URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [sim/] [m32r/] [sem.c] - Rev 842
Compare with Previous | Blame | View Log
/* Simulator instruction semantics for m32rbf. THIS FILE IS MACHINE GENERATED WITH CGEN. Copyright 1996-2010 Free Software Foundation, Inc. This file is part of the GNU simulators. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #define WANT_CPU m32rbf #define WANT_CPU_M32RBF #include "sim-main.h" #include "cgen-mem.h" #include "cgen-ops.h" #undef GET_ATTR #define GET_ATTR(cpu, num, attr) CGEN_ATTR_VALUE (NULL, abuf->idesc->attrs, CGEN_INSN_##attr) /* This is used so that we can compile two copies of the semantic code, one with full feature support and one without that runs fast(er). FAST_P, when desired, is defined on the command line, -DFAST_P=1. */ #if FAST_P #define SEM_FN_NAME(cpu,fn) XCONCAT3 (cpu,_semf_,fn) #undef TRACE_RESULT #define TRACE_RESULT(cpu, abuf, name, type, val) #else #define SEM_FN_NAME(cpu,fn) XCONCAT3 (cpu,_sem_,fn) #endif /* x-invalid: --invalid-- */ static SEM_PC SEM_FN_NAME (m32rbf,x_invalid) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { /* Update the recorded pc in the cpu state struct. Only necessary for WITH_SCACHE case, but to avoid the conditional compilation .... */ SET_H_PC (pc); /* Virtual insns have zero size. Overwrite vpc with address of next insn using the default-insn-bitsize spec. When executing insns in parallel we may want to queue the fault and continue execution. */ vpc = SEM_NEXT_VPC (sem_arg, pc, 4); vpc = sim_engine_invalid_insn (current_cpu, pc, vpc); } return vpc; #undef FLD } /* x-after: --after-- */ static SEM_PC SEM_FN_NAME (m32rbf,x_after) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_M32RBF m32rbf_pbb_after (current_cpu, sem_arg); #endif } return vpc; #undef FLD } /* x-before: --before-- */ static SEM_PC SEM_FN_NAME (m32rbf,x_before) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_M32RBF m32rbf_pbb_before (current_cpu, sem_arg); #endif } return vpc; #undef FLD } /* x-cti-chain: --cti-chain-- */ static SEM_PC SEM_FN_NAME (m32rbf,x_cti_chain) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_M32RBF #ifdef DEFINE_SWITCH vpc = m32rbf_pbb_cti_chain (current_cpu, sem_arg, pbb_br_type, pbb_br_npc); BREAK (sem); #else /* FIXME: Allow provision of explicit ifmt spec in insn spec. */ vpc = m32rbf_pbb_cti_chain (current_cpu, sem_arg, CPU_PBB_BR_TYPE (current_cpu), CPU_PBB_BR_NPC (current_cpu)); #endif #endif } return vpc; #undef FLD } /* x-chain: --chain-- */ static SEM_PC SEM_FN_NAME (m32rbf,x_chain) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_M32RBF vpc = m32rbf_pbb_chain (current_cpu, sem_arg); #ifdef DEFINE_SWITCH BREAK (sem); #endif #endif } return vpc; #undef FLD } /* x-begin: --begin-- */ static SEM_PC SEM_FN_NAME (m32rbf,x_begin) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_M32RBF #if defined DEFINE_SWITCH || defined FAST_P /* In the switch case FAST_P is a constant, allowing several optimizations in any called inline functions. */ vpc = m32rbf_pbb_begin (current_cpu, FAST_P); #else #if 0 /* cgen engine can't handle dynamic fast/full switching yet. */ vpc = m32rbf_pbb_begin (current_cpu, STATE_RUN_FAST_P (CPU_STATE (current_cpu))); #else vpc = m32rbf_pbb_begin (current_cpu, 0); #endif #endif #endif } return vpc; #undef FLD } /* add: add $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,add) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ADDSI (* FLD (i_dr), * FLD (i_sr)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* add3: add3 $dr,$sr,$hash$slo16 */ static SEM_PC SEM_FN_NAME (m32rbf,add3) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ADDSI (* FLD (i_sr), FLD (f_simm16)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* and: and $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,and) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ANDSI (* FLD (i_dr), * FLD (i_sr)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* and3: and3 $dr,$sr,$uimm16 */ static SEM_PC SEM_FN_NAME (m32rbf,and3) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_and3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ANDSI (* FLD (i_sr), FLD (f_uimm16)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* or: or $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,or) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ORSI (* FLD (i_dr), * FLD (i_sr)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* or3: or3 $dr,$sr,$hash$ulo16 */ static SEM_PC SEM_FN_NAME (m32rbf,or3) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_and3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ORSI (* FLD (i_sr), FLD (f_uimm16)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* xor: xor $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,xor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = XORSI (* FLD (i_dr), * FLD (i_sr)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* xor3: xor3 $dr,$sr,$uimm16 */ static SEM_PC SEM_FN_NAME (m32rbf,xor3) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_and3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = XORSI (* FLD (i_sr), FLD (f_uimm16)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* addi: addi $dr,$simm8 */ static SEM_PC SEM_FN_NAME (m32rbf,addi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ADDSI (* FLD (i_dr), FLD (f_simm8)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* addv: addv $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,addv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI temp0;BI temp1; temp0 = ADDSI (* FLD (i_dr), * FLD (i_sr)); temp1 = ADDOFSI (* FLD (i_dr), * FLD (i_sr), 0); { SI opval = temp0; * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { BI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); } } return vpc; #undef FLD } /* addv3: addv3 $dr,$sr,$simm16 */ static SEM_PC SEM_FN_NAME (m32rbf,addv3) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI temp0;BI temp1; temp0 = ADDSI (* FLD (i_sr), FLD (f_simm16)); temp1 = ADDOFSI (* FLD (i_sr), FLD (f_simm16), 0); { SI opval = temp0; * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { BI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); } } return vpc; #undef FLD } /* addx: addx $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,addx) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI temp0;BI temp1; temp0 = ADDCSI (* FLD (i_dr), * FLD (i_sr), CPU (h_cond)); temp1 = ADDCFSI (* FLD (i_dr), * FLD (i_sr), CPU (h_cond)); { SI opval = temp0; * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { BI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); } } return vpc; #undef FLD } /* bc8: bc.s $disp8 */ static SEM_PC SEM_FN_NAME (m32rbf,bc8) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bl8.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (CPU (h_cond)) { { USI opval = FLD (i_disp8); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bc24: bc.l $disp24 */ static SEM_PC SEM_FN_NAME (m32rbf,bc24) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bl24.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (CPU (h_cond)) { { USI opval = FLD (i_disp24); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* beq: beq $src1,$src2,$disp16 */ static SEM_PC SEM_FN_NAME (m32rbf,beq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQSI (* FLD (i_src1), * FLD (i_src2))) { { USI opval = FLD (i_disp16); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* beqz: beqz $src2,$disp16 */ static SEM_PC SEM_FN_NAME (m32rbf,beqz) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQSI (* FLD (i_src2), 0)) { { USI opval = FLD (i_disp16); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bgez: bgez $src2,$disp16 */ static SEM_PC SEM_FN_NAME (m32rbf,bgez) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (GESI (* FLD (i_src2), 0)) { { USI opval = FLD (i_disp16); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bgtz: bgtz $src2,$disp16 */ static SEM_PC SEM_FN_NAME (m32rbf,bgtz) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (GTSI (* FLD (i_src2), 0)) { { USI opval = FLD (i_disp16); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* blez: blez $src2,$disp16 */ static SEM_PC SEM_FN_NAME (m32rbf,blez) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (LESI (* FLD (i_src2), 0)) { { USI opval = FLD (i_disp16); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bltz: bltz $src2,$disp16 */ static SEM_PC SEM_FN_NAME (m32rbf,bltz) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (LTSI (* FLD (i_src2), 0)) { { USI opval = FLD (i_disp16); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bnez: bnez $src2,$disp16 */ static SEM_PC SEM_FN_NAME (m32rbf,bnez) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NESI (* FLD (i_src2), 0)) { { USI opval = FLD (i_disp16); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bl8: bl.s $disp8 */ static SEM_PC SEM_FN_NAME (m32rbf,bl8) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bl8.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (ANDSI (pc, -4), 4); CPU (h_gr[((UINT) 14)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = FLD (i_disp8); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bl24: bl.l $disp24 */ static SEM_PC SEM_FN_NAME (m32rbf,bl24) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bl24.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = ADDSI (pc, 4); CPU (h_gr[((UINT) 14)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = FLD (i_disp24); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bnc8: bnc.s $disp8 */ static SEM_PC SEM_FN_NAME (m32rbf,bnc8) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bl8.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (CPU (h_cond))) { { USI opval = FLD (i_disp8); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bnc24: bnc.l $disp24 */ static SEM_PC SEM_FN_NAME (m32rbf,bnc24) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bl24.