URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.18.50/] [gas/] [config/] [tc-ppc.c] - Rev 438
Go to most recent revision | Compare with Previous | Blame | View Log
/* tc-ppc.c -- Assemble for the PowerPC or POWER (RS/6000) Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. Written by Ian Lance Taylor, Cygnus Support. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "as.h" #include "safe-ctype.h" #include "subsegs.h" #include "dw2gencfi.h" #include "opcode/ppc.h" #ifdef OBJ_ELF #include "elf/ppc.h" #include "dwarf2dbg.h" #endif #ifdef TE_PE #include "coff/pe.h" #endif /* This is the assembler for the PowerPC or POWER (RS/6000) chips. */ /* Tell the main code what the endianness is. */ extern int target_big_endian; /* Whether or not, we've set target_big_endian. */ static int set_target_endian = 0; /* Whether to use user friendly register names. */ #ifndef TARGET_REG_NAMES_P #ifdef TE_PE #define TARGET_REG_NAMES_P TRUE #else #define TARGET_REG_NAMES_P FALSE #endif #endif /* Macros for calculating LO, HI, HA, HIGHER, HIGHERA, HIGHEST, HIGHESTA. */ /* #lo(value) denotes the least significant 16 bits of the indicated. */ #define PPC_LO(v) ((v) & 0xffff) /* #hi(value) denotes bits 16 through 31 of the indicated value. */ #define PPC_HI(v) (((v) >> 16) & 0xffff) /* #ha(value) denotes the high adjusted value: bits 16 through 31 of the indicated value, compensating for #lo() being treated as a signed number. */ #define PPC_HA(v) PPC_HI ((v) + 0x8000) /* #higher(value) denotes bits 32 through 47 of the indicated value. */ #define PPC_HIGHER(v) (((v) >> 16 >> 16) & 0xffff) /* #highera(value) denotes bits 32 through 47 of the indicated value, compensating for #lo() being treated as a signed number. */ #define PPC_HIGHERA(v) PPC_HIGHER ((v) + 0x8000) /* #highest(value) denotes bits 48 through 63 of the indicated value. */ #define PPC_HIGHEST(v) (((v) >> 24 >> 24) & 0xffff) /* #highesta(value) denotes bits 48 through 63 of the indicated value, compensating for #lo being treated as a signed number. */ #define PPC_HIGHESTA(v) PPC_HIGHEST ((v) + 0x8000) #define SEX16(val) ((((val) & 0xffff) ^ 0x8000) - 0x8000) static bfd_boolean reg_names_p = TARGET_REG_NAMES_P; static void ppc_macro (char *, const struct powerpc_macro *); static void ppc_byte (int); #if defined (OBJ_XCOFF) || defined (OBJ_ELF) static void ppc_tc (int); static void ppc_machine (int); #endif #ifdef OBJ_XCOFF static void ppc_comm (int); static void ppc_bb (int); static void ppc_bc (int); static void ppc_bf (int); static void ppc_biei (int); static void ppc_bs (int); static void ppc_eb (int); static void ppc_ec (int); static void ppc_ef (int); static void ppc_es (int); static void ppc_csect (int); static void ppc_change_csect (symbolS *, offsetT); static void ppc_function (int); static void ppc_extern (int); static void ppc_lglobl (int); static void ppc_section (int); static void ppc_named_section (int); static void ppc_stabx (int); static void ppc_rename (int); static void ppc_toc (int); static void ppc_xcoff_cons (int); static void ppc_vbyte (int); #endif #ifdef OBJ_ELF static void ppc_elf_cons (int); static void ppc_elf_rdata (int); static void ppc_elf_lcomm (int); #endif #ifdef TE_PE static void ppc_previous (int); static void ppc_pdata (int); static void ppc_ydata (int); static void ppc_reldata (int); static void ppc_rdata (int); static void ppc_ualong (int); static void ppc_znop (int); static void ppc_pe_comm (int); static void ppc_pe_section (int); static void ppc_pe_function (int); static void ppc_pe_tocd (int); #endif /* Generic assembler global variables which must be defined by all targets. */ #ifdef OBJ_ELF /* This string holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful. The macro tc_comment_chars points to this. We use this, rather than the usual comment_chars, so that we can switch for Solaris conventions. */ static const char ppc_solaris_comment_chars[] = "#!"; static const char ppc_eabi_comment_chars[] = "#"; #ifdef TARGET_SOLARIS_COMMENT const char *ppc_comment_chars = ppc_solaris_comment_chars; #else const char *ppc_comment_chars = ppc_eabi_comment_chars; #endif #else const char comment_chars[] = "#"; #endif /* Characters which start a comment at the beginning of a line. */ const char line_comment_chars[] = "#"; /* Characters which may be used to separate multiple commands on a single line. */ const char line_separator_chars[] = ";"; /* Characters which are used to indicate an exponent in a floating point number. */ const char EXP_CHARS[] = "eE"; /* Characters which mean that a number is a floating point constant, as in 0d1.0. */ const char FLT_CHARS[] = "dD"; /* Anything that can start an operand needs to be mentioned here, to stop the input scrubber eating whitespace. */ const char ppc_symbol_chars[] = "%["; /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */ int ppc_cie_data_alignment; /* The type of processor we are assembling for. This is one or more of the PPC_OPCODE flags defined in opcode/ppc.h. */ unsigned long ppc_cpu = 0; /* The target specific pseudo-ops which we support. */ const pseudo_typeS md_pseudo_table[] = { /* Pseudo-ops which must be overridden. */ { "byte", ppc_byte, 0 }, #ifdef OBJ_XCOFF /* Pseudo-ops specific to the RS/6000 XCOFF format. Some of these legitimately belong in the obj-*.c file. However, XCOFF is based on COFF, and is only implemented for the RS/6000. We just use obj-coff.c, and add what we need here. */ { "comm", ppc_comm, 0 }, { "lcomm", ppc_comm, 1 }, { "bb", ppc_bb, 0 }, { "bc", ppc_bc, 0 }, { "bf", ppc_bf, 0 }, { "bi", ppc_biei, 0 }, { "bs", ppc_bs, 0 }, { "csect", ppc_csect, 0 }, { "data", ppc_section, 'd' }, { "eb", ppc_eb, 0 }, { "ec", ppc_ec, 0 }, { "ef", ppc_ef, 0 }, { "ei", ppc_biei, 1 }, { "es", ppc_es, 0 }, { "extern", ppc_extern, 0 }, { "function", ppc_function, 0 }, { "lglobl", ppc_lglobl, 0 }, { "rename", ppc_rename, 0 }, { "section", ppc_named_section, 0 }, { "stabx", ppc_stabx, 0 }, { "text", ppc_section, 't' }, { "toc", ppc_toc, 0 }, { "long", ppc_xcoff_cons, 2 }, { "llong", ppc_xcoff_cons, 3 }, { "word", ppc_xcoff_cons, 1 }, { "short", ppc_xcoff_cons, 1 }, { "vbyte", ppc_vbyte, 0 }, #endif #ifdef OBJ_ELF { "llong", ppc_elf_cons, 8 }, { "quad", ppc_elf_cons, 8 }, { "long", ppc_elf_cons, 4 }, { "word", ppc_elf_cons, 2 }, { "short", ppc_elf_cons, 2 }, { "rdata", ppc_elf_rdata, 0 }, { "rodata", ppc_elf_rdata, 0 }, { "lcomm", ppc_elf_lcomm, 0 }, #endif #ifdef TE_PE /* Pseudo-ops specific to the Windows NT PowerPC PE (coff) format. */ { "previous", ppc_previous, 0 }, { "pdata", ppc_pdata, 0 }, { "ydata", ppc_ydata, 0 }, { "reldata", ppc_reldata, 0 }, { "rdata", ppc_rdata, 0 }, { "ualong", ppc_ualong, 0 }, { "znop", ppc_znop, 0 }, { "comm", ppc_pe_comm, 0 }, { "lcomm", ppc_pe_comm, 1 }, { "section", ppc_pe_section, 0 }, { "function", ppc_pe_function,0 }, { "tocd", ppc_pe_tocd, 0 }, #endif #if defined (OBJ_XCOFF) || defined (OBJ_ELF) { "tc", ppc_tc, 0 }, { "machine", ppc_machine, 0 }, #endif { NULL, NULL, 0 } }; /* Predefined register names if -mregnames (or default for Windows NT). In general, there are lots of them, in an attempt to be compatible with a number of other Windows NT assemblers. */ /* Structure to hold information about predefined registers. */ struct pd_reg { char *name; int value; }; /* List of registers that are pre-defined: Each general register has predefined names of the form: 1. r<reg_num> which has the value <reg_num>. 2. r.<reg_num> which has the value <reg_num>. Each floating point register has predefined names of the form: 1. f<reg_num> which has the value <reg_num>. 2. f.<reg_num> which has the value <reg_num>. Each vector unit register has predefined names of the form: 1. v<reg_num> which has the value <reg_num>. 2. v.<reg_num> which has the value <reg_num>. Each condition register has predefined names of the form: 1. cr<reg_num> which has the value <reg_num>. 2. cr.<reg_num> which has the value <reg_num>. There are individual registers as well: sp or r.sp has the value 1 rtoc or r.toc has the value 2 fpscr has the value 0 xer has the value 1 lr has the value 8 ctr has the value 9 pmr has the value 0 dar has the value 19 dsisr has the value 18 dec has the value 22 sdr1 has the value 25 srr0 has the value 26 srr1 has the value 27 The table is sorted. Suitable for searching by a binary search. */ static const struct pd_reg pre_defined_registers[] = { { "cr.0", 0 }, /* Condition Registers */ { "cr.1", 1 }, { "cr.2", 2 }, { "cr.3", 3 }, { "cr.4", 4 }, { "cr.5", 5 }, { "cr.6", 6 }, { "cr.7", 7 }, { "cr0", 0 }, { "cr1", 1 }, { "cr2", 2 }, { "cr3", 3 }, { "cr4", 4 }, { "cr5", 5 }, { "cr6", 6 }, { "cr7", 7 }, { "ctr", 9 }, { "dar", 19 }, /* Data Access Register */ { "dec", 22 }, /* Decrementer */ { "dsisr", 18 }, /* Data Storage Interrupt Status Register */ { "f.0", 0 }, /* Floating point registers */ { "f.1", 1 }, { "f.10", 10 }, { "f.11", 11 }, { "f.12", 12 }, { "f.13", 13 }, { "f.14", 14 }, { "f.15", 15 }, { "f.16", 16 }, { "f.17", 17 }, { "f.18", 18 }, { "f.19", 19 }, { "f.2", 2 }, { "f.20", 20 }, { "f.21", 21 }, { "f.22", 22 }, { "f.23", 23 }, { "f.24", 24 }, { "f.25", 25 }, { "f.26", 26 }, { "f.27", 27 }, { "f.28", 28 }, { "f.29", 29 }, { "f.3", 3 }, { "f.30", 30 }, { "f.31", 31 }, { "f.4", 4 }, { "f.5", 5 }, { "f.6", 6 }, { "f.7", 7 }, { "f.8", 8 }, { "f.9", 9 }, { "f0", 0 }, { "f1", 1 }, { "f10", 10 }, { "f11", 11 }, { "f12", 12 }, { "f13", 13 }, { "f14", 14 }, { "f15", 15 }, { "f16", 16 }, { "f17", 17 }, { "f18", 18 }, { "f19", 19 }, { "f2", 2 }, { "f20", 20 }, { "f21", 21 }, { "f22", 22 }, { "f23", 23 }, { "f24", 24 }, { "f25", 25 }, { "f26", 26 }, { "f27", 27 }, { "f28", 28 }, { "f29", 29 }, { "f3", 3 }, { "f30", 30 }, { "f31", 31 }, { "f4", 4 }, { "f5", 5 }, { "f6", 6 }, { "f7", 7 }, { "f8", 8 }, { "f9", 9 }, { "fpscr", 0 }, /* Quantization registers used with pair single instructions. */ { "gqr.0", 0 }, { "gqr.1", 1 }, { "gqr.2", 2 }, { "gqr.3", 3 }, { "gqr.4", 4 }, { "gqr.5", 5 }, { "gqr.6", 6 }, { "gqr.7", 7 }, { "gqr0", 0 }, { "gqr1", 1 }, { "gqr2", 2 }, { "gqr3", 3 }, { "gqr4", 4 }, { "gqr5", 5 }, { "gqr6", 6 }, { "gqr7", 7 }, { "lr", 8 }, /* Link Register */ { "pmr", 0 }, { "r.0", 0 }, /* General Purpose Registers */ { "r.1", 1 }, { "r.10", 10 }, { "r.11", 11 }, { "r.12", 12 }, { "r.13", 13 }, { "r.14", 14 }, { "r.15", 15 }, { "r.16", 16 }, { "r.17", 17 }, { "r.18", 18 }, { "r.19", 19 }, { "r.2", 2 }, { "r.20", 20 }, { "r.21", 21 }, { "r.22", 22 }, { "r.23", 23 }, { "r.24", 24 }, { "r.25", 25 }, { "r.26", 26 }, { "r.27", 27 }, { "r.28", 28 }, { "r.29", 29 }, { "r.3", 3 }, { "r.30", 30 }, { "r.31", 31 }, { "r.4", 4 }, { "r.5", 5 }, { "r.6", 6 }, { "r.7", 7 }, { "r.8", 8 }, { "r.9", 9 }, { "r.sp", 1 }, /* Stack Pointer */ { "r.toc", 2 }, /* Pointer to the table of contents */ { "r0", 0 }, /* More general purpose registers */ { "r1", 1 }, { "r10", 10 }, { "r11", 11 }, { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 }, { "r16", 16 }, { "r17", 17 }, { "r18", 18 }, { "r19", 19 }, { "r2", 2 }, { "r20", 20 }, { "r21", 21 }, { "r22", 22 }, { "r23", 23 }, { "r24", 24 }, { "r25", 25 }, { "r26", 26 }, { "r27", 27 }, { "r28", 28 }, { "r29", 29 }, { "r3", 3 }, { "r30", 30 }, { "r31", 31 }, { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 }, { "r8", 8 }, { "r9", 9 }, { "rtoc", 2 }, /* Table of contents */ { "sdr1", 25 }, /* Storage Description Register 1 */ { "sp", 1 }, { "srr0", 26 }, /* Machine Status Save/Restore Register 0 */ { "srr1", 27 }, /* Machine Status Save/Restore Register 1 */ { "v.0", 0 }, /* Vector registers */ { "v.1", 1 }, { "v.10", 10 }, { "v.11", 11 }, { "v.12", 12 }, { "v.13", 13 }, { "v.14", 14 }, { "v.15", 15 }, { "v.16", 16 }, { "v.17", 17 }, { "v.18", 18 }, { "v.19", 19 }, { "v.2", 2 }, { "v.20", 20 }, { "v.21", 21 }, { "v.22", 22 }, { "v.23", 23 }, { "v.24", 24 }, { "v.25", 25 }, { "v.26", 26 }, { "v.27", 27 }, { "v.28", 28 }, { "v.29", 29 }, { "v.3", 3 }, { "v.30", 30 }, { "v.31", 31 }, { "v.4", 4 }, { "v.5", 5 }, { "v.6", 6 }, { "v.7", 7 }, { "v.8", 8 }, { "v.9", 9 }, { "v0", 0 }, { "v1", 1 }, { "v10", 10 }, { "v11", 11 }, { "v12", 12 }, { "v13", 13 }, { "v14", 14 }, { "v15", 15 }, { "v16", 16 }, { "v17", 17 }, { "v18", 18 }, { "v19", 19 }, { "v2", 2 }, { "v20", 20 }, { "v21", 21 }, { "v22", 22 }, { "v23", 23 }, { "v24", 24 }, { "v25", 25 }, { "v26", 26 }, { "v27", 27 }, { "v28", 28 }, { "v29", 29 }, { "v3", 3 }, { "v30", 30 }, { "v31", 31 }, { "v4", 4 }, { "v5", 5 }, { "v6", 6 }, { "v7", 7 }, { "v8", 8 }, { "v9", 9 }, { "xer", 1 }, }; #define REG_NAME_CNT (sizeof (pre_defined_registers) / sizeof (struct pd_reg)) /* Given NAME, find the register number associated with that name, return the integer value associated with the given name or -1 on failure. */ static int reg_name_search (const struct pd_reg *regs, int regcount, const char *name) { int middle, low, high; int cmp; low = 0; high = regcount - 1; do { middle = (low + high) / 2; cmp = strcasecmp (name, regs[middle].name); if (cmp < 0) high = middle - 1; else if (cmp > 0) low = middle + 1; else return regs[middle].value; } while (low <= high); return -1; } /* * Summary of register_name. * * in: Input_line_pointer points to 1st char of operand. * * out: A expressionS. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in its * original state. */ static bfd_boolean register_name (expressionS *expressionP) { int reg_number; char *name; char *start; char c; /* Find the spelling of the operand. */ start = name = input_line_pointer; if (name[0] == '%' && ISALPHA (name[1])) name = ++input_line_pointer; else if (!reg_names_p || !ISALPHA (name[0])) return FALSE; c = get_symbol_end (); reg_number = reg_name_search (pre_defined_registers, REG_NAME_CNT, name); /* Put back the delimiting char. */ *input_line_pointer = c; /* Look to see if it's in the register table. */ if (reg_number >= 0) { expressionP->X_op = O_register; expressionP->X_add_number = reg_number; /* Make the rest nice. */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; return TRUE; } /* Reset the line as if we had not done anything. */ input_line_pointer = start; return FALSE; } /* This function is called for each symbol seen in an expression. It handles the special parsing which PowerPC assemblers are supposed to use for condition codes. */ /* Whether to do the special parsing. */ static bfd_boolean cr_operand; /* Names to recognize in a condition code. This table is sorted. */ static const struct pd_reg cr_names[] = { { "cr0", 0 }, { "cr1", 1 }, { "cr2", 2 }, { "cr3", 3 }, { "cr4", 4 }, { "cr5", 5 }, { "cr6", 6 }, { "cr7", 7 }, { "eq", 2 }, { "gt", 1 }, { "lt", 0 }, { "so", 3 }, { "un", 3 } }; /* Parsing function. This returns non-zero if it recognized an expression. */ int ppc_parse_name (const char *name, expressionS *expr) { int val; if (! cr_operand) return 0; if (*name == '%') ++name; val = reg_name_search (cr_names, sizeof cr_names / sizeof cr_names[0], name); if (val < 0) return 0; expr->X_op = O_constant; expr->X_add_number = val; return 1; } /* Local variables. */ /* Whether to target xcoff64/elf64. */ static unsigned int ppc_obj64 = BFD_DEFAULT_TARGET_SIZE == 64; /* Opcode hash table. */ static struct hash_control *ppc_hash; /* Macro hash table. */ static struct hash_control *ppc_macro_hash; #ifdef OBJ_ELF /* What type of shared library support to use. */ static enum { SHLIB_NONE, SHLIB_PIC, SHLIB_MRELOCATABLE } shlib = SHLIB_NONE; /* Flags to set in the elf header. */ static flagword ppc_flags = 0; /* Whether this is Solaris or not. */ #ifdef TARGET_SOLARIS_COMMENT #define SOLARIS_P TRUE #else #define SOLARIS_P FALSE #endif static bfd_boolean msolaris = SOLARIS_P; #endif #ifdef OBJ_XCOFF /* The RS/6000 assembler uses the .csect pseudo-op to generate code using a bunch of different sections. These assembler sections, however, are all encompassed within the .text or .data sections of the final output file. We handle this by using different subsegments within these main segments. */ /* Next subsegment to allocate within the .text segment. */ static subsegT ppc_text_subsegment = 2; /* Linked list of csects in the text section. */ static symbolS *ppc_text_csects; /* Next subsegment to allocate within the .data segment. */ static subsegT ppc_data_subsegment = 2; /* Linked list of csects in the data section. */ static symbolS *ppc_data_csects; /* The current csect. */ static symbolS *ppc_current_csect; /* The RS/6000 assembler uses a TOC which holds addresses of functions and variables. Symbols are put in the TOC with the .tc pseudo-op. A special relocation is used when accessing TOC entries. We handle the TOC as a subsegment within the .data segment. We set it up if we see a .toc pseudo-op, and save the csect symbol here. */ static symbolS *ppc_toc_csect; /* The first frag in the TOC subsegment. */ static fragS *ppc_toc_frag; /* The first frag in the first subsegment after the TOC in the .data segment. NULL if there are no subsegments after the TOC. */ static fragS *ppc_after_toc_frag; /* The current static block. */ static symbolS *ppc_current_block; /* The COFF debugging section; set by md_begin. This is not the .debug section, but is instead the secret BFD section which will cause BFD to set the section number of a symbol to N_DEBUG. */ static asection *ppc_coff_debug_section; #endif /* OBJ_XCOFF */ #ifdef TE_PE /* Various sections that we need for PE coff support. */ static segT ydata_section; static segT pdata_section; static segT reldata_section; static segT rdata_section; static segT tocdata_section; /* The current section and the previous section. See ppc_previous. */ static segT ppc_previous_section; static segT ppc_current_section; #endif /* TE_PE */ #ifdef OBJ_ELF symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE" */ #define PPC_APUINFO_ISEL 0x40 #define PPC_APUINFO_PMR 