URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.20.1/] [bfd/] [elfxx-sparc.c] - Rev 309
Go to most recent revision | Compare with Previous | Blame | View Log
/* SPARC-specific support for ELF Copyright 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* This file handles functionality common to the different SPARC ABI's. */ #include "sysdep.h" #include "bfd.h" #include "bfdlink.h" #include "libbfd.h" #include "libiberty.h" #include "elf-bfd.h" #include "elf/sparc.h" #include "opcode/sparc.h" #include "elfxx-sparc.h" #include "elf-vxworks.h" /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ #define MINUS_ONE (~ (bfd_vma) 0) #define ABI_64_P(abfd) \ (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) /* The relocation "howto" table. */ /* Utility for performing the standard initial work of an instruction relocation. *PRELOCATION will contain the relocated item. *PINSN will contain the instruction from the input stream. If the result is `bfd_reloc_other' the caller can continue with performing the relocation. Otherwise it must stop and return the value to its caller. */ static bfd_reloc_status_type init_insn_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, PTR data, asection *input_section, bfd *output_bfd, bfd_vma *prelocation, bfd_vma *pinsn) { bfd_vma relocation; reloc_howto_type *howto = reloc_entry->howto; if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* This works because partial_inplace is FALSE. */ if (output_bfd != NULL) return bfd_reloc_continue; if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; relocation = (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset); relocation += reloc_entry->addend; if (howto->pc_relative) { relocation -= (input_section->output_section->vma + input_section->output_offset); relocation -= reloc_entry->address; } *prelocation = relocation; *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); return bfd_reloc_other; } /* For unsupported relocs. */ static bfd_reloc_status_type sparc_elf_notsup_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry ATTRIBUTE_UNUSED, asymbol *symbol ATTRIBUTE_UNUSED, PTR data ATTRIBUTE_UNUSED, asection *input_section ATTRIBUTE_UNUSED, bfd *output_bfd ATTRIBUTE_UNUSED, char **error_message ATTRIBUTE_UNUSED) { return bfd_reloc_notsupported; } /* Handle the WDISP16 reloc. */ static bfd_reloc_status_type sparc_elf_wdisp16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, PTR data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { bfd_vma relocation; bfd_vma insn; bfd_reloc_status_type status; status = init_insn_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, &relocation, &insn); if (status != bfd_reloc_other) return status; insn &= ~ (bfd_vma) 0x303fff; insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff); bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); if ((bfd_signed_vma) relocation < - 0x40000 || (bfd_signed_vma) relocation > 0x3ffff) return bfd_reloc_overflow; else return bfd_reloc_ok; } /* Handle the HIX22 reloc. */ static bfd_reloc_status_type sparc_elf_hix22_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, PTR data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { bfd_vma relocation; bfd_vma insn; bfd_reloc_status_type status; status = init_insn_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, &relocation, &insn); if (status != bfd_reloc_other) return status; relocation ^= MINUS_ONE; insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff); bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); if ((relocation & ~ (bfd_vma) 0xffffffff) != 0) return bfd_reloc_overflow; else return bfd_reloc_ok; } /* Handle the LOX10 reloc. */ static bfd_reloc_status_type sparc_elf_lox10_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, PTR data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { bfd_vma relocation; bfd_vma insn; bfd_reloc_status_type status; status = init_insn_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, &relocation, &insn); if (status != bfd_reloc_other) return status; insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff); bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); return bfd_reloc_ok; } static reloc_howto_type _bfd_sparc_elf_howto_table[] = { HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE), HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE), HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE), HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE), HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE), HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE), HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE), HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE), HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE), HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE), HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE), HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE), HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE), HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE), HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE), HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE), HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE), HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE), HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE), HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE), HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE), HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE), HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE), HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE), HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE), HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE), HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE), HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE), HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE), HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE), HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE), HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE), HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE), HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE), HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE), HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE), HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE), HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE), HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE), HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE), HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE), HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE), HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE), HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE), HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE), HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE), HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE), HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE), HOWTO(R_SPARC_GOTDATA_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_GOTDATA_HIX22",FALSE,0,0x003fffff, FALSE), HOWTO(R_SPARC_GOTDATA_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_GOTDATA_LOX10",FALSE,0,0x000003ff, FALSE), HOWTO(R_SPARC_GOTDATA_OP_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_GOTDATA_OP_HIX22",FALSE,0,0x003fffff, FALSE), HOWTO(R_SPARC_GOTDATA_OP_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_GOTDATA_OP_LOX10",FALSE,0,0x000003ff, FALSE), HOWTO(R_SPARC_GOTDATA_OP,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOTDATA_OP",FALSE,0,0x00000000,TRUE), }; static reloc_howto_type sparc_vtinherit_howto = HOWTO (R_SPARC_GNU_VTINHERIT, 0,2,0,FALSE,0,complain_overflow_dont, NULL, "R_SPARC_GNU_VTINHERIT", FALSE,0, 0, FALSE); static reloc_howto_type sparc_vtentry_howto = HOWTO (R_SPARC_GNU_VTENTRY, 0,2,0,FALSE,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_SPARC_GNU_VTENTRY", FALSE,0,0, FALSE); static reloc_howto_type sparc_rev32_howto = HOWTO(R_SPARC_REV32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_REV32", FALSE,0,0xffffffff,TRUE); struct elf_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; unsigned char elf_reloc_val; }; static const struct elf_reloc_map sparc_reloc_map[] = { { BFD_RELOC_NONE, R_SPARC_NONE, }, { BFD_RELOC_16, R_SPARC_16, }, { BFD_RELOC_16_PCREL, R_SPARC_DISP16 }, { BFD_RELOC_8, R_SPARC_8 }, { BFD_RELOC_8_PCREL, R_SPARC_DISP8 }, { BFD_RELOC_CTOR, R_SPARC_64 }, { BFD_RELOC_32, R_SPARC_32 }, { BFD_RELOC_32_PCREL, R_SPARC_DISP32 }, { BFD_RELOC_HI22, R_SPARC_HI22 }, { BFD_RELOC_LO10, R_SPARC_LO10, }, { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 }, { BFD_RELOC_64_PCREL, R_SPARC_DISP64 }, { BFD_RELOC_SPARC22, R_SPARC_22 }, { BFD_RELOC_SPARC13, R_SPARC_13 }, { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 }, { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 }, { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 }, { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 }, { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 }, { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 }, { BFD_RELOC_SPARC_COPY, R_SPARC_COPY }, { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT }, { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT }, { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE }, { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 }, { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 }, { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 }, { BFD_RELOC_SPARC_10, R_SPARC_10 }, { BFD_RELOC_SPARC_11, R_SPARC_11 }, { BFD_RELOC_SPARC_64, R_SPARC_64 }, { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 }, { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 }, { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 }, { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 }, { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 }, { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 }, { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 }, { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 }, { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 }, { BFD_RELOC_SPARC_7, R_SPARC_7 }, { BFD_RELOC_SPARC_5, R_SPARC_5 }, { BFD_RELOC_SPARC_6, R_SPARC_6 }, { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 }, { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 }, { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 }, { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD }, { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL }, { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 }, { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 }, { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD }, { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL }, { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 }, { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 }, { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD }, { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 }, { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 }, { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD }, { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX }, { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD }, { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 }, { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 }, { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 }, { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 }, { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 }, { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 }, { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 }, { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 }, { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 }, { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 }, { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 }, { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 }, { BFD_RELOC_SPARC_H44, R_SPARC_H44 }, { BFD_RELOC_SPARC_M44, R_SPARC_M44 }, { BFD_RELOC_SPARC_L44, R_SPARC_L44 }, { BFD_RELOC_SPARC_GOTDATA_HIX22, R_SPARC_GOTDATA_HIX22 }, { BFD_RELOC_SPARC_GOTDATA_LOX10, R_SPARC_GOTDATA_LOX10 }, { BFD_RELOC_SPARC_GOTDATA_OP_HIX22, R_SPARC_GOTDATA_OP_HIX22 }, { BFD_RELOC_SPARC_GOTDATA_OP_LOX10, R_SPARC_GOTDATA_OP_LOX10 }, { BFD_RELOC_SPARC_GOTDATA_OP, R_SPARC_GOTDATA_OP }, { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }, { BFD_RELOC_VTABLE_INHERIT, R_SPARC_GNU_VTINHERIT }, { BFD_RELOC_VTABLE_ENTRY, R_SPARC_GNU_VTENTRY }, { BFD_RELOC_SPARC_REV32, R_SPARC_REV32 }, }; reloc_howto_type * _bfd_sparc_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { unsigned int i; switch (code) { case BFD_RELOC_VTABLE_INHERIT: return &sparc_vtinherit_howto; case BFD_RELOC_VTABLE_ENTRY: return &sparc_vtentry_howto; case BFD_RELOC_SPARC_REV32: return &sparc_rev32_howto; default: for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++) { if (sparc_reloc_map[i].bfd_reloc_val == code) return (_bfd_sparc_elf_howto_table + (int) sparc_reloc_map[i].elf_reloc_val); } } bfd_set_error (bfd_error_bad_value); return NULL; } reloc_howto_type * _bfd_sparc_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < (sizeof (_bfd_sparc_elf_howto_table) / sizeof (_bfd_sparc_elf_howto_table[0])); i++) if (_bfd_sparc_elf_howto_table[i].name != NULL && strcasecmp (_bfd_sparc_elf_howto_table[i].name, r_name) == 0) return &_bfd_sparc_elf_howto_table[i]; if (strcasecmp (sparc_vtinherit_howto.name, r_name) == 0) return &sparc_vtinherit_howto; if (strcasecmp (sparc_vtentry_howto.name, r_name) == 0) return &sparc_vtentry_howto; if (strcasecmp (sparc_rev32_howto.name, r_name) == 0) return &sparc_rev32_howto; return NULL; } reloc_howto_type * _bfd_sparc_elf_info_to_howto_ptr (unsigned int r_type) { switch (r_type) { case R_SPARC_GNU_VTINHERIT: return &sparc_vtinherit_howto; case R_SPARC_GNU_VTENTRY: return &sparc_vtentry_howto; case