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (CPU (h_cond))) { { USI opval = FLD (i_disp24); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bne: bne $src1,$src2,$disp16 */ static SEM_PC SEM_FN_NAME (m32rbf,bne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NESI (* FLD (i_src1), * FLD (i_src2))) { { USI opval = FLD (i_disp16); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bra8: bra.s $disp8 */ static SEM_PC SEM_FN_NAME (m32rbf,bra8) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bl8.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = FLD (i_disp8); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bra24: bra.l $disp24 */ static SEM_PC SEM_FN_NAME (m32rbf,bra24) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bl24.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = FLD (i_disp24); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* cmp: cmp $src1,$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,cmp) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = LTSI (* FLD (i_src1), * FLD (i_src2)); CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); } return vpc; #undef FLD } /* cmpi: cmpi $src2,$simm16 */ static SEM_PC SEM_FN_NAME (m32rbf,cmpi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_d.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI opval = LTSI (* FLD (i_src2), FLD (f_simm16)); CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); } return vpc; #undef FLD } /* cmpu: cmpu $src1,$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,cmpu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = LTUSI (* FLD (i_src1), * FLD (i_src2)); CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); } return vpc; #undef FLD } /* cmpui: cmpui $src2,$simm16 */ static SEM_PC SEM_FN_NAME (m32rbf,cmpui) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_d.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI opval = LTUSI (* FLD (i_src2), FLD (f_simm16)); CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); } return vpc; #undef FLD } /* div: div $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,div) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NESI (* FLD (i_sr), 0)) { { SI opval = DIVSI (* FLD (i_dr), * FLD (i_sr)); * FLD (i_dr) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* divu: divu $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,divu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NESI (* FLD (i_sr), 0)) { { SI opval = UDIVSI (* FLD (i_dr), * FLD (i_sr)); * FLD (i_dr) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* rem: rem $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,rem) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NESI (* FLD (i_sr), 0)) { { SI opval = MODSI (* FLD (i_dr), * FLD (i_sr)); * FLD (i_dr) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* remu: remu $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,remu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NESI (* FLD (i_sr), 0)) { { SI opval = UMODSI (* FLD (i_dr), * FLD (i_sr)); * FLD (i_dr) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* jl: jl $sr */ static SEM_PC SEM_FN_NAME (m32rbf,jl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_jl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI temp0;USI temp1; temp0 = ADDSI (ANDSI (pc, -4), 4); temp1 = ANDSI (* FLD (i_sr), -4); { SI opval = temp0; CPU (h_gr[((UINT) 14)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = temp1; SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* jmp: jmp $sr */ static SEM_PC SEM_FN_NAME (m32rbf,jmp) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_jl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = ANDSI (* FLD (i_sr), -4); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* ld: ld $dr,@$sr */ static SEM_PC SEM_FN_NAME (m32rbf,ld) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMSI (current_cpu, pc, * FLD (i_sr)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ld-d: ld $dr,@($slo16,$sr) */ static SEM_PC SEM_FN_NAME (m32rbf,ld_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GETMEMSI (current_cpu, pc, ADDSI (* FLD (i_sr), FLD (f_simm16))); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldb: ldb $dr,@$sr */ static SEM_PC SEM_FN_NAME (m32rbf,ldb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTQISI (GETMEMQI (current_cpu, pc, * FLD (i_sr))); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldb-d: ldb $dr,@($slo16,$sr) */ static SEM_PC SEM_FN_NAME (m32rbf,ldb_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EXTQISI (GETMEMQI (current_cpu, pc, ADDSI (* FLD (i_sr), FLD (f_simm16)))); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldh: ldh $dr,@$sr */ static SEM_PC SEM_FN_NAME (m32rbf,ldh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTHISI (GETMEMHI (current_cpu, pc, * FLD (i_sr))); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldh-d: ldh $dr,@($slo16,$sr) */ static SEM_PC SEM_FN_NAME (m32rbf,ldh_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EXTHISI (GETMEMHI (current_cpu, pc, ADDSI (* FLD (i_sr), FLD (f_simm16)))); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldub: ldub $dr,@$sr */ static SEM_PC SEM_FN_NAME (m32rbf,ldub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ZEXTQISI (GETMEMQI (current_cpu, pc, * FLD (i_sr))); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldub-d: ldub $dr,@($slo16,$sr) */ static SEM_PC SEM_FN_NAME (m32rbf,ldub_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ZEXTQISI (GETMEMQI (current_cpu, pc, ADDSI (* FLD (i_sr), FLD (f_simm16)))); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* lduh: lduh $dr,@$sr */ static SEM_PC SEM_FN_NAME (m32rbf,lduh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ZEXTHISI (GETMEMHI (current_cpu, pc, * FLD (i_sr))); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* lduh-d: lduh $dr,@($slo16,$sr) */ static SEM_PC SEM_FN_NAME (m32rbf,lduh_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ZEXTHISI (GETMEMHI (current_cpu, pc, ADDSI (* FLD (i_sr), FLD (f_simm16)))); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ld-plus: ld $dr,@$sr+ */ static SEM_PC SEM_FN_NAME (m32rbf,ld_plus) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI temp0;SI temp1; temp0 = GETMEMSI (current_cpu, pc, * FLD (i_sr)); temp1 = ADDSI (* FLD (i_sr), 4); { SI opval = temp0; * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = temp1; * FLD (i_sr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* ld24: ld24 $dr,$uimm24 */ static SEM_PC SEM_FN_NAME (m32rbf,ld24) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld24.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = FLD (i_uimm24); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldi8: ldi8 $dr,$simm8 */ static SEM_PC SEM_FN_NAME (m32rbf,ldi8) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = FLD (f_simm8); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldi16: ldi16 $dr,$hash$slo16 */ static SEM_PC SEM_FN_NAME (m32rbf,ldi16) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = FLD (f_simm16); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* lock: lock $dr,@$sr */ static SEM_PC SEM_FN_NAME (m32rbf,lock) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { BI opval = 1; CPU (h_lock) = opval; TRACE_RESULT (current_cpu, abuf, "lock", 'x', opval); } { SI opval = GETMEMSI (current_cpu, pc, * FLD (i_sr)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* machi: machi $src1,$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,machi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = SRADI (SLLDI (ADDDI (GET_H_ACCUM (), MULDI (EXTSIDI (ANDSI (* FLD (i_src1), 0xffff0000)), EXTHIDI (TRUNCSIHI (SRASI (* FLD (i_src2), 16))))), 8), 8); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } return vpc; #undef FLD } /* maclo: maclo $src1,$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,maclo) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = SRADI (SLLDI (ADDDI (GET_H_ACCUM (), MULDI (EXTSIDI (SLLSI (* FLD (i_src1), 16)), EXTHIDI (TRUNCSIHI (* FLD (i_src2))))), 8), 8); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } return vpc; #undef FLD } /* macwhi: macwhi $src1,$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,macwhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = SRADI (SLLDI (ADDDI (GET_H_ACCUM (), MULDI (EXTSIDI (* FLD (i_src1)), EXTHIDI (TRUNCSIHI (SRASI (* FLD (i_src2), 16))))), 8), 8); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } return vpc; #undef FLD } /* macwlo: macwlo $src1,$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,macwlo) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = SRADI (SLLDI (ADDDI (GET_H_ACCUM (), MULDI (EXTSIDI (* FLD (i_src1)), EXTHIDI (TRUNCSIHI (* FLD (i_src2))))), 8), 8); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } return vpc; #undef FLD } /* mul: mul $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,mul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = MULSI (* FLD (i_dr), * FLD (i_sr)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* mulhi: mulhi $src1,$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,mulhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = SRADI (SLLDI (MULDI (EXTSIDI (ANDSI (* FLD (i_src1), 0xffff0000)), EXTHIDI (TRUNCSIHI (SRASI (* FLD (i_src2), 16)))), 16), 16); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } return vpc; #undef FLD } /* mullo: mullo $src1,$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,mullo) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = SRADI (SLLDI (MULDI (EXTSIDI (SLLSI (* FLD (i_src1), 16)), EXTHIDI (TRUNCSIHI (* FLD (i_src2)))), 16), 16); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } return vpc; #undef FLD } /* mulwhi: mulwhi $src1,$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,mulwhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = SRADI (SLLDI (MULDI (EXTSIDI (* FLD (i_src1)), EXTHIDI (TRUNCSIHI (SRASI (* FLD (i_src2), 16)))), 8), 8); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } return vpc; #undef FLD } /* mulwlo: mulwlo $src1,$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,mulwlo) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = SRADI (SLLDI (MULDI (EXTSIDI (* FLD (i_src1)), EXTHIDI (TRUNCSIHI (* FLD (i_src2)))), 8), 8); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } return vpc; #undef FLD } /* mv: mv $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,mv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = * FLD (i_sr); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* mvfachi: mvfachi $dr */ static SEM_PC SEM_FN_NAME (m32rbf,mvfachi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_seth.