URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.18.50/] [bfd/] [elf32-m68k.c] - Rev 179
Go to most recent revision | Compare with Previous | Blame | View Log
/* Motorola 68k series support for 32-bit ELF Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "bfd.h" #include "bfdlink.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/m68k.h" #include "opcode/m68k.h" static reloc_howto_type *reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type)); static void rtype_to_howto PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); static struct bfd_hash_entry *elf_m68k_link_hash_newfunc PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); static struct bfd_link_hash_table *elf_m68k_link_hash_table_create PARAMS ((bfd *)); static bfd_boolean elf_m68k_check_relocs PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static bfd_boolean elf_m68k_adjust_dynamic_symbol PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); static bfd_boolean elf_m68k_size_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static bfd_boolean elf_m68k_discard_copies PARAMS ((struct elf_link_hash_entry *, PTR)); static bfd_boolean elf_m68k_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); static bfd_boolean elf_m68k_finish_dynamic_symbol PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); static bfd_boolean elf_m68k_finish_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static bfd_boolean elf32_m68k_set_private_flags PARAMS ((bfd *, flagword)); static bfd_boolean elf32_m68k_merge_private_bfd_data PARAMS ((bfd *, bfd *)); static bfd_boolean elf32_m68k_print_private_bfd_data PARAMS ((bfd *, PTR)); static enum elf_reloc_type_class elf32_m68k_reloc_type_class PARAMS ((const Elf_Internal_Rela *)); static reloc_howto_type howto_table[] = { HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE), HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE), HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE), HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE), HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE), HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE), HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE), HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE), HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE), HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE), HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE), HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE), HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE), HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE), HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE), HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE), HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE), HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE), HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE), HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE), HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE), HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE), HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE), /* GNU extension to record C++ vtable hierarchy. */ HOWTO (R_68K_GNU_VTINHERIT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ NULL, /* special_function */ "R_68K_GNU_VTINHERIT", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* GNU extension to record C++ vtable member usage. */ HOWTO (R_68K_GNU_VTENTRY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_elf_rel_vtable_reloc_fn, /* special_function */ "R_68K_GNU_VTENTRY", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), }; static void rtype_to_howto (abfd, cache_ptr, dst) bfd *abfd ATTRIBUTE_UNUSED; arelent *cache_ptr; Elf_Internal_Rela *dst; { BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K_max); cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)]; } #define elf_info_to_howto rtype_to_howto static const struct { bfd_reloc_code_real_type bfd_val; int elf_val; } reloc_map[] = { { BFD_RELOC_NONE, R_68K_NONE }, { BFD_RELOC_32, R_68K_32 }, { BFD_RELOC_16, R_68K_16 }, { BFD_RELOC_8, R_68K_8 }, { BFD_RELOC_32_PCREL, R_68K_PC32 }, { BFD_RELOC_16_PCREL, R_68K_PC16 }, { BFD_RELOC_8_PCREL, R_68K_PC8 }, { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 }, { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 }, { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 }, { BFD_RELOC_32_GOTOFF, R_68K_GOT32O }, { BFD_RELOC_16_GOTOFF, R_68K_GOT16O }, { BFD_RELOC_8_GOTOFF, R_68K_GOT8O }, { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 }, { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 }, { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 }, { BFD_RELOC_32_PLTOFF, R_68K_PLT32O }, { BFD_RELOC_16_PLTOFF, R_68K_PLT16O }, { BFD_RELOC_8_PLTOFF, R_68K_PLT8O }, { BFD_RELOC_NONE, R_68K_COPY }, { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT }, { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT }, { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE }, { BFD_RELOC_CTOR, R_68K_32 }, { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT }, { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY }, }; static reloc_howto_type * reloc_type_lookup (abfd, code) bfd *abfd ATTRIBUTE_UNUSED; bfd_reloc_code_real_type code; { unsigned int i; for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++) { if (reloc_map[i].bfd_val == code) return &howto_table[reloc_map[i].elf_val]; } return 0; } static reloc_howto_type * reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++) if (howto_table[i].name != NULL && strcasecmp (howto_table[i].name, r_name) == 0) return &howto_table[i]; return NULL; } #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup #define ELF_ARCH bfd_arch_m68k /* Functions for the m68k ELF linker. */ /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" /* Describes one of the various PLT styles. */ struct elf_m68k_plt_info { /* The size of each PLT entry. */ bfd_vma size; /* The template for the first PLT entry. */ const bfd_byte *plt0_entry; /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations. The comments by each member indicate the value that the relocation is against. */ struct { unsigned int got4; /* .got + 4 */ unsigned int got8; /* .got + 8 */ } plt0_relocs; /* The template for a symbol's PLT entry. */ const bfd_byte *symbol_entry; /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations. The comments by each member indicate the value that the relocation is against. */ struct { unsigned int got; /* the symbol's .got.plt entry */ unsigned int plt; /* .plt */ } symbol_relocs; /* The offset of the resolver stub from the start of SYMBOL_ENTRY. The stub starts with "move.l #relocoffset,%d0". */ bfd_vma symbol_resolve_entry; }; /* The size in bytes of an entry in the procedure linkage table. */ #define PLT_ENTRY_SIZE 20 /* The first entry in