R_SPARC_REV32: return &sparc_rev32_howto; default: if (r_type >= (unsigned int) R_SPARC_max_std) { (*_bfd_error_handler) (_("invalid relocation type %d"), (int) r_type); r_type = R_SPARC_NONE; } return &_bfd_sparc_elf_howto_table[r_type]; } } /* Both 32-bit and 64-bit sparc encode this in an identical manner, so just take advantage of that. */ #define SPARC_ELF_R_TYPE(r_info) \ ((r_info) & 0xff) void _bfd_sparc_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, Elf_Internal_Rela *dst) { unsigned int r_type = SPARC_ELF_R_TYPE (dst->r_info); cache_ptr->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type); } /* The nop opcode we use. */ #define SPARC_NOP 0x01000000 #define SPARC_INSN_BYTES 4 /* The SPARC linker needs to keep track of the number of relocs that it decides to copy as dynamic relocs in check_relocs for each symbol. This is so that it can later discard them if they are found to be unnecessary. We store the information in a field extending the regular ELF linker hash table. */ struct _bfd_sparc_elf_dyn_relocs { struct _bfd_sparc_elf_dyn_relocs *next; /* The input section of the reloc. */ asection *sec; /* Total number of relocs copied for the input section. */ bfd_size_type count; /* Number of pc-relative relocs copied for the input section. */ bfd_size_type pc_count; }; /* SPARC ELF linker hash entry. */ struct _bfd_sparc_elf_link_hash_entry { struct elf_link_hash_entry elf; /* Track dynamic relocs copied for this symbol. */ struct _bfd_sparc_elf_dyn_relocs *dyn_relocs; #define GOT_UNKNOWN 0 #define GOT_NORMAL 1 #define GOT_TLS_GD 2 #define GOT_TLS_IE 3 unsigned char tls_type; }; #define _bfd_sparc_elf_hash_entry(ent) ((struct _bfd_sparc_elf_link_hash_entry *)(ent)) struct _bfd_sparc_elf_obj_tdata { struct elf_obj_tdata root; /* tls_type for each local got entry. */ char *local_got_tls_type; /* TRUE if TLS GD relocs has been seen for this object. */ bfd_boolean has_tlsgd; }; #define _bfd_sparc_elf_tdata(abfd) \ ((struct _bfd_sparc_elf_obj_tdata *) (abfd)->tdata.any) #define _bfd_sparc_elf_local_got_tls_type(abfd) \ (_bfd_sparc_elf_tdata (abfd)->local_got_tls_type) #define is_sparc_elf(bfd) \ (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ && elf_tdata (bfd) != NULL \ && elf_object_id (bfd) == SPARC_ELF_TDATA) bfd_boolean _bfd_sparc_elf_mkobject (bfd *abfd) { return bfd_elf_allocate_object (abfd, sizeof (struct _bfd_sparc_elf_obj_tdata), SPARC_ELF_TDATA); } static void sparc_put_word_32 (bfd *bfd, bfd_vma val, void *ptr) { bfd_put_32 (bfd, val, ptr); } static void sparc_put_word_64 (bfd *bfd, bfd_vma val, void *ptr) { bfd_put_64 (bfd, val, ptr); } static void sparc_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) { const struct elf_backend_data *bed; bfd_byte *loc; bed = get_elf_backend_data (abfd); loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); bed->s->swap_reloca_out (abfd, rel, loc); } static bfd_vma sparc_elf_r_info_64 (Elf_Internal_Rela *in_rel ATTRIBUTE_UNUSED, bfd_vma index ATTRIBUTE_UNUSED, bfd_vma type ATTRIBUTE_UNUSED) { return ELF64_R_INFO (index, (in_rel ? ELF64_R_TYPE_INFO (ELF64_R_TYPE_DATA (in_rel->r_info), type) : type)); } static bfd_vma sparc_elf_r_info_32 (Elf_Internal_Rela *in_rel ATTRIBUTE_UNUSED, bfd_vma index, bfd_vma type) { return ELF32_R_INFO (index, type); } static bfd_vma sparc_elf_r_symndx_64 (bfd_vma r_info) { bfd_vma r_symndx = ELF32_R_SYM (r_info); return (r_symndx >> 24); } static bfd_vma sparc_elf_r_symndx_32 (bfd_vma r_info) { return ELF32_R_SYM (r_info); } /* PLT/GOT stuff */ #define PLT32_ENTRY_SIZE 12 #define PLT32_HEADER_SIZE (4 * PLT32_ENTRY_SIZE) /* The first four entries in a 32-bit procedure linkage table are reserved, and the initial contents are unimportant (we zero them out). Subsequent entries look like this. See the SVR4 ABI SPARC supplement to see how this works. */ /* sethi %hi(.-.plt0),%g1. We fill in the address later. */ #define PLT32_ENTRY_WORD0 0x03000000 /* b,a .plt0. We fill in the offset later. */ #define PLT32_ENTRY_WORD1 0x30800000 /* nop. */ #define PLT32_ENTRY_WORD2 SPARC_NOP static int sparc32_plt_entry_build (bfd *output_bfd, asection *splt, bfd_vma offset, bfd_vma max ATTRIBUTE_UNUSED, bfd_vma *r_offset) { bfd_put_32 (output_bfd, PLT32_ENTRY_WORD0 + offset, splt->contents + offset); bfd_put_32 (output_bfd, (PLT32_ENTRY_WORD1 + (((- (offset + 4)) >> 2) & 0x3fffff)), splt->contents + offset + 4); bfd_put_32 (output_bfd, (bfd_vma) PLT32_ENTRY_WORD2, splt->contents + offset + 8); *r_offset = offset; return offset / PLT32_ENTRY_SIZE - 4; } /* Both the headers and the entries are icache aligned. */ #define PLT64_ENTRY_SIZE 32 #define