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = TRUNCDISI (SRADI (GET_H_ACCUM (), 32)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* mvfaclo: mvfaclo $dr */ static SEM_PC SEM_FN_NAME (m32rbf,mvfaclo) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_seth.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = TRUNCDISI (GET_H_ACCUM ()); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* mvfacmi: mvfacmi $dr */ static SEM_PC SEM_FN_NAME (m32rbf,mvfacmi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_seth.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = TRUNCDISI (SRADI (GET_H_ACCUM (), 16)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* mvfc: mvfc $dr,$scr */ static SEM_PC SEM_FN_NAME (m32rbf,mvfc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_CR (FLD (f_r2)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* mvtachi: mvtachi $src1 */ static SEM_PC SEM_FN_NAME (m32rbf,mvtachi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = ORDI (ANDDI (GET_H_ACCUM (), MAKEDI (0, 0xffffffff)), SLLDI (EXTSIDI (* FLD (i_src1)), 32)); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } return vpc; #undef FLD } /* mvtaclo: mvtaclo $src1 */ static SEM_PC SEM_FN_NAME (m32rbf,mvtaclo) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = ORDI (ANDDI (GET_H_ACCUM (), MAKEDI (0xffffffff, 0)), ZEXTSIDI (* FLD (i_src1))); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } return vpc; #undef FLD } /* mvtc: mvtc $sr,$dcr */ static SEM_PC SEM_FN_NAME (m32rbf,mvtc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = * FLD (i_sr); SET_H_CR (FLD (f_r1), opval); TRACE_RESULT (current_cpu, abuf, "cr", 'x', opval); } return vpc; #undef FLD } /* neg: neg $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,neg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = NEGSI (* FLD (i_sr)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* nop: nop */ static SEM_PC SEM_FN_NAME (m32rbf,nop) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); PROFILE_COUNT_FILLNOPS (current_cpu, abuf->addr); return vpc; #undef FLD } /* not: not $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,not) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ld_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = INVSI (* FLD (i_sr)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* rac: rac */ static SEM_PC SEM_FN_NAME (m32rbf,rac) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_tmp1; tmp_tmp1 = SLLDI (GET_H_ACCUM (), 1); tmp_tmp1 = ADDDI (tmp_tmp1, MAKEDI (0, 32768)); { DI opval = (GTDI (tmp_tmp1, MAKEDI (32767, 0xffff0000))) ? (MAKEDI (32767, 0xffff0000)) : (LTDI (tmp_tmp1, MAKEDI (0xffff8000, 0))) ? (MAKEDI (0xffff8000, 0)) : (ANDDI (tmp_tmp1, MAKEDI (0xffffffff, 0xffff0000))); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } } return vpc; #undef FLD } /* rach: rach */ static SEM_PC SEM_FN_NAME (m32rbf,rach) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_tmp1; tmp_tmp1 = ANDDI (GET_H_ACCUM (), MAKEDI (16777215, 0xffffffff)); if (ANDIF (GEDI (tmp_tmp1, MAKEDI (16383, 0x80000000)), LEDI (tmp_tmp1, MAKEDI (8388607, 0xffffffff)))) { tmp_tmp1 = MAKEDI (16383, 0x80000000); } else { if (ANDIF (GEDI (tmp_tmp1, MAKEDI (8388608, 0)), LEDI (tmp_tmp1, MAKEDI (16760832, 0)))) { tmp_tmp1 = MAKEDI (16760832, 0); } else { tmp_tmp1 = ANDDI (ADDDI (GET_H_ACCUM (), MAKEDI (0, 1073741824)), MAKEDI (0xffffffff, 0x80000000)); } } tmp_tmp1 = SLLDI (tmp_tmp1, 1); { DI opval = SRADI (SLLDI (tmp_tmp1, 7), 7); SET_H_ACCUM (opval); TRACE_RESULT (current_cpu, abuf, "accum", 'D', opval); } } return vpc; #undef FLD } /* rte: rte */ static SEM_PC SEM_FN_NAME (m32rbf,rte) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { USI opval = ANDSI (GET_H_CR (((UINT) 6)), -4); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } { USI opval = GET_H_CR (((UINT) 14)); SET_H_CR (((UINT) 6), opval); TRACE_RESULT (current_cpu, abuf, "cr", 'x', opval); } { UQI opval = CPU (h_bpsw); SET_H_PSW (opval); TRACE_RESULT (current_cpu, abuf, "psw", 'x', opval); } { UQI opval = CPU (h_bbpsw); CPU (h_bpsw) = opval; TRACE_RESULT (current_cpu, abuf, "bpsw", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* seth: seth $dr,$hash$hi16 */ static SEM_PC SEM_FN_NAME (m32rbf,seth) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_seth.