0x41 #define PPC_APUINFO_RFMCI 0x42 #define PPC_APUINFO_CACHELCK 0x43 #define PPC_APUINFO_SPE 0x100 #define PPC_APUINFO_EFS 0x101 #define PPC_APUINFO_BRLOCK 0x102 /* * We keep a list of APUinfo */ unsigned long *ppc_apuinfo_list; unsigned int ppc_apuinfo_num; unsigned int ppc_apuinfo_num_alloc; #endif /* OBJ_ELF */ #ifdef OBJ_ELF const char *const md_shortopts = "b:l:usm:K:VQ:"; #else const char *const md_shortopts = "um:"; #endif const struct option md_longopts[] = { {NULL, no_argument, NULL, 0} }; const size_t md_longopts_size = sizeof (md_longopts); /* Handle -m options that set cpu type, and .machine arg. */ static int parse_cpu (const char *arg) { unsigned long altivec_or_spe = ppc_cpu & (PPC_OPCODE_ALTIVEC | PPC_OPCODE_SPE); /* -mpwrx and -mpwr2 mean to assemble for the IBM POWER/2 (RIOS2). */ if (strcmp (arg, "pwrx") == 0 || strcmp (arg, "pwr2") == 0) ppc_cpu = PPC_OPCODE_POWER | PPC_OPCODE_POWER2 | PPC_OPCODE_32; /* -mpwr means to assemble for the IBM POWER (RIOS1). */ else if (strcmp (arg, "pwr") == 0) ppc_cpu = PPC_OPCODE_POWER | PPC_OPCODE_32; /* -m601 means to assemble for the PowerPC 601, which includes instructions that are holdovers from the Power. */ else if (strcmp (arg, "601") == 0) ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_601 | PPC_OPCODE_32); /* -mppc, -mppc32, -m603, and -m604 mean to assemble for the PowerPC 603/604. */ else if (strcmp (arg, "ppc") == 0 || strcmp (arg, "ppc32") == 0 || strcmp (arg, "603") == 0 || strcmp (arg, "604") == 0) ppc_cpu = PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_32; /* Do all PPC750s have paired single ops? */ else if (strcmp (arg, "750cl") == 0) ppc_cpu = PPC_OPCODE_PPC | PPC_OPCODE_PPCPS; /* -m403 and -m405 mean to assemble for the PowerPC 403/405. */ else if (strcmp (arg, "403") == 0 || strcmp (arg, "405") == 0) ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_403 | PPC_OPCODE_32); else if (strcmp (arg, "440") == 0) ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_BOOKE | PPC_OPCODE_32 | PPC_OPCODE_440 | PPC_OPCODE_ISEL | PPC_OPCODE_RFMCI); else if (strcmp (arg, "7400") == 0 || strcmp (arg, "7410") == 0 || strcmp (arg, "7450") == 0 || strcmp (arg, "7455") == 0) ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_ALTIVEC | PPC_OPCODE_32); else if (strcmp (arg, "e300") == 0) ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_32 | PPC_OPCODE_E300); else if (strcmp (arg, "altivec") == 0) { if (ppc_cpu == 0) ppc_cpu = PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC; altivec_or_spe |= PPC_OPCODE_ALTIVEC; } else if (strcmp (arg, "e500") == 0 || strcmp (arg, "e500x2") == 0) { ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_BOOKE | PPC_OPCODE_SPE | PPC_OPCODE_ISEL | PPC_OPCODE_EFS | PPC_OPCODE_BRLOCK | PPC_OPCODE_PMR | PPC_OPCODE_CACHELCK | PPC_OPCODE_RFMCI | PPC_OPCODE_E500MC); } else if (strcmp (arg, "e500mc") == 0) { ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_BOOKE | PPC_OPCODE_ISEL | PPC_OPCODE_PMR | PPC_OPCODE_CACHELCK | PPC_OPCODE_RFMCI | PPC_OPCODE_E500MC); } else if (strcmp (arg, "spe") == 0) { if (ppc_cpu == 0) ppc_cpu = PPC_OPCODE_PPC | PPC_OPCODE_EFS; altivec_or_spe |= PPC_OPCODE_SPE; } /* -mppc64 and -m620 mean to assemble for the 64-bit PowerPC 620. */ else if (strcmp (arg, "ppc64") == 0 || strcmp (arg, "620") == 0) { ppc_cpu = PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_64; } else if (strcmp (arg, "ppc64bridge") == 0) { ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_64_BRIDGE | PPC_OPCODE_64); } /* -mbooke/-mbooke32 mean enable 32-bit BookE support. */ else if (strcmp (arg, "booke") == 0 || strcmp (arg, "booke32") == 0) { ppc_cpu = PPC_OPCODE_PPC | PPC_OPCODE_BOOKE | PPC_OPCODE_32; } /* -mbooke64 means enable 64-bit BookE support. */ else if (strcmp (arg, "booke64") == 0) { ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_BOOKE | PPC_OPCODE_BOOKE64 | PPC_OPCODE_64); } else if (strcmp (arg, "power4") == 0) { ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_64 | PPC_OPCODE_POWER4); } else if (strcmp (arg, "power5") == 0) { ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_64 | PPC_OPCODE_POWER4 | PPC_OPCODE_POWER5); } else if (strcmp (arg, "power6") == 0) { ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_64 | PPC_OPCODE_POWER4 | PPC_OPCODE_POWER5 | PPC_OPCODE_POWER6); } else if (strcmp (arg, "cell") == 0) { ppc_cpu = (PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_64 | PPC_OPCODE_POWER4 | PPC_OPCODE_CELL); } /* -mcom means assemble for the common intersection between Power and PowerPC. At present, we just allow the union, rather than the intersection. */ else if (strcmp (arg, "com") == 0) ppc_cpu = PPC_OPCODE_COMMON | PPC_OPCODE_32; /* -many means to assemble for any architecture (PWR/PWRX/PPC). */ else if (strcmp (arg, "any") == 0) ppc_cpu |= PPC_OPCODE_ANY; else return 0; /* Make sure the the Altivec and SPE bits are not lost. */ ppc_cpu |= altivec_or_spe; return 1; } int md_parse_option (int c, char *arg) { switch (c) { case 'u': /* -u means that any undefined symbols should be treated as external, which is the default for gas anyhow. */ break; #ifdef OBJ_ELF case 'l': /* Solaris as takes -le (presumably for little endian). For completeness sake, recognize -be also. */ if (strcmp (arg, "e") == 0) { target_big_endian = 0; set_target_endian = 1; } else return 0; break; case 'b': if (strcmp (arg, "e") == 0) { target_big_endian = 1; set_target_endian = 1; } else return 0; break; case 'K': /* Recognize -K PIC. */ if (strcmp (arg, "PIC") == 0 || strcmp (arg, "pic") == 0) { shlib = SHLIB_PIC; ppc_flags |= EF_PPC_RELOCATABLE_LIB; } else return 0; break; #endif /* a64 and a32 determine whether to use XCOFF64 or XCOFF32. */ case 'a': if (strcmp (arg, "64") == 0) { #ifdef BFD64 ppc_obj64 = 1; #else as_fatal (_("%s unsupported"), "-a64"); #endif } else if (strcmp (arg, "32") == 0) ppc_obj64 = 0; else return 0; break; case 'm': if (parse_cpu (arg)) ; else if (strcmp (arg, "regnames") == 0) reg_names_p = TRUE; else if (strcmp (arg, "no-regnames") == 0) reg_names_p = FALSE; #ifdef OBJ_ELF /* -mrelocatable/-mrelocatable-lib -- warn about initializations that require relocation. */ else if (strcmp (arg, "relocatable") == 0) { shlib = SHLIB_MRELOCATABLE; ppc_flags |= EF_PPC_RELOCATABLE; } else if (strcmp (arg, "relocatable-lib") == 0) { shlib = SHLIB_MRELOCATABLE; ppc_flags |= EF_PPC_RELOCATABLE_LIB; } /* -memb, set embedded bit. */ else if (strcmp (arg, "emb") == 0) ppc_flags |= EF_PPC_EMB; /* -mlittle/-mbig set the endianess. */ else if (strcmp (arg, "little") == 0 || strcmp (arg, "little-endian") == 0) { target_big_endian = 0; set_target_endian = 1; } else if (strcmp (arg, "big") == 0 || strcmp (arg, "big-endian") == 0) { target_big_endian = 1; set_target_endian = 1; } else if (strcmp (arg, "solaris") == 0) { msolaris = TRUE; ppc_comment_chars = ppc_solaris_comment_chars; } else if (strcmp (arg, "no-solaris") == 0) { msolaris = FALSE; ppc_comment_chars = ppc_eabi_comment_chars; } #endif else { as_bad (_("invalid switch -m%s"), arg); return 0; } break; #ifdef OBJ_ELF /* -V: SVR4 argument to print version ID. */ case 'V': print_version_id (); break; /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section should be emitted or not. FIXME: Not implemented. */ case 'Q': break; /* Solaris takes -s to specify that .stabs go in a .stabs section, rather than .stabs.excl, which is ignored by the linker. FIXME: Not implemented. */ case 's': if (arg) return 0; break; #endif default: return 0; } return 1; } void md_show_usage (FILE *stream) { fprintf (stream, _("\ PowerPC options:\n\ -a32 generate ELF32/XCOFF32\n\ -a64 generate ELF64/XCOFF64\n\ -u ignored\n\ -mpwrx, -mpwr2 generate code for POWER/2 (RIOS2)\n\ -mpwr generate code for POWER (RIOS1)\n\ -m601 generate code for PowerPC 601\n\ -mppc, -mppc32, -m603, -m604\n\ generate code for PowerPC 603/604\n\ -m403, -m405 generate code for PowerPC 403/405\n\ -m440 generate code for PowerPC 440\n\ -m7400, -m7410, -m7450, -m7455\n\ generate code for PowerPC 7400/7410/7450/7455\n\ -m750cl generate code for PowerPC 750cl\n")); fprintf (stream, _("\ -mppc64, -m620 generate code for PowerPC 620/625/630\n\ -mppc64bridge generate code for PowerPC 64, including bridge insns\n\ -mbooke64 generate code for 64-bit PowerPC BookE\n\ -mbooke, mbooke32 generate code for 32-bit PowerPC BookE\n\ -mpower4 generate code for Power4 architecture\n\ -mpower5 generate code for Power5 architecture\n\ -mpower6 generate code for Power6 architecture\n\ -mcell generate code for Cell Broadband Engine architecture\n\ -mcom generate code Power/PowerPC common instructions\n\ -many generate code for any architecture (PWR/PWRX/PPC)\n")); fprintf (stream, _("\ -maltivec generate code for AltiVec\n\ -me300 generate code for PowerPC e300 family\n\ -me500, -me500x2 generate code for Motorola e500 core complex\n\ -me500mc, generate code for Freescale e500mc core complex\n\ -mspe generate code for Motorola SPE instructions\n\ -mregnames Allow symbolic names for registers\n\ -mno-regnames Do not allow symbolic names for registers\n")); #ifdef OBJ_ELF fprintf (stream, _("\ -mrelocatable support for GCC's -mrelocatble option\n\ -mrelocatable-lib support for GCC's -mrelocatble-lib option\n\ -memb set PPC_EMB bit in ELF flags\n\ -mlittle, -mlittle-endian, -l, -le\n\ generate code for a little endian machine\n\ -mbig, -mbig-endian, -b, -be\n\ generate code for a big endian machine\n\ -msolaris generate code for Solaris\n\ -mno-solaris do not generate code for Solaris\n\ -V print assembler version number\n\ -Qy, -Qn ignored\n")); #endif } /* Set ppc_cpu if it is not already set. */ static void ppc_set_cpu (void) { const char *default_os = TARGET_OS; const char *default_cpu = TARGET_CPU; if ((ppc_cpu & ~PPC_OPCODE_ANY) == 0) { if (ppc_obj64) ppc_cpu |= PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_64; else if (strncmp (default_os, "aix", 3) == 0 && default_os[3] >= '4' && default_os[3] <= '9') ppc_cpu |= PPC_OPCODE_COMMON | PPC_OPCODE_32; else if (strncmp (default_os, "aix3", 4) == 0) ppc_cpu |= PPC_OPCODE_POWER | PPC_OPCODE_32; else if (strcmp (default_cpu, "rs6000") == 0) ppc_cpu |= PPC_OPCODE_POWER | PPC_OPCODE_32; else if (strncmp (default_cpu, "powerpc", 7) == 0) ppc_cpu |= PPC_OPCODE_PPC | PPC_OPCODE_CLASSIC | PPC_OPCODE_32; else as_fatal (_("Unknown default cpu = %s, os = %s"), default_cpu, default_os); } } /* Figure out the BFD architecture to use. This function and ppc_mach are called well before md_begin, when the output file is opened. */ enum bfd_architecture ppc_arch (void) { const char *default_cpu = TARGET_CPU; ppc_set_cpu (); if ((ppc_cpu & PPC_OPCODE_PPC) != 0) return bfd_arch_powerpc; else if ((ppc_cpu & PPC_OPCODE_POWER) != 0) return bfd_arch_rs6000; else if ((ppc_cpu & (PPC_OPCODE_COMMON | PPC_OPCODE_ANY)) != 0) { if (strcmp (default_cpu, "rs6000") == 0) return bfd_arch_rs6000; else if (strncmp (default_cpu, "powerpc", 7) == 0) return bfd_arch_powerpc; } as_fatal (_("Neither Power nor PowerPC opcodes were selected.")); return bfd_arch_unknown; } unsigned long ppc_mach (void) { if (ppc_obj64) return bfd_mach_ppc64; else if (ppc_arch () == bfd_arch_rs6000) return bfd_mach_rs6k; else return bfd_mach_ppc; } extern char* ppc_target_format (void) { #ifdef OBJ_COFF #ifdef TE_PE return target_big_endian ? "pe-powerpc" : "pe-powerpcle"; #elif TE_POWERMAC return "xcoff-powermac"; #else # ifdef TE_AIX5 return (ppc_obj64 ? "aix5coff64-rs6000" : "aixcoff-rs6000"); # else return (ppc_obj64 ? "aixcoff64-rs6000" : "aixcoff-rs6000"); # endif #endif #endif #ifdef OBJ_ELF # ifdef TE_VXWORKS return "elf32-powerpc-vxworks"; # else return (target_big_endian ? (ppc_obj64 ? "elf64-powerpc" : "elf32-powerpc") : (ppc_obj64 ? "elf64-powerpcle" : "elf32-powerpcle")); # endif #endif } /* Insert opcodes and macros into hash tables. Called at startup and for .cpu pseudo. */ static void ppc_setup_opcodes (void) { const struct powerpc_opcode *op; const struct powerpc_opcode *op_end; const struct powerpc_macro *macro; const struct powerpc_macro *macro_end; bfd_boolean bad_insn = FALSE; if (ppc_hash != NULL) hash_die (ppc_hash); if (ppc_macro_hash != NULL) hash_die (ppc_macro_hash); /* Insert the opcodes into a hash table. */ ppc_hash = hash_new (); if (ENABLE_CHECKING) { unsigned int i; /* Check operand masks. Code here and in the disassembler assumes all the 1's in the mask are contiguous. */ for (i = 0; i < num_powerpc_operands; ++i) { unsigned long mask = powerpc_operands[i].bitm; unsigned long right_bit; unsigned int j; right_bit = mask & -mask; mask += right_bit; right_bit = mask & -mask; if (mask != right_bit) { as_bad (_("powerpc_operands[%d].bitm invalid"), i); bad_insn = TRUE; } for (j = i + 1; j < num_powerpc_operands; ++j) if (memcmp (&powerpc_operands[i], &powerpc_operands[j], sizeof (powerpc_operands[0])) == 0) { as_bad (_("powerpc_operands[%d] duplicates powerpc_operands[%d]"), j, i); bad_insn = TRUE; } } } op_end = powerpc_opcodes + powerpc_num_opcodes; for (op = powerpc_opcodes; op < op_end; op++) { if (ENABLE_CHECKING) { const unsigned char *o; unsigned long omask = op->mask; if (op != powerpc_opcodes) { /* The major opcodes had better be sorted. Code in the disassembler assumes the insns are sorted according to major opcode. */ if (PPC_OP (op[0].opcode) < PPC_OP (op[-1].opcode)) { as_bad (_("major opcode is not sorted for %s"), op->name); bad_insn = TRUE; } /* Warn if the table isn't more strictly ordered. Unfortunately it doesn't seem possible to order the table on much more than the major opcode, which makes it difficult to implement a binary search in the disassembler. The problem is that we have multiple ways to disassemble instructions, and we usually want to choose a more specific form (with more bits set in the opcode) than a more general form. eg. all of the following are equivalent: bne label # opcode = 0x40820000, mask = 0xff830003 bf 2,label # opcode = 0x40800000, mask = 0xff800003 bc 4,2,label # opcode = 0x40000000, mask = 0xfc000003 There are also cases where the table needs to be out of order to disassemble the correct instruction for processor variants. eg. "lhae" booke64 insn must be found before "ld" ppc64 insn. */ else if (0) { unsigned long t1 = op[0].opcode; unsigned long t2 = op[-1].opcode; if (((t1 ^ t2) & 0xfc0007ff) == 0 && (t1 & 0xfc0006df) == 0x7c000286) { /* spr field is split. */ t1 = ((t1 & ~0x1ff800) | ((t1 & 0xf800) << 5) | ((t1 & 0x1f0000) >> 5)); t2 = ((t2 & ~0x1ff800) | ((t2 & 0xf800) << 5) | ((t2 & 0x1f0000) >> 5)); } if (t1 < t2) as_warn (_("%s (%08lx %08lx) after %s (%08lx %08lx)"), op[0].name, op[0].opcode, op[0].mask, op[-1].name, op[-1].opcode, op[-1].mask); } } /* The mask had better not trim off opcode bits. */ if ((op->opcode & omask) != op->opcode) { as_bad (_("mask trims opcode bits for %s"), op->name); bad_insn = TRUE; } /* The operands must not overlap the opcode or each other. */ for (o = op->operands; *o; ++o) if (*o >= num_powerpc_operands) { as_bad (_("operand index error for %s"), op->name); bad_insn = TRUE; } else { const struct powerpc_operand *operand = &powerpc_operands[*o]; if (operand->shift >= 0) { unsigned long mask = operand->bitm << operand->shift; if (omask & mask) { as_bad (_("operand %d overlap in %s"), (int) (o - op->operands), op->name); bad_insn = TRUE; } omask |= mask; } } } if ((op->flags & ppc_cpu & ~(PPC_OPCODE_32 | PPC_OPCODE_64)) != 0 && ((op->flags & (PPC_OPCODE_32 | PPC_OPCODE_64)) == 0 || ((op->flags & (PPC_OPCODE_32 | PPC_OPCODE_64)) == (ppc_cpu & (PPC_OPCODE_32 | PPC_OPCODE_64))) || (ppc_cpu & PPC_OPCODE_64_BRIDGE) != 0) /* Certain instructions (eg: extsw) do not exist in the 32-bit BookE instruction set, but they do exist in the 64-bit BookE instruction set, and other PPC instruction sets. Check to see if the opcode has the BOOKE64 flag set. If it does make sure that the target CPU is not the BookE32. */ && ((op->flags & PPC_OPCODE_BOOKE64) == 0 || (ppc_cpu & PPC_OPCODE_BOOKE64) == PPC_OPCODE_BOOKE64 || (ppc_cpu & PPC_OPCODE_BOOKE) == 0) && ((op->flags & (PPC_OPCODE_POWER4 | PPC_OPCODE_NOPOWER4)) == 0 || ((op->flags & PPC_OPCODE_POWER4) == (ppc_cpu & PPC_OPCODE_POWER4))) && ((op->flags & PPC_OPCODE_POWER5) == 0 || ((op->flags & PPC_OPCODE_POWER5) == (ppc_cpu & PPC_OPCODE_POWER5))) && ((op->flags & PPC_OPCODE_POWER6) == 0 || ((op->flags & PPC_OPCODE_POWER6) == (ppc_cpu & PPC_OPCODE_POWER6)))) { const char *retval; retval = hash_insert (ppc_hash, op->name, (void *) op); if (retval != NULL) { /* Ignore Power duplicates for -m601. */ if ((ppc_cpu & PPC_OPCODE_601) != 0 && (op->flags & PPC_OPCODE_POWER) != 0) continue; as_bad (_("duplicate instruction %s"), op->name); bad_insn = TRUE; } } } if ((ppc_cpu & PPC_OPCODE_ANY) != 0) for (op = powerpc_opcodes; op < op_end; op++) hash_insert (ppc_hash, op->name, (void *) op); /* Insert the macros into a hash table. */ ppc_macro_hash = hash_new (); macro_end = powerpc_macros + powerpc_num_macros; for (macro = powerpc_macros; macro < macro_end; macro++) { if ((macro->flags & ppc_cpu) != 0) { const char *retval; retval = hash_insert (ppc_macro_hash, macro->name, (void *) macro); if (retval != (const char *) NULL) { as_bad (_("duplicate macro %s"), macro->name); bad_insn = TRUE; } } } if (bad_insn) abort (); } /* This function is called when the assembler starts up. It is called after the options have been parsed and the output file has been opened. */ void md_begin (void) { ppc_set_cpu (); ppc_cie_data_alignment = ppc_obj64 ? -8 : -4; #ifdef OBJ_ELF /* Set the ELF flags if desired. */ if (ppc_flags && !msolaris) bfd_set_private_flags (stdoutput, ppc_flags); #endif ppc_setup_opcodes (); /* Tell the main code what the endianness is if it is not overridden by the user. */ if (!set_target_endian) { set_target_endian = 1; target_big_endian = PPC_BIG_ENDIAN; } #ifdef OBJ_XCOFF ppc_coff_debug_section = coff_section_from_bfd_index (stdoutput, N_DEBUG); /* Create dummy symbols to serve as initial csects. This forces the text csects to precede the data csects. These symbols will not be output. */ ppc_text_csects = symbol_make ("dummy\001"); symbol_get_tc (ppc_text_csects)->within = ppc_text_csects; ppc_data_csects = symbol_make ("dummy\001"); symbol_get_tc (ppc_data_csects)->within = ppc_data_csects; #endif #ifdef TE_PE ppc_current_section = text_section; ppc_previous_section = 0; #endif } void ppc_cleanup (void) { #ifdef OBJ_ELF if (ppc_apuinfo_list == NULL) return; /* Ok, so write the section info out. We have this layout: byte data what ---- ---- ---- 0 8 length of "APUinfo\0" 4 (n*4) number of APU's (4 bytes each) 8 2 note type 2 12 "APUinfo\0" name 20 APU#1 first APU's info 24 APU#2 second APU's info ... ... */ { char *p; asection *seg = now_seg; subsegT subseg = now_subseg; asection *apuinfo_secp = (asection *) NULL; unsigned int i; /* Create the .PPC.EMB.apuinfo section. */ apuinfo_secp = subseg_new (".PPC.EMB.apuinfo", 0); bfd_set_section_flags (stdoutput, apuinfo_secp, SEC_HAS_CONTENTS | SEC_READONLY); p = frag_more (4); md_number_to_chars (p, (valueT) 8, 4); p = frag_more (4); md_number_to_chars (p, (valueT) ppc_apuinfo_num * 4, 4); p = frag_more (4); md_number_to_chars (p, (valueT) 2, 4); p = frag_more (8); strcpy (p, "APUinfo"); for (i = 0; i < ppc_apuinfo_num; i++) { p = frag_more (4); md_number_to_chars (p, (valueT) ppc_apuinfo_list[i], 4); } frag_align (2, 0, 0); /* We probably can't restore the current segment, for there likely isn't one yet... */ if (seg && subseg) subseg_set (seg, subseg); } #endif } /* Insert an operand value into an instruction. */ static unsigned long ppc_insert_operand (unsigned long insn, const struct powerpc_operand *operand, offsetT val, unsigned long ppc_cpu, char *file, unsigned int line) { long min, max, right; max = operand->bitm; right = max & -max; min = 0; if ((operand->flags & PPC_OPERAND_SIGNED) != 0) { if ((operand->flags & PPC_OPERAND_SIGNOPT) == 0) max = (max >> 1) & -right; min = ~max & -right; } if ((operand->flags & PPC_OPERAND_PLUS1) != 0) max++; if ((operand->flags & PPC_OPERAND_NEGATIVE) != 0) { long tmp = min; min = -max; max = -tmp; } if (min <= max) { /* Some people write constants with the sign extension done by hand but only up to 32 bits. This shouldn't really be valid, but, to permit this code to assemble on a 64-bit host, we sign extend the 32-bit value to 64 bits if so doing makes the value valid. */ if (val > max && (offsetT) (val - 0x80000000 - 0x80000000) >= min && (offsetT) (val - 0x80000000 - 0x80000000) <= max && ((val - 0x80000000 - 0x80000000) & (right - 1)) == 0) val = val - 0x80000000 - 0x80000000; /* Similarly, people write expressions like ~(1<<15), and expect this to be OK for a 32-bit unsigned value. */ else if (val < min && (offsetT) (val + 0x80000000 + 0x80000000) >= min && (offsetT) (val + 0x80000000 + 0x80000000) <= max && ((val + 0x80000000 + 0x80000000) & (right - 1)) == 0) val = val + 0x80000000 + 0x80000000; else if (val < min || val > max || (val & (right - 1)) != 0) as_bad_value_out_of_range (_("operand"), val, min, max, file, line); } if (operand->insert) { const char *errmsg; errmsg = NULL; insn = (*operand->insert) (insn, (long) val, ppc_cpu, &errmsg); if (errmsg != (const char *) NULL) as_bad_where (file, line, errmsg); } else insn |= ((long) val & operand->bitm) << operand->shift; return insn; } #ifdef OBJ_ELF /* Parse @got, etc. and return the desired relocation. */ static bfd_reloc_code_real_type ppc_elf_suffix (char **str_p, expressionS *exp_p) { struct map_bfd { char *string; unsigned int length : 8; unsigned int valid32 : 1; unsigned int valid64 : 1; unsigned int reloc; }; char ident[20]; char *str = *str_p; char *str2; int ch; int len; const struct map_bfd *ptr; #define MAP(str, reloc) { str, sizeof (str) - 1, 1, 1, reloc } #define MAP32(str, reloc) { str, sizeof (str) - 1, 1, 0, reloc } #define MAP64(str, reloc) { str, sizeof (str) - 1, 0, 1, reloc } static const struct map_bfd mapping[] = { MAP ("l", BFD_RELOC_LO16), MAP ("h", BFD_RELOC_HI16), MAP ("ha", BFD_RELOC_HI16_S), MAP ("brtaken", BFD_RELOC_PPC_B16_BRTAKEN), MAP ("brntaken", BFD_RELOC_PPC_B16_BRNTAKEN), MAP ("got", BFD_RELOC_16_GOTOFF), MAP ("got@l", BFD_RELOC_LO16_GOTOFF), MAP ("got@h", BFD_RELOC_HI16_GOTOFF), MAP ("got@ha", BFD_RELOC_HI16_S_GOTOFF), MAP ("plt@l", BFD_RELOC_LO16_PLTOFF), MAP ("plt@h", BFD_RELOC_HI16_PLTOFF), MAP ("plt@ha", BFD_RELOC_HI16_S_PLTOFF), MAP ("copy", BFD_RELOC_PPC_COPY), MAP ("globdat", BFD_RELOC_PPC_GLOB_DAT), MAP ("sectoff", BFD_RELOC_16_BASEREL), MAP ("sectoff@l", BFD_RELOC_LO16_BASEREL), MAP ("sectoff@h", BFD_RELOC_HI16_BASEREL), MAP ("sectoff@ha", BFD_RELOC_HI16_S_BASEREL), MAP ("tls", BFD_RELOC_PPC_TLS), MAP ("dtpmod", BFD_RELOC_PPC_DTPMOD), MAP ("dtprel", BFD_RELOC_PPC_DTPREL), MAP ("dtprel@l", BFD_RELOC_PPC_DTPREL16_LO), MAP ("dtprel@h", BFD_RELOC_PPC_DTPREL16_HI), MAP ("dtprel@ha", BFD_RELOC_PPC_DTPREL16_HA), MAP ("tprel", BFD_RELOC_PPC_TPREL), MAP ("tprel@l", BFD_RELOC_PPC_TPREL16_LO), MAP ("tprel@h", BFD_RELOC_PPC_TPREL16_HI), MAP ("tprel@ha", BFD_RELOC_PPC_TPREL16_HA), MAP ("got@tlsgd", BFD_RELOC_PPC_GOT_TLSGD16), MAP ("got@tlsgd@l", BFD_RELOC_PPC_GOT_TLSGD16_LO), MAP ("got@tlsgd@h", BFD_RELOC_PPC_GOT_TLSGD16_HI), MAP ("got@tlsgd@ha", BFD_RELOC_PPC_GOT_TLSGD16_HA), MAP ("got@tlsld", BFD_RELOC_PPC_GOT_TLSLD16), MAP ("got@tlsld@l", BFD_RELOC_PPC_GOT_TLSLD16_LO), MAP ("got@tlsld@h", BFD_RELOC_PPC_GOT_TLSLD16_HI), MAP ("got@tlsld@ha", BFD_RELOC_PPC_GOT_TLSLD16_HA), MAP ("got@dtprel", BFD_RELOC_PPC_GOT_DTPREL16), MAP ("got@dtprel@l", BFD_RELOC_PPC_GOT_DTPREL16_LO), MAP ("got@dtprel@h", BFD_RELOC_PPC_GOT_DTPREL16_HI), MAP ("got@dtprel@ha", BFD_RELOC_PPC_GOT_DTPREL16_HA), MAP ("got@tprel", BFD_RELOC_PPC_GOT_TPREL16), MAP ("got@tprel@l", BFD_RELOC_PPC_GOT_TPREL16_LO), MAP ("got@tprel@h", BFD_RELOC_PPC_GOT_TPREL16_HI), MAP ("got@tprel@ha", BFD_RELOC_PPC_GOT_TPREL16_HA), MAP32 ("fixup", BFD_RELOC_CTOR), MAP32 ("plt", BFD_RELOC_24_PLT_PCREL), MAP32 ("pltrel24", BFD_RELOC_24_PLT_PCREL), MAP32 ("local24pc", BFD_RELOC_PPC_LOCAL24PC), MAP32 ("local", BFD_RELOC_PPC_LOCAL24PC), MAP32 ("pltrel", BFD_RELOC_32_PLT_PCREL), MAP32 ("sdarel", BFD_RELOC_GPREL16), MAP32 ("naddr", BFD_RELOC_PPC_EMB_NADDR32), MAP32 ("naddr16", BFD_RELOC_PPC_EMB_NADDR16), MAP32 ("naddr@l", BFD_RELOC_PPC_EMB_NADDR16_LO), MAP32 ("naddr@h", BFD_RELOC_PPC_EMB_NADDR16_HI), MAP32 ("naddr@ha", BFD_RELOC_PPC_EMB_NADDR16_HA), MAP32 ("sdai16", BFD_RELOC_PPC_EMB_SDAI16), MAP32 ("sda2rel", BFD_RELOC_PPC_EMB_SDA2REL), MAP32 ("sda2i16", BFD_RELOC_PPC_EMB_SDA2I16), MAP32 ("sda21", BFD_RELOC_PPC_EMB_SDA21), MAP32 ("mrkref", BFD_RELOC_PPC_EMB_MRKREF), MAP32 ("relsect", BFD_RELOC_PPC_EMB_RELSEC16), MAP32 ("relsect@l", BFD_RELOC_PPC_EMB_RELST_LO), MAP32 ("relsect@h", BFD_RELOC_PPC_EMB_RELST_HI), MAP32 ("relsect@ha", BFD_RELOC_PPC_EMB_RELST_HA), MAP32 ("bitfld", BFD_RELOC_PPC_EMB_BIT_FLD), MAP32 ("relsda", BFD_RELOC_PPC_EMB_RELSDA), MAP32 ("xgot", BFD_RELOC_PPC_TOC16), MAP64 ("higher", BFD_RELOC_PPC64_HIGHER), MAP64 ("highera", BFD_RELOC_PPC64_HIGHER_S), MAP64 ("highest", BFD_RELOC_PPC64_HIGHEST), MAP64 ("highesta", BFD_RELOC_PPC64_HIGHEST_S), MAP64 ("tocbase", BFD_RELOC_PPC64_TOC), MAP64 ("toc", BFD_RELOC_PPC_TOC16), MAP64 ("toc@l", BFD_RELOC_PPC64_TOC16_LO), MAP64 ("toc@h", BFD_RELOC_PPC64_TOC16_HI), MAP64 ("toc@ha", BFD_RELOC_PPC64_TOC16_HA), MAP64 ("dtprel@higher", BFD_RELOC_PPC64_DTPREL16_HIGHER), MAP64 ("dtprel@highera", BFD_RELOC_PPC64_DTPREL16_HIGHERA), MAP64 ("dtprel@highest", BFD_RELOC_PPC64_DTPREL16_HIGHEST), MAP64 ("dtprel@highesta", BFD_RELOC_PPC64_DTPREL16_HIGHESTA), MAP64 ("tprel@higher", BFD_RELOC_PPC64_TPREL16_HIGHER), MAP64 ("tprel@highera", BFD_RELOC_PPC64_TPREL16_HIGHERA), MAP64 ("tprel@highest", BFD_RELOC_PPC64_TPREL16_HIGHEST), MAP64 ("tprel@highesta", BFD_RELOC_PPC64_TPREL16_HIGHESTA), { (char *) 0, 0, 0, 0, BFD_RELOC_UNUSED } }; if (*str++ != '@') return BFD_RELOC_UNUSED; for (ch = *str, str2 = ident; (str2 < ident + sizeof (ident) - 1 && (ISALNUM (ch) || ch == '@')); ch = *++str) { *str2++ = TOLOWER (ch); } *str2 = '\0'; len = str2 - ident; ch = ident[0]; for (ptr = &mapping[0]; ptr->length > 0; ptr++) if (ch == ptr->string[0] && len == ptr->length && memcmp (ident, ptr->string, ptr->length) == 0 && (ppc_obj64 ? ptr->valid64 : ptr->valid32)) { int reloc = ptr->reloc; if (!ppc_obj64) if (exp_p->X_add_number != 0 && (reloc == (int) BFD_RELOC_16_GOTOFF || reloc == (int) BFD_RELOC_LO16_GOTOFF || reloc == (int) BFD_RELOC_HI16_GOTOFF || reloc == (int) BFD_RELOC_HI16_S_GOTOFF)) as_warn (_("identifier+constant@got means identifier@got+constant")); /* Now check for identifier@suffix+constant. */ if (*str == '-' || *str == '+') { char *orig_line = input_line_pointer; expressionS new_exp; input_line_pointer = str; expression (&new_exp); if (new_exp.X_op == O_constant) { exp_p->X_add_number += new_exp.X_add_number; str = input_line_pointer; } if (&input_line_pointer != str_p) input_line_pointer = orig_line; } *str_p = str; if (reloc == (int) BFD_RELOC_PPC64_TOC && exp_p->X_op == O_symbol && strcmp (S_GET_NAME (exp_p->X_add_symbol), ".TOC.") == 0) { /* Change the symbol so that the dummy .TOC. symbol can be omitted from the object file. */ exp_p->X_add_symbol = &abs_symbol; } return (bfd_reloc_code_real_type) reloc; } return BFD_RELOC_UNUSED; } /* Like normal .long/.short/.word, except support @got, etc. Clobbers input_line_pointer, checks end-of-line. */ static void ppc_elf_cons (int nbytes /* 1=.byte, 2=.word, 4=.long, 8=.llong */) { expressionS exp; bfd_reloc_code_real_type reloc; if (is_it_end_of_statement ()) { demand_empty_rest_of_line (); return; } do { expression (&exp); if (exp.X_op == O_symbol && *input_line_pointer == '@' && (reloc = ppc_elf_suffix (&input_line_pointer, &exp)) != BFD_RELOC_UNUSED) { reloc_howto_type *reloc_howto; int size; reloc_howto = bfd_reloc_type_lookup (stdoutput, reloc); size = bfd_get_reloc_size (reloc_howto); if (size > nbytes) { as_bad (_("%s relocations do not fit in %d bytes\n"), reloc_howto->name, nbytes); } else { char *p; int offset; p = frag_more (nbytes); offset = 0; if (target_big_endian) offset = nbytes - size; fix_new_exp (frag_now, p - frag_now->fr_literal + offset, size, &exp, 0, reloc); } } else emit_expr (&exp, (unsigned int) nbytes); } while (*input_line_pointer++ == ','); /* Put terminator back into stream. */ input_line_pointer--; demand_empty_rest_of_line (); } /* Solaris pseduo op to change to the .rodata section. */ static void ppc_elf_rdata (int xxx) { char *save_line = input_line_pointer; static char section[] = ".rodata\n"; /* Just pretend this is .section .rodata */ input_line_pointer = section; obj_elf_section (xxx); input_line_pointer = save_line; } /* Pseudo op to make file scope bss items. */ static void ppc_elf_lcomm (int xxx ATTRIBUTE_UNUSED) { char *name; char c; char *p; offsetT size; symbolS *symbolP; offsetT align; segT old_sec; int old_subsec; char *pfrag; int align2; name = input_line_pointer; c = get_symbol_end (); /* just after name is now '\0'. */ p = input_line_pointer; *p = c; SKIP_WHITESPACE (); if (*input_line_pointer != ',') { as_bad (_("Expected comma after symbol-name: rest of line ignored.")); ignore_rest_of_line (); return; } input_line_pointer++; /* skip ',' */ if ((size = get_absolute_expression ()) < 0) { as_warn (_(".COMMon length (%ld.) <0! Ignored."), (long) size); ignore_rest_of_line (); return; } /* The third argument to .lcomm is the alignment. */ if (*input_line_pointer != ',') align = 8; else { ++input_line_pointer; align = get_absolute_expression (); if (align <= 0) { as_warn (_("ignoring bad alignment")); align = 8; } } *p = 0; symbolP = symbol_find_or_make (name); *p = c; if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP)) { as_bad (_("Ignoring attempt to re-define symbol `%s'."), S_GET_NAME (symbolP)); ignore_rest_of_line (); return; } if (S_GET_VALUE (symbolP) && S_GET_VALUE (symbolP) != (valueT) size) { as_bad (_("Length of .lcomm \"%s\" is already %ld. Not changed to %ld."), S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), (long) size); ignore_rest_of_line (); return; } /* Allocate_bss. */ old_sec = now_seg; old_subsec = now_subseg; if (align) { /* Convert to a power of 2 alignment. */ for (align2 = 0; (align & 1) == 0; align >>= 1, ++align2); if (align != 1) { as_bad (_("Common alignment not a power of 2")); ignore_rest_of_line (); return; } } else align2 = 0; record_alignment (bss_section, align2); subseg_set (bss_section, 0); if (align2) frag_align (align2, 0, 0); if (S_GET_SEGMENT (symbolP) == bss_section) symbol_get_frag (symbolP)->fr_symbol = 0; symbol_set_frag (symbolP, frag_now); pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP, size, (char *) 0); *pfrag = 0; S_SET_SIZE (symbolP, size); S_SET_SEGMENT (symbolP, bss_section); subseg_set (old_sec, old_subsec); demand_empty_rest_of_line (); } /* Validate any relocations emitted for -mrelocatable, possibly adding fixups for word relocations in writable segments, so we can adjust them at runtime. */ static void ppc_elf_validate_fix (fixS *fixp, segT seg) { if (fixp->fx_done || fixp->fx_pcrel) return; switch (shlib) { case SHLIB_NONE: case SHLIB_PIC: return; case SHLIB_MRELOCATABLE: if (fixp->fx_r_type <= BFD_RELOC_UNUSED && fixp->fx_r_type != BFD_RELOC_16_GOTOFF && fixp->fx_r_type != BFD_RELOC_HI16_GOTOFF && fixp->fx_r_type != BFD_RELOC_LO16_GOTOFF && fixp->fx_r_type != BFD_RELOC_HI16_S_GOTOFF && fixp->fx_r_type != BFD_RELOC_16_BASEREL && fixp->fx_r_type != BFD_RELOC_LO16_BASEREL && fixp->fx_r_type != BFD_RELOC_HI16_BASEREL && fixp->fx_r_type != BFD_RELOC_HI16_S_BASEREL && (seg->flags & SEC_LOAD) != 0 && strcmp (segment_name (seg), ".got2") != 0 && strcmp (segment_name (seg), ".dtors") != 0 && strcmp (segment_name (seg), ".ctors") != 0 && strcmp (segment_name (seg), ".fixup") != 0 && strcmp (segment_name (seg), ".gcc_except_table") != 0 && strcmp (segment_name (seg), ".eh_frame") != 0 && strcmp (segment_name (seg), ".ex_shared") != 0) { if ((seg->flags & (SEC_READONLY | SEC_CODE)) != 0 || fixp->fx_r_type != BFD_RELOC_CTOR) { as_bad_where (fixp->fx_file, fixp->fx_line, _("Relocation cannot be done when using -mrelocatable")); } } return; } } /* Prevent elf_frob_file_before_adjust removing a weak undefined function descriptor sym if the corresponding code sym is used. */ void ppc_frob_file_before_adjust (void) { symbolS *symp; asection *toc; if (!ppc_obj64) return; for (symp = symbol_rootP; symp; symp = symbol_next (symp)) { const char *name; char *dotname; symbolS *dotsym; size_t len; name = S_GET_NAME (symp); if (name[0] == '.') continue; if (! S_IS_WEAK (symp) || S_IS_DEFINED (symp)) continue; len = strlen (name) + 1; dotname = xmalloc (len + 1); dotname[0] = '.'; memcpy (dotname + 1, name, len); dotsym = symbol_find_noref (dotname, 1); free (dotname); if (dotsym != NULL && (symbol_used_p (dotsym) || symbol_used_in_reloc_p (dotsym))) symbol_mark_used (symp); } toc = bfd_get_section_by_name (stdoutput, ".toc"); if (toc != NULL && bfd_section_size (stdoutput, toc) > 0x10000) as_warn (_("TOC section size exceeds 64k")); /* Don't emit .TOC. symbol. */ symp = symbol_find (".TOC."); if (symp != NULL) symbol_remove (symp, &symbol_rootP, &symbol_lastP); } #endif /* OBJ_ELF */ #ifdef TE_PE /* * Summary of parse_toc_entry. * * in: Input_line_pointer points to the '[' in one of: * * [toc] [tocv] [toc32] [toc64] * * Anything else is an error of one kind or another. * * out: * return value: success or failure * toc_kind: kind of toc reference * input_line_pointer: * success: first char after the ']' * failure: unchanged * * settings: * * [toc] - rv == success, toc_kind = default_toc * [tocv] - rv == success, toc_kind = data_in_toc * [toc32] - rv == success, toc_kind = must_be_32 * [toc64] - rv == success, toc_kind = must_be_64 * */ enum toc_size_qualifier { default_toc, /* The toc cell constructed should be the system default size */ data_in_toc, /* This is a direct reference to a toc cell */ must_be_32, /* The toc cell constructed must be 32 bits wide */ must_be_64 /* The toc cell constructed must be 64 bits wide */ }; static int parse_toc_entry (enum toc_size_qualifier *toc_kind) { char *start; char *toc_spec; char c; enum toc_size_qualifier t; /* Save the input_line_pointer. */ start = input_line_pointer; /* Skip over the '[' , and whitespace. */ ++input_line_pointer; SKIP_WHITESPACE (); /* Find the spelling of the operand. */ toc_spec = input_line_pointer; c = get_symbol_end (); if (strcmp (toc_spec, "toc") == 0) { t = default_toc; } else if (strcmp (toc_spec, "tocv") == 0) { t = data_in_toc; } else if (strcmp (toc_spec, "toc32") == 0) { t = must_be_32; } else if (strcmp (toc_spec, "toc64") == 0) { t = must_be_64; } else { as_bad (_("syntax error: invalid toc specifier `%s'"), toc_spec); *input_line_pointer = c; input_line_pointer = start; return 0; } /* Now find the ']'. */ *input_line_pointer = c; SKIP_WHITESPACE (); /* leading whitespace could be there. */ c = *input_line_pointer++; /* input_line_pointer->past char in c. */ if (c != ']') { as_bad (_("syntax error: expected `]', found `%c'"), c); input_line_pointer = start; return 0; } *toc_kind = t; return 1; } #endif #ifdef OBJ_ELF #define APUID(a,v) ((((a) & 0xffff) << 16) | ((v) & 0xffff)) static void ppc_apuinfo_section_add (unsigned int apu, unsigned int version) { unsigned int i; /* Check we don't already exist. */ for (i = 0; i < ppc_apuinfo_num; i++) if (ppc_apuinfo_list[i] == APUID (apu, version)) return; if (ppc_apuinfo_num == ppc_apuinfo_num_alloc) { if (ppc_apuinfo_num_alloc == 0) { ppc_apuinfo_num_alloc = 4; ppc_apuinfo_list = (unsigned long *) xmalloc (sizeof (unsigned long) * ppc_apuinfo_num_alloc); } else { ppc_apuinfo_num_alloc += 4; ppc_apuinfo_list = (unsigned long *) xrealloc (ppc_apuinfo_list, sizeof (unsigned long) * ppc_apuinfo_num_alloc); } } ppc_apuinfo_list[ppc_apuinfo_num++] = APUID (apu, version); } #undef APUID #endif /* We need to keep a list of fixups. We can't simply generate them as we go, because that would require us to first create the frag, and that would screw up references to ``.''