a procedure linkage table looks like this. See the SVR4 ABI m68k supplement to see how this works. */ static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] = { 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ 0, 0, 0, 2, /* + (.got + 4) - . */ 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */ 0, 0, 0, 2, /* + (.got + 8) - . */ 0, 0, 0, 0 /* pad out to 20 bytes. */ }; /* Subsequent entries in a procedure linkage table look like this. */ static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] = { 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */ 0, 0, 0, 2, /* + (.got.plt entry) - . */ 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 0, 0, 0, 0, /* + reloc index */ 0x60, 0xff, /* bra.l .plt */ 0, 0, 0, 0 /* + .plt - . */ }; static const struct elf_m68k_plt_info elf_m68k_plt_info = { PLT_ENTRY_SIZE, elf_m68k_plt0_entry, { 4, 12 }, elf_m68k_plt_entry, { 4, 16 }, 8 }; #define ISAB_PLT_ENTRY_SIZE 24 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] = { 0x20, 0x3c, /* move.l #offset,%d0 */ 0, 0, 0, 0, /* + (.got + 4) - . */ 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */ 0x20, 0x3c, /* move.l #offset,%d0 */ 0, 0, 0, 0, /* + (.got + 8) - . */ 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 0x4e, 0xd0, /* jmp (%a0) */ 0x4e, 0x71 /* nop */ }; /* Subsequent entries in a procedure linkage table look like this. */ static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] = { 0x20, 0x3c, /* move.l #offset,%d0 */ 0, 0, 0, 0, /* + (.got.plt entry) - . */ 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 0x4e, 0xd0, /* jmp (%a0) */ 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 0, 0, 0, 0, /* + reloc index */ 0x60, 0xff, /* bra.l .plt */ 0, 0, 0, 0 /* + .plt - . */ }; static const struct elf_m68k_plt_info elf_isab_plt_info = { ISAB_PLT_ENTRY_SIZE, elf_isab_plt0_entry, { 2, 12 }, elf_isab_plt_entry, { 2, 20 }, 12 }; #define ISAC_PLT_ENTRY_SIZE 24 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] = { 0x20, 0x3c, /* move.l #offset,%d0 */ 0, 0, 0, 0, /* replaced with .got + 4 - . */ 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */ 0x20, 0x3c, /* move.l #offset,%d0 */ 0, 0, 0, 0, /* replaced with .got + 8 - . */ 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 0x4e, 0xd0, /* jmp (%a0) */ 0x4e, 0x71 /* nop */ }; /* Subsequent entries in a procedure linkage table look like this. */ static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] = { 0x20, 0x3c, /* move.l #offset,%d0 */ 0, 0, 0, 0, /* replaced with (.got entry) - . */ 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 0x4e, 0xd0, /* jmp (%a0) */ 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 0, 0, 0, 0, /* replaced with offset into relocation table */ 0x61, 0xff, /* bsr.l .plt */ 0, 0, 0, 0 /* replaced with .plt - . */ }; static const struct elf_m68k_plt_info elf_isac_plt_info = { ISAC_PLT_ENTRY_SIZE, elf_isac_plt0_entry, { 2, 12}, elf_isac_plt_entry, { 2, 20 }, 12 }; #define CPU32_PLT_ENTRY_SIZE 24 /* Procedure linkage table entries for the cpu32 */ static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] = { 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ 0, 0, 0, 2, /* + (.got + 4) - . */ 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ 0, 0, 0, 2, /* + (.got + 8) - . */ 0x4e, 0xd1, /* jmp %a1@ */ 0, 0, 0, 0, /* pad out to 24 bytes. */ 0, 0 }; static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] = { 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ 0, 0, 0, 2, /* + (.got.plt entry) - . */ 0x4e, 0xd1, /* jmp %a1@ */ 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 0, 0, 0, 0, /* + reloc index */ 0x60, 0xff, /* bra.l .plt */ 0, 0, 0, 0, /* + .plt - . */ 0, 0 }; static const struct elf_m68k_plt_info elf_cpu32_plt_info = { CPU32_PLT_ENTRY_SIZE, elf_cpu32_plt0_entry, { 4, 12 }, elf_cpu32_plt_entry, { 4, 18 }, 10 }; /* The m68k linker needs to keep track of the number of relocs that it decides to copy in check_relocs for each symbol. This is so that it can discard PC relative relocs if it doesn't need them when linking with -Bsymbolic. We store the information in a field extending the regular ELF linker hash table. */ /* This structure keeps track of the number of PC relative relocs we have copied for a given symbol. */ struct elf_m68k_pcrel_relocs_copied { /* Next section. */ struct elf_m68k_pcrel_relocs_copied *next; /* A section in dynobj. */ asection *section; /* Number of relocs copied in this section. */ bfd_size_type count; }; /* m68k ELF linker hash entry. */ struct elf_m68k_link_hash_entry { struct elf_link_hash_entry root; /* Number of PC relative relocs copied for this symbol. */ struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied; }; #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent)) /* m68k ELF linker hash table. */ struct elf_m68k_link_hash_table { struct elf_link_hash_table root; /* Small local sym to section mapping cache. */ struct sym_sec_cache sym_sec; /* The PLT format used by this link, or NULL if the format has not yet been chosen. */ const struct elf_m68k_plt_info *plt_info; }; /* Get the m68k ELF linker hash table from a link_info structure. */ #define elf_m68k_hash_table(p) \ ((struct elf_m68k_link_hash_table *) (p)->hash) /* Create an entry in an m68k ELF linker hash table. */ static struct bfd_hash_entry * elf_m68k_link_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { struct bfd_hash_entry *ret = entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == NULL) ret = bfd_hash_allocate (table, sizeof (struct elf_m68k_link_hash_entry)); if (ret == NULL) return ret; /* Call the allocation method of the superclass. */ ret = _bfd_elf_link_hash_newfunc (ret, table, string); if (ret != NULL) elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL; return ret; } /* Create an m68k ELF linker hash table. */ static struct bfd_link_hash_table * elf_m68k_link_hash_table_create (abfd) bfd *abfd; { struct elf_m68k_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table); ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt); if (ret == (struct elf_m68k_link_hash_table *) NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, elf_m68k_link_hash_newfunc, sizeof (struct elf_m68k_link_hash_entry))) { free (ret); return NULL; } ret->sym_sec.abfd = NULL; ret->plt_info = NULL; return &ret->root.root; } /* Set the right machine number. */ static bfd_boolean elf32_m68k_object_p (bfd *abfd) { unsigned int mach = 0; unsigned features = 0; flagword eflags = elf_elfheader (abfd)->e_flags; if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) features |= m68000; else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) features |= cpu32; else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) features |= fido_a; else { switch (eflags & EF_M68K_CF_ISA_MASK) { case EF_M68K_CF_ISA_A_NODIV: features |= mcfisa_a; break; case