URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.18.50/] [gas/] [cgen.c] - Rev 156
Compare with Previous | Blame | View Log
/* GAS interface for targets using CGEN: Cpu tools GENerator. Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include <setjmp.h> #include "as.h" #include "symcat.h" #include "cgen-desc.h" #include "subsegs.h" #include "cgen.h" #include "dwarf2dbg.h" #include "symbols.h" #include "struc-symbol.h" #ifdef OBJ_COMPLEX_RELC static expressionS * make_right_shifted_expr (expressionS *, const int, const int); static unsigned long gas_cgen_encode_addend (const unsigned long, const unsigned long, const unsigned long, \ const unsigned long, const unsigned long, const unsigned long, \ const unsigned long); static char * weak_operand_overflow_check (const expressionS *, const CGEN_OPERAND *); static void queue_fixup_recursively (const int, const int, expressionS *, \ const CGEN_MAYBE_MULTI_IFLD *, const int, const int); static int rightshift = 0; #endif static void queue_fixup (int, int, expressionS *); /* Opcode table descriptor, must be set by md_begin. */ CGEN_CPU_DESC gas_cgen_cpu_desc; /* Callback to insert a register into the symbol table. A target may choose to let GAS parse the registers. ??? Not currently used. */ void cgen_asm_record_register (name, number) char *name; int number; { /* Use symbol_create here instead of symbol_new so we don't try to output registers into the object file's symbol table. */ symbol_table_insert (symbol_create (name, reg_section, number, &zero_address_frag)); } /* We need to keep a list of fixups. We can't simply generate them as we go, because that would require us to first create the frag, and that would screw up references to ``.''. This is used by cpu's with simple operands. It keeps knowledge of what an `expressionS' is and what a `fixup' is out of CGEN which for the time being is preferable. OPINDEX is the index in the operand table. OPINFO is something the caller chooses to help in reloc determination. */ struct fixup { int opindex; int opinfo; expressionS exp; struct cgen_maybe_multi_ifield * field; int msb_field_p; }; static struct fixup fixups[GAS_CGEN_MAX_FIXUPS]; static int num_fixups; /* Prepare to parse an instruction. ??? May wish to make this static and delete calls in md_assemble. */ void gas_cgen_init_parse () { num_fixups = 0; } /* Queue a fixup. */ static void queue_fixup (opindex, opinfo, expP) int opindex; int opinfo; expressionS * expP; { /* We need to generate a fixup for this expression. */ if (num_fixups >= GAS_CGEN_MAX_FIXUPS) as_fatal (_("too many fixups")); fixups[num_fixups].exp = *expP; fixups[num_fixups].opindex = opindex; fixups[num_fixups].opinfo = opinfo; ++ num_fixups; } /* The following functions allow fixup chains to be stored, retrieved, and swapped. They are a generalization of a pre-existing scheme for storing, restoring and swapping fixup chains that was used by the m32r port. The functionality is essentially the same, only instead of only being able to store a single fixup chain, an entire array of fixup chains can be stored. It is the user's responsibility to keep track of how many fixup chains have been stored and which elements of the array they are in. The algorithms used are the same as in the old scheme. Other than the "array-ness" of the whole thing, the functionality is identical to the old scheme. gas_cgen_initialize_saved_fixups_array(): Sets num_fixups_in_chain to 0 for each element. Call this from md_begin() if you plan