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SLLSI (FLD (f_hi16), 16); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sll: sll $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,sll) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SLLSI (* FLD (i_dr), ANDSI (* FLD (i_sr), 31)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sll3: sll3 $dr,$sr,$simm16 */ static SEM_PC SEM_FN_NAME (m32rbf,sll3) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SLLSI (* FLD (i_sr), ANDSI (FLD (f_simm16), 31)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* slli: slli $dr,$uimm5 */ static SEM_PC SEM_FN_NAME (m32rbf,slli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_slli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SLLSI (* FLD (i_dr), FLD (f_uimm5)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sra: sra $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,sra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SRASI (* FLD (i_dr), ANDSI (* FLD (i_sr), 31)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sra3: sra3 $dr,$sr,$simm16 */ static SEM_PC SEM_FN_NAME (m32rbf,sra3) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRASI (* FLD (i_sr), ANDSI (FLD (f_simm16), 31)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* srai: srai $dr,$uimm5 */ static SEM_PC SEM_FN_NAME (m32rbf,srai) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_slli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SRASI (* FLD (i_dr), FLD (f_uimm5)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* srl: srl $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,srl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SRLSI (* FLD (i_dr), ANDSI (* FLD (i_sr), 31)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* srl3: srl3 $dr,$sr,$simm16 */ static SEM_PC SEM_FN_NAME (m32rbf,srl3) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRLSI (* FLD (i_sr), ANDSI (FLD (f_simm16), 31)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* srli: srli $dr,$uimm5 */ static SEM_PC SEM_FN_NAME (m32rbf,srli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_slli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SRLSI (* FLD (i_dr), FLD (f_uimm5)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* st: st $src1,@$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,st) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = * FLD (i_src1); SETMEMSI (current_cpu, pc, * FLD (i_src2), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* st-d: st $src1,@($slo16,$src2) */ static SEM_PC SEM_FN_NAME (m32rbf,st_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_d.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = * FLD (i_src1); SETMEMSI (current_cpu, pc, ADDSI (* FLD (i_src2), FLD (f_simm16)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* stb: stb $src1,@$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,stb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = * FLD (i_src1); SETMEMQI (current_cpu, pc, * FLD (i_src2), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* stb-d: stb $src1,@($slo16,$src2) */ static SEM_PC SEM_FN_NAME (m32rbf,stb_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_d.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI opval = * FLD (i_src1); SETMEMQI (current_cpu, pc, ADDSI (* FLD (i_src2), FLD (f_simm16)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* sth: sth $src1,@$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,sth) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI opval = * FLD (i_src1); SETMEMHI (current_cpu, pc, * FLD (i_src2), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* sth-d: sth $src1,@($slo16,$src2) */ static SEM_PC SEM_FN_NAME (m32rbf,sth_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_d.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI opval = * FLD (i_src1); SETMEMHI (current_cpu, pc, ADDSI (* FLD (i_src2), FLD (f_simm16)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* st-plus: st $src1,@+$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,st_plus) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_new_src2; tmp_new_src2 = ADDSI (* FLD (i_src2), 4); { SI opval = * FLD (i_src1); SETMEMSI (current_cpu, pc, tmp_new_src2, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_new_src2; * FLD (i_src2) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* st-minus: st $src1,@-$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,st_minus) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_new_src2; tmp_new_src2 = SUBSI (* FLD (i_src2), 4); { SI opval = * FLD (i_src1); SETMEMSI (current_cpu, pc, tmp_new_src2, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_new_src2; * FLD (i_src2) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* sub: sub $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,sub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SUBSI (* FLD (i_dr), * FLD (i_sr)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* subv: subv $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,subv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI temp0;BI temp1; temp0 = SUBSI (* FLD (i_dr), * FLD (i_sr)); temp1 = SUBOFSI (* FLD (i_dr), * FLD (i_sr), 0); { SI