. */ struct ppc_fixup { expressionS exp; int opindex; bfd_reloc_code_real_type reloc; }; #define MAX_INSN_FIXUPS (5) /* This routine is called for each instruction to be assembled. */ void md_assemble (char *str) { char *s; const struct powerpc_opcode *opcode; unsigned long insn; const unsigned char *opindex_ptr; int skip_optional; int need_paren; int next_opindex; struct ppc_fixup fixups[MAX_INSN_FIXUPS]; int fc; char *f; int addr_mod; int i; #ifdef OBJ_ELF bfd_reloc_code_real_type reloc; #endif /* Get the opcode. */ for (s = str; *s != '\0' && ! ISSPACE (*s); s++) ; if (*s != '\0') *s++ = '\0'; /* Look up the opcode in the hash table. */ opcode = (const struct powerpc_opcode *) hash_find (ppc_hash, str); if (opcode == (const struct powerpc_opcode *) NULL) { const struct powerpc_macro *macro; macro = (const struct powerpc_macro *) hash_find (ppc_macro_hash, str); if (macro == (const struct powerpc_macro *) NULL) as_bad (_("Unrecognized opcode: `%s'"), str); else ppc_macro (s, macro); return; } insn = opcode->opcode; str = s; while (ISSPACE (*str)) ++str; /* PowerPC operands are just expressions. The only real issue is that a few operand types are optional. All cases which might use an optional operand separate the operands only with commas (in some cases parentheses are used, as in ``lwz 1,0(1)'' but such cases never have optional operands). Most instructions with optional operands have only one. Those that have more than one optional operand can take either all their operands or none. So, before we start seriously parsing the operands, we check to see if we have optional operands, and if we do, we count the number of commas to see which operands have been omitted. */ skip_optional = 0; for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr++) { const struct powerpc_operand *operand; operand = &powerpc_operands[*opindex_ptr]; if ((operand->flags & PPC_OPERAND_OPTIONAL) != 0) { unsigned int opcount; unsigned int num_operands_expected; unsigned int i; /* There is an optional operand. Count the number of commas in the input line. */ if (*str == '\0') opcount = 0; else { opcount = 1; s = str; while ((s = strchr (s, ',')) != (char *) NULL) { ++opcount; ++s; } } /* Compute the number of expected operands. Do not count fake operands. */ for (num_operands_expected = 0, i = 0; opcode->operands[i]; i ++) if ((powerpc_operands [opcode->operands[i]].flags & PPC_OPERAND_FAKE) == 0) ++ num_operands_expected; /* If there are fewer operands in the line then are called for by the instruction, we want to skip the optional operands. */ if (opcount < num_operands_expected) skip_optional = 1; break; } } /* Gather the operands. */ need_paren = 0; next_opindex = 0; fc = 0; for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr++) { const struct powerpc_operand *operand; const char *errmsg; char *hold; expressionS ex; char endc; if (next_opindex == 0) operand = &powerpc_operands[*opindex_ptr]; else { operand = &powerpc_operands[next_opindex]; next_opindex = 0; } errmsg = NULL; /* If this is a fake operand, then we do not expect anything from the input. */ if ((operand->flags & PPC_OPERAND_FAKE) != 0) { insn = (*operand->insert) (insn, 0L, ppc_cpu, &errmsg); if (errmsg != (const char *) NULL) as_bad (errmsg); continue; } /* If this is an optional operand, and we are skipping it, just insert a zero. */ if ((operand->flags & PPC_OPERAND_OPTIONAL) != 0 && skip_optional) { if (operand->insert) { insn = (*operand->insert) (insn, 0L, ppc_cpu, &errmsg); if (errmsg != (const char *) NULL) as_bad (errmsg); } if ((operand->flags & PPC_OPERAND_NEXT) != 0) next_opindex = *opindex_ptr + 1; continue; } /* Gather the operand. */ hold = input_line_pointer; input_line_pointer = str; #ifdef TE_PE if (*input_line_pointer == '[') { /* We are expecting something like the second argument here: * * lwz r4,[toc].GS.0.static_int(rtoc) * ^^^^^^^^^^^^^^^^^^^^^^^^^^^ * The argument following the `]' must be a symbol name, and the * register must be the toc register: 'rtoc' or '2' * * The effect is to 0 as the displacement field * in the instruction, and issue an IMAGE_REL_PPC_TOCREL16 (or * the appropriate variation) reloc against it based on the symbol. * The linker will build the toc, and insert the resolved toc offset. * * Note: * o The size of the toc entry is currently assumed to be * 32 bits. This should not be assumed to be a hard coded * number. * o In an effort to cope with a change from 32 to 64 bits, * there are also toc entries that are specified to be * either 32 or 64 bits: * lwz r4,[toc32].GS.0.static_int(rtoc) * lwz r4,[toc64].GS.0.static_int(rtoc) * These demand toc entries of the specified size, and the * instruction probably requires it. */ int valid_toc; enum toc_size_qualifier toc_kind; bfd_reloc_code_real_type toc_reloc; /* Go parse off the [tocXX] part. */ valid_toc = parse_toc_entry (&toc_kind); if (!valid_toc) { /* Note: message has already been issued. FIXME: what sort of recovery should we do? demand_rest_of_line (); return; ? */ } /* Now get the symbol following the ']'. */ expression (&ex); switch (toc_kind) { case default_toc: /* In this case, we may not have seen the symbol yet, since it is allowed to appear on a .extern or .globl or just be a label in the .data section. */ toc_reloc = BFD_RELOC_PPC_TOC16; break; case data_in_toc: /* 1. The symbol must be defined and either in the toc section, or a global. 2. The reloc generated must have the TOCDEFN flag set in upper bit mess of the reloc type. FIXME: It's a little confusing what the tocv qualifier can be used for. At the very least, I've seen three uses, only one of which I'm sure I can explain. */ if (ex.X_op == O_symbol) { assert (ex.X_add_symbol != NULL); if (symbol_get_bfdsym (ex.X_add_symbol)->section != tocdata_section) { as_bad (_("[tocv] symbol is not a toc symbol")); } } toc_reloc = BFD_RELOC_PPC_TOC16; break; case must_be_32: /* FIXME: these next two specifically specify 32/64 bit toc entries. We don't support them today. Is this the right way to say that? */ toc_reloc = BFD_RELOC_UNUSED; as_bad (_("Unimplemented toc32 expression modifier")); break; case must_be_64: /* FIXME: see above. */ toc_reloc = BFD_RELOC_UNUSED; as_bad (_("Unimplemented toc64 expression modifier")); break; default: fprintf (stderr, _("Unexpected return value [%d] from parse_toc_entry!\n"), toc_kind); abort (); break; } /* We need to generate a fixup for this expression. */ if (fc >= MAX_INSN_FIXUPS) as_fatal (_("too many fixups")); fixups[fc].reloc = toc_reloc; fixups[fc].exp = ex; fixups[fc].opindex = *opindex_ptr; ++fc; /* Ok. We've set up the fixup for the instruction. Now make it look like the constant 0 was found here. */ ex.X_unsigned = 1; ex.X_op = O_constant; ex.X_add_number = 0; ex.X_add_symbol = NULL; ex.X_op_symbol = NULL; } else #endif /* TE_PE */ { if ((reg_names_p && (operand->flags & PPC_OPERAND_CR) != 0) || !register_name (&ex)) { char save_lex = lex_type['%']; if ((operand->flags & PPC_OPERAND_CR) != 0) { cr_operand = TRUE; lex_type['%'] |= LEX_BEGIN_NAME; } expression (&ex); cr_operand = FALSE; lex_type['%'] = save_lex; } } str = input_line_pointer; input_line_pointer = hold; if (ex.X_op == O_illegal) as_bad (_("illegal operand")); else if (ex.X_op == O_absent) as_bad (_("missing operand")); else if (ex.X_op == O_register) { insn = ppc_insert_operand (insn, operand, ex.X_add_number, ppc_cpu, (char *) NULL, 0); } else if (ex.X_op == O_constant) { #ifdef OBJ_ELF /* Allow @HA, @L, @H on constants. */ char *orig_str = str; if ((reloc = ppc_elf_suffix (&str, &ex)) != BFD_RELOC_UNUSED) switch (reloc) { default: str = orig_str; break; case BFD_RELOC_LO16: /* X_unsigned is the default, so if the user has done something which cleared it, we always produce a signed value. */ if (ex.X_unsigned && ! (operand->flags & PPC_OPERAND_SIGNED)) ex.X_add_number &= 0xffff; else ex.X_add_number = SEX16 (ex.X_add_number); break; case BFD_RELOC_HI16: if (ex.X_unsigned && ! (operand->flags & PPC_OPERAND_SIGNED)) ex.X_add_number = PPC_HI (ex.X_add_number); else ex.X_add_number = SEX16 (PPC_HI (ex.X_add_number)); break; case BFD_RELOC_HI16_S: if (ex.X_unsigned && ! (operand->flags & PPC_OPERAND_SIGNED)) ex.X_add_number = PPC_HA (ex.X_add_number); else ex.X_add_number = SEX16 (PPC_HA (ex.X_add_number)); break; case BFD_RELOC_PPC64_HIGHER: if (ex.X_unsigned && ! (operand->flags & PPC_OPERAND_SIGNED)) ex.X_add_number = PPC_HIGHER (ex.X_add_number); else ex.X_add_number = SEX16 (PPC_HIGHER (ex.X_add_number)); break; case BFD_RELOC_PPC64_HIGHER_S: if (ex.X_unsigned && ! (operand->flags & PPC_OPERAND_SIGNED)) ex.X_add_number = PPC_HIGHERA (ex.X_add_number); else ex.X_add_number = SEX16 (PPC_HIGHERA (ex.X_add_number)); break; case BFD_RELOC_PPC64_HIGHEST: if (ex.X_unsigned && ! (operand->flags & PPC_OPERAND_SIGNED)) ex.X_add_number = PPC_HIGHEST (ex.X_add_number); else ex.X_add_number = SEX16 (PPC_HIGHEST (ex.X_add_number)); break; case BFD_RELOC_PPC64_HIGHEST_S: if (ex.X_unsigned && ! (operand->flags & PPC_OPERAND_SIGNED)) ex.X_add_number = PPC_HIGHESTA (ex.X_add_number); else ex.X_add_number = SEX16 (PPC_HIGHESTA (ex.X_add_number)); break; } #endif /* OBJ_ELF */ insn = ppc_insert_operand (insn, operand, ex.X_add_number, ppc_cpu, (char *) NULL, 0); } #ifdef OBJ_ELF else if ((reloc = ppc_elf_suffix (&str, &ex)) != BFD_RELOC_UNUSED) { /* Some TLS tweaks. */ switch (reloc) { default: break; case BFD_RELOC_PPC_TLS: insn = ppc_insert_operand (insn, operand, ppc_obj64 ? 13 : 2, ppc_cpu, (char *) NULL, 0); break; /* We'll only use the 32 (or 64) bit form of these relocations in constants. Instructions get the 16 bit form. */ case BFD_RELOC_PPC_DTPREL: reloc = BFD_RELOC_PPC_DTPREL16; break; case BFD_RELOC_PPC_TPREL: reloc = BFD_RELOC_PPC_TPREL16; break; } /* For the absolute forms of branches, convert the PC relative form back into the absolute. */ if ((operand->flags & PPC_OPERAND_ABSOLUTE) != 0) { switch (reloc) { case BFD_RELOC_PPC_B26: reloc = BFD_RELOC_PPC_BA26; break; case BFD_RELOC_PPC_B16: reloc = BFD_RELOC_PPC_BA16; break; case BFD_RELOC_PPC_B16_BRTAKEN: reloc = BFD_RELOC_PPC_BA16_BRTAKEN; break; case BFD_RELOC_PPC_B16_BRNTAKEN: reloc = BFD_RELOC_PPC_BA16_BRNTAKEN; break; default: break; } } if (ppc_obj64 && (operand->flags & (PPC_OPERAND_DS | PPC_OPERAND_DQ)) != 0) { switch (reloc) { case BFD_RELOC_16: reloc = BFD_RELOC_PPC64_ADDR16_DS; break; case BFD_RELOC_LO16: reloc = BFD_RELOC_PPC64_ADDR16_LO_DS; break; case BFD_RELOC_16_GOTOFF: reloc = BFD_RELOC_PPC64_GOT16_DS; break; case BFD_RELOC_LO16_GOTOFF: reloc = BFD_RELOC_PPC64_GOT16_LO_DS; break; case BFD_RELOC_LO16_PLTOFF: reloc = BFD_RELOC_PPC64_PLT16_LO_DS; break; case BFD_RELOC_16_BASEREL: reloc = BFD_RELOC_PPC64_SECTOFF_DS; break; case BFD_RELOC_LO16_BASEREL: reloc = BFD_RELOC_PPC64_SECTOFF_LO_DS; break; case BFD_RELOC_PPC_TOC16: reloc = BFD_RELOC_PPC64_TOC16_DS; break; case BFD_RELOC_PPC64_TOC16_LO: reloc = BFD_RELOC_PPC64_TOC16_LO_DS; break; case BFD_RELOC_PPC64_PLTGOT16: reloc = BFD_RELOC_PPC64_PLTGOT16_DS; break; case BFD_RELOC_PPC64_PLTGOT16_LO: reloc = BFD_RELOC_PPC64_PLTGOT16_LO_DS; break; case BFD_RELOC_PPC_DTPREL16: reloc = BFD_RELOC_PPC64_DTPREL16_DS; break; case BFD_RELOC_PPC_DTPREL16_LO: reloc = BFD_RELOC_PPC64_DTPREL16_LO_DS; break; case BFD_RELOC_PPC_TPREL16: reloc = BFD_RELOC_PPC64_TPREL16_DS; break; case BFD_RELOC_PPC_TPREL16_LO: reloc = BFD_RELOC_PPC64_TPREL16_LO_DS; break; case BFD_RELOC_PPC_GOT_DTPREL16: case BFD_RELOC_PPC_GOT_DTPREL16_LO: case BFD_RELOC_PPC_GOT_TPREL16: case BFD_RELOC_PPC_GOT_TPREL16_LO: break; default: as_bad (_("unsupported relocation for DS offset field")); break; } } /* We need to generate a fixup for this expression. */ if (fc >= MAX_INSN_FIXUPS) as_fatal (_("too many fixups")); fixups[fc].exp = ex; fixups[fc].opindex = 0; fixups[fc].reloc = reloc; ++fc; } #endif /* OBJ_ELF */ else { /* We need to generate a fixup for this expression. */ if (fc >= MAX_INSN_FIXUPS) as_fatal (_("too many fixups")); fixups[fc].exp = ex; fixups[fc].opindex = *opindex_ptr; fixups[fc].reloc = BFD_RELOC_UNUSED; ++fc; } if (need_paren) { endc = ')'; need_paren = 0; /* If expecting more operands, then we want to see "),". */ if (*str == endc && opindex_ptr[1] != 0) { do ++str; while (ISSPACE (*str)); endc = ','; } } else if ((operand->flags & PPC_OPERAND_PARENS) != 0) { endc = '('; need_paren = 1; } else endc = ','; /* The call to expression should have advanced str past any whitespace. */ if (*str != endc && (endc != ',' || *str != '\0')) { as_bad (_("syntax error; found `%c' but expected `%c'"), *str, endc); break; } if (*str != '\0') ++str; } while (ISSPACE (*str)) ++str; if (*str != '\0') as_bad (_("junk at end of line: `%s'"), str); #ifdef OBJ_ELF /* Do we need/want a APUinfo section? */ if (ppc_cpu & (PPC_OPCODE_SPE | PPC_OPCODE_ISEL | PPC_OPCODE_EFS | PPC_OPCODE_BRLOCK | PPC_OPCODE_PMR | PPC_OPCODE_CACHELCK | PPC_OPCODE_RFMCI)) { /* These are all version "1". */ if (opcode->flags & PPC_OPCODE_SPE) ppc_apuinfo_section_add (PPC_APUINFO_SPE, 1); if (opcode->flags & PPC_OPCODE_ISEL) ppc_apuinfo_section_add (PPC_APUINFO_ISEL, 1); if (opcode->flags & PPC_OPCODE_EFS) ppc_apuinfo_section_add (PPC_APUINFO_EFS, 1); if (opcode->flags & PPC_OPCODE_BRLOCK) ppc_apuinfo_section_add (PPC_APUINFO_BRLOCK, 1); if (opcode->flags & PPC_OPCODE_PMR) ppc_apuinfo_section_add (PPC_APUINFO_PMR, 1); if (opcode->flags & PPC_OPCODE_CACHELCK) ppc_apuinfo_section_add (PPC_APUINFO_CACHELCK, 1); if (opcode->flags & PPC_OPCODE_RFMCI) ppc_apuinfo_section_add (PPC_APUINFO_RFMCI, 1); } #endif /* Write out the instruction. */ f = frag_more (4); addr_mod = frag_now_fix () & 3; if (frag_now->has_code && frag_now->insn_addr != addr_mod) as_bad (_("instruction address is not a multiple of 4")); frag_now->insn_addr = addr_mod; frag_now->has_code = 1; md_number_to_chars (f, insn, 4); #ifdef OBJ_ELF dwarf2_emit_insn (4); #endif /* Create any fixups. At this point we do not use a bfd_reloc_code_real_type, but instead just use the BFD_RELOC_UNUSED plus the operand index. This lets us easily handle fixups for any operand type, although that is admittedly not a very exciting feature. We pick a BFD reloc type in md_apply_fix. */ for (i = 0; i < fc; i++) { const struct powerpc_operand *operand; operand = &powerpc_operands[fixups[i].opindex]; if (fixups[i].reloc != BFD_RELOC_UNUSED) { reloc_howto_type *reloc_howto; int size; int offset; fixS *fixP; reloc_howto = bfd_reloc_type_lookup (stdoutput, fixups[i].reloc); if (!reloc_howto) abort (); size = bfd_get_reloc_size (reloc_howto); offset = target_big_endian ? (4 - size) : 0; if (size < 1 || size > 4) abort (); fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset, size, &fixups[i].exp, reloc_howto->pc_relative, fixups[i].reloc); /* Turn off complaints that the addend is too large for things like foo+100000@ha. */ switch (fixups[i].reloc) { case BFD_RELOC_16_GOTOFF: case BFD_RELOC_PPC_TOC16: case BFD_RELOC_LO16: case BFD_RELOC_HI16: case BFD_RELOC_HI16_S: #ifdef OBJ_ELF case BFD_RELOC_PPC64_HIGHER: case BFD_RELOC_PPC64_HIGHER_S: case BFD_RELOC_PPC64_HIGHEST: case BFD_RELOC_PPC64_HIGHEST_S: #endif fixP->fx_no_overflow = 1; break; default: break; } } else fix_new_exp (frag_now, f - frag_now->fr_literal, 4, &fixups[i].exp, (operand->flags & PPC_OPERAND_RELATIVE) != 0, ((bfd_reloc_code_real_type) (fixups[i].opindex + (int) BFD_RELOC_UNUSED))); } } /* Handle a macro. Gather all the operands, transform them as described by the macro, and call md_assemble recursively. All the operands are separated by commas; we don't accept parentheses around operands here. */ static void ppc_macro (char *str, const struct powerpc_macro *macro) { char *operands[10]; unsigned int count; char *s; unsigned int len; const char *format; unsigned int arg; char *send; char *complete; /* Gather the users operands into the operands array. */ count = 0; s = str; while (1) { if (count >= sizeof operands / sizeof operands[0]) break; operands[count++] = s; s = strchr (s, ','); if (s == (char *) NULL) break; *s++ = '\0'; } if (count != macro->operands) { as_bad (_("wrong number of operands")); return; } /* Work out how large the string must be (the size is unbounded because it includes user input). */ len = 0; format = macro->format; while (*format != '\0') { if (*format != '%') { ++len; ++format; } else { arg = strtol (format + 1, &send, 10); know (send != format && arg < count); len += strlen (operands[arg]); format = send; } } /* Put the string together. */ complete = s = (char *) alloca (len + 1); format = macro->format; while (*format != '\0') { if (*format != '%') *s++ = *format++; else { arg = strtol (format + 1, &send, 10); strcpy (s, operands[arg]); s += strlen (s); format = send; } } *s = '\0'; /* Assemble the constructed instruction. */ md_assemble (complete); } #ifdef OBJ_ELF /* For ELF, add support for SHF_EXCLUDE and SHT_ORDERED. */ int ppc_section_letter (int letter, char **ptr_msg) { if (letter == 'e') return SHF_EXCLUDE; *ptr_msg = _("Bad .section directive: want a,e,w,x,M,S,G,T in string"); return -1; } int ppc_section_word (char *str, size_t len) { if (len == 7 && strncmp (str, "exclude", 7) == 0) return SHF_EXCLUDE; return -1; } int ppc_section_type (char *str, size_t len) { if (len == 7 && strncmp (str, "ordered", 7) == 0) return SHT_ORDERED; return -1; } int ppc_section_flags (int flags, int attr, int type) { if (type == SHT_ORDERED) flags |= SEC_ALLOC | SEC_LOAD | SEC_SORT_ENTRIES; if (attr & SHF_EXCLUDE) flags |= SEC_EXCLUDE; return flags; } #endif /* OBJ_ELF */ /* Pseudo-op handling. */ /* The .byte pseudo-op. This is similar to the normal .byte pseudo-op, but it can also take a single ASCII string. */ static void ppc_byte (int ignore ATTRIBUTE_UNUSED) { if (*input_line_pointer != '\"') { cons (1); return; } /* Gather characters. A real double quote is doubled. Unusual characters are not permitted. */ ++input_line_pointer; while (1) { char c; c = *input_line_pointer++; if (c == '\"') { if (*input_line_pointer != '\"') break; ++input_line_pointer; } FRAG_APPEND_1_CHAR (c); } demand_empty_rest_of_line (); } #ifdef OBJ_XCOFF /* XCOFF specific pseudo-op handling. */ /* This is set if we are creating a .stabx symbol, since we don't want to handle symbol suffixes for such symbols. */ static bfd_boolean ppc_stab_symbol; /* The .comm and .lcomm pseudo-ops for XCOFF. XCOFF puts common symbols in the .bss segment as though they were local common symbols, and uses a different smclas. The native Aix 4.3.3 assembler aligns .comm and .lcomm to 4 bytes. */ static void ppc_comm (int lcomm) { asection *current_seg = now_seg; subsegT current_subseg = now_subseg; char *name; char endc; char *end_name; offsetT size; offsetT align; symbolS *lcomm_sym = NULL; symbolS *sym; char *pfrag; name = input_line_pointer; endc = get_symbol_end (); end_name = input_line_pointer; *end_name = endc; if (*input_line_pointer != ',') { as_bad (_("missing size")); ignore_rest_of_line (); return; } ++input_line_pointer; size = get_absolute_expression (); if (size < 0) { as_bad (_("negative size")); ignore_rest_of_line (); return; } if (! lcomm) { /* The third argument to .comm is the alignment. */ if (*input_line_pointer != ',') align = 2; else { ++input_line_pointer; align = get_absolute_expression (); if (align <= 0) { as_warn (_("ignoring bad alignment")); align = 2; } } } else { char *lcomm_name; char lcomm_endc; if (size <= 4) align = 2; else align = 3; /* The third argument to .lcomm appears to be the real local common symbol to create. References to the symbol named in the first argument are turned into references to the third argument. */ if (*input_line_pointer != ',') { as_bad (_("missing real symbol name")); ignore_rest_of_line (); return; } ++input_line_pointer; lcomm_name = input_line_pointer; lcomm_endc = get_symbol_end (); lcomm_sym = symbol_find_or_make (lcomm_name); *input_line_pointer = lcomm_endc; } *end_name = '\0'; sym = symbol_find_or_make (name); *end_name = endc; if (S_IS_DEFINED (sym) || S_GET_VALUE (sym) != 0) { as_bad (_("attempt to redefine symbol")); ignore_rest_of_line (); return; } record_alignment (bss_section, align); if (! lcomm || ! S_IS_DEFINED (lcomm_sym)) { symbolS *def_sym; offsetT def_size; if (! lcomm) { def_sym = sym; def_size = size; S_SET_EXTERNAL (sym); } else { symbol_get_tc (lcomm_sym)->output = 1; def_sym = lcomm_sym; def_size = 0; } subseg_set (bss_section, 1); frag_align (align, 0, 0); symbol_set_frag (def_sym, frag_now); pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, def_sym, def_size, (char *) NULL); *pfrag = 0; S_SET_SEGMENT (def_sym, bss_section); symbol_get_tc (def_sym)->align = align; } else if (lcomm) { /* Align the size of lcomm_sym. */ symbol_get_frag (lcomm_sym)->fr_offset = ((symbol_get_frag (lcomm_sym)->fr_offset + (1 << align) - 1) &~ ((1 << align) - 1)); if (align > symbol_get_tc (lcomm_sym)->align) symbol_get_tc (lcomm_sym)->align = align; } if (lcomm) { /* Make sym an offset from lcomm_sym. */ S_SET_SEGMENT (sym, bss_section); symbol_set_frag (sym, symbol_get_frag (lcomm_sym)); S_SET_VALUE (sym, symbol_get_frag (lcomm_sym)->fr_offset); symbol_get_frag (lcomm_sym)->fr_offset += size; } subseg_set (current_seg, current_subseg); demand_empty_rest_of_line (); } /* The .csect pseudo-op. This switches us into a different subsegment. The first argument is a symbol whose value is the start of the .csect. In COFF, csect symbols get special aux entries defined by the x_csect field of union internal_auxent. The optional second argument is the alignment (the default is 2). */ static void ppc_csect (int ignore ATTRIBUTE_UNUSED) { char *name; char endc; symbolS *sym; offsetT align; name = input_line_pointer; endc = get_symbol_end (); sym = symbol_find_or_make (name); *input_line_pointer = endc; if (S_GET_NAME (sym)[0] == '\0') { /* An unnamed csect is assumed to be [PR]. */ symbol_get_tc (sym)->class = XMC_PR; } align = 2; if (*input_line_pointer == ',') { ++input_line_pointer; align = get_absolute_expression (); } ppc_change_csect (sym, align); demand_empty_rest_of_line (); } /* Change to a different csect. */ static void ppc_change_csect (symbolS *sym, offsetT align) { if (S_IS_DEFINED (sym)) subseg_set (S_GET_SEGMENT (sym), symbol_get_tc (sym)->subseg); else { symbolS **list_ptr; int after_toc; int hold_chunksize; symbolS *list; int is_code; segT sec; /* This is a new csect. We need to look at the symbol class to figure out whether it should go in the text section or the data section. */ after_toc = 0; is_code = 0; switch (symbol_get_tc (sym)->class) { case XMC_PR: case XMC_RO: case XMC_DB: case XMC_GL: case XMC_XO: case XMC_SV: case XMC_TI: case XMC_TB: S_SET_SEGMENT (sym, text_section); symbol_get_tc (sym)->subseg = ppc_text_subsegment; ++ppc_text_subsegment; list_ptr = &ppc_text_csects; is_code = 1; break; case XMC_RW: case XMC_TC0: case XMC_TC: case XMC_DS: case XMC_UA: case XMC_BS: case XMC_UC: if (ppc_toc_csect != NULL && (symbol_get_tc (ppc_toc_csect)->subseg + 1 == ppc_data_subsegment)) after_toc = 1; S_SET_SEGMENT (sym, data_section); symbol_get_tc (sym)->subseg = ppc_data_subsegment; ++ppc_data_subsegment; list_ptr = &ppc_data_csects; break; default: abort (); } /* We set the obstack chunk size to a small value before changing subsegments, so that we don't use a lot of memory space for what may be a small section. */ hold_chunksize = chunksize; chunksize = 64; sec = subseg_new (segment_name (S_GET_SEGMENT (sym)), symbol_get_tc (sym)->subseg); chunksize = hold_chunksize; if (after_toc) ppc_after_toc_frag = frag_now; record_alignment (sec, align); if (is_code) frag_align_code (align, 0); else frag_align (align, 0, 0); symbol_set_frag (sym, frag_now); S_SET_VALUE (sym, (valueT) frag_now_fix ()); symbol_get_tc (sym)->align = align; symbol_get_tc (sym)->output = 1; symbol_get_tc (sym)->within = sym; for (list = *list_ptr; symbol_get_tc (list)->next != (symbolS *) NULL; list = symbol_get_tc (list)->next) ; symbol_get_tc (list)->next = sym; symbol_remove (sym, &symbol_rootP, &symbol_lastP); symbol_append (sym, symbol_get_tc (list)->within, &symbol_rootP, &symbol_lastP); } ppc_current_csect = sym; } /* This function handles the .text and .data pseudo-ops. These pseudo-ops aren't really used by XCOFF; we implement them for the convenience of people who aren't used to XCOFF. */ static void ppc_section (int type) { const char *name; symbolS *sym; if (type == 't') name = ".text[PR]"; else if (type == 'd') name = ".data[RW]"; else abort (); sym = symbol_find_or_make (name); ppc_change_csect (sym, 2); demand_empty_rest_of_line (); } /* This function handles the .section pseudo-op. This is mostly to give an error, since XCOFF only supports .text, .data and .bss, but we do permit the user to name the text or data section. */ static void ppc_named_section (int ignore ATTRIBUTE_UNUSED) { char *user_name; const char *real_name; char c; symbolS *sym; user_name = input_line_pointer; c = get_symbol_end (); if (strcmp (user_name, ".text") == 0) real_name = ".text[PR]"; else if (strcmp (user_name, ".data") == 0) real_name = ".data[RW]"; else { as_bad (_("The XCOFF file format does not support arbitrary sections")); *input_line_pointer = c; ignore_rest_of_line (); return; } *input_line_pointer = c; sym = symbol_find_or_make (real_name); ppc_change_csect (sym, 2); demand_empty_rest_of_line (); } /* The .extern pseudo-op. We create an undefined symbol. */ static void ppc_extern (int ignore ATTRIBUTE_UNUSED) { char *name; char endc; name = input_line_pointer; endc = get_symbol_end (); (void) symbol_find_or_make (name); *input_line_pointer = endc; demand_empty_rest_of_line (); } /* The .lglobl pseudo-op. Keep the symbol in the symbol table. */ static void ppc_lglobl (int ignore ATTRIBUTE_UNUSED) { char *name; char endc; symbolS *sym; name = input_line_pointer; endc = get_symbol_end (); sym = symbol_find_or_make (name); *input_line_pointer = endc; symbol_get_tc (sym)->output = 1; demand_empty_rest_of_line (); } /* The .rename pseudo-op. The RS/6000 assembler can rename symbols, although I don't know why it bothers. */ static void ppc_rename (int ignore ATTRIBUTE_UNUSED) { char *name; char endc; symbolS *sym; int len; name = input_line_pointer; endc = get_symbol_end (); sym = symbol_find_or_make (name); *input_line_pointer = endc; if (*input_line_pointer != ',') { as_bad (_("missing rename string")); ignore_rest_of_line (); return; } ++input_line_pointer; symbol_get_tc (sym)->real_name = demand_copy_C_string (&len); demand_empty_rest_of_line (); } /* The .stabx pseudo-op. This is similar to a normal .stabs pseudo-op, but slightly different. A sample is .stabx "main:F-1",.main,142,0 The first argument is the symbol name to create. The second is the value, and the third is the storage class. The fourth seems to be always zero, and I am assuming it is the type. */ static void ppc_stabx (int ignore ATTRIBUTE_UNUSED) { char *name; int len; symbolS *sym; expressionS exp; name = demand_copy_C_string (&len); if (*input_line_pointer != ',') { as_bad (_("missing value")); return; } ++input_line_pointer; ppc_stab_symbol = TRUE; sym = symbol_make (name); ppc_stab_symbol = FALSE; symbol_get_tc (sym)->real_name = name; (void) expression (&exp); switch (exp.X_op) { case O_illegal: case O_absent: case O_big: as_bad (_("illegal .stabx expression; zero assumed")); exp.X_add_number = 0; /* Fall through. */ case O_constant: S_SET_VALUE (sym, (valueT) exp.X_add_number); symbol_set_frag (sym, &zero_address_frag); break; case O_symbol: if (S_GET_SEGMENT (exp.X_add_symbol) == undefined_section) symbol_set_value_expression (sym, &exp); else { S_SET_VALUE (sym, exp.X_add_number + S_GET_VALUE (exp.X_add_symbol)); symbol_set_frag (sym, symbol_get_frag (exp.X_add_symbol)); } break; default: /* The value is some complex expression. This will probably fail at some later point, but this is probably the right thing to do here. */ symbol_set_value_expression (sym, &exp); break; } S_SET_SEGMENT (sym, ppc_coff_debug_section); symbol_get_bfdsym (sym)->flags |= BSF_DEBUGGING; if (*input_line_pointer != ',') { as_bad (_("missing class")); return; } ++input_line_pointer; S_SET_STORAGE_CLASS (sym, get_absolute_expression ()); if (*input_line_pointer != ',') { as_bad (_("missing type")); return; } ++input_line_pointer; S_SET_DATA_TYPE (sym, get_absolute_expression ()); symbol_get_tc (sym)->output = 1; if (S_GET_STORAGE_CLASS (sym) == C_STSYM) { symbol_get_tc (sym)->within = ppc_current_block; /* In this case : .bs name .stabx "z",arrays_,133,0 .es .comm arrays_,13768,3 resolve_symbol_value will copy the exp's "within" into sym's when the offset is 0. Since this seems to be corner case problem, only do the correction for storage class C_STSYM. A better solution would be to have the tc field updated in ppc_symbol_new_hook. */ if (exp.X_op == O_symbol) { symbol_get_tc (exp.X_add_symbol)->within = ppc_current_block; } } if (exp.X_op != O_symbol || ! S_IS_EXTERNAL (exp.X_add_symbol) || S_GET_SEGMENT (exp.X_add_symbol) != bss_section) ppc_frob_label (sym); else { symbol_remove (sym, &symbol_rootP, &symbol_lastP); symbol_append (sym, exp.X_add_symbol, &symbol_rootP, &symbol_lastP); if (symbol_get_tc (ppc_current_csect)->within == exp.X_add_symbol) symbol_get_tc (ppc_current_csect)->within = sym; } demand_empty_rest_of_line (); } /* The .function pseudo-op. This takes several arguments. The first argument seems to be the external name of the symbol. The second argument seems to be the label for the start of the function. gcc uses the same name for both. I have no idea what the third and fourth arguments are meant to be. The optional fifth argument is an expression for the size of the function. In COFF this symbol gets an aux entry like that used for a csect. */ static void ppc_function (int ignore ATTRIBUTE_UNUSED) { char *name; char endc; char *s; symbolS *ext_sym; symbolS *lab_sym; name = input_line_pointer; endc = get_symbol_end (); /* Ignore any [PR] suffix. */ name = ppc_canonicalize_symbol_name (name); s = strchr (name, '['); if (s != (char *) NULL && strcmp (s + 1, "PR]") == 0) *s = '\0'; ext_sym = symbol_find_or_make (name); *input_line_pointer = endc; if (*input_line_pointer != ',') { as_bad (_("missing symbol name")); ignore_rest_of_line (); return; } ++input_line_pointer; name = input_line_pointer; endc = get_symbol_end (); lab_sym = symbol_find_or_make (name); *input_line_pointer = endc; if (ext_sym != lab_sym) { expressionS exp; exp.X_op = O_symbol; exp.X_add_symbol = lab_sym; exp.X_op_symbol = NULL; exp.X_add_number = 0; exp.X_unsigned = 0; symbol_set_value_expression (ext_sym, &exp); } if (symbol_get_tc (ext_sym)->class == -1) symbol_get_tc (ext_sym)->class = XMC_PR; symbol_get_tc (ext_sym)->output = 1; if (*input_line_pointer == ',') { expressionS ignore; /* Ignore the third argument. */ ++input_line_pointer; expression (&ignore); if (*input_line_pointer == ',') { /* Ignore the fourth argument. */ ++input_line_pointer; expression (&ignore); if (*input_line_pointer == ',') { /* The fifth argument is the function size. */ ++input_line_pointer; symbol_get_tc (ext_sym)->size = symbol_new ("L0\001", absolute_section, (valueT) 0, &zero_address_frag); pseudo_set (symbol_get_tc (ext_sym)->size); } } } S_SET_DATA_TYPE (ext_sym, DT_FCN << N_BTSHFT); SF_SET_FUNCTION (ext_sym); SF_SET_PROCESS (ext_sym); coff_add_linesym (ext_sym); demand_empty_rest_of_line (); } /* The .bf pseudo-op. This is just like a COFF C_FCN symbol named ".bf". If the pseudo op .bi was seen before .bf, patch the .bi sym with the correct line number */ static symbolS *saved_bi_sym = 0; static void ppc_bf (int ignore ATTRIBUTE_UNUSED) { symbolS *sym; sym = symbol_make (".bf"); S_SET_SEGMENT (sym, text_section); symbol_set_frag (sym, frag_now); S_SET_VALUE (sym, frag_now_fix ()); S_SET_STORAGE_CLASS (sym, C_FCN); coff_line_base = get_absolute_expression (); S_SET_NUMBER_AUXILIARY (sym, 1); SA_SET_SYM_LNNO (sym, coff_line_base); /* Line number for bi. */ if (saved_bi_sym) { S_SET_VALUE (saved_bi_sym, coff_n_line_nos); saved_bi_sym = 0; } symbol_get_tc (sym)->output = 1; ppc_frob_label (sym); demand_empty_rest_of_line (); } /* The .ef pseudo-op. This is just like a COFF C_FCN symbol named ".ef", except that the line number is absolute, not relative to the most recent ".bf" symbol. */ static void ppc_ef (int ignore ATTRIBUTE_UNUSED) { symbolS *sym; sym = symbol_make (".ef"); S_SET_SEGMENT (sym, text_section); symbol_set_frag (sym, frag_now); S_SET_VALUE (sym, frag_now_fix ()); S_SET_STORAGE_CLASS (sym, C_FCN); S_SET_NUMBER_AUXILIARY (sym, 1); SA_SET_SYM_LNNO (sym, get_absolute_expression ()); symbol_get_tc (sym)->output = 1; ppc_frob_label (sym); demand_empty_rest_of_line (); } /* The .bi and .ei pseudo-ops. These take a string argument and generates a C_BINCL or C_EINCL symbol, which goes at the start of the symbol list. The value of .bi will be know when the next .bf is encountered. */ static void ppc_biei (int ei) { static symbolS *last_biei; char *name; int len; symbolS *sym; symbolS *look; name = demand_copy_C_string (&len); /* The value of these symbols is actually file offset. Here we set the value to the index into the line number entries. In ppc_frob_symbols we set the fix_line field, which will cause BFD to do the right thing. */ sym = symbol_make (name); /* obj-coff.c currently only handles line numbers correctly in the .text section. */ S_SET_SEGMENT (sym, text_section); S_SET_VALUE (sym, coff_n_line_nos); symbol_get_bfdsym (sym)->flags |= BSF_DEBUGGING; S_SET_STORAGE_CLASS (sym, ei ? C_EINCL : C_BINCL); symbol_get_tc (sym)->output = 1; /* Save bi. */ if (ei) saved_bi_sym = 0; else saved_bi_sym = sym; for (look = last_biei ? last_biei : symbol_rootP; (look != (symbolS *) NULL && (S_GET_STORAGE_CLASS (look) == C_FILE || S_GET_STORAGE_CLASS (look) == C_BINCL || S_GET_STORAGE_CLASS (look) == C_EINCL)); look = symbol_next (look)) ; if (look != (symbolS *) NULL) { symbol_remove (sym, &symbol_rootP, &symbol_lastP); symbol_insert (sym, look, &symbol_rootP, &symbol_lastP); last_biei = sym; } demand_empty_rest_of_line (); } /* The .bs pseudo-op. This generates a C_BSTAT symbol named ".bs". There is one argument, which is a csect symbol. The value of the .bs symbol is the index of this csect symbol. */ static void ppc_bs (int ignore ATTRIBUTE_UNUSED) { char *name; char endc; symbolS *csect; symbolS *sym; if (ppc_current_block != NULL) as_bad (_("nested .bs blocks")); name = input_line_pointer; endc = get_symbol_end (); csect = symbol_find_or_make (name); *input_line_pointer = endc; sym = symbol_make (".bs"); S_SET_SEGMENT (sym, now_seg); S_SET_STORAGE_CLASS (sym, C_BSTAT); symbol_get_bfdsym (sym)->flags |= BSF_DEBUGGING; symbol_get_tc (sym)->output = 1; symbol_get_tc (sym)->within = csect; ppc_frob_label (sym); ppc_current_block = sym; demand_empty_rest_of_line (); } /* The .es pseudo-op. Generate a C_ESTART symbol named .es. */ static void ppc_es (int ignore ATTRIBUTE_UNUSED) { symbolS *sym; if (ppc_current_block == NULL) as_bad (_(".es without preceding .bs")); sym = symbol_make (".es"); S_SET_SEGMENT (sym, now_seg); S_SET_STORAGE_CLASS (sym, C_ESTAT); symbol_get_bfdsym (sym)->flags |= BSF_DEBUGGING; symbol_get_tc (sym)->output = 1; ppc_frob_label (sym); ppc_current_block = NULL; demand_empty_rest_of_line (); } /* The .bb pseudo-op. Generate a C_BLOCK symbol named .bb, with a line number. */ static void ppc_bb (int ignore ATTRIBUTE_UNUSED) { symbolS *sym; sym = symbol_make (".bb"); S_SET_SEGMENT (sym, text_section); symbol_set_frag (sym, frag_now); S_SET_VALUE (sym, frag_now_fix ()); S_SET_STORAGE_CLASS (sym, C_BLOCK); S_SET_NUMBER_AUXILIARY (sym, 1); SA_SET_SYM_LNNO (sym, get_absolute_expression ()); symbol_get_tc (sym)->output = 1; SF_SET_PROCESS (sym); ppc_frob_label (sym); demand_empty_rest_of_line (); } /* The .eb pseudo-op. Generate a C_BLOCK symbol named .eb, with a line number. */ static void ppc_eb (int ignore ATTRIBUTE_UNUSED) { symbolS *sym; sym = symbol_make (".eb"); S_SET_SEGMENT (sym, text_section); symbol_set_frag (sym, frag_now); S_SET_VALUE (sym, frag_now_fix ()); S_SET_STORAGE_CLASS (sym, C_BLOCK); S_SET_NUMBER_AUXILIARY (sym, 1); SA_SET_SYM_LNNO (sym, get_absolute_expression ()); symbol_get_tc (sym)->output = 1; SF_SET_PROCESS (sym); ppc_frob_label (sym); demand_empty_rest_of_line (); } /* The .bc pseudo-op. This just creates a C_BCOMM symbol with a specified name. */ static void ppc_bc (int ignore ATTRIBUTE_UNUSED) { char *name; int len; symbolS *sym; name = demand_copy_C_string (&len); sym = symbol_make (name); S_SET_SEGMENT (sym, ppc_coff_debug_section); symbol_get_bfdsym (sym)->flags |= BSF_DEBUGGING; S_SET_STORAGE_CLASS (sym, C_BCOMM); S_SET_VALUE (sym, 0); symbol_get_tc (sym)->output = 1; ppc_frob_label (sym); demand_empty_rest_of_line (); } /* The .ec pseudo-op. This just creates a C_ECOMM symbol. */ static void ppc_ec (int ignore ATTRIBUTE_UNUSED) { symbolS *sym; sym = symbol_make (".ec"); S_SET_SEGMENT (sym, ppc_coff_debug_section); symbol_get_bfdsym (sym)->flags |= BSF_DEBUGGING; S_SET_STORAGE_CLASS (sym, C_ECOMM); S_SET_VALUE (sym, 0); symbol_get_tc (sym)->output = 1; ppc_frob_label (sym); demand_empty_rest_of_line (); } /* The .toc pseudo-op. Switch to the .toc subsegment. */ static void ppc_toc (int ignore ATTRIBUTE_UNUSED) { if (ppc_toc_csect != (symbolS *) NULL) subseg_set (data_section, symbol_get_tc (ppc_toc_csect)->subseg); else { subsegT subseg; symbolS *sym; symbolS *list; subseg = ppc_data_subsegment; ++ppc_data_subsegment; subseg_new (segment_name (data_section), subseg); ppc_toc_frag = frag_now; sym = symbol_find_or_make ("TOC[TC0]"); symbol_set_frag (sym, frag_now); S_SET_SEGMENT (sym, data_section); S_SET_VALUE (sym, (valueT) frag_now_fix ()); symbol_get_tc (sym)->subseg = subseg; symbol_get_tc (sym)->output = 1; symbol_get_tc (sym)->within = sym; ppc_toc_csect = sym; for (list = ppc_data_csects; symbol_get_tc (list)->next != (symbolS *) NULL; list = symbol_get_tc (list)->next) ; symbol_get_tc (list)->next = sym; symbol_remove (sym, &symbol_rootP, &symbol_lastP); symbol_append (sym, symbol_get_tc (list)->within, &symbol_rootP, &symbol_lastP); } ppc_current_csect = ppc_toc_csect; demand_empty_rest_of_line (); } /* The AIX assembler automatically aligns the operands of a .long or .short pseudo-op, and we want to be compatible. */ static void ppc_xcoff_cons (int log_size) { frag_align (log_size, 0, 0); record_alignment (now_seg, log_size); cons (1 << log_size); } static void ppc_vbyte (int dummy ATTRIBUTE_UNUSED) { expressionS exp; int byte_count; (void) expression (&exp); if (exp.X_op != O_constant) { as_bad (_("non-constant byte count")); return; } byte_count = exp.X_add_number; if (*input_line_pointer != ',') { as_bad (_("missing value")); return; } ++input_line_pointer; cons (byte_count); } #endif /* OBJ_XCOFF */ #if defined (OBJ_XCOFF) || defined (OBJ_ELF) /* The .tc pseudo-op. This is used when generating either XCOFF or ELF. This takes two or more arguments. When generating XCOFF output, the first argument is the name to give to this location in the toc; this will be a symbol with class TC. The rest of the arguments are N-byte values to actually put at this location in the TOC; often there is just one more argument, a relocatable symbol reference. The size of the value to store depends on target word size. A 32-bit target uses 4-byte values, a 64-bit target uses 8-byte values. When not generating XCOFF output, the arguments are the same, but the first argument is simply ignored. */ static void ppc_tc (int ignore ATTRIBUTE_UNUSED) { #ifdef OBJ_XCOFF /* Define the TOC symbol name. */ { char *name; char endc; symbolS *sym; if (ppc_toc_csect == (symbolS *) NULL || ppc_toc_csect != ppc_current_csect) { as_bad (_(".tc not in .toc section")); ignore_rest_of_line (); return; } name = input_line_pointer; endc = get_symbol_end (); sym = symbol_find_or_make (name); *input_line_pointer = endc; if (S_IS_DEFINED (sym)) { symbolS *label; label = symbol_get_tc (ppc_current_csect)->within; if (symbol_get_tc (label)->class != XMC_TC0) { as_bad (_(".tc with no label")); ignore_rest_of_line (); return; } S_SET_SEGMENT (label, S_GET_SEGMENT (sym)); symbol_set_frag (label, symbol_get_frag (sym)); S_SET_VALUE (label, S_GET_VALUE (sym)); while (! is_end_of_line[(unsigned char) *input_line_pointer]) ++input_line_pointer; return; } S_SET_SEGMENT (sym, now_seg); symbol_set_frag (sym, frag_now); S_SET_VALUE (sym, (valueT) frag_now_fix ()); symbol_get_tc (sym)->class = XMC_TC; symbol_get_tc (sym)->output = 1; ppc_frob_label (sym); } #endif /* OBJ_XCOFF */ #ifdef OBJ_ELF int align; /* Skip the TOC symbol name. */ while (is_part_of_name (*input_line_pointer) || *input_line_pointer == ' ' || *input_line_pointer == '[' || *input_line_pointer == ']' || *input_line_pointer == '{' || *input_line_pointer == '}') ++input_line_pointer; /* Align to a four/eight byte boundary. */ align = ppc_obj64 ? 3 : 2; frag_align (align, 0, 0); record_alignment (now_seg, align); #endif /* OBJ_ELF */ if (*input_line_pointer != ',') demand_empty_rest_of_line (); else { ++input_line_pointer; cons (ppc_obj64 ? 8 : 4); } } /* Pseudo-op .machine. */ static void ppc_machine (int ignore ATTRIBUTE_UNUSED) { char *cpu_string; #define MAX_HISTORY 100 static unsigned long *cpu_history; static int curr_hist; SKIP_WHITESPACE (); if (*input_line_pointer == '"') { int len; cpu_string = demand_copy_C_string (&len); } else { char c; cpu_string = input_line_pointer; c = get_symbol_end (); cpu_string = xstrdup (cpu_string); *input_line_pointer = c; } if (cpu_string != NULL) { unsigned long old_cpu = ppc_cpu; char *p; for (p = cpu_string; *p != 0; p++) *p = TOLOWER (*p); if (strcmp (cpu_string, "push") == 0) { if (cpu_history == NULL) cpu_history = xmalloc (MAX_HISTORY * sizeof (*cpu_history)); if (curr_hist >= MAX_HISTORY) as_bad (_(".machine stack overflow")); else cpu_history[curr_hist++] = ppc_cpu; } else if (strcmp (cpu_string, "pop") == 0) { if (curr_hist <= 0) as_bad (_(".machine stack underflow")); else ppc_cpu = cpu_history[--curr_hist]; } else if (parse_cpu (cpu_string)) ; else as_bad (_("invalid machine `%s'"), cpu_string); if (ppc_cpu != old_cpu) ppc_setup_opcodes (); } demand_empty_rest_of_line (); } /* See whether a symbol is in the TOC section. */ static int ppc_is_toc_sym (symbolS *sym) { #ifdef OBJ_XCOFF return symbol_get_tc (sym)->class == XMC_TC; #endif #ifdef OBJ_ELF const char *sname = segment_name (S_GET_SEGMENT (sym)); if (ppc_obj64) return strcmp (sname, ".toc") == 0; else return strcmp (sname, ".got") == 0; #endif } #endif /* defined (OBJ_XCOFF) || defined (OBJ_ELF) */ #ifdef TE_PE /* Pseudo-ops specific to the Windows NT PowerPC PE (coff) format. */ /* Set the current section. */ static void ppc_set_current_section (segT new) { ppc_previous_section = ppc_current_section; ppc_current_section = new; } /* pseudo-op: .previous behaviour: toggles the current section with the previous section. errors: None warnings: "No previous section" */ static void ppc_previous (int ignore ATTRIBUTE_UNUSED) { symbolS *tmp; if (ppc_previous_section == NULL) { as_warn (_("No previous section to return to. Directive ignored.")); return; } subseg_set (ppc_previous_section, 0); ppc_set_current_section (ppc_previous_section); } /* pseudo-op: .pdata behaviour: predefined read only data section double word aligned errors: None warnings: None initial: .section .pdata "adr3" a - don't know -- maybe a misprint d - initialized data r - readable 3 - double word aligned (that would be 4 byte boundary) commentary: Tag index tables (also known as the function table) for exception handling, debugging, etc. */ static void ppc_pdata (int ignore ATTRIBUTE_UNUSED) { if (pdata_section == 0) { pdata_section = subseg_new (".pdata", 0); bfd_set_section_flags (stdoutput, pdata_section, (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY | SEC_DATA )); bfd_set_section_alignment (stdoutput, pdata_section, 2); } else { pdata_section = subseg_new (".pdata", 0); } ppc_set_current_section (pdata_section); } /* pseudo-op: .ydata behaviour: predefined read only data section double word aligned errors: None warnings: None initial: .section .ydata "drw3" a - don't know -- maybe a misprint d - initialized data r - readable 3 - double word aligned (that would be 4 byte boundary) commentary: Tag tables (also known as the scope table) for exception handling, debugging, etc. */ static void ppc_ydata (int ignore ATTRIBUTE_UNUSED) { if (ydata_section == 0) { ydata_section = subseg_new (".ydata", 0); bfd_set_section_flags (stdoutput, ydata_section, (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY | SEC_DATA )); bfd_set_section_alignment (stdoutput, ydata_section, 3); } else { ydata_section = subseg_new (".ydata", 0); } ppc_set_current_section (ydata_section); } /* pseudo-op: .reldata behaviour: predefined read write data section double word aligned (4-byte) FIXME: relocation is applied to it FIXME: what's the difference between this and .data? errors: None warnings: None initial: .section .reldata "drw3" d - initialized data r - readable w - writeable 3 - double word aligned (that would be 8 byte boundary) commentary: Like .data, but intended to hold data subject to relocation, such as function descriptors, etc. */ static void ppc_reldata (int ignore ATTRIBUTE_UNUSED) { if (reldata_section == 0) { reldata_section = subseg_new (".reldata", 0); bfd_set_section_flags (stdoutput, reldata_section, (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA)); bfd_set_section_alignment (stdoutput, reldata_section, 2); } else { reldata_section = subseg_new (".reldata", 0); } ppc_set_current_section (reldata_section); } /* pseudo-op: .rdata behaviour: predefined read only data section double word aligned errors: None warnings: None initial: .section .rdata "dr3" d - initialized data r - readable 3 - double word aligned (that would be 4 byte boundary) */ static void ppc_rdata (int ignore ATTRIBUTE_UNUSED) { if (rdata_section == 0) { rdata_section = subseg_new (".rdata", 0); bfd_set_section_flags (stdoutput, rdata_section, (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY | SEC_DATA )); bfd_set_section_alignment (stdoutput, rdata_section, 2); } else { rdata_section = subseg_new (".rdata", 0); } ppc_set_current_section (rdata_section); } /* pseudo-op: .ualong behaviour: much like .int, with the exception that no alignment is performed. FIXME: test the alignment statement errors: None warnings: None */ static void ppc_ualong (int ignore ATTRIBUTE_UNUSED) { /* Try for long. */ cons (4); } /* pseudo-op: .znop <symbol name> behaviour: Issue a nop instruction Issue a IMAGE_REL_PPC_IFGLUE relocation against it, using the supplied symbol name. errors: None warnings: Missing symbol name */ static void ppc_znop (int ignore ATTRIBUTE_UNUSED) { unsigned long insn; const struct powerpc_opcode *opcode; expressionS ex; char *f; symbolS *sym; char *symbol_name; char c; char *name; unsigned int exp; flagword flags; asection *sec; /* Strip out the symbol name. */ symbol_name = input_line_pointer; c = get_symbol_end (); name = xmalloc (input_line_pointer - symbol_name + 1); strcpy (name, symbol_name); sym = symbol_find_or_make (name); *input_line_pointer = c; SKIP_WHITESPACE (); /* Look up the opcode in the hash table. */ opcode = (const struct powerpc_opcode *) hash_find (ppc_hash, "nop"); /* Stick in the nop. */ insn = opcode->opcode; /* Write out the instruction. */ f = frag_more (4); md_number_to_chars (f, insn, 4); fix_new (frag_now, f - frag_now->fr_literal, 4, sym, 0, 0, BFD_RELOC_16_GOT_PCREL); } /* pseudo-op: behaviour: errors: warnings: */ static void ppc_pe_comm (int lcomm) { char *name; char c; char *p; offsetT temp; symbolS *symbolP; offsetT align; name = input_line_pointer; c = get_symbol_end (); /* just after name is now '\0'. */ p = input_line_pointer; *p = c; SKIP_WHITESPACE (); if (*input_line_pointer != ',') { as_bad (_("Expected comma after symbol-name: rest of line ignored.")); ignore_rest_of_line (); return; } input_line_pointer++; /* skip ',' */ if ((temp = get_absolute_expression ()) < 0) { as_warn (_(".COMMon length (%ld.) <0! Ignored."), (long) temp); ignore_rest_of_line (); return; } if (! lcomm) { /* The third argument to .comm is the alignment. */ if (*input_line_pointer != ',') align = 3; else { ++input_line_pointer; align = get_absolute_expression (); if (align <= 0) { as_warn (_("ignoring bad alignment")); align = 3; } } } *p = 0; symbolP = symbol_find_or_make (name); *p = c; if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP)) { as_bad (_("Ignoring attempt to re-define symbol `%s'."), S_GET_NAME (symbolP)); ignore_rest_of_line (); return; } if (S_GET_VALUE (symbolP)) { if (S_GET_VALUE (symbolP) != (valueT) temp) as_bad (_("Length of .comm \"%s\" is already %ld. Not changed to %ld."), S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), (long) temp); } else { S_SET_VALUE (symbolP, (valueT) temp); S_SET_EXTERNAL (symbolP); S_SET_SEGMENT (symbolP, bfd_com_section_ptr); } demand_empty_rest_of_line (); } /* * implement the .section pseudo op: * .section name {, "flags"} * ^ ^ * | +--- optional flags: 'b' for bss * | 'i' for info * +-- section name 'l' for lib * 'n' for noload * 'o' for over * 'w' for data * 'd' (apparently m88k for data) * 'x' for text * But if the argument is not a quoted string, treat it as a * subsegment number. * * FIXME: this is a copy of the section processing from obj-coff.c, with * additions/changes for the moto-pas assembler support. There are three * categories: * * FIXME: I just noticed this. This doesn't work at all really. It it * setting bits that bfd probably neither understands or uses. The * correct approach (?) will have to incorporate extra fields attached * to the section to hold the system specific stuff. (krk) * * Section Contents: * 'a' - unknown - referred to in documentation, but no definition supplied * 'c' - section has code * 'd' - section has initialized data * 'u' - section has uninitialized data * 'i' - section contains directives (info) * 'n' - section can be discarded * 'R' - remove section at link time * * Section Protection: * 'r' - section is readable * 'w' - section is writeable * 'x' - section is executable * 's' - section is sharable * * Section Alignment: * '0' - align to byte boundary * '1' - align to halfword undary * '2' - align to word boundary * '3' - align to doubleword boundary * '4' - align to quadword boundary * '5' - align to 32 byte boundary * '6' - align to 64 byte boundary * */ void ppc_pe_section (int ignore ATTRIBUTE_UNUSED) { /* Strip out the section name. */ char *section_name; char c; char *name; unsigned int exp; flagword flags; segT sec; int align; section_name = input_line_pointer; c = get_symbol_end (); name = xmalloc (input_line_pointer - section_name + 1); strcpy (name, section_name); *input_line_pointer = c; SKIP_WHITESPACE (); exp = 0; flags = SEC_NO_FLAGS; if (strcmp (name, ".idata$2") == 0) { align = 0; } else if (strcmp (name, ".idata$3") == 0) { align = 0; } else if (strcmp (name, ".idata$4") == 0) { align = 2; } else if (strcmp (name, ".idata$5") == 0) { align = 2; } else if (strcmp (name, ".idata$6") == 0) { align = 1; } else /* Default alignment to 16 byte boundary. */ align = 4; if (*input_line_pointer == ',') { ++input_line_pointer; SKIP_WHITESPACE (); if (*input_line_pointer != '"') exp = get_absolute_expression (); else { ++input_line_pointer; while (*input_line_pointer != '"' && ! is_end_of_line[(unsigned char) *input_line_pointer]) { switch (*input_line_pointer) { /* Section Contents */ case 'a': /* unknown */ as_bad (_("Unsupported section attribute -- 'a'")); break; case 'c': /* code section */ flags |= SEC_CODE; break; case 'd': /* section has initialized data */ flags |= SEC_DATA; break; case 'u': /* section has uninitialized data */ /* FIXME: This is IMAGE_SCN_CNT_UNINITIALIZED_DATA in winnt.h */ flags |= SEC_ROM; break; case 'i': /* section contains directives (info) */ /* FIXME: This is IMAGE_SCN_LNK_INFO in winnt.h */ flags |= SEC_HAS_CONTENTS; break; case 'n': /* section can be discarded */ flags &=~ SEC_LOAD; break; case 'R': /* Remove section at link time */ flags |= SEC_NEVER_LOAD; break; #if IFLICT_BRAIN_DAMAGE /* Section Protection */ case 'r': /* section is readable */ flags |= IMAGE_SCN_MEM_READ; break; case 'w': /* section is writeable */ flags |= IMAGE_SCN_MEM_WRITE; break; case 'x': /* section is executable */ flags |= IMAGE_SCN_MEM_EXECUTE; break; case 's': /* section is sharable */ flags |= IMAGE_SCN_MEM_SHARED; break; /* Section Alignment */ case '0': /* align to byte boundary */ flags |= IMAGE_SCN_ALIGN_1BYTES; align = 0; break; case '1': /* align to halfword boundary */ flags |= IMAGE_SCN_ALIGN_2BYTES; align = 1; break; case '2': /* align to word boundary */ flags |= IMAGE_SCN_ALIGN_4BYTES; align = 2; break; case '3': /* align to doubleword boundary */ flags |= IMAGE_SCN_ALIGN_8BYTES; align = 3; break; case '4': /* align