to use these functions and you want the fixup count in each element to be set to 0 initially. This is not necessary, but it's included just in case. It performs the same function for each element in the array of fixup chains that gas_init_parse() performs for the current fixups. gas_cgen_save_fixups (element): element - element number of the array you wish to store the fixups to. No mechanism is built in for tracking what element was last stored to. gas_cgen_restore_fixups (element): element - element number of the array you wish to restore the fixups from. gas_cgen_swap_fixups(int element): element - swap the current fixups with those in this element number. */ struct saved_fixups { struct fixup fixup_chain[GAS_CGEN_MAX_FIXUPS]; int num_fixups_in_chain; }; static struct saved_fixups stored_fixups[MAX_SAVED_FIXUP_CHAINS]; void gas_cgen_initialize_saved_fixups_array () { int i = 0; while (i < MAX_SAVED_FIXUP_CHAINS) stored_fixups[i++].num_fixups_in_chain = 0; } void gas_cgen_save_fixups (i) int i; { if (i < 0 || i >= MAX_SAVED_FIXUP_CHAINS) { as_fatal ("index into stored_fixups[] out of bounds"); return; } stored_fixups[i].num_fixups_in_chain = num_fixups; memcpy (stored_fixups[i].fixup_chain, fixups, sizeof (fixups[0]) * num_fixups); num_fixups = 0; } void gas_cgen_restore_fixups (i) int i; { if (i < 0 || i >= MAX_SAVED_FIXUP_CHAINS) { as_fatal ("index into stored_fixups[] out of bounds"); return; } num_fixups = stored_fixups[i].num_fixups_in_chain; memcpy (fixups, stored_fixups[i].fixup_chain, (sizeof (stored_fixups[i].fixup_chain[0])) * num_fixups); stored_fixups[i].num_fixups_in_chain = 0; } void gas_cgen_swap_fixups (i) int i; { if (i < 0 || i >= MAX_SAVED_FIXUP_CHAINS) { as_fatal ("index into stored_fixups[] out of bounds"); return; } if (num_fixups == 0) gas_cgen_restore_fixups (i); else if (stored_fixups[i].num_fixups_in_chain == 0) gas_cgen_save_fixups (i); else { int tmp; struct fixup tmp_fixup; tmp = stored_fixups[i].num_fixups_in_chain; stored_fixups[i].num_fixups_in_chain = num_fixups; num_fixups = tmp; for (tmp = GAS_CGEN_MAX_FIXUPS; tmp--;) { tmp_fixup = stored_fixups[i].fixup_chain [tmp]; stored_fixups[i].fixup_chain[tmp] = fixups [tmp]; fixups [tmp] = tmp_fixup; } } } /* Default routine to record a fixup. This is a cover function to fix_new. It exists because we record INSN with the fixup. FRAG and WHERE are their respective arguments to fix_new_exp. LENGTH is in bits. OPINFO is something the caller chooses to help in reloc determination. At this point we do not use a bfd_reloc_code_real_type for operands residing in the insn, but instead just use the operand index. This lets us easily handle fixups for any operand type. We pick a BFD reloc type in md_apply_fix. */ fixS * gas_cgen_record_fixup (frag, where, insn, length, operand, opinfo, symbol, offset) fragS * frag; int where; const CGEN_INSN * insn; int length; const CGEN_OPERAND * operand; int opinfo; symbolS * symbol; offsetT offset; { fixS *fixP; /* It may seem strange to use operand->attrs and not insn->attrs here, but it is the operand that has a pc relative relocation. */ fixP = fix_new (frag, where, length / 8, symbol, offset, CGEN_OPERAND_ATTR_VALUE (operand, CGEN_OPERAND_PCREL_ADDR), (bfd_reloc_code_real_type) ((int) BFD_RELOC_UNUSED + (int) operand->type)); fixP->fx_cgen.insn = insn; fixP->fx_cgen.opinfo = opinfo; fixP->fx_cgen.field = NULL; fixP->fx_cgen.msb_field_p = 0; return fixP; } /* Default routine to record a fixup given an expression. This is