EF_M68K_CF_ISA_A: features |= mcfisa_a|mcfhwdiv; break; case EF_M68K_CF_ISA_A_PLUS: features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp; break; case EF_M68K_CF_ISA_B_NOUSP: features |= mcfisa_a|mcfisa_b|mcfhwdiv; break; case EF_M68K_CF_ISA_B: features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp; break; case EF_M68K_CF_ISA_C: features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp; break; case EF_M68K_CF_ISA_C_NODIV: features |= mcfisa_a|mcfisa_c|mcfusp; break; } switch (eflags & EF_M68K_CF_MAC_MASK) { case EF_M68K_CF_MAC: features |= mcfmac; break; case EF_M68K_CF_EMAC: features |= mcfemac; break; } if (eflags & EF_M68K_CF_FLOAT) features |= cfloat; } mach = bfd_m68k_features_to_mach (features); bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach); return TRUE; } /* Keep m68k-specific flags in the ELF header. */ static bfd_boolean elf32_m68k_set_private_flags (abfd, flags) bfd *abfd; flagword flags; { elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; return TRUE; } /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean elf32_m68k_merge_private_bfd_data (ibfd, obfd) bfd *ibfd; bfd *obfd; { flagword out_flags; flagword in_flags; flagword out_isa; flagword in_isa; const bfd_arch_info_type *arch_info; if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return FALSE; /* Get the merged machine. This checks for incompatibility between Coldfire & non-Coldfire flags, incompability between different Coldfire ISAs, and incompability between different MAC types. */ arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE); if (!arch_info) return FALSE; bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach); in_flags = elf_elfheader (ibfd)->e_flags; if (!elf_flags_init (obfd)) { elf_flags_init (obfd) = TRUE; out_flags = in_flags; } else { out_flags = elf_elfheader (obfd)->e_flags; unsigned int variant_mask; if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) variant_mask = 0; else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) variant_mask = 0; else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) variant_mask = 0; else variant_mask = EF_M68K_CF_ISA_MASK; in_isa = (in_flags & variant_mask); out_isa = (out_flags & variant_mask); if (in_isa > out_isa) out_flags ^= in_isa ^ out_isa; if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)) out_flags = EF_M68K_FIDO; else out_flags |= in_flags ^ in_isa; } elf_elfheader (obfd)->e_flags = out_flags; return TRUE; } /* Display the flags field. */ static bfd_boolean elf32_m68k_print_private_bfd_data (abfd, ptr) bfd *abfd; PTR ptr; { FILE *file = (FILE *) ptr; flagword eflags = elf_elfheader (abfd)->e_flags; BFD_ASSERT (abfd != NULL && ptr != NULL); /* Print normal ELF private data. */ _bfd_elf_print_private_bfd_data (abfd, ptr); /* Ignore init flag - it may not be set, despite the flags field containing valid data. */ /* xgettext:c-format */ fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) fprintf (file, " [m68000]"); else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) fprintf (file, " [cpu32]"); else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) fprintf (file, " [fido]"); else { if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E) fprintf (file, " [cfv4e]"); if (eflags & EF_M68K_CF_ISA_MASK) { char const *isa = _("unknown"); char const *mac = _("unknown"); char const *additional = ""; switch (eflags & EF_M68K_CF_ISA_MASK) { case EF_M68K_CF_ISA_A_NODIV: isa = "A"; additional = " [nodiv]"; break; case EF_M68K_CF_ISA_A: isa = "A"; break; case EF_M68K_CF_ISA_A_PLUS: isa = "A+"; break; case EF_M68K_CF_ISA_B_NOUSP: isa = "B"; additional = " [nousp]"; break; case EF_M68K_CF_ISA_B: isa = "B"; break; case EF_M68K_CF_ISA_C: isa = "C"; break; case EF_M68K_CF_ISA_C_NODIV: isa = "C"; additional = " [nodiv]"; break; } fprintf (file, " [isa %s]%s", isa, additional); if (eflags & EF_M68K_CF_FLOAT) fprintf (file, " [float]"); switch (eflags & EF_M68K_CF_MAC_MASK) { case 0: mac = NULL; break; case EF_M68K_CF_MAC: mac = "mac"; break; case EF_M68K_CF_EMAC: mac = "emac"; break; } if (mac) fprintf (file, " [%s]", mac); } } fputc ('\n', file); return TRUE; } /* Look through the relocs for a section during the first phase, and allocate space in the global offset table or procedure linkage table. */ static bfd_boolean elf_m68k_check_relocs (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sgot; asection *srelgot; asection *sreloc; if (info->relocatable) return TRUE; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); sgot = NULL; srelgot = NULL; sreloc = NULL; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { unsigned long r_symndx; struct elf_link_hash_entry *h; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } switch (ELF32_R_TYPE (rel->r_info)) { case R_68K_GOT8: case R_68K_GOT16: case R_68K_GOT32: if (h != NULL && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) break; /* Fall through. */ case R_68K_GOT8O: case R_68K_GOT16O: case R_68K_GOT32O: /* This symbol requires a global offset table entry. */ if (dynobj == NULL) { /* Create the .got section. */ elf_hash_table (info)->dynobj = dynobj = abfd; if (!_bfd_elf_create_got_section (dynobj, info)) return FALSE; } if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); } if (srelgot == NULL && (h != NULL || info->shared)) { srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); if (srelgot == NULL) { srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)); if (srelgot == NULL || !bfd_set_section_alignment (dynobj, srelgot, 2)) return FALSE; } } if (h != NULL) { if (h->got.refcount == 0) { /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1 && !h->forced_local) { if (!bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* Allocate space in the .got section. */ sgot->size += 4; /* Allocate relocation space. */ srelgot->size += sizeof (Elf32_External_Rela); } h->got.refcount++; } else { /* This is a global offset table entry for a local symbol. */ if (local_got_refcounts == NULL) { bfd_size_type size; size = symtab_hdr->sh_info; size *= sizeof (bfd_signed_vma); local_got_refcounts = ((bfd_signed_vma *) bfd_zalloc (abfd, size)); if (local_got_refcounts == NULL) return FALSE; elf_local_got_refcounts (abfd) = local_got_refcounts; } if (local_got_refcounts[r_symndx] == 0) { sgot->size += 4; if (info->shared) { /* If we are generating a shared object, we need to output a R_68K_RELATIVE reloc so that the dynamic linker can adjust this GOT entry. */ srelgot->size += sizeof (Elf32_External_Rela); } } local_got_refcounts[r_symndx]++; } break; case R_68K_PLT8: case R_68K_PLT16: case R_68K_PLT32: /* This symbol requires a procedure linkage table entry. We actually build the entry in adjust_dynamic_symbol, because this might be a case of linking PIC code which is never referenced by a dynamic object, in which case we don't need to generate