAIN) : /* --cti-chain-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_LM32BF #ifdef DEFINE_SWITCH vpc = lm32bf_pbb_cti_chain (current_cpu, sem_arg, pbb_br_type, pbb_br_npc); BREAK (sem); #else /* FIXME: Allow provision of explicit ifmt spec in insn spec. */ vpc = lm32bf_pbb_cti_chain (current_cpu, sem_arg, CPU_PBB_BR_TYPE (current_cpu), CPU_PBB_BR_NPC (current_cpu)); #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_CHAIN) : /* --chain-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_LM32BF vpc = lm32bf_pbb_chain (current_cpu, sem_arg); #ifdef DEFINE_SWITCH BREAK (sem); #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_BEGIN) : /* --begin-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_LM32BF #if defined DEFINE_SWITCH || defined FAST_P /* In the switch case FAST_P is a constant, allowing several optimizations in any called inline functions. */ vpc = lm32bf_pbb_begin (current_cpu, FAST_P); #else #if 0 /* cgen engine can't handle dynamic fast/full switching yet. */ vpc = lm32bf_pbb_begin (current_cpu, STATE_RUN_FAST_P (CPU_STATE (current_cpu))); #else vpc = lm32bf_pbb_begin (current_cpu, 0); #endif #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD) : /* add $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ADDSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI) : /* addi $r1,$r0,$imm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_AND) : /* and $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ANDSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDI) : /* andi $r1,$r0,$uimm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ANDSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDHII) : /* andhi $r1,$r0,$hi16 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ANDSI (CPU (h_gr[FLD (f_r0)]), SLLSI (FLD (f_uimm), 16)); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_B) : /* b $r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_be.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = lm32bf_b_insn (current_cpu, CPU (h_gr[FLD (f_r0)]), FLD (f_r0)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BI) : /* bi $call */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = EXTSISI (FLD (i_call)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BE) : /* be $r0,$r1,$branch */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_be.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BG) : /* bg $r0,$r1,$branch */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_be.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (GTSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BGE) : /* bge $r0,$r1,$branch */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_be.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (GESI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BGEU) : /* bgeu $r0,$r1,$branch */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_be.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (GEUSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BGU) : /* bgu $r0,$r1,$branch */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_be.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (GTUSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BNE) : /* bne $r0,$r1,$branch */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_be.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NESI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_CALL) : /* call $r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_be.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = ADDSI (pc, 4); CPU (h_gr[((UINT) 29)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = CPU (h_gr[FLD (f_r0)]); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_CALLI) : /* calli $call */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = ADDSI (pc, 4); CPU (h_gr[((UINT) 29)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = EXTSISI (FLD (i_call)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPE) : /* cmpe $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EQSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPEI) : /* cmpei $r1,$r0,$imm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EQSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPG) : /* cmpg $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GTSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPGI) : /* cmpgi $r1,$r0,$imm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GTSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPGE) : /* cmpge $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GESI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPGEI) : /* cmpgei $r1,$r0,$imm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GESI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPGEU) : /* cmpgeu $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GEUSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPGEUI) : /* cmpgeui $r1,$r0,$uimm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GEUSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPGU) : /* cmpgu $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GTUSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPGUI) : /* cmpgui $r1,$r0,$uimm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GTUSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPNE) : /* cmpne $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = NESI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPNEI) : /* cmpnei $r1,$r0,$imm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = NESI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_DIVU) : /* divu $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = lm32bf_divu_insn (current_cpu, pc, FLD (f_r0), FLD (f_r1), FLD (f_r2)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_LB) : /* lb $r1,($r0+$imm) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EXTQISI (GETMEMQI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LBU) : /* lbu $r1,($r0+$imm) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ZEXTQISI (GETMEMQI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LH) : /* lh $r1,($r0+$imm) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EXTHISI (GETMEMHI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LHU) : /* lhu $r1,($r0+$imm) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ZEXTHISI (GETMEMHI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LW) : /* lw $r1,($r0+$imm) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GETMEMSI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm))))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MODU) : /* modu $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = lm32bf_modu_insn (current_cpu, pc, FLD (f_r0), FLD (f_r1), FLD (f_r2)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_MUL) : /* mul $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = MULSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULI) : /* muli $r1,$r0,$imm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = MULSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_NOR) : /* nor $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = INVSI (ORSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_NORI) : /* nori $r1,$r0,$uimm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = INVSI (ORSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_OR) : /* or $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ORSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORI) : /* ori $r1,$r0,$lo16 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ORSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORHII) : /* orhi $r1,$r0,$hi16 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ORSI (CPU (h_gr[FLD (f_r0)]), SLLSI (FLD (f_uimm), 16)); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_RCSR) : /* rcsr $r2,$csr */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_rcsr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = CPU (h_csr[FLD (f_csr)]); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SB) : /* sb ($r0+$imm),$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI opval = CPU (h_gr[FLD (f_r1)]); SETMEMQI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SEXTB) : /* sextb $r2,$r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EXTQISI (TRUNCSIQI (CPU (h_gr[FLD (f_r0)]))); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SEXTH) : /* sexth $r2,$r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EXTHISI (TRUNCSIHI (CPU (h_gr[FLD (f_r0)]))); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SH) : /* sh ($r0+$imm),$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI opval = CPU (h_gr[FLD (f_r1)]); SETMEMHI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SL) : /* sl $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SLLSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SLI) : /* sli $r1,$r0,$imm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SLLSI (CPU (h_gr[FLD (f_r0)]), FLD (f_imm)); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SR) : /* sr $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRASI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SRI) : /* sri $r1,$r0,$imm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRASI (CPU (h_gr[FLD (f_r0)]), FLD (f_imm)); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SRU) : /* sru $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRLSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SRUI) : /* srui $r1,$r0,$imm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRLSI (CPU (h_gr[FLD (f_r0)]), FLD (f_imm)); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB) : /* sub $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SUBSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SW) : /* sw ($r0+$imm),$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = CPU (h_gr[FLD (f_r1)]); SETMEMSI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_USER) : /* user $r2,$r0,$r1,$user */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = lm32bf_user_insn (current_cpu, CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]), FLD (f_user)); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_WCSR) : /* wcsr $csr,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_wcsr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); lm32bf_wcsr_insn (current_cpu, FLD (f_csr), CPU (h_gr[FLD (f_r1)])); #undef FLD } NEXT (vpc); CASE (sem, INSN_XOR) : /* xor $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = XORSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_XORI) : /* xori $r1,$r0,$uimm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = XORSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_XNOR) : /* xnor $r2,$r0,$r1 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_user.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = INVSI (XORSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_XNORI) : /* xnori $r1,$r0,$uimm */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andi.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = INVSI (XORSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_BREAK) : /* break */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = lm32bf_break_insn (current_cpu, pc); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_SCALL) : /* scall */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = lm32bf_scall_insn (current_cpu, pc); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); } ENDSWITCH (sem) /* End of semantic switch. */ /* At this point `vpc' contains the next insn to execute. */ } #undef DEFINE_SWITCH #endif /* DEFINE_SWITCH */
Go to most recent revision | Compare with Previous | Blame | View Log