a cover function to fix_new_exp. It exists because we record INSN with the fixup. FRAG and WHERE are their respective arguments to fix_new_exp. LENGTH is in bits. OPINFO is something the caller chooses to help in reloc determination. At this point we do not use a bfd_reloc_code_real_type for operands residing in the insn, but instead just use the operand index. This lets us easily handle fixups for any operand type. We pick a BFD reloc type in md_apply_fix. */ fixS * gas_cgen_record_fixup_exp (frag, where, insn, length, operand, opinfo, exp) fragS * frag; int where; const CGEN_INSN * insn; int length; const CGEN_OPERAND * operand; int opinfo; expressionS * exp; { fixS *fixP; /* It may seem strange to use operand->attrs and not insn->attrs here, but it is the operand that has a pc relative relocation. */ fixP = fix_new_exp (frag, where, length / 8, exp, CGEN_OPERAND_ATTR_VALUE (operand, CGEN_OPERAND_PCREL_ADDR), (bfd_reloc_code_real_type) ((int) BFD_RELOC_UNUSED + (int) operand->type)); fixP->fx_cgen.insn = insn; fixP->fx_cgen.opinfo = opinfo; fixP->fx_cgen.field = NULL; fixP->fx_cgen.msb_field_p = 0; return fixP; } #ifdef OBJ_COMPLEX_RELC static symbolS * expr_build_binary (operatorT op, symbolS * s1, symbolS * s2) { expressionS e; e.X_op = op; e.X_add_symbol = s1; e.X_op_symbol = s2; e.X_add_number = 0; return make_expr_symbol (& e); } #endif /* Used for communication between the next two procedures. */ static jmp_buf expr_jmp_buf; static int expr_jmp_buf_p; /* Callback for cgen interface. Parse the expression at *STRP. The result is an error message or NULL for success (in which case *STRP is advanced past the parsed text). WANT is an indication of what the caller is looking for. If WANT == CGEN_ASM_PARSE_INIT the caller is beginning to try to match a table entry with the insn, reset the queued fixups counter. An enum cgen_parse_operand_result is stored in RESULTP. OPINDEX is the operand's table entry index. OPINFO is something the caller chooses to help in reloc determination. The resulting value is stored in VALUEP. */ const char * gas_cgen_parse_operand (cd, want, strP, opindex, opinfo, resultP, valueP) #ifdef OBJ_COMPLEX_RELC CGEN_CPU_DESC cd; #else CGEN_CPU_DESC cd ATTRIBUTE_UNUSED; #endif enum cgen_parse_operand_type want; const char **strP; int opindex; int opinfo; enum cgen_parse_operand_result *resultP; bfd_vma *valueP; { #ifdef __STDC__ /* These are volatile to survive the setjmp. */ char * volatile hold; enum cgen_parse_operand_result * volatile resultP_1; volatile int opinfo_1; #else static char *hold; static enum cgen_parse_operand_result *resultP_1; int opinfo_1; #endif const char *errmsg; expressionS exp; #ifdef OBJ_COMPLEX_RELC volatile int signed_p = 0; symbolS * stmp = NULL; bfd_reloc_code_real_type reloc_type; const CGEN_OPERAND * operand; fixS dummy_fixup; #endif if (want == CGEN_PARSE_OPERAND_INIT) { gas_cgen_init_parse (); return NULL; } resultP_1 = resultP; hold = input_line_pointer; input_line_pointer = (char *) *strP; opinfo_1 = opinfo; /* We rely on md_operand to longjmp back to us. This is done via gas_cgen_md_operand. */ if (setjmp (expr_jmp_buf) != 0) { expr_jmp_buf_p = 0; input_line_pointer = (char *) hold; *resultP_1 = CGEN_PARSE_OPERAND_RESULT_ERROR; return _("illegal operand"); } expr_jmp_buf_p = 1; expression (&exp); expr_jmp_buf_p = 0; errmsg = NULL; *strP = input_line_pointer; input_line_pointer = hold; #ifdef TC_CGEN_PARSE_FIX_EXP opinfo_1 = TC_CGEN_PARSE_FIX_EXP (opinfo_1, & exp); #endif /* FIXME: Need to check `want'. */ switch (exp.X_op) { case O_illegal: errmsg = _("illegal operand"); *resultP = CGEN_PARSE_OPERAND_RESULT_ERROR; break; case O_absent: errmsg = _("missing operand"); *resultP = CGEN_PARSE_OPERAND_RESULT_ERROR; break; case O_constant: if (want == CGEN_PARSE_OPERAND_SYMBOLIC) goto de_fault; *valueP = exp.X_add_number; *resultP = CGEN_PARSE_OPERAND_RESULT_NUMBER; break; case O_register: *valueP = exp.X_add_number; *resultP = CGEN_PARSE_OPERAND_RESULT_REGISTER; break; de_fault: default: #ifdef OBJ_COMPLEX_RELC /* Look up operand, check to see if there's an obvious overflow (this helps disambiguate some insn parses). */ operand = cgen_operand_lookup_by_num (cd, opindex); errmsg = weak_operand_overflow_check (& exp, operand); if (! errmsg) { /* Fragment the expression as necessary, and queue a reloc. */ memset (& dummy_fixup, 0, sizeof (fixS)); reloc_type = md_cgen_lookup_reloc (0, operand, & dummy_fixup); if (exp.X_op == O_symbol && reloc_type == BFD_RELOC_RELC && exp.X_add_symbol->sy_value.X_op == O_constant && exp.X_add_symbol->bsym->section != expr_section && exp.X_add_symbol->bsym->section != absolute_section && exp.X_add_symbol->bsym->section != undefined_section) { /* Local labels will have been (eagerly) turned into constants by now, due to the inappropriately deep insight of the expression parser. Unfortunately make_expr_symbol prematurely dives into the symbol evaluator, and in this case it gets a bad answer, so we manually create the expression symbol we want here. */ stmp = symbol_create (FAKE_LABEL_NAME, expr_section, 0, & zero_address_frag); symbol_set_value_expression (stmp, & exp); } else stmp = make_expr_symbol (& exp); /* If this is a pc-relative RELC operand, we need to subtract "." from the expression. */ if (reloc_type == BFD_RELOC_RELC && CGEN_OPERAND_ATTR_VALUE (operand, CGEN_OPERAND_PCREL_ADDR)) stmp = expr_build_binary (O_subtract, stmp, expr_build_dot ()); /* FIXME: this is not a perfect heuristic for figuring out whether an operand is signed: it only works when the operand is an immediate. it's not terribly likely that any other values will be signed relocs, but it's possible. */ if (operand && (operand->hw_type == HW_H_SINT)) signed_p = 1; if (stmp->bsym && (stmp->bsym->section == expr_section)) { if (signed_p) stmp->bsym->flags |= BSF_SRELC; else stmp->bsym->flags |= BSF_RELC; } /* Now package it all up for the fixup emitter. */ exp.X_op = O_symbol; exp.X_op_symbol = 0; exp.X_add_symbol = stmp; exp.X_add_number = 0; /* Re-init rightshift quantity, just in case. */ rightshift = operand->length; queue_fixup_recursively (opindex, opinfo_1, & exp, (reloc_type == BFD_RELOC_RELC) ? & (operand->index_fields) : 0, signed_p, -1); } * resultP = errmsg ? CGEN_PARSE_OPERAND_RESULT_ERROR : CGEN_PARSE_OPERAND_RESULT_QUEUED; *valueP = 0; #else queue_fixup (opindex, opinfo_1, &exp); *valueP = 0; *resultP = CGEN_PARSE_OPERAND_RESULT_QUEUED; #endif break; } return errmsg; } /* md_operand handler to catch unrecognized expressions and halt the parsing process so the next entry can be tried. ??? This could be done differently by adding code to `expression'. */ void gas_cgen_md_operand (expressionP) expressionS *expressionP ATTRIBUTE_UNUSED; { /* Don't longjmp if we're not called from within cgen_parse_operand(). */ if (expr_jmp_buf_p) longjmp (expr_jmp_buf, 1); } /* Finish assembling instruction INSN. BUF contains what we've built up so far. LENGTH is the size of the insn in bits. RELAX_P is non-zero