opval = temp0; * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { BI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); } } return vpc; #undef FLD } /* subx: subx $dr,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,subx) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI temp0;BI temp1; temp0 = SUBCSI (* FLD (i_dr), * FLD (i_sr), CPU (h_cond)); temp1 = SUBCFSI (* FLD (i_dr), * FLD (i_sr), CPU (h_cond)); { SI opval = temp0; * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { BI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); } } return vpc; #undef FLD } /* trap: trap $uimm4 */ static SEM_PC SEM_FN_NAME (m32rbf,trap) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_trap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { USI opval = GET_H_CR (((UINT) 6)); SET_H_CR (((UINT) 14), opval); TRACE_RESULT (current_cpu, abuf, "cr", 'x', opval); } { USI opval = ADDSI (pc, 4); SET_H_CR (((UINT) 6), opval); TRACE_RESULT (current_cpu, abuf, "cr", 'x', opval); } { UQI opval = CPU (h_bpsw); CPU (h_bbpsw) = opval; TRACE_RESULT (current_cpu, abuf, "bbpsw", 'x', opval); } { UQI opval = GET_H_PSW (); CPU (h_bpsw) = opval; TRACE_RESULT (current_cpu, abuf, "bpsw", 'x', opval); } { UQI opval = ANDQI (GET_H_PSW (), 128); SET_H_PSW (opval); TRACE_RESULT (current_cpu, abuf, "psw", 'x', opval); } { SI opval = m32r_trap (current_cpu, pc, FLD (f_uimm4)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* unlock: unlock $src1,@$src2 */ static SEM_PC SEM_FN_NAME (m32rbf,unlock) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (CPU (h_lock)) { { SI opval = * FLD (i_src1); SETMEMSI (current_cpu, pc, * FLD (i_src2), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } { BI opval = 0; CPU (h_lock) = opval; TRACE_RESULT (current_cpu, abuf, "lock", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* clrpsw: clrpsw $uimm8 */ static SEM_PC SEM_FN_NAME (m32rbf,clrpsw) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clrpsw.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = ANDSI (GET_H_CR (((UINT) 0)), ORSI (ZEXTQISI (INVQI (FLD (f_uimm8))), 65280)); SET_H_CR (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "cr", 'x', opval); } return vpc; #undef FLD } /* setpsw: setpsw $uimm8 */ static SEM_PC SEM_FN_NAME (m32rbf,setpsw) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clrpsw.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = FLD (f_uimm8); SET_H_CR (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "cr", 'x', opval); } return vpc; #undef FLD } /* bset: bset $uimm3,@($slo16,$sr) */ static SEM_PC SEM_FN_NAME (m32rbf,bset) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bset.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI opval = ORQI (GETMEMQI (current_cpu, pc, ADDSI (* FLD (i_sr), FLD (f_simm16))), SLLQI (1, SUBSI (7, FLD (f_uimm3)))); SETMEMQI (current_cpu, pc, ADDSI (* FLD (i_sr), FLD (f_simm16)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* bclr: bclr $uimm3,@($slo16,$sr) */ static SEM_PC SEM_FN_NAME (m32rbf,bclr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bset.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI opval = ANDQI (GETMEMQI (current_cpu, pc, ADDSI (* FLD (i_sr), FLD (f_simm16))), INVQI (SLLQI (1, SUBSI (7, FLD (f_uimm3))))); SETMEMQI (current_cpu, pc, ADDSI (* FLD (i_sr), FLD (f_simm16)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* btst: btst $uimm3,$sr */ static SEM_PC SEM_FN_NAME (m32rbf,btst) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bset.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = ANDQI (SRLQI (* FLD (i_sr), SUBSI (7, FLD (f_uimm3))), 1); CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); } return vpc; #undef FLD } /* Table of all semantic fns. */ static const struct sem_fn_desc sem_fns[] = { { M32RBF_INSN_X_INVALID, SEM_FN_NAME (m32rbf,x_invalid) }, { M32RBF_INSN_X_AFTER, SEM_FN_NAME (m32rbf,x_after) }, { M32RBF_INSN_X_BEFORE, SEM_FN_NAME (m32rbf,x_before) }, { M32RBF_INSN_X_CTI_CHAIN, SEM_FN_NAME (m32rbf,x_cti_chain) }, { M32RBF_INSN_X_CHAIN, SEM_FN_NAME (m32rbf,x_chain) }, { M32RBF_INSN_X_BEGIN, SEM_FN_NAME (m32rbf,x_begin) }, { M32RBF_INSN_ADD, SEM_FN_NAME (m32rbf,add) }, { M32RBF_INSN_ADD3, SEM_FN_NAME (m32rbf,add3) }, { M32RBF_INSN_AND, SEM_FN_NAME (m32rbf,and) }, { M32RBF_INSN_AND3, SEM_FN_NAME (m32rbf,and3) }, { M32RBF_INSN_OR, SEM_FN_NAME (m32rbf,or) }, { M32RBF_INSN_OR3, SEM_FN_NAME (m32rbf,or3) }, { M32RBF_INSN_XOR, SEM_FN_NAME (m32rbf,xor) }, { M32RBF_INSN_XOR3, SEM_FN_NAME (m32rbf,xor3) }, { M32RBF_INSN_ADDI, SEM_FN_NAME (m32rbf,addi) }, { M32RBF_INSN_ADDV, SEM_FN_NAME (m32rbf,addv) }, { M32RBF_INSN_ADDV3, SEM_FN_NAME (m32rbf,addv3) }, { M32RBF_INSN_ADDX, SEM_FN_NAME (m32rbf,addx) }, { M32RBF_INSN_BC8, SEM_FN_NAME (m32rbf,bc8) }, { M32RBF_INSN_BC24, SEM_FN_NAME (m32rbf,bc24) }, { M32RBF_INSN_BEQ, SEM_FN_NAME (m32rbf,beq) }, { M32RBF_INSN_BEQZ, SEM_FN_NAME (m32rbf,beqz) }, { M32RBF_INSN_BGEZ, SEM_FN_NAME (m32rbf,bgez) }, { M32RBF_INSN_BGTZ, SEM_FN_NAME (m32rbf,bgtz) }, { M32RBF_INSN_BLEZ, SEM_FN_NAME (m32rbf,blez) }, { M32RBF_INSN_BLTZ, SEM_FN_NAME (m32rbf,bltz) }, { M32RBF_INSN_BNEZ, SEM_FN_NAME (m32rbf,bnez) }, { M32RBF_INSN_BL8, SEM_FN_NAME (m32rbf,bl8) }, { M32RBF_INSN_BL24, SEM_FN_NAME (m32rbf,bl24) }, { M32RBF_INSN_BNC8, SEM_FN_NAME (m32rbf,bnc8) }, { M32RBF_INSN_BNC24, SEM_FN_NAME (m32rbf,bnc24) }, { M32RBF_INSN_BNE, SEM_FN_NAME (m32rbf,bne) }, { M32RBF_INSN_BRA8, SEM_FN_NAME (m32rbf,bra8) }, { M32RBF_INSN_BRA24, SEM_FN_NAME (m32rbf,bra24) }, { M32RBF_INSN_CMP, SEM_FN_NAME (m32rbf,cmp) }, { M32RBF_INSN_CMPI, SEM_FN_NAME (m32rbf,cmpi) }, { M32RBF_INSN_CMPU, SEM_FN_NAME (m32rbf,cmpu) }, { M32RBF_INSN_CMPUI, SEM_FN_NAME (m32rbf,cmpui) }, { M32RBF_INSN_DIV, SEM_FN_NAME (m32rbf,div) }, { M32RBF_INSN_DIVU, SEM_FN_NAME (m32rbf,divu) }, { M32RBF_INSN_REM, SEM_FN_NAME (m32rbf,rem) }, { M32RBF_INSN_REMU, SEM_FN_NAME (m32rbf,remu) }, { M32RBF_INSN_JL, SEM_FN_NAME (m32rbf,jl) }, { M32RBF_INSN_JMP, SEM_FN_NAME (m32rbf,jmp) }, { M32RBF_INSN_LD, SEM_FN_NAME (m32rbf,ld) }, { M32RBF_INSN_LD_D, SEM_FN_NAME (m32rbf,ld_d) }, { M32RBF_INSN_LDB, SEM_FN_NAME (m32rbf,ldb) }, { M32RBF_INSN_LDB_D, SEM_FN_NAME (m32rbf,ldb_d) }, { M32RBF_INSN_LDH, SEM_FN_NAME (m32rbf,ldh) }, { M32RBF_INSN_LDH_D, SEM_FN_NAME (m32rbf,ldh_d) }, { M32RBF_INSN_LDUB, SEM_FN_NAME (m32rbf,ldub) }, { M32RBF_INSN_LDUB_D, SEM_FN_NAME (m32rbf,ldub_d) }, { M32RBF_INSN_LDUH, SEM_FN_NAME (m32rbf,lduh) }, { M32RBF_INSN_LDUH_D, SEM_FN_NAME (m32rbf,lduh_d) }, { M32RBF_INSN_LD_PLUS, SEM_FN_NAME (m32rbf,ld_plus) }, { M32RBF_INSN_LD24, SEM_FN_NAME (m32rbf,ld24) }, { M32RBF_INSN_LDI8, SEM_FN_NAME (m32rbf,ldi8) }, { M32RBF_INSN_LDI16, SEM_FN_NAME (m32rbf,ldi16) }, { M32RBF_INSN_LOCK, SEM_FN_NAME (m32rbf,lock) }, { M32RBF_INSN_MACHI, SEM_FN_NAME (m32rbf,machi) }, { M32RBF_INSN_MACLO, SEM_FN_NAME (m32rbf,maclo) }, { M32RBF_INSN_MACWHI, SEM_FN_NAME (m32rbf,macwhi) }, { M32RBF_INSN_MACWLO, SEM_FN_NAME (m32rbf,macwlo) }, { M32RBF_INSN_MUL, SEM_FN_NAME (m32rbf,mul) }, { M32RBF_INSN_MULHI, SEM_FN_NAME (m32rbf,mulhi) }, { M32RBF_INSN_MULLO, SEM_FN_NAME (m32rbf,mullo) }, { M32RBF_INSN_MULWHI, SEM_FN_NAME (m32rbf,mulwhi) }, { M32RBF_INSN_MULWLO, SEM_FN_NAME (m32rbf,mulwlo) }, { M32RBF_INSN_MV, SEM_FN_NAME (m32rbf,mv) }, { M32RBF_INSN_MVFACHI, SEM_FN_NAME (m32rbf,mvfachi) }, { M32RBF_INSN_MVFACLO, SEM_FN_NAME (m32rbf,mvfaclo) }, { M32RBF_INSN_MVFACMI, SEM_FN_NAME (m32rbf,mvfacmi) }, { M32RBF_INSN_MVFC, SEM_FN_NAME (m32rbf,mvfc) }, { M32RBF_INSN_MVTACHI, SEM_FN_NAME (m32rbf,mvtachi) }, { M32RBF_INSN_MVTACLO, SEM_FN_NAME (m32rbf,mvtaclo) }, { M32RBF_INSN_MVTC, SEM_FN_NAME (m32rbf,mvtc) }, { M32RBF_INSN_NEG, SEM_FN_NAME (m32rbf,neg) }, { M32RBF_INSN_NOP, SEM_FN_NAME (m32rbf,nop) }, { M32RBF_INSN_NOT, SEM_FN_NAME (m32rbf,not) }, { M32RBF_INSN_RAC, SEM_FN_NAME (m32rbf,rac) }, { M32RBF_INSN_RACH, SEM_FN_NAME (m32rbf,rach) }, { M32RBF_INSN_RTE, SEM_FN_NAME (m32rbf,rte) }, { M32RBF_INSN_SETH, SEM_FN_NAME (m32rbf,seth) }, { M32RBF_INSN_SLL, SEM_FN_NAME (m32rbf,sll) }, { M32RBF_INSN_SLL3, SEM_FN_NAME (m32rbf,sll3) }, { M32RBF_INSN_SLLI, SEM_FN_NAME (m32rbf,slli) }, { M32RBF_INSN_SRA, SEM_FN_NAME (m32rbf,sra) }, { M32RBF_INSN_SRA3, SEM_FN_NAME (m32rbf,sra3) }, { M32RBF_INSN_SRAI, SEM_FN_NAME (m32rbf,srai) }, { M32RBF_INSN_SRL, SEM_FN_NAME (m32rbf,srl) }, { M32RBF_INSN_SRL3, SEM_FN_NAME (m32rbf,srl3) }, { M32RBF_INSN_SRLI, SEM_FN_NAME (m32rbf,srli) }, { M32RBF_INSN_ST, SEM_FN_NAME (m32rbf,st) }, { M32RBF_INSN_ST_D, SEM_FN_NAME (m32rbf,st_d) }, { M32RBF_INSN_STB, SEM_FN_NAME (m32rbf,stb) }, { M32RBF_INSN_STB_D, SEM_FN_NAME (m32rbf,stb_d) }, { M32RBF_INSN_STH, SEM_FN_NAME (m32rbf,sth) }, { M32RBF_INSN_STH_D, SEM_FN_NAME (m32rbf,sth_d) }, { M32RBF_INSN_ST_PLUS, SEM_FN_NAME (m32rbf,st_plus) }, { M32RBF_INSN_ST_MINUS, SEM_FN_NAME (m32rbf,st_minus) }, { M32RBF_INSN_SUB, SEM_FN_NAME (m32rbf,sub) }, { M32RBF_INSN_SUBV, SEM_FN_NAME (m32rbf,subv) }, { M32RBF_INSN_SUBX, SEM_FN_NAME (m32rbf,subx) }, { M32RBF_INSN_TRAP, SEM_FN_NAME (m32rbf,trap) }, { M32RBF_INSN_UNLOCK, SEM_FN_NAME (m32rbf,unlock) }, { M32RBF_INSN_CLRPSW, SEM_FN_NAME (m32rbf,clrpsw) }, { M32RBF_INSN_SETPSW, SEM_FN_NAME (m32rbf,setpsw) }, { M32RBF_INSN_BSET, SEM_FN_NAME (m32rbf,bset) }, { M32RBF_INSN_BCLR, SEM_FN_NAME (m32rbf,bclr) }, { M32RBF_INSN_BTST, SEM_FN_NAME (m32rbf,btst) }, { 0, 0 } }; /* Add the semantic fns to IDESC_TABLE. */ void SEM_FN_NAME (m32rbf,init_idesc_table) (SIM_CPU *current_cpu) { IDESC *idesc_table = CPU_IDESC (current_cpu); const struct sem_fn_desc *sf; int mach_num = MACH_NUM (CPU_MACH (current_cpu)); for (sf = &sem_fns[0]; sf->fn != 0; ++sf) { const CGEN_INSN *insn = idesc_table[sf->index].idata; int valid_p = (CGEN_INSN_VIRTUAL_P (insn) || CGEN_INSN_MACH_HAS_P (insn, mach_num)); #if FAST_P if (valid_p) idesc_table[sf->index].sem_fast = sf->fn; else idesc_table[sf->index].sem_fast = SEM_FN_NAME (m32rbf,x_invalid); #else if (valid_p) idesc_table[sf->index].sem_full = sf->fn; else idesc_table[sf->index].sem_full = SEM_FN_NAME (m32rbf,x_invalid); #endif } }