to quadword boundary */ flags |= IMAGE_SCN_ALIGN_16BYTES; align = 4; break; case '5': /* align to 32 byte boundary */ flags |= IMAGE_SCN_ALIGN_32BYTES; align = 5; break; case '6': /* align to 64 byte boundary */ flags |= IMAGE_SCN_ALIGN_64BYTES; align = 6; break; #endif default: as_bad (_("unknown section attribute '%c'"), *input_line_pointer); break; } ++input_line_pointer; } if (*input_line_pointer == '"') ++input_line_pointer; } } sec = subseg_new (name, (subsegT) exp); ppc_set_current_section (sec); if (flags != SEC_NO_FLAGS) { if (! bfd_set_section_flags (stdoutput, sec, flags)) as_bad (_("error setting flags for \"%s\": %s"), bfd_section_name (stdoutput, sec), bfd_errmsg (bfd_get_error ())); } bfd_set_section_alignment (stdoutput, sec, align); } static void ppc_pe_function (int ignore ATTRIBUTE_UNUSED) { char *name; char endc; symbolS *ext_sym; name = input_line_pointer; endc = get_symbol_end (); ext_sym = symbol_find_or_make (name); *input_line_pointer = endc; S_SET_DATA_TYPE (ext_sym, DT_FCN << N_BTSHFT); SF_SET_FUNCTION (ext_sym); SF_SET_PROCESS (ext_sym); coff_add_linesym (ext_sym); demand_empty_rest_of_line (); } static void ppc_pe_tocd (int ignore ATTRIBUTE_UNUSED) { if (tocdata_section == 0) { tocdata_section = subseg_new (".tocd", 0); /* FIXME: section flags won't work. */ bfd_set_section_flags (stdoutput, tocdata_section, (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY | SEC_DATA)); bfd_set_section_alignment (stdoutput, tocdata_section, 2); } else { rdata_section = subseg_new (".tocd", 0); } ppc_set_current_section (tocdata_section); demand_empty_rest_of_line (); } /* Don't adjust TOC relocs to use the section symbol. */ int ppc_pe_fix_adjustable (fixS *fix) { return fix->fx_r_type != BFD_RELOC_PPC_TOC16; } #endif #ifdef OBJ_XCOFF /* XCOFF specific symbol and file handling. */ /* Canonicalize the symbol name. We use the to force the suffix, if any, to use square brackets, and to be in upper case. */ char * ppc_canonicalize_symbol_name (char *name) { char *s; if (ppc_stab_symbol) return name; for (s = name; *s != '\0' && *s != '{' && *s != '['; s++) ; if (*s != '\0') { char brac; if (*s == '[') brac = ']'; else { *s = '['; brac = '}'; } for (s++; *s != '\0' && *s != brac; s++) *s = TOUPPER (*s); if (*s == '\0' || s[1] != '\0') as_bad (_("bad symbol suffix")); *s = ']'; } return name; } /* Set the class of a symbol based on the suffix, if any. This is called whenever a new symbol is created. */ void ppc_symbol_new_hook (symbolS *sym) { struct ppc_tc_sy *tc; const char *s; tc = symbol_get_tc (sym); tc->next = NULL; tc->output = 0; tc->class = -1; tc->real_name = NULL; tc->subseg = 0; tc->align = 0; tc->size = NULL; tc->within = NULL; if (ppc_stab_symbol) return; s = strchr (S_GET_NAME (sym), '['); if (s == (const char *) NULL) { /* There is no suffix. */ return; } ++s; switch (s[0]) { case 'B': if (strcmp (s, "BS]") == 0) tc->class = XMC_BS; break; case 'D': if (strcmp (s, "DB]") == 0) tc->class = XMC_DB; else if (strcmp (s, "DS]") == 0) tc->class = XMC_DS; break; case 'G': if (strcmp (s, "GL]") == 0) tc->class = XMC_GL; break; case 'P': if (strcmp (s, "PR]") == 0) tc->class = XMC_PR; break; case 'R': if (strcmp (s, "RO]") == 0) tc->class = XMC_RO; else if (strcmp (s, "RW]") == 0) tc->class = XMC_RW; break; case 'S': if (strcmp (s, "SV]") == 0) tc->class = XMC_SV; break; case 'T': if (strcmp (s, "TC]") == 0) tc->class = XMC_TC; else if (strcmp (s, "TI]") == 0) tc->class = XMC_TI; else if (strcmp (s, "TB]") == 0) tc->class = XMC_TB; else if (strcmp (s, "TC0]") == 0 || strcmp (s, "T0]") == 0) tc->class = XMC_TC0; break; case 'U': if (strcmp (s, "UA]") == 0) tc->class = XMC_UA; else if (strcmp (s, "UC]") == 0) tc->class = XMC_UC; break; case 'X': if (strcmp (s, "XO]") == 0) tc->class = XMC_XO; break; } if (tc->class == -1) as_bad (_("Unrecognized symbol suffix")); } /* Set the class of a label based on where it is defined. This handles symbols without suffixes. Also, move the symbol so that it follows the csect symbol. */ void ppc_frob_label (symbolS *sym) { if (ppc_current_csect != (symbolS *) NULL) { if (symbol_get_tc (sym)->class == -1) symbol_get_tc (sym)->class = symbol_get_tc (ppc_current_csect)->class; symbol_remove (sym, &symbol_rootP, &symbol_lastP); symbol_append (sym, symbol_get_tc (ppc_current_csect)->within, &symbol_rootP, &symbol_lastP); symbol_get_tc (ppc_current_csect)->within = sym; } #ifdef OBJ_ELF dwarf2_emit_label (sym); #endif } /* This variable is set by ppc_frob_symbol if any absolute symbols are seen. It tells ppc_adjust_symtab whether it needs to look through the symbols. */ static bfd_boolean ppc_saw_abs; /* Change the name of a symbol just before writing it out. Set the real name if the .rename pseudo-op was used. Otherwise, remove any class suffix. Return 1 if the symbol should not be included in the symbol table. */ int ppc_frob_symbol (symbolS *sym) { static symbolS *ppc_last_function; static symbolS *set_end; /* Discard symbols that should not be included in the output symbol table. */ if (! symbol_used_in_reloc_p (sym) && ((symbol_get_bfdsym (sym)->flags & BSF_SECTION_SYM) != 0 || (! (S_IS_EXTERNAL (sym) || S_IS_WEAK (sym)) && ! symbol_get_tc (sym)->output && S_GET_STORAGE_CLASS (sym) != C_FILE))) return 1; /* This one will disappear anyway. Don't make a csect sym for it. */ if (sym == abs_section_sym) return 1; if (symbol_get_tc (sym)->real_name != (char *) NULL) S_SET_NAME (sym, symbol_get_tc (sym)->real_name); else { const char *name; const char *s; name = S_GET_NAME (sym); s = strchr (name, '['); if (s != (char *) NULL) { unsigned int len; char *snew; len = s - name; snew = xmalloc (len + 1); memcpy (snew, name, len); snew[len] = '\0'; S_SET_NAME (sym, snew); } } if (set_end != (symbolS *) NULL) { SA_SET_SYM_ENDNDX (set_end, sym); set_end = NULL; } if (SF_GET_FUNCTION (sym)) { if (ppc_last_function != (symbolS *) NULL) as_bad (_("two .function pseudo-ops with no intervening .ef")); ppc_last_function = sym; if (symbol_get_tc (sym)->size != (symbolS *) NULL) { resolve_symbol_value (symbol_get_tc (sym)->size); SA_SET_SYM_FSIZE (sym, (long) S_GET_VALUE (symbol_get_tc (sym)->size)); } } else if (S_GET_STORAGE_CLASS (sym) == C_FCN && strcmp (S_GET_NAME (sym), ".ef") == 0) { if (ppc_last_function == (symbolS *) NULL) as_bad (_(".ef with no preceding .function")); else { set_end = ppc_last_function; ppc_last_function = NULL; /* We don't have a C_EFCN symbol, but we need to force the COFF backend to believe that it has seen one. */ coff_last_function = NULL; } } if (! (S_IS_EXTERNAL (sym) || S_IS_WEAK (sym)) && (symbol_get_bfdsym (sym)->flags & BSF_SECTION_SYM) == 0 && S_GET_STORAGE_CLASS (sym) != C_FILE && S_GET_STORAGE_CLASS (sym) != C_FCN && S_GET_STORAGE_CLASS (sym) != C_BLOCK && S_GET_STORAGE_CLASS (sym) != C_BSTAT && S_GET_STORAGE_CLASS (sym) != C_ESTAT && S_GET_STORAGE_CLASS (sym) != C_BINCL && S_GET_STORAGE_CLASS (sym) != C_EINCL && S_GET_SEGMENT (sym) != ppc_coff_debug_section) S_SET_STORAGE_CLASS (sym, C_HIDEXT); if (S_GET_STORAGE_CLASS (sym) == C_EXT || S_GET_STORAGE_CLASS (sym) == C_HIDEXT) { int i; union internal_auxent *a; /* Create a csect aux. */ i = S_GET_NUMBER_AUXILIARY (sym); S_SET_NUMBER_AUXILIARY (sym, i + 1); a = &coffsymbol (symbol_get_bfdsym (sym))->native[i + 1].u.auxent; if (symbol_get_tc (sym)->class == XMC_TC0) { /* This is the TOC table. */ know (strcmp (S_GET_NAME (sym), "TOC") == 0); a->x_csect.x_scnlen.l = 0; a->x_csect.x_smtyp = (2 << 3) | XTY_SD; } else if (symbol_get_tc (sym)->subseg != 0) { /* This is a csect symbol. x_scnlen is the size of the csect. */ if (symbol_get_tc (sym)->next == (symbolS *) NULL) a->x_csect.x_scnlen.l = (bfd_section_size (stdoutput, S_GET_SEGMENT (sym)) - S_GET_VALUE (sym)); else { resolve_symbol_value (symbol_get_tc (sym)->next); a->x_csect.x_scnlen.l = (S_GET_VALUE (symbol_get_tc (sym)->next) - S_GET_VALUE (sym)); } a->x_csect.x_smtyp = (symbol_get_tc (sym)->align << 3) | XTY_SD; } else if (S_GET_SEGMENT (sym) == bss_section) { /* This is a common symbol. */ a->x_csect.x_scnlen.l = symbol_get_frag (sym)->fr_offset; a->x_csect.x_smtyp = (symbol_get_tc (sym)->align << 3) | XTY_CM; if (S_IS_EXTERNAL (sym)) symbol_get_tc (sym)->class = XMC_RW; else symbol_get_tc (sym)->class = XMC_BS; } else if (S_GET_SEGMENT (sym) == absolute_section) { /* This is an absolute symbol. The csect will be created by ppc_adjust_symtab. */ ppc_saw_abs = TRUE; a->x_csect.x_smtyp = XTY_LD; if (symbol_get_tc (sym)->class == -1) symbol_get_tc (sym)->class = XMC_XO; } else if (! S_IS_DEFINED (sym)) { /* This is an external symbol. */ a->x_csect.x_scnlen.l = 0; a->x_csect.x_smtyp = XTY_ER; } else if (symbol_get_tc (sym)->class == XMC_TC) { symbolS *next; /* This is a TOC definition. x_scnlen is the size of the TOC entry. */ next = symbol_next (sym); while (symbol_get_tc (next)->class == XMC_TC0) next = symbol_next (next); if (next == (symbolS *) NULL || symbol_get_tc (next)->class != XMC_TC) { if (ppc_after_toc_frag == (fragS *) NULL) a->x_csect.x_scnlen.l = (bfd_section_size (stdoutput, data_section) - S_GET_VALUE (sym)); else a->x_csect.x_scnlen.l = (ppc_after_toc_frag->fr_address - S_GET_VALUE (sym)); } else { resolve_symbol_value (next); a->x_csect.x_scnlen.l = (S_GET_VALUE (next) - S_GET_VALUE (sym)); } a->x_csect.x_smtyp = (2 << 3) | XTY_SD; } else { symbolS *csect; /* This is a normal symbol definition. x_scnlen is the symbol index of the containing csect. */ if (S_GET_SEGMENT (sym) == text_section) csect = ppc_text_csects; else if (S_GET_SEGMENT (sym) == data_section) csect = ppc_data_csects; else abort (); /* Skip the initial dummy symbol. */ csect = symbol_get_tc (csect)->next; if (csect == (symbolS *) NULL) { as_warn (_("warning: symbol %s has no csect"), S_GET_NAME (sym)); a->x_csect.x_scnlen.l = 0; } else { while (symbol_get_tc (csect)->next != (symbolS *) NULL) { resolve_symbol_value (symbol_get_tc (csect)->next); if (S_GET_VALUE (symbol_get_tc (csect)->next) > S_GET_VALUE (sym)) break; csect = symbol_get_tc (csect)->next; } a->x_csect.x_scnlen.p = coffsymbol (symbol_get_bfdsym (csect))->native; coffsymbol (symbol_get_bfdsym (sym))->native[i + 1].fix_scnlen = 1; } a->x_csect.x_smtyp = XTY_LD; } a->x_csect.x_parmhash = 0; a->x_csect.x_snhash = 0; if (symbol_get_tc (sym)->class == -1) a->x_csect.x_smclas = XMC_PR; else a->x_csect.x_smclas = symbol_get_tc (sym)->class; a->x_csect.x_stab = 0; a->x_csect.x_snstab = 0; /* Don't let the COFF backend resort these symbols. */ symbol_get_bfdsym (sym)->flags |= BSF_NOT_AT_END; } else if (S_GET_STORAGE_CLASS (sym) == C_BSTAT) { /* We want the value to be the symbol index of the referenced csect symbol. BFD will do that for us if we set the right flags. */ asymbol *bsym = symbol_get_bfdsym (symbol_get_tc (sym)->within); combined_entry_type *c = coffsymbol (bsym)->native; S_SET_VALUE (sym, (valueT) (size_t) c); coffsymbol (symbol_get_bfdsym (sym))->native->fix_value = 1; } else if (S_GET_STORAGE_CLASS (sym) == C_STSYM) { symbolS *block; symbolS *csect; /* The value is the offset from the enclosing csect. */ block = symbol_get_tc (sym)->within; csect = symbol_get_tc (block)->within; resolve_symbol_value (csect); S_SET_VALUE (sym, S_GET_VALUE (sym) - S_GET_VALUE (csect)); } else if (S_GET_STORAGE_CLASS (sym) == C_BINCL || S_GET_STORAGE_CLASS (sym) == C_EINCL) { /* We want the value to be a file offset into the line numbers. BFD will do that for us if we set the right flags. We have already set the value correctly. */ coffsymbol (symbol_get_bfdsym (sym))->native->fix_line = 1; } return 0; } /* Adjust the symbol table. This creates csect symbols for all absolute symbols. */ void ppc_adjust_symtab (void) { symbolS *sym; if (! ppc_saw_abs) return; for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym)) { symbolS *csect; int i; union internal_auxent *a; if (S_GET_SEGMENT (sym) != absolute_section) continue; csect = symbol_create (".abs[XO]", absolute_section, S_GET_VALUE (sym), &zero_address_frag); symbol_get_bfdsym (csect)->value = S_GET_VALUE (sym); S_SET_STORAGE_CLASS (csect, C_HIDEXT); i = S_GET_NUMBER_AUXILIARY (csect); S_SET_NUMBER_AUXILIARY (csect, i + 1); a = &coffsymbol (symbol_get_bfdsym (csect))->native[i + 1].u.auxent; a->x_csect.x_scnlen.l = 0; a->x_csect.x_smtyp = XTY_SD; a->x_csect.x_parmhash = 0; a->x_csect.x_snhash = 0; a->x_csect.x_smclas = XMC_XO; a->x_csect.x_stab = 0; a->x_csect.x_snstab = 0; symbol_insert (csect, sym, &symbol_rootP, &symbol_lastP); i = S_GET_NUMBER_AUXILIARY (sym); a = &coffsymbol (symbol_get_bfdsym (sym))->native[i].u.auxent; a->x_csect.x_scnlen.p = coffsymbol (symbol_get_bfdsym (csect))->native; coffsymbol (symbol_get_bfdsym (sym))->native[i].fix_scnlen = 1; } ppc_saw_abs = FALSE; } /* Set the VMA for a section. This is called on all the sections in turn. */ void ppc_frob_section (asection *sec) { static bfd_vma vma = 0; vma = md_section_align (sec, vma); bfd_set_section_vma (stdoutput, sec, vma); vma += bfd_section_size (stdoutput, sec); } #endif /* OBJ_XCOFF */ char * md_atof (int type, char *litp, int *sizep) { return ieee_md_atof (type, litp, sizep, target_big_endian); } /* Write a value out to the object file, using the appropriate endianness. */ void md_number_to_chars (char *buf, valueT val, int n) { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } /* Align a section (I don't know why this is machine dependent). */ valueT md_section_align (asection *seg ATTRIBUTE_UNUSED, valueT addr) { #ifdef OBJ_ELF return addr; #else int align = bfd_get_section_alignment (stdoutput, seg); return ((addr + (1 << align) - 1) & (-1 << align)); #endif } /* We don't have any form of relaxing. */ int md_estimate_size_before_relax (fragS *fragp ATTRIBUTE_UNUSED, asection *seg ATTRIBUTE_UNUSED) { abort (); return 0; } /* Convert a machine dependent frag. We never generate these. */ void md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, asection *sec ATTRIBUTE_UNUSED, fragS *fragp ATTRIBUTE_UNUSED) { abort (); } /* We have no need to default values of symbols. */ symbolS * md_undefined_symbol (char *name ATTRIBUTE_UNUSED) { return 0; } /* Functions concerning relocs. */ /* The location from which a PC relative jump should be calculated, given a PC relative reloc. */ long md_pcrel_from_section (fixS *fixp, segT sec ATTRIBUTE_UNUSED) { return fixp->fx_frag->fr_address + fixp->fx_where; } #ifdef OBJ_XCOFF /* This is called to see whether a fixup should be adjusted to use a section symbol. We take the opportunity to change a fixup against a symbol in the TOC subsegment into a reloc against the corresponding .tc symbol. */ int ppc_fix_adjustable (fixS *fix) { valueT val = resolve_symbol_value (fix->fx_addsy); segT symseg = S_GET_SEGMENT (fix->fx_addsy); TC_SYMFIELD_TYPE *tc; if (symseg == absolute_section) return 0; if (ppc_toc_csect != (symbolS *) NULL && fix->fx_addsy != ppc_toc_csect && symseg == data_section && val >= ppc_toc_frag->fr_address && (ppc_after_toc_frag == (fragS *) NULL || val < ppc_after_toc_frag->fr_address)) { symbolS *sy; for (sy = symbol_next (ppc_toc_csect); sy != (symbolS *) NULL; sy = symbol_next (sy)) { TC_SYMFIELD_TYPE *sy_tc = symbol_get_tc (sy); if (sy_tc->class == XMC_TC0) continue; if (sy_tc->class != XMC_TC) break; if (val == resolve_symbol_value (sy)) { fix->fx_addsy = sy; fix->fx_addnumber = val - ppc_toc_frag->fr_address; return 0; } } as_bad_where (fix->fx_file, fix->fx_line, _("symbol in .toc does not match any .tc")); } /* Possibly adjust the reloc to be against the csect. */ tc = symbol_get_tc (fix->fx_addsy); if (tc->subseg == 0 && tc->class != XMC_TC0 && tc->class != XMC_TC && symseg != bss_section /* Don't adjust if this is a reloc in the toc section. */ && (symseg != data_section || ppc_toc_csect == NULL || val < ppc_toc_frag->fr_address || (ppc_after_toc_frag != NULL && val >= ppc_after_toc_frag->fr_address))) { symbolS *csect; symbolS *next_csect; if (symseg == text_section) csect = ppc_text_csects; else if (symseg == data_section) csect = ppc_data_csects; else abort (); /* Skip the initial dummy symbol. */ csect = symbol_get_tc (csect)->next; if (csect != (symbolS *) NULL) { while ((next_csect = symbol_get_tc (csect)->next) != (symbolS *) NULL && (symbol_get_frag (next_csect)->fr_address <= val)) { /* If the csect address equals the symbol value, then we have to look through the full symbol table to see whether this is the csect we want. Note that we will only get here if the csect has zero length. */ if (symbol_get_frag (csect)->fr_address == val && S_GET_VALUE (csect) == val) { symbolS *scan; for (scan = symbol_next (csect); scan != NULL; scan = symbol_next (scan)) { if (symbol_get_tc (scan)->subseg != 0) break; if (scan == fix->fx_addsy) break; } /* If we found the symbol before the next csect symbol, then this is the csect we want. */ if (scan == fix->fx_addsy) break; } csect = next_csect; } fix->fx_offset += val - symbol_get_frag (csect)->fr_address; fix->fx_addsy = csect; } return 0; } /* Adjust a reloc against a .lcomm symbol to be against the base .lcomm. */ if (symseg == bss_section && ! S_IS_EXTERNAL (fix->fx_addsy)) { symbolS *sy = symbol_get_frag (fix->fx_addsy)->fr_symbol; fix->fx_offset += val - resolve_symbol_value (sy); fix->fx_addsy = sy; } return 0; } /* A reloc from one csect to another must be kept. The assembler will, of course, keep relocs between sections, and it will keep absolute relocs, but we need to force it to keep PC relative relocs between two csects in the same section. */ int ppc_force_relocation (fixS *fix) { /* At this point fix->fx_addsy should already have been converted to a csect symbol. If the csect does not include the fragment, then we need to force the relocation. */ if (fix->fx_pcrel && fix->fx_addsy != NULL && symbol_get_tc (fix->fx_addsy)->subseg != 0 && ((symbol_get_frag (fix->fx_addsy)->fr_address > fix->fx_frag->fr_address) || (symbol_get_tc (fix->fx_addsy)->next != NULL && (symbol_get_frag (symbol_get_tc (fix->fx_addsy)->next)->fr_address <= fix->fx_frag->fr_address)))) return 1; return generic_force_reloc (fix); } #endif /* OBJ_XCOFF */ #ifdef OBJ_ELF /* If this function returns non-zero, it guarantees that a relocation will be emitted for a fixup. */ int ppc_force_relocation (fixS *fix) { /* Branch prediction relocations must force a relocation, as must the vtable description relocs. */ switch (fix->fx_r_type) { case BFD_RELOC_PPC_B16_BRTAKEN: case BFD_RELOC_PPC_B16_BRNTAKEN: case BFD_RELOC_PPC_BA16_BRTAKEN: case BFD_RELOC_PPC_BA16_BRNTAKEN: case BFD_RELOC_24_PLT_PCREL: case BFD_RELOC_PPC64_TOC: return 1; default: break; } if (fix->fx_r_type >= BFD_RELOC_PPC_TLS && fix->fx_r_type <= BFD_RELOC_PPC64_DTPREL16_HIGHESTA) return 1; return generic_force_reloc (fix); } int ppc_fix_adjustable (fixS *fix) { return (fix->fx_r_type != BFD_RELOC_16_GOTOFF && fix->fx_r_type != BFD_RELOC_LO16_GOTOFF && fix->fx_r_type != BFD_RELOC_HI16_GOTOFF && fix->fx_r_type != BFD_RELOC_HI16_S_GOTOFF && fix->fx_r_type != BFD_RELOC_GPREL16 && fix->fx_r_type != BFD_RELOC_VTABLE_INHERIT && fix->fx_r_type != BFD_RELOC_VTABLE_ENTRY && !