if relaxable insns should be emitted as such. Otherwise they're emitted in non-relaxable forms. The "result" is stored in RESULT if non-NULL. */ void gas_cgen_finish_insn (insn, buf, length, relax_p, result) const CGEN_INSN *insn; CGEN_INSN_BYTES_PTR buf; unsigned int length; int relax_p; finished_insnS *result; { int i; int relax_operand; char *f; unsigned int byte_len = length / 8; /* ??? Target foo issues various warnings here, so one might want to provide a hook here. However, our caller is defined in tc-foo.c so there shouldn't be a need for a hook. */ /* Write out the instruction. It is important to fetch enough space in one call to `frag_more'. We use (f - frag_now->fr_literal) to compute where we are and we don't want frag_now to change between calls. Relaxable instructions: We need to ensure we allocate enough space for the largest insn. */ if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_RELAXED)) /* These currently shouldn't get here. */ abort (); /* Is there a relaxable insn with the relaxable operand needing a fixup? */ relax_operand = -1; if (relax_p && CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_RELAXABLE)) { /* Scan the fixups for the operand affected by relaxing (i.e. the branch address). */ for (i = 0; i < num_fixups; ++i) { if (CGEN_OPERAND_ATTR_VALUE (cgen_operand_lookup_by_num (gas_cgen_cpu_desc, fixups[i].opindex), CGEN_OPERAND_RELAX)) { relax_operand = i; break; } } } if (relax_operand != -1) { int max_len; fragS *old_frag; expressionS *exp; symbolS *sym; offsetT off; #ifdef TC_CGEN_MAX_RELAX max_len = TC_CGEN_MAX_RELAX (insn, byte_len); #else max_len = CGEN_MAX_INSN_SIZE; #endif /* Ensure variable part and fixed part are in same fragment. */ /* FIXME: Having to do this seems like a hack. */ frag_grow (max_len); /* Allocate space for the fixed part. */ f = frag_more (byte_len); /* Create a relaxable fragment for this instruction. */ old_frag = frag_now; exp = &fixups[relax_operand].exp; sym = exp->X_add_symbol; off = exp->X_add_number; if (exp->X_op != O_constant && exp->X_op != O_symbol) { /* Handle complex expressions. */ sym = make_expr_symbol (exp); off = 0; } frag_var (rs_machine_dependent, max_len - byte_len /* max chars */, 0 /* variable part already allocated */, /* FIXME: When we machine generate the relax table, machine generate a macro to compute subtype. */ 1 /* subtype */, sym, off, f); /* Record the operand number with the fragment so md_convert_frag can use gas_cgen_md_record_fixup to record the appropriate reloc. */ old_frag->fr_cgen.insn = insn; old_frag->fr_cgen.opindex = fixups[relax_operand].opindex; old_frag->fr_cgen.opinfo = fixups[relax_operand].opinfo; if (result) result->frag = old_frag; } else { f = frag_more (byte_len); if (result) result->frag = frag_now; } /* If we're recording insns as numbers (rather than a string of bytes), target byte order handling is deferred until now. */ #if CGEN_INT_INSN_P cgen_put_insn_value (gas_cgen_cpu_desc, (unsigned char *) f, length, *buf); #else memcpy (f, buf, byte_len); #endif /* Emit DWARF2 debugging information. */ dwarf2_emit_insn (byte_len); /* Create any fixups. */ for (i = 0; i < num_fixups; ++i) { fixS *fixP; const CGEN_OPERAND *operand = cgen_operand_lookup_by_num (gas_cgen_cpu_desc, fixups[i].opindex); /* Don't create fixups for these. That's done during relaxation. We don't need to test for CGEN_INSN_RELAXED as they can't get here (see above). */ if (relax_p && CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_RELAXABLE) && CGEN_OPERAND_ATTR_VALUE (operand, CGEN_OPERAND_RELAX)) continue; #ifndef md_cgen_record_fixup_exp #define md_cgen_record_fixup_exp gas_cgen_record_fixup_exp #endif fixP = md_cgen_record_fixup_exp (frag_now, f - frag_now->fr_literal, insn, length, operand, fixups[i].opinfo, &fixups[i].exp); fixP->fx_cgen.field = fixups[i].field; fixP->fx_cgen.msb_field_p = fixups[i].msb_field_p; if (result) result->fixups[i] = fixP; } if (result) { result->num_fixups = num_fixups; result->addr = f; } } #ifdef OBJ_COMPLEX_RELC /* Queue many fixups, recursively. If the field is a multi-ifield, repeatedly queue its sub-parts, right shifted to fit into the field (we assume here multi-fields represent a left-to-right, MSB0-LSB0 reading). */ static void queue_fixup_recursively (const int opindex, const int opinfo, expressionS * expP, const CGEN_MAYBE_MULTI_IFLD * field, const int signed_p, const int part_of_multi) { if (field && field->count) { int i; for (i = 0; i < field->count; ++ i) queue_fixup_recursively (opindex, opinfo, expP, & (field->val.multi[i]), signed_p, i); } else { expressionS * new_exp = expP; #ifdef DEBUG printf ("queueing fixup for field %s\n", (field ? field->val.leaf->name : "??")); print_symbol_value (expP->X_add_symbol); #endif if (field && part_of_multi != -1) { rightshift -= field->val.leaf->length; /* Shift reloc value by number of bits remaining after this field. */ if (rightshift) new_exp = make_right_shifted_expr (expP, rightshift, signed_p); } /* Truncate reloc values to length, *after* leftmost one. */ fixups[num_fixups].msb_field_p = (part_of_multi <= 0); fixups[num_fixups].field = (CGEN_MAYBE_MULTI_IFLD *) field; queue_fixup (opindex, opinfo, new_exp); } } /* Encode the self-describing RELC reloc format's addend. */ static unsigned long gas_cgen_encode_addend (const unsigned long start, /* in bits */ const unsigned long len, /* in bits */ const unsigned long oplen, /* in bits */ const unsigned long wordsz, /* in bytes */ const unsigned long chunksz, /* in bytes */ const unsigned long signed_p, const unsigned long trunc_p) { unsigned long res = 0L; res |= start & 0x3F; res |= (oplen & 0x3F) << 6; res |= (len & 0x3F) << 12; res |= (wordsz & 0xF) << 18; res |= (chunksz & 0xF) << 22; res |= (CGEN_INSN_LSB0_P ? 1 : 0) << 27; res |= signed_p << 28; res |= trunc_p << 29; return res; } /* Purpose: make a weak check that the expression doesn't overflow the operand it's to be inserted into. Rationale: some insns used to use %operators to disambiguate during a parse. when these %operators are translated to expressions by the macro expander, the ambiguity returns. we attempt to disambiguate by field size. Method: check to see if the expression's top node is an O_and operator, and the mask is larger than the operand length. This would be an overflow, so signal it by returning an error string. Any other case is ambiguous, so we assume it's OK and return NULL. */ static char * weak_operand_overflow_check (const expressionS * exp, const CGEN_OPERAND * operand) { const unsigned long len = operand->length; unsigned long mask; unsigned long opmask = (((1L << (len - 1)) - 1) << 1) | 1; if (!exp) return NULL; if (exp->X_op != O_bit_and) { /* Check for implicit overflow flag. */ if (CGEN_OPERAND_ATTR_VALUE (operand, CGEN_OPERAND_RELOC_IMPLIES_OVERFLOW)) return _("a reloc on this operand implies an overflow"); return NULL; } mask = exp->X_add_number; if (exp->X_add_symbol && exp->X_add_symbol->sy_value.X_op == O_constant) mask |= exp->X_add_symbol->sy_value.X_add_number; if (exp->X_op_symbol && exp->X_op_symbol->sy_value.X_op == O_constant) mask |= exp->X_op_symbol->sy_value.X_add_number; /* Want to know if mask covers more bits than opmask. this is the same as asking if mask has any bits not in opmask, or whether (mask & ~opmask) is nonzero. */ if (mask && (mask & ~opmask)) { #ifdef DEBUG printf ("overflow: (mask = %8.8x, ~opmask = %8.8x, AND = %8.8x)\n", mask, ~opmask, (mask & ~opmask)); #endif return _("operand mask overflow"); } return NULL; } static expressionS * make_right_shifted_expr (expressionS * exp, const int amount, const int signed_p) { symbolS * stmp = 0; expressionS * new_exp; stmp = expr_build_binary (O_right_shift, make_expr_symbol (exp), expr_build_uconstant (amount)); if (signed_p) stmp->bsym->flags |= BSF_SRELC; else stmp->bsym->flags |= BSF_RELC; /* Then wrap that in a "symbol expr" for good measure. */ new_exp = xmalloc (sizeof (expressionS)); memset (new_exp, 0, sizeof (expressionS)); new_exp->X_op = O_symbol; new_exp->X_op_symbol = 0; new_exp->X_add_symbol = stmp; new_exp->X_add_number = 0; return new_exp; } #endif /* Apply a fixup to the object code. This is called for all the fixups we generated by the call to fix_new_exp, above. In the call above we used a reloc code which was the largest legal reloc code plus the operand index. Here we undo that to recover the operand index. At this point all symbol values should be fully resolved, and we attempt to completely resolve the reloc. If we can not do that, we determine the correct reloc code and put it back in the fixup. */ /* FIXME: This function handles some of the fixups and bfd_install_relocation handles the rest. bfd_install_relocation (or some other bfd function) should handle them all. */ void gas_cgen_md_apply_fix (fixP, valP, seg) fixS * fixP; valueT * valP; segT seg ATTRIBUTE_UNUSED; { char *where = fixP->fx_frag->fr_literal + fixP->fx_where; valueT value = * valP; /* Canonical name, since used a lot. */ CGEN_CPU_DESC cd = gas_cgen_cpu_desc; if (fixP->fx_addsy == (symbolS *) NULL) fixP->fx_done = 1; /* We don't actually support subtracting a symbol. */ if (fixP->fx_subsy != (symbolS *) NULL) as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex")); if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED) { int opindex = (int) fixP->fx_r_type - (int) BFD_RELOC_UNUSED; const CGEN_OPERAND *operand = cgen_operand_lookup_by_num (cd, opindex); const char *errmsg; bfd_reloc_code_real_type reloc_type; CGEN_FIELDS *fields = alloca (CGEN_CPU_SIZEOF_FIELDS (cd)); const CGEN_INSN *insn = fixP->fx_cgen.insn; int start; int length; int signed_p = 0; if (fixP->fx_cgen.field) { /* Use the twisty little pointer path back to the ifield if it exists. */ start = fixP->fx_cgen.field->val.leaf->start; length = fixP->fx_cgen.field->val.leaf->length; } else { /* Or the far less useful operand-size guesstimate. */ start = operand->start; length = operand->length; } /* FIXME: this is not a perfect heuristic for figuring out whether an operand is signed: it only works when the operand is an immediate. it's not terribly likely that any other values will be signed relocs, but it's possible. */ if (operand && (operand->hw_type == HW_H_SINT)) signed_p = 1; /* If the reloc has been fully resolved finish the operand here. */ /* FIXME: This duplicates the capabilities of code in BFD. */ if (fixP->fx_done /* FIXME: If partial_inplace isn't set bfd_install_relocation won't finish the job. Testing for pcrel is a temporary hack. */ || fixP->fx_pcrel) { CGEN_CPU_SET_FIELDS_BITSIZE (cd) (fields, CGEN_INSN_BITSIZE (insn)); CGEN_CPU_SET_VMA_OPERAND (cd) (cd, opindex, fields, (bfd_vma) value); #if CGEN_INT_INSN_P { CGEN_INSN_INT insn_value = cgen_get_insn_value (cd, (unsigned char *) where, CGEN_INSN_BITSIZE (insn)); /* ??? 