a procedure linkage table entry after all. */ /* If this is a local symbol, we resolve it directly without creating a procedure linkage table entry. */ if (h == NULL) continue; h->needs_plt = 1; h->plt.refcount++; break; case R_68K_PLT8O: case R_68K_PLT16O: case R_68K_PLT32O: /* This symbol requires a procedure linkage table entry. */ if (h == NULL) { /* It does not make sense to have this relocation for a local symbol. FIXME: does it? How to handle it if it does make sense? */ bfd_set_error (bfd_error_bad_value); return FALSE; } /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1 && !h->forced_local) { if (!bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } h->needs_plt = 1; h->plt.refcount++; break; case R_68K_PC8: case R_68K_PC16: case R_68K_PC32: /* If we are creating a shared library and this is not a local symbol, we need to copy the reloc into the shared library. However when linking with -Bsymbolic and this is a global symbol which is defined in an object we are including in the link (i.e., DEF_REGULAR is set), then we can resolve the reloc directly. At this point we have not seen all the input files, so it is possible that DEF_REGULAR is not set now but will be set later (it is never cleared). We account for that possibility below by storing information in the pcrel_relocs_copied field of the hash table entry. */ if (!(info->shared && (sec->flags & SEC_ALLOC) != 0 && h != NULL && (!info->symbolic || h->root.type == bfd_link_hash_defweak || !h->def_regular))) { if (h != NULL) { /* Make sure a plt entry is created for this symbol if it turns out to be a function defined by a dynamic object. */ h->plt.refcount++; } break; } /* Fall through. */ case R_68K_8: case R_68K_16: case R_68K_32: if (h != NULL) { /* Make sure a plt entry is created for this symbol if it turns out to be a function defined by a dynamic object. */ h->plt.refcount++; } /* If we are creating a shared library, we need to copy the reloc into the shared library. */ if (info->shared && (sec->flags & SEC_ALLOC) != 0) { /* When creating a shared object, we must copy these reloc types into the output file. We create a reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { const char *name; name = (bfd_elf_string_from_elf_section (abfd, elf_elfheader (abfd)->e_shstrndx, elf_section_data (sec)->rel_hdr.sh_name)); if (name == NULL) return FALSE; BFD_ASSERT (CONST_STRNEQ (name, ".rela") && strcmp (bfd_get_section_name (abfd, sec), name + 5) == 0); sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { sreloc = bfd_make_section_with_flags (dynobj, name, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)); if (sreloc == NULL || !bfd_set_section_alignment (dynobj, sreloc, 2)) return FALSE; } elf_section_data (sec)->sreloc = sreloc; } if (sec->flags & SEC_READONLY /* Don't set DF_TEXTREL yet for PC relative relocations, they might be discarded later. */ && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)) info->flags |= DF_TEXTREL; sreloc->size += sizeof (Elf32_External_Rela); /* We count the number of PC relative relocations we have entered for this symbol, so that we can discard them again if, in the -Bsymbolic case, the symbol is later defined by a regular object, or, in the normal shared case, the symbol is forced to be local. Note that this function is only called if we are using an m68kelf linker hash table, which means that h is really a pointer to an elf_m68k_link_hash_entry. */ if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32) { struct elf_m68k_pcrel_relocs_copied *p; struct elf_m68k_pcrel_relocs_copied **head; if (h != NULL) { struct elf_m68k_link_hash_entry *eh = elf_m68k_hash_entry (h); head = &eh->pcrel_relocs_copied; } else { asection *s; void *vpp; s = (bfd_section_from_r_symndx (abfd, &elf_m68k_hash_table (info)->sym_sec, sec, r_symndx)); if (s == NULL) return FALSE; vpp = &elf_section_data (s)->local_dynrel; head = (struct elf_m68k_pcrel_relocs_copied **) vpp; } for (p = *head; p != NULL; p = p->next) if (p->section == sreloc) break; if (p == NULL) { p = ((struct elf_m68k_pcrel_relocs_copied *) bfd_alloc (dynobj, (bfd_size_type) sizeof *p)); if (p == NULL) return FALSE; p->next = *head; *head = p; p->section = sreloc; p->count = 0; } ++p->count; } } break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_68K_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_68K_GNU_VTENTRY: BFD_ASSERT (h != NULL); if (h != NULL && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) return FALSE; break; default: break; } } return TRUE; } /* Return the section that should be marked against GC for a given relocation. */ static asection * elf_m68k_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) switch (ELF32_R_TYPE (rel->r_info)) { case R_68K_GNU_VTINHERIT: case R_68K_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } /* Update the got entry reference counts for the section being removed. */ static bfd_boolean elf_m68k_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; bfd *dynobj; asection *sgot; asection *srelgot; if (info->relocatable) return TRUE; dynobj = elf_hash_table (info)->dynobj; if (dynobj == NULL) return TRUE; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); sgot = bfd_get_section_by_name (dynobj, ".got"); srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) { unsigned long r_symndx; struct elf_link_hash_entry *h = NULL; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } switch (ELF32_R_TYPE (rel->r_info)) { case R_68K_GOT8: case R_68K_GOT16: case R_68K_GOT32: case R_68K_GOT8O: case R_68K_GOT16O: case R_68K_GOT32O: if (h != NULL) { if (h->got.refcount > 0) { --h->got.refcount; if (h->got.refcount == 0) { /* We don't need the .got entry any more. */ sgot->size -= 4; srelgot->size -= sizeof (Elf32_External_Rela); } } } else if (local_got_refcounts != NULL) { if (local_got_refcounts[r_symndx] > 0) { --local_got_refcounts[r_symndx]; if (local_got_refcounts[r_symndx] == 0) { /* We don't need the .got entry any more. */ sgot->size -= 4; if (info->shared) srelgot->size -= sizeof (Elf32_External_Rela); } } } break; case R_68K_PLT8: case R_68K_PLT16: case R_68K_PLT32: case R_68K_PLT8O: case R_68K_PLT16O: case R_68K_PLT32O: case R_68K_PC8: case R_68K_PC16: case R_68K_PC32: case R_68K_8: case R_68K_16: case R_68K_32: if (h != NULL) { if (h->plt.refcount > 0) --h->plt.refcount; } break; default: break; } } return TRUE; } /* Return the type of PLT associated with OUTPUT_BFD. */ static const struct elf_m68k_plt_info * elf_m68k_get_plt_info (bfd *output_bfd) { unsigned int features; features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd)); if (features & cpu32) return &elf_cpu32_plt_info; if (features & mcfisa_b) return &elf_isab_plt_info; if (features & mcfisa_c) return &elf_isac_plt_info; return &elf_m68k_plt_info; } /* This function is called after all the input files have been