(fix->fx_r_type >= BFD_RELOC_PPC_TLS && fix->fx_r_type <= BFD_RELOC_PPC64_DTPREL16_HIGHESTA)); } #endif /* Implement HANDLE_ALIGN. This writes the NOP pattern into an rs_align_code frag. */ void ppc_handle_align (struct frag *fragP) { valueT count = (fragP->fr_next->fr_address - (fragP->fr_address + fragP->fr_fix)); if (count != 0 && (count & 3) == 0) { char *dest = fragP->fr_literal + fragP->fr_fix; fragP->fr_var = 4; md_number_to_chars (dest, 0x60000000, 4); if ((ppc_cpu & PPC_OPCODE_POWER6) != 0) { /* For power6, we want the last nop to be a group terminating one, "ori 1,1,0". Do this by inserting an rs_fill frag immediately after this one, with its address set to the last nop location. This will automatically reduce the number of nops in the current frag by one. */ if (count > 4) { struct frag *group_nop = xmalloc (SIZEOF_STRUCT_FRAG + 4); memcpy (group_nop, fragP, SIZEOF_STRUCT_FRAG); group_nop->fr_address = group_nop->fr_next->fr_address - 4; group_nop->fr_fix = 0; group_nop->fr_offset = 1; group_nop->fr_type = rs_fill; fragP->fr_next = group_nop; dest = group_nop->fr_literal; } md_number_to_chars (dest, 0x60210000, 4); } } } /* Apply a fixup to the object code. This is called for all the fixups we generated by the call to fix_new_exp, above. In the call above we used a reloc code which was the largest legal reloc code plus the operand index. Here we undo that to recover the operand index. At this point all symbol values should be fully resolved, and we attempt to completely resolve the reloc. If we can not do that, we determine the correct reloc code and put it back in the fixup. */ void md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED) { valueT value = * valP; #ifdef OBJ_ELF if (fixP->fx_addsy != NULL) { /* Hack around bfd_install_relocation brain damage. */ if (fixP->fx_pcrel) value += fixP->fx_frag->fr_address + fixP->fx_where; } else fixP->fx_done = 1; #else /* FIXME FIXME FIXME: The value we are passed in *valP includes the symbol values. If we are doing this relocation the code in write.c is going to call bfd_install_relocation, which is also going to use the symbol value. That means that if the reloc is fully resolved we want to use *valP since bfd_install_relocation is not being used. However, if the reloc is not fully resolved we do not want to use *valP, and must use fx_offset instead. However, if the reloc is PC relative, we do want to use *valP since it includes the result of md_pcrel_from. This is confusing. */ if (fixP->fx_addsy == (symbolS *) NULL) fixP->fx_done = 1; else if (fixP->fx_pcrel) ; else value = fixP->fx_offset; #endif if (fixP->fx_subsy != (symbolS *) NULL) { /* We can't actually support subtracting a symbol. */ as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex")); } if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED) { int opindex; const struct powerpc_operand *operand; char *where; unsigned long insn; opindex = (int) fixP->fx_r_type - (int) BFD_RELOC_UNUSED; operand = &powerpc_operands[opindex]; #ifdef OBJ_XCOFF /* An instruction like `lwz 9,sym(30)' when `sym' is not a TOC symbol does not generate a reloc. It uses the offset of `sym' within its csect. Other usages, such as `.long sym', generate relocs. This is the documented behaviour of non-TOC symbols. */ if ((operand->flags & PPC_OPERAND_PARENS) != 0 && (operand->bitm & 0xfff0) == 0xfff0 && operand->shift == 0 && (operand->insert == NULL || ppc_obj64) && fixP->fx_addsy != NULL && symbol_get_tc (fixP->fx_addsy)->subseg != 0 && symbol_get_tc (fixP->fx_addsy)->class != XMC_TC && symbol_get_tc (fixP->fx_addsy)->class != XMC_TC0 && S_GET_SEGMENT (fixP->fx_addsy) != bss_section) { value = fixP->fx_offset; fixP->fx_done = 1; } #endif /* Fetch the instruction, insert the fully resolved operand value, and stuff the instruction back again. */ where = fixP->fx_frag->fr_literal + fixP->fx_where; if (target_big_endian) insn = bfd_getb32 ((unsigned char *) where); else insn = bfd_getl32 ((unsigned char *) where); insn = ppc_insert_operand (insn, operand, (offsetT) value, fixP->tc_fix_data.ppc_cpu, fixP->fx_file, fixP->fx_line); if (target_big_endian) bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); else bfd_putl32 ((bfd_vma) insn, (unsigned char *) where); if (fixP->fx_done) /* Nothing else to do here. */ return; assert (fixP->fx_addsy != NULL); /* Determine a BFD reloc value based on the operand information. We are only prepared to turn a few of the operands into relocs. */ if ((operand->flags & PPC_OPERAND_RELATIVE) != 0 && operand->bitm == 0x3fffffc && operand->shift == 0) fixP->fx_r_type = BFD_RELOC_PPC_B26; else if ((operand->flags & PPC_OPERAND_RELATIVE) != 0 && operand->bitm == 0xfffc && operand->shift == 0) { fixP->fx_r_type = BFD_RELOC_PPC_B16; #ifdef OBJ_XCOFF fixP->fx_size = 2; if (target_big_endian) fixP->fx_where += 2; #endif } else if ((operand->flags & PPC_OPERAND_ABSOLUTE) != 0 && operand->bitm == 0x3fffffc && operand->shift == 0) fixP->fx_r_type = BFD_RELOC_PPC_BA26; else if ((operand->flags & PPC_OPERAND_ABSOLUTE) != 0 && operand->bitm == 0xfffc && operand->shift == 0) { fixP->fx_r_type = BFD_RELOC_PPC_BA16; #ifdef OBJ_XCOFF fixP->fx_size = 2; if (target_big_endian) fixP->fx_where += 2; #endif } #if defined (OBJ_XCOFF) || defined (OBJ_ELF) else if ((operand->flags & PPC_OPERAND_PARENS) != 0 && (operand->bitm & 0xfff0) == 0xfff0 && operand->shift == 0) { if (ppc_is_toc_sym (fixP->fx_addsy)) { fixP->fx_r_type = BFD_RELOC_PPC_TOC16; #ifdef OBJ_ELF if (ppc_obj64 && (operand->flags & PPC_OPERAND_DS) != 0) fixP->fx_r_type = BFD_RELOC_PPC64_TOC16_DS; #endif } else { fixP->fx_r_type = BFD_RELOC_16; #ifdef OBJ_ELF if (ppc_obj64 && (operand->flags & PPC_OPERAND_DS) != 0) fixP->fx_r_type = BFD_RELOC_PPC64_ADDR16_DS; #endif } fixP->fx_size = 2; if (target_big_endian) fixP->fx_where += 2; } #endif /* defined (OBJ_XCOFF) || defined (OBJ_ELF) */ else { char *sfile; unsigned int sline; /* Use expr_symbol_where to see if this is an expression symbol. */ if (expr_symbol_where (fixP->fx_addsy, &sfile, &sline)) as_bad_where (fixP->fx_file, fixP->fx_line, _("unresolved expression that must be resolved")); else as_bad_where (fixP->fx_file, fixP->fx_line, _("unsupported relocation against %s"), S_GET_NAME (fixP->fx_addsy)); fixP->fx_done = 1; return; } } else { #ifdef OBJ_ELF ppc_elf_validate_fix (fixP, seg); #endif switch (fixP->fx_r_type) { case BFD_RELOC_CTOR: if (ppc_obj64) goto ctor64; /* fall through */ case BFD_RELOC_32: if (fixP->fx_pcrel) fixP->fx_r_type = BFD_RELOC_32_PCREL; /* fall through */ case BFD_RELOC_RVA: case BFD_RELOC_32_PCREL: case BFD_RELOC_PPC_EMB_NADDR32: md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, value, 4); break; case BFD_RELOC_64: ctor64: if (fixP->fx_pcrel) fixP->fx_r_type = BFD_RELOC_64_PCREL; /* fall through */ case BFD_RELOC_64_PCREL: md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, value, 8); break; case BFD_RELOC_GPREL16: case BFD_RELOC_16_GOT_PCREL: case BFD_RELOC_16_GOTOFF: case BFD_RELOC_LO16_GOTOFF: case BFD_RELOC_HI16_GOTOFF: case BFD_RELOC_HI16_S_GOTOFF: case BFD_RELOC_16_BASEREL: case BFD_RELOC_LO16_BASEREL: case BFD_RELOC_HI16_BASEREL: case BFD_RELOC_HI16_S_BASEREL: case BFD_RELOC_PPC_EMB_NADDR16: case BFD_RELOC_PPC_EMB_NADDR16_LO: case BFD_RELOC_PPC_EMB_NADDR16_HI: case BFD_RELOC_PPC_EMB_NADDR16_HA: case BFD_RELOC_PPC_EMB_SDAI16: case BFD_RELOC_PPC_EMB_SDA2REL: case BFD_RELOC_PPC_EMB_SDA2I16: case BFD_RELOC_PPC_EMB_RELSEC16: case BFD_RELOC_PPC_EMB_RELST_LO: case BFD_RELOC_PPC_EMB_RELST_HI: case BFD_RELOC_PPC_EMB_RELST_HA: case BFD_RELOC_PPC_EMB_RELSDA: case BFD_RELOC_PPC_TOC16: #ifdef OBJ_ELF case BFD_RELOC_PPC64_TOC16_LO: case BFD_RELOC_PPC64_TOC16_HI: case BFD_RELOC_PPC64_TOC16_HA: #endif if (fixP->fx_pcrel) { if (fixP->fx_addsy != NULL) as_bad_where (fixP->fx_file, fixP->fx_line, _("cannot emit PC relative %s relocation against %s"), bfd_get_reloc_code_name (fixP->fx_r_type), S_GET_NAME (fixP->fx_addsy)); else as_bad_where (fixP->fx_file, fixP->fx_line, _("cannot emit PC relative %s relocation"), bfd_get_reloc_code_name (fixP->fx_r_type)); } md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, value, 2); break; case BFD_RELOC_16: if (fixP->fx_pcrel) fixP->fx_r_type = BFD_RELOC_16_PCREL; /* fall through */ case BFD_RELOC_16_PCREL: md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, value, 2); break; case BFD_RELOC_LO16: if (fixP->fx_pcrel) fixP->fx_r_type = BFD_RELOC_LO16_PCREL; /* fall through */ case BFD_RELOC_LO16_PCREL: md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, value, 2); break; /* This case happens when you write, for example, lis %r3,(L1-L2)@ha where L1 and L2 are defined later. */ case BFD_RELOC_HI16: if (fixP->fx_pcrel) fixP->fx_r_type = BFD_RELOC_HI16_PCREL; /* fall through */ case BFD_RELOC_HI16_PCREL: md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, PPC_HI (value), 2); break; case BFD_RELOC_HI16_S: if (fixP->fx_pcrel) fixP->fx_r_type = BFD_RELOC_HI16_S_PCREL; /* fall through */ case BFD_RELOC_HI16_S_PCREL: md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, PPC_HA (value), 2); break; #ifdef OBJ_ELF case BFD_RELOC_PPC64_HIGHER: if (fixP->fx_pcrel) abort (); md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, PPC_HIGHER (value), 2); break; case BFD_RELOC_PPC64_HIGHER_S: if (fixP->fx_pcrel) abort (); md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, PPC_HIGHERA (value), 2); break; case BFD_RELOC_PPC64_HIGHEST: if (fixP->fx_pcrel) abort (); md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, PPC_HIGHEST (value), 2); break; case BFD_RELOC_PPC64_HIGHEST_S: if (fixP->fx_pcrel) abort (); md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, PPC_HIGHESTA (value), 2); break; case BFD_RELOC_PPC64_ADDR16_DS: case BFD_RELOC_PPC64_ADDR16_LO_DS: case BFD_RELOC_PPC64_GOT16_DS: case BFD_RELOC_PPC64_GOT16_LO_DS: case BFD_RELOC_PPC64_PLT16_LO_DS: case BFD_RELOC_PPC64_SECTOFF_DS: case BFD_RELOC_PPC64_SECTOFF_LO_DS: case BFD_RELOC_PPC64_TOC16_DS: case BFD_RELOC_PPC64_TOC16_LO_DS: case BFD_RELOC_PPC64_PLTGOT16_DS: case BFD_RELOC_PPC64_PLTGOT16_LO_DS: if (fixP->fx_pcrel) abort (); { char *where = fixP->fx_frag->fr_literal + fixP->fx_where; unsigned long val, mask; if (target_big_endian) val = bfd_getb32 (where - 2); else val = bfd_getl32 (where); mask = 0xfffc; /* lq insns reserve the four lsbs. */ if ((ppc_cpu & PPC_OPCODE_POWER4) != 0 && (val & (0x3f << 26)) == (56u << 26)) mask = 0xfff0; val |= value & mask; if (target_big_endian) bfd_putb16 ((bfd_vma) val, where); else bfd_putl16 ((bfd_vma) val, where); } break; case BFD_RELOC_PPC_B16_BRTAKEN: case BFD_RELOC_PPC_B16_BRNTAKEN: case BFD_RELOC_PPC_BA16_BRTAKEN: case BFD_RELOC_PPC_BA16_BRNTAKEN: break; case BFD_RELOC_PPC_TLS: break; case BFD_RELOC_PPC_DTPMOD: case BFD_RELOC_PPC_TPREL16: case BFD_RELOC_PPC_TPREL16_LO: case BFD_RELOC_PPC_TPREL16_HI: case BFD_RELOC_PPC_TPREL16_HA: case BFD_RELOC_PPC_TPREL: case BFD_RELOC_PPC_DTPREL16: case BFD_RELOC_PPC_DTPREL16_LO: case BFD_RELOC_PPC_DTPREL16_HI: case BFD_RELOC_PPC_DTPREL16_HA: case BFD_RELOC_PPC_DTPREL: case BFD_RELOC_PPC_GOT_TLSGD16: case BFD_RELOC_PPC_GOT_TLSGD16_LO: case BFD_RELOC_PPC_GOT_TLSGD16_HI: case BFD_RELOC_PPC_GOT_TLSGD16_HA: case BFD_RELOC_PPC_GOT_TLSLD16: case BFD_RELOC_PPC_GOT_TLSLD16_LO: case BFD_RELOC_PPC_GOT_TLSLD16_HI: case BFD_RELOC_PPC_GOT_TLSLD16_HA: case BFD_RELOC_PPC_GOT_TPREL16: case BFD_RELOC_PPC_GOT_TPREL16_LO: case BFD_RELOC_PPC_GOT_TPREL16_HI: case BFD_RELOC_PPC_GOT_TPREL16_HA: case BFD_RELOC_PPC_GOT_DTPREL16: case BFD_RELOC_PPC_GOT_DTPREL16_LO: case BFD_RELOC_PPC_GOT_DTPREL16_HI: case BFD_RELOC_PPC_GOT_DTPREL16_HA: case BFD_RELOC_PPC64_TPREL16_DS: case BFD_RELOC_PPC64_TPREL16_LO_DS: case BFD_RELOC_PPC64_TPREL16_HIGHER: case BFD_RELOC_PPC64_TPREL16_HIGHERA: case BFD_RELOC_PPC64_TPREL16_HIGHEST: case BFD_RELOC_PPC64_TPREL16_HIGHESTA: case BFD_RELOC_PPC64_DTPREL16_DS: case BFD_RELOC_PPC64_DTPREL16_LO_DS: case BFD_RELOC_PPC64_DTPREL16_HIGHER: case BFD_RELOC_PPC64_DTPREL16_HIGHERA: case BFD_RELOC_PPC64_DTPREL16_HIGHEST: case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: S_SET_THREAD_LOCAL (fixP->fx_addsy); break; #endif /* Because SDA21 modifies the register field, the size is set to 4 bytes, rather than 2, so offset it here appropriately. */ case BFD_RELOC_PPC_EMB_SDA21: if (fixP->fx_pcrel) abort (); md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where + ((target_big_endian) ? 2 : 0), value, 2); break; case BFD_RELOC_8: if (fixP->fx_pcrel) { /* This can occur if there is a bug in the input assembler, eg: ".byte <undefined_symbol> - ." */ if (fixP->fx_addsy) as_bad (_("Unable to handle reference to symbol %s"), S_GET_NAME (fixP->fx_addsy)); else as_bad (_("Unable to resolve expression")); fixP->fx_done = 1; } else md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where, value, 1); break; case BFD_RELOC_24_PLT_PCREL: case BFD_RELOC_PPC_LOCAL24PC: if (!fixP->fx_pcrel && !fixP->fx_done) abort (); if (fixP->fx_done) { char *where; unsigned long insn; /* Fetch the instruction, insert the fully resolved operand value, and stuff the instruction back again. */ where = fixP->fx_frag->fr_literal + fixP->fx_where; if (target_big_endian) insn = bfd_getb32 ((unsigned char *) where); else insn = bfd_getl32 ((unsigned char *) where); if ((value & 3) != 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("must branch to an address a multiple of 4")); if ((offsetT) value < -0x40000000 || (offsetT) value >= 0x40000000) as_bad_where (fixP->fx_file, fixP->fx_line, _("@local or @plt branch destination is too far away, %ld bytes"), (long) value); insn = insn | (value & 0x03fffffc); if (target_big_endian) bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); else bfd_putl32 ((bfd_vma) insn, (unsigned char *) where); } break; case BFD_RELOC_VTABLE_INHERIT: fixP->fx_done = 0; if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy) && !S_IS_WEAK (fixP->fx_addsy)) S_SET_WEAK (fixP->fx_addsy); break; case BFD_RELOC_VTABLE_ENTRY: fixP->fx_done = 0; break; #ifdef OBJ_ELF /* Generated by reference to `sym@tocbase'. The sym is ignored by the linker. */ case BFD_RELOC_PPC64_TOC: fixP->fx_done = 0; break; #endif default: fprintf (stderr, _("Gas failure, reloc value %d\n"), fixP->fx_r_type); fflush (stderr); abort (); } } #ifdef OBJ_ELF fixP->fx_addnumber = value; /* PowerPC uses RELA relocs, ie. the reloc addend is stored separately from the section contents. If we are going to be emitting a reloc then the section contents are immaterial, so don't warn if they happen to overflow. Leave such warnings to ld. */ if (!fixP->fx_done) fixP->fx_no_overflow = 1; #else if (fixP->fx_r_type != BFD_RELOC_PPC_TOC16) fixP->fx_addnumber = 0; else { #ifdef TE_PE fixP->fx_addnumber = 0; #else /* We want to use the offset within the toc, not the actual VMA of the symbol. */ fixP->fx_addnumber = - bfd_get_section_vma (stdoutput, S_GET_SEGMENT (fixP->fx_addsy)) - S_GET_VALUE (ppc_toc_csect); #endif } #endif } /* Generate a reloc for a fixup. */ arelent * tc_gen_reloc (asection *seg ATTRIBUTE_UNUSED, fixS *fixp) { arelent *reloc; reloc = (arelent *) xmalloc (sizeof (arelent)); reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); if (reloc->howto == (reloc_howto_type *) NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, _("reloc %d not supported by object file format"), (int) fixp->fx_r_type); return NULL; } reloc->addend = fixp->fx_addnumber; return reloc; } void ppc_cfi_frame_initial_instructions (void) { cfi_add_CFA_def_cfa (1, 0); } int tc_ppc_regname_to_dw2regnum (char *regname) { unsigned int regnum = -1; unsigned int i; const char *p; char *q; static struct { char *name; int dw2regnum; } regnames[] = { { "sp", 1 }, { "r.sp", 1 }, { "rtoc", 2 }, { "r.toc", 2 }, { "mq", 64 }, { "lr", 65 }, { "ctr", 66 }, { "ap", 67 }, { "cr", 70 }, { "xer", 76 }, { "vrsave", 109 }, { "vscr", 110 }, { "spe_acc", 111 }, { "spefscr", 112 } }; for (i = 0; i < ARRAY_SIZE (regnames); ++i) if (strcmp (regnames[i].name, regname) == 0) return regnames[i].dw2regnum; if (regname[0] == 'r' || regname[0] == 'f' || regname[0] == 'v') { p = regname + 1 + (regname[1] == '.'); regnum = strtoul (p, &q, 10); if (p == q || *q || regnum >= 32) return -1; if (regname[0] == 'f') regnum += 32; else if (regname[0] == 'v') regnum += 77; } else if (regname[0] == 'c' && regname[1] == 'r') { p = regname + 2 + (regname[2] == '.'); if (p[0] < '0' || p[0] > '7' || p[1]) return -1; regnum = p[0] - '0' + 68; } return regnum; }
Go to most recent revision | Compare with Previous | Blame | View Log