0 is passed for `pc'. */ errmsg = CGEN_CPU_INSERT_OPERAND (cd) (cd, opindex, fields, &insn_value, (bfd_vma) 0); cgen_put_insn_value (cd, (unsigned char *) where, CGEN_INSN_BITSIZE (insn), insn_value); } #else /* ??? 0 is passed for `pc'. */ errmsg = CGEN_CPU_INSERT_OPERAND (cd) (cd, opindex, fields, (unsigned char *) where, (bfd_vma) 0); #endif if (errmsg) as_bad_where (fixP->fx_file, fixP->fx_line, "%s", errmsg); } if (fixP->fx_done) return; /* The operand isn't fully resolved. Determine a BFD reloc value based on the operand information and leave it to bfd_install_relocation. Note that this doesn't work when partial_inplace == false. */ reloc_type = md_cgen_lookup_reloc (insn, operand, fixP); #ifdef OBJ_COMPLEX_RELC if (reloc_type == BFD_RELOC_RELC) { /* Change addend to "self-describing" form, for BFD to handle in the linker. */ value = gas_cgen_encode_addend (start, operand->length, length, fixP->fx_size, cd->insn_chunk_bitsize / 8, signed_p, ! (fixP->fx_cgen.msb_field_p)); } #endif if (reloc_type != BFD_RELOC_NONE) fixP->fx_r_type = reloc_type; else { as_bad_where (fixP->fx_file, fixP->fx_line, _("unresolved expression that must be resolved")); fixP->fx_done = 1; return; } } else if (fixP->fx_done) { /* We're finished with this fixup. Install it because bfd_install_relocation won't be called to do it. */ switch (fixP->fx_r_type) { case BFD_RELOC_8: md_number_to_chars (where, value, 1); break; case BFD_RELOC_16: md_number_to_chars (where, value, 2); break; case BFD_RELOC_32: md_number_to_chars (where, value, 4); break; case BFD_RELOC_64: md_number_to_chars (where, value, 8); break; default: as_bad_where (fixP->fx_file, fixP->fx_line, _("internal error: can't install fix for reloc type %d (`%s')"), fixP->fx_r_type, bfd_get_reloc_code_name (fixP->fx_r_type)); break; } } /* else bfd_install_relocation will be called to finish things up. */ /* Tuck `value' away for use by tc_gen_reloc. See the comment describing fx_addnumber in write.h. This field is misnamed (or misused :-). */ fixP->fx_addnumber = value; } /* Translate internal representation of relocation info to BFD target format. FIXME: To what extent can we get all relevant targets to use this? */ arelent * gas_cgen_tc_gen_reloc (section, fixP) asection * section ATTRIBUTE_UNUSED; fixS * fixP; { arelent *reloc; reloc = (arelent *) xmalloc (sizeof (arelent)); reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); if (reloc->howto == (reloc_howto_type *) NULL) { as_bad_where (fixP->fx_file, fixP->fx_line, _("relocation is not supported")); return NULL; } assert (!fixP->fx_pcrel == !reloc->howto->pc_relative); reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy); /* Use fx_offset for these cases. */ if (fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT) reloc->addend = fixP->fx_offset; else reloc->addend = fixP->fx_addnumber; reloc->address = fixP->fx_frag->fr_address + fixP->fx_where; return reloc; } /* Perform any cgen specific initialisation. Called after gas_cgen_cpu_desc has been created. */ void gas_cgen_begin () { if (flag_signed_overflow_ok) cgen_set_signed_overflow_ok (gas_cgen_cpu_desc); else cgen_clear_signed_overflow_ok (gas_cgen_cpu_desc); }