read, and the input sections have been assigned to output sections. It's a convenient place to determine the PLT style. */ static bfd_boolean elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) { elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd); return TRUE; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean elf_m68k_adjust_dynamic_symbol (info, h) struct bfd_link_info *info; struct elf_link_hash_entry *h; { struct elf_m68k_link_hash_table *htab; bfd *dynobj; asection *s; htab = elf_m68k_hash_table (info); dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && (h->needs_plt || h->u.weakdef != NULL || (h->def_dynamic && h->ref_regular && !h->def_regular))); /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC || h->needs_plt) { if ((h->plt.refcount <= 0 || SYMBOL_CALLS_LOCAL (info, h) || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT && h->root.type == bfd_link_hash_undefweak)) /* We must always create the plt entry if it was referenced by a PLTxxO relocation. In this case we already recorded it as a dynamic symbol. */ && h->dynindx == -1) { /* This case can occur if we saw a PLTxx reloc in an input file, but the symbol was never referred to by a dynamic object, or if all references were garbage collected. In such a case, we don't actually need to build a procedure linkage table, and we can just do a PCxx reloc instead. */ h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; return TRUE; } /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } s = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (s != NULL); /* If this is the first .plt entry, make room for the special first entry. */ if (s->size == 0) s->size = htab->plt_info->size; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (!info->shared && !h->def_regular) { h->root.u.def.section = s; h->root.u.def.value = s->size; } h->plt.offset = s->size; /* Make room for this entry. */ s->size += htab->plt_info->size; /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ s = bfd_get_section_by_name (dynobj, ".got.plt"); BFD_ASSERT (s != NULL); s->size += 4; /* We also need to make an entry in the .rela.plt section. */ s = bfd_get_section_by_name (dynobj, ".rela.plt"); BFD_ASSERT (s != NULL); s->size += sizeof (Elf32_External_Rela); return TRUE; } /* Reinitialize the plt offset now that it is not used as a reference count any more. */ h->plt.offset = (bfd_vma) -1; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; return TRUE; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return TRUE; if (h->size == 0) { (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), h->root.root.string); return TRUE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ s = bfd_get_section_by_name (dynobj, ".dynbss"); BFD_ASSERT (s != NULL); /* We must generate a R_68K_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rela.bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { asection *srel; srel = bfd_get_section_by_name (dynobj, ".rela.bss"); BFD_ASSERT (srel != NULL); srel->size += sizeof (Elf32_External_Rela); h->needs_copy = 1; } return _bfd_elf_adjust_dynamic_copy (h, s); } /* Set the sizes of the dynamic sections. */ static bfd_boolean elf_m68k_size_dynamic_sections (output_bfd, info) bfd *output_bfd ATTRIBUTE_UNUSED; struct bfd_link_info *info; { bfd *dynobj; asection *s; bfd_boolean plt; bfd_boolean relocs; dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } else { /* We may have created entries in the .rela.got section. However, if we are not creating the dynamic sections, we will not actually use these entries. Reset the size of .rela.got, which will cause it to get stripped from the output file below. */ s = bfd_get_section_by_name (dynobj, ".rela.got"); if (s != NULL) s->size = 0; } /* If this is a -Bsymbolic shared link, then we need to discard all PC relative relocs against symbols defined in a regular object. For the normal shared case we discard the PC relative relocs against symbols that have become local due to visibility changes. We allocated space for them in the check_relocs routine, but we will not fill them in in the relocate_section routine. */ if (info->shared) elf_link_hash_traverse (elf_hash_table (info), elf_m68k_discard_copies, (PTR) info); /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ plt = FALSE; relocs = FALSE; for (s = dynobj->sections; s != NULL; s = s->next) { const char *name; if ((s->flags & SEC_LINKER_CREATED) == 0) continue; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); if (strcmp (name, ".plt") == 0) { /* Remember whether there is a PLT. */ plt = s->size != 0; } else if (CONST_STRNEQ (name, ".rela")) { if (s->size != 0) { relocs = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else if (! CONST_STRNEQ (name, ".got") && strcmp (name, ".dynbss") != 0) { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. */ /* FIXME: This should be a call to bfd_alloc not bfd_zalloc. Unused entries should be reclaimed before the section's contents are written out, but at the moment this does not happen. Thus in order to prevent writing out garbage, we initialise the section's contents to zero. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return FALSE; } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf_m68k_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (!info->shared) { if (!add_dynamic_entry (DT_DEBUG, 0)) return FALSE; } if (plt) { if (!add_dynamic_entry (DT_PLTGOT, 0) || !add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return FALSE; } if (relocs) { if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) return FALSE; } if ((info->flags & DF_TEXTREL) != 0) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } } #undef add_dynamic_entry return TRUE; } /* This function is called via elf_link_hash_traverse if we are creating a shared object. In the -Bsymbolic case it discards the space allocated to copy PC relative relocs against symbols which are defined in regular objects. For the normal shared case, it discards space for pc-relative relocs that have become local due to symbol visibility changes. We allocated space for them in the check_relocs routine, but we won't fill them in in the relocate_section routine. We also check whether any of the remaining relocations apply against a readonly section, and set the DF_TEXTREL flag in this case. */ static bfd_boolean elf_m68k_discard_copies (h, inf) struct elf_link_hash_entry *h; PTR inf; { struct bfd_link_info *info = (struct bfd_link_info *) inf; struct elf_m68k_pcrel_relocs_copied *s; if (h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; if (!h->def_regular || (!info->symbolic && !h->forced_local)) { if ((info->flags & DF_TEXTREL) == 0) { /* Look for relocations against read-only sections. */ for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; s != NULL; s = s->next) if ((s->section->flags & SEC_READONLY) != 0) { info->flags |= DF_TEXTREL; break; } } return TRUE; } for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; s != NULL; s = s->next) s->section->size -= s->count * sizeof (Elf32_External_Rela); return TRUE; } /* Relocate an M68K ELF section. */ static bfd_boolean elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section, contents, relocs, local_syms, local_sections) bfd *output_bfd; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *relocs; Elf_Internal_Sym *local_syms; asection **local_sections; { bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_vma *local_got_offsets; asection *sgot; asection *splt; asection *sreloc; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); local_got_offsets = elf_local_got_offsets (input_bfd); sgot = NULL; splt = NULL; sreloc = NULL; rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; reloc_howto_type *howto; unsigned long r_symndx; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; asection *sec; bfd_vma relocation; bfd_boolean unresolved_reloc; bfd_reloc_status_type r; r_type = ELF32_R_TYPE (rel->r_info); if (r_type < 0 || r_type >= (int) R_68K_max) { bfd_set_error (bfd_error_bad_value); return FALSE; } howto = howto_table + r_type; r_symndx = ELF32_R_SYM (rel->r_info); h = NULL; sym = NULL; sec = NULL; unresolved_reloc = FALSE; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); } else { bfd_boolean warned; RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned); } if (sec != NULL && elf_discarded_section (sec)) { /* For relocs against symbols from removed linkonce sections, or sections discarded by a linker script, we just want the section contents zeroed. Avoid any special processing. */ _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); rel->r_info = 0; rel->r_addend = 0; continue; } if (info->relocatable) continue; switch (r_type) { case R_68K_GOT8: case R_68K_GOT16: case R_68K_GOT32: /* Relocation is to the address of the entry for this symbol in the global offset table. */ if (h != NULL && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) break; /* Fall through. */ case R_68K_GOT8O: case R_68K_GOT16O: case R_68K_GOT32O: /* Relocation is the offset of the entry for this symbol in the global offset table. */ { bfd_vma off; if (sgot == NULL) { sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (sgot != NULL); } if (h != NULL) { bfd_boolean dyn; off = h->got.offset; BFD_ASSERT (off != (bfd_vma) -1); dyn = elf_hash_table (info)->dynamic_sections_created; if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) || (info->shared && (info->symbolic || h->dynindx == -1 || h->forced_local) && h->def_regular)) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally, or the symbol was forced to be local because of a version file.. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 4, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rela.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); h->got.offset |= 1; } } else unresolved_reloc = FALSE; } else { BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) -1); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already generated the necessary reloc. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); if (info->shared) { asection *s; Elf_Internal_Rela outrel; bfd_byte *loc; s = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (s != NULL); outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); outrel.r_addend = relocation; loc = s->contents; loc += s->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } local_got_offsets[r_symndx] |= 1; } } relocation = sgot->output_offset + off; if (r_type == R_68K_GOT8O || r_type == R_68K_GOT16O || r_type == R_68K_GOT32O) { /* This relocation does not use the addend. */ rel->r_addend = 0; } else relocation += sgot->output_section->vma; } break; case R_68K_PLT8: case R_68K_PLT16: case R_68K_PLT32: /* Relocation is to the entry for this symbol in the procedure linkage table. */ /* Resolve a PLTxx reloc against a local symbol directly, without using the procedure linkage table. */ if (h == NULL) break; if (h->plt.offset == (bfd_vma) -1 || !elf_hash_table (info)->dynamic_sections_created) { /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ break; } if (splt == NULL) { splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL); } relocation = (splt->output_section->vma + splt->output_offset + h->plt.offset); unresolved_reloc = FALSE; break; case R_68K_PLT8O: case R_68K_PLT16O: case R_68K_PLT32O: /* Relocation is the offset of the entry for this symbol in the procedure linkage table. */ BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1); if (splt == NULL) { splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL); } relocation = h->plt.offset; unresolved_reloc = FALSE; /* This relocation does not use the addend. */ rel->r_addend = 0; break; case R_68K_PC8: case R_68K_PC16: case R_68K_PC32: if (h == NULL || (info->shared && h->forced_local)) break; /* Fall through. */ case R_68K_8: case R_68K_16: case R_68K_32: if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC) != 0 && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && ((r_type != R_68K_PC8 && r_type != R_68K_PC16 && r_type != R_68K_PC32) || (h != NULL && h->dynindx != -1 && (!info->symbolic || !h->def_regular)))) { Elf_Internal_Rela outrel; bfd_byte *loc; bfd_boolean skip, relocate; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ skip = FALSE; relocate = FALSE; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1) skip = TRUE; else if (outrel.r_offset == (bfd_vma) -2) skip = TRUE, relocate = TRUE; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else if (h != NULL && h->dynindx != -1 && (r_type == R_68K_PC8 || r_type == R_68K_PC16 || r_type == R_68K_PC32 || !info->shared || !info->symbolic || !h->def_regular)) { outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); outrel.r_addend = rel->r_addend; } else { /* This symbol is local, or marked to become local. */ outrel.r_addend = relocation + rel->r_addend; if (r_type == R_68K_32) { relocate = TRUE; outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); } else { long indx; if (bfd_is_abs_section (sec)) indx = 0; else if (sec == NULL || sec->owner == NULL) { bfd_set_error (bfd_error_bad_value); return FALSE; } else { asection *osec; /* We are turning this relocation into one against a section symbol. It would be proper to subtract the symbol's value, osec->vma, from the emitted reloc addend, but ld.so expects buggy relocs. */ osec = sec->output_section; indx = elf_section_data (osec)->dynindx; if (indx == 0) { struct elf_link_hash_table *htab; htab = elf_hash_table (info); osec = htab->text_index_section; indx = elf_section_data (osec)->dynindx; } BFD_ASSERT (indx != 0); } outrel.r_info = ELF32_R_INFO (indx, r_type); } } sreloc = elf_section_data (input_section)->sreloc; if (sreloc == NULL) abort (); loc = sreloc->contents; loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); /* This reloc will be computed at runtime, so there's no need to do anything now, except for R_68K_32 relocations that have been turned into R_68K_RELATIVE. */ if (!relocate) continue; } break; case R_68K_GNU_VTINHERIT: case R_68K_GNU_VTENTRY: /* These are no-ops in the end. */ continue; default: break; } /* Dynamic relocs are not propagated for SEC_DEBUGGING sections because such sections are not SEC_ALLOC and thus ld.so will not process them. */ if (unresolved_reloc && !((input_section->flags & SEC_DEBUGGING) != 0 && h->def_dynamic)) { (*_bfd_error_handler) (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), input_bfd, input_section, (long) rel->r_offset, howto->name, h->root.root.string); return FALSE; } r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); if (r != bfd_reloc_ok) { const char *name; if (h != NULL) name = h->root.root.string; else { name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (name == NULL) return FALSE; if (*name == '\0') name = bfd_section_name (input_bfd, sec); } if (r == bfd_reloc_overflow) { if (!(info->callbacks->reloc_overflow (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return FALSE; } else { (*_bfd_error_handler) (_("%B(%A+0x%lx): reloc against `%s': error %d"), input_bfd, input_section, (long) rel->r_offset, name, (int) r); return FALSE; } } } return TRUE; } /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET into section SEC. */ static void elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value) { /* Make VALUE PC-relative. */ value -= sec->output_section->vma + offset; /* Apply any in-place addend. */ value += bfd_get_32 (sec->owner, sec->contents + offset); bfd_put_32 (sec->owner, value, sec->contents + offset); } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym) bfd *output_bfd; struct bfd_link_info *info; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { bfd *dynobj; dynobj = elf_hash_table (info)->dynobj; if (h->plt.offset != (bfd_vma) -1) { const struct elf_m68k_plt_info *plt_info; asection *splt; asection *sgot; asection *srela; bfd_vma plt_index; bfd_vma got_offset; Elf_Internal_Rela rela; bfd_byte *loc; /* This symbol has an entry in the procedure linkage table. Set it up. */ BFD_ASSERT (h->dynindx != -1); plt_info = elf_m68k_hash_table (info)->plt_info; splt = bfd_get_section_by_name (dynobj, ".plt"); sgot = bfd_get_section_by_name (dynobj, ".got.plt"); srela = bfd_get_section_by_name (dynobj, ".rela.plt"); BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL); /* Get the index in the procedure linkage table which corresponds to this symbol. This is the index of this symbol in all the symbols for which we are making plt entries. The first entry in the procedure linkage table is reserved. */ plt_index = (h->plt.offset / plt_info->size) - 1; /* Get the offset into the .got table of the entry that corresponds to this function. Each .got entry is 4 bytes. The first three are reserved. */ got_offset = (plt_index + 3) * 4; memcpy (splt->contents + h->plt.offset, plt_info->symbol_entry, plt_info->size); elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got, (sgot->output_section->vma + sgot->output_offset + got_offset)); bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela), splt->contents + h->plt.offset + plt_info->symbol_resolve_entry + 2); elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt, splt->output_section->vma); /* Fill in the entry in the global offset table. */ bfd_put_32 (output_bfd, (splt->output_section->vma + splt->output_offset + h->plt.offset + plt_info->symbol_resolve_entry), sgot->contents + got_offset); /* Fill in the entry in the .rela.plt section. */ rela.r_offset = (sgot->output_section->vma + sgot->output_offset + got_offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT); rela.r_addend = 0; loc = srela->contents + plt_index * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; } } if (h->got.offset != (bfd_vma) -1) { asection *sgot; asection *srela; Elf_Internal_Rela rela; bfd_byte *loc; /* This symbol has an entry in the global offset table. Set it up. */ sgot = bfd_get_section_by_name (dynobj, ".got"); srela = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (sgot != NULL && srela != NULL); rela.r_offset = (sgot->output_section->vma + sgot->output_offset + (h->got.offset &~ (bfd_vma) 1)); /* If this is a -Bsymbolic link, and the symbol is defined locally, we just want to emit a RELATIVE reloc. Likewise if the symbol was forced to be local because of a version file. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && (info->symbolic || h->dynindx == -1 || h->forced_local) && h->def_regular) { rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); rela.r_addend = bfd_get_signed_32 (output_bfd, (sgot->contents + (h->got.offset &~ (bfd_vma) 1))); } else { bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + (h->got.offset &~ (bfd_vma) 1)); rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT); rela.r_addend = 0; } loc = srela->contents; loc += srela->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); } if (h->needs_copy) { asection *s; Elf_Internal_Rela rela; bfd_byte *loc; /* This symbol needs a copy reloc. Set it up. */ BFD_ASSERT (h->dynindx != -1 && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)); s = bfd_get_section_by_name (h->root.u.def.section->owner, ".rela.bss"); BFD_ASSERT (s != NULL); rela.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY); rela.r_addend = 0; loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || h == elf_hash_table (info)->hgot) sym->st_shndx = SHN_ABS; return TRUE; } /* Finish up the dynamic sections. */ static bfd_boolean elf_m68k_finish_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *sgot; asection *sdyn; dynobj = elf_hash_table (info)->dynobj; sgot = bfd_get_section_by_name (dynobj, ".got.plt"); BFD_ASSERT (sgot != NULL); sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (elf_hash_table (info)->dynamic_sections_created) { asection *splt; Elf32_External_Dyn *dyncon, *dynconend; splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL && sdyn != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; const char *name; asection *s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: break; case DT_PLTGOT: name = ".got"; goto get_vma; case DT_JMPREL: name = ".rela.plt"; get_vma: s = bfd_get_section_by_name (output_bfd, name); BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_PLTRELSZ: s = bfd_get_section_by_name (output_bfd, ".rela.plt"); BFD_ASSERT (s != NULL); dyn.d_un.d_val = s->size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_RELASZ: /* The procedure linkage table relocs (DT_JMPREL) should not be included in the overall relocs (DT_RELA). Therefore, we override the DT_RELASZ entry here to make it not include the JMPREL relocs. Since the linker script arranges for .rela.plt to follow all other relocation sections, we don't have to worry about changing the DT_RELA entry. */ s = bfd_get_section_by_name (output_bfd, ".rela.plt"); if (s != NULL) dyn.d_un.d_val -= s->size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; } } /* Fill in the first entry in the procedure linkage table. */ if (splt->size > 0) { const struct elf_m68k_plt_info *plt_info; plt_info = elf_m68k_hash_table (info)->plt_info; memcpy (splt->contents, plt_info->plt0_entry, plt_info->size); elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4, (sgot->output_section->vma + sgot->output_offset + 4)); elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8, (sgot->output_section->vma + sgot->output_offset + 8)); elf_section_data (splt->output_section)->this_hdr.sh_entsize = plt_info->size; } } /* Fill in the first three entries in the global offset table. */ if (sgot->size > 0) { if (sdyn == NULL) bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); else bfd_put_32 (output_bfd, sdyn->output_section->vma + sdyn->output_offset, sgot->contents); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); } elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; return TRUE; } /* Given a .data section and a .emreloc in-memory section, store relocation information into the .emreloc section which can be used at runtime to relocate the section. This is called by the linker when the --embedded-relocs switch is used. This is called after the add_symbols entry point has been called for all the objects, and before the final_link entry point is called. */ bfd_boolean bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg) bfd *abfd; struct bfd_link_info *info; asection *datasec; asection *relsec; char **errmsg; { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Sym *isymbuf = NULL; Elf_Internal_Rela *internal_relocs = NULL; Elf_Internal_Rela *irel, *irelend; bfd_byte *p; bfd_size_type amt; BFD_ASSERT (! info->relocatable); *errmsg = NULL; if (datasec->reloc_count == 0) return TRUE; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; /* Get a copy of the native relocations. */ internal_relocs = (_bfd_elf_link_read_relocs (abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL, info->keep_memory)); if (internal_relocs == NULL) goto error_return; amt = (bfd_size_type) datasec->reloc_count * 12; relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt); if (relsec->contents == NULL) goto error_return; p = relsec->contents; irelend = internal_relocs + datasec->reloc_count; for (irel = internal_relocs; irel < irelend; irel++, p += 12) { asection *targetsec; /* We are going to write a four byte longword into the runtime reloc section. The longword will be the address in the data section which must be relocated. It is followed by the name of the target section NUL-padded or truncated to 8 characters. */ /* We can only relocate absolute longword relocs at run time. */ if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32) { *errmsg = _("unsupported reloc type"); bfd_set_error (bfd_error_bad_value); goto error_return; } /* Get the target section referred to by the reloc. */ if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) { /* A local symbol. */ Elf_Internal_Sym *isym; /* Read this BFD's local symbols if we haven't done so already. */ if (isymbuf == NULL) { isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; if (isymbuf == NULL) isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (isymbuf == NULL) goto error_return; } isym = isymbuf + ELF32_R_SYM (irel->r_info); targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx); } else { unsigned long indx; struct elf_link_hash_entry *h; /* An external symbol. */ indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; BFD_ASSERT (h != NULL); if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) targetsec = h->root.u.def.section; else targetsec = NULL; } bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p); memset (p + 4, 0, 8); if (targetsec != NULL) strncpy ((char *) p + 4, targetsec->output_section->name, 8); } if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) free (isymbuf); if (internal_relocs != NULL && elf_section_data (datasec)->relocs != internal_relocs) free (internal_relocs); return TRUE; error_return: if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) free (isymbuf); if (internal_relocs != NULL && elf_section_data (datasec)->relocs != internal_relocs) free (internal_relocs); return FALSE; } static enum elf_reloc_type_class elf32_m68k_reloc_type_class (rela) const Elf_Internal_Rela *rela; { switch ((int) ELF32_R_TYPE (rela->r_info)) { case R_68K_RELATIVE: return reloc_class_relative; case R_68K_JMP_SLOT: return reloc_class_plt; case R_68K_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Return address for Ith PLT stub in section PLT, for relocation REL or (bfd_vma) -1 if it should not be included. */ static bfd_vma elf_m68k_plt_sym_val (bfd_vma i, const asection *plt, const arelent *rel ATTRIBUTE_UNUSED) { return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size; } #define TARGET_BIG_SYM bfd_elf32_m68k_vec #define TARGET_BIG_NAME "elf32-m68k" #define ELF_MACHINE_CODE EM_68K #define ELF_MAXPAGESIZE 0x2000 #define elf_backend_create_dynamic_sections \ _bfd_elf_create_dynamic_sections #define bfd_elf32_bfd_link_hash_table_create \ elf_m68k_link_hash_table_create #define bfd_elf32_bfd_final_link bfd_elf_gc_common_final_link #define elf_backend_check_relocs elf_m68k_check_relocs #define elf_backend_always_size_sections \ elf_m68k_always_size_sections #define elf_backend_adjust_dynamic_symbol \ elf_m68k_adjust_dynamic_symbol #define elf_backend_size_dynamic_sections \ elf_m68k_size_dynamic_sections #define elf_backend_init_index_section _bfd_elf_init_1_index_section #define elf_backend_relocate_section elf_m68k_relocate_section #define elf_backend_finish_dynamic_symbol \ elf_m68k_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ elf_m68k_finish_dynamic_sections #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook #define bfd_elf32_bfd_merge_private_bfd_data \ elf32_m68k_merge_private_bfd_data #define bfd_elf32_bfd_set_private_flags \ elf32_m68k_set_private_flags #define bfd_elf32_bfd_print_private_bfd_data \ elf32_m68k_print_private_bfd_data #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class #define elf_backend_plt_sym_val elf_m68k_plt_sym_val #define elf_backend_object_p elf32_m68k_object_p #define elf_backend_can_gc_sections 1 #define elf_backend_can_refcount 1 #define elf_backend_want_got_plt 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_plt_sym 0 #define elf_backend_got_header_size 12 #define elf_backend_rela_normal 1 #include "elf32-target.h"
Go to most recent revision | Compare with Previous | Blame | View Log