PLT64_HEADER_SIZE (4 * PLT64_ENTRY_SIZE) #define PLT64_LARGE_THRESHOLD 32768 static int sparc64_plt_entry_build (bfd *output_bfd, asection *splt, bfd_vma offset, bfd_vma max, bfd_vma *r_offset) { unsigned char *entry = splt->contents + offset; const unsigned int nop = SPARC_NOP; int index; if (offset < (PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE)) { unsigned int sethi, ba; *r_offset = offset; index = (offset / PLT64_ENTRY_SIZE); sethi = 0x03000000 | (index * PLT64_ENTRY_SIZE); ba = 0x30680000 | (((splt->contents + PLT64_ENTRY_SIZE) - (entry + 4)) / 4 & 0x7ffff); bfd_put_32 (output_bfd, (bfd_vma) sethi, entry); bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4); bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8); bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12); bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16); bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20); bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24); bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28); } else { unsigned char *ptr; unsigned int ldx; int block, last_block, ofs, last_ofs, chunks_this_block; const int insn_chunk_size = (6 * 4); const int ptr_chunk_size = (1 * 8); const int entries_per_block = 160; const int block_size = entries_per_block * (insn_chunk_size + ptr_chunk_size); /* Entries 32768 and higher are grouped into blocks of 160. The blocks are further subdivided into 160 sequences of 6 instructions and 160 pointers. If a block does not require the full 160 entries, let's say it requires N, then there will be N sequences of 6 instructions and N pointers. */ offset -= (PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE); max -= (PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE); block = offset / block_size; last_block = max / block_size; if (block != last_block) { chunks_this_block = 160; } else { last_ofs = max % block_size; chunks_this_block = last_ofs / (insn_chunk_size + ptr_chunk_size); } ofs = offset % block_size; index = (PLT64_LARGE_THRESHOLD + (block * 160) + (ofs / insn_chunk_size)); ptr = splt->contents + (PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE) + (block * block_size) + (chunks_this_block * insn_chunk_size) + (ofs / insn_chunk_size) * ptr_chunk_size; *r_offset = (bfd_vma) (ptr - splt->contents); ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff); /* mov %o7,%g5 call .+8 nop ldx [%o7+P],%g1 jmpl %o7+%g1,%g1 mov %g5,%o7 */ bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry); bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4); bfd_put_32 (output_bfd, (bfd_vma) SPARC_NOP, entry + 8); bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12); bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16); bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20); bfd_put_64 (output_bfd, (bfd_vma) (splt->contents - (entry + 4)), ptr); } return index - 4; } /* The format of the first PLT entry in a VxWorks executable. */ static const bfd_vma sparc_vxworks_exec_plt0_entry[] = { 0x05000000, /* sethi %hi(_GLOBAL_OFFSET_TABLE_+8), %g2 */ 0x8410a000, /* or %g2, %lo(_GLOBAL_OFFSET_TABLE_+8), %g2 */ 0xc4008000, /* ld [ %g2 ], %g2 */ 0x81c08000, /* jmp %g2 */ 0x01000000 /* nop */ }; /* The format of subsequent PLT entries. */ static const bfd_vma sparc_vxworks_exec_plt_entry[] = { 0x03000000, /* sethi %hi(_GLOBAL_OFFSET_TABLE_+f@got), %g1 */ 0x82106000, /* or %g1, %lo(_GLOBAL_OFFSET_TABLE_+f@got), %g1 */ 0xc2004000, /* ld [ %g1 ], %g1 */ 0x81c04000, /* jmp %g1 */ 0x01000000, /* nop */ 0x03000000, /* sethi %hi(f@pltindex), %g1 */ 0x10800000, /* b _PLT_resolve */ 0x82106000 /* or %g1, %lo(f@pltindex), %g1 */ }; /* The format of the first PLT entry in a VxWorks shared object. */ static const bfd_vma sparc_vxworks_shared_plt0_entry[] = { 0xc405e008, /* ld [ %l7 + 8 ], %g2 */ 0x81c08000, /* jmp %g2 */ 0x01000000 /* nop */ }; /* The format of subsequent PLT entries. */ static const bfd_vma sparc_vxworks_shared_plt_entry[] = { 0x03000000, /* sethi %hi(f@got), %g1 */ 0x82106000, /* or %g1, %lo(f@got), %g1 */ 0xc205c001, /* ld [ %l7 + %g1 ], %g1 */ 0x81c04000, /* jmp %g1 */ 0x01000000, /* nop */ 0x03000000, /* sethi %hi(f@pltindex), %g1 */ 0x10800000, /* b _PLT_resolve */ 0x82106000 /* or %g1, %lo(f@pltindex), %g1 */ }; #define SPARC_ELF_PUT_WORD(htab, bfd, val, ptr) \ htab->put_word(bfd, val, ptr) #define SPARC_ELF_R_INFO(htab, in_rel, index, type) \ htab->r_info(in_rel, index, type) #define SPARC_ELF_R_SYMNDX(htab, r_info) \ htab->r_symndx(r_info) #define SPARC_ELF_WORD_BYTES(htab) \ htab->bytes_per_word #define SPARC_ELF_RELA_BYTES(htab) \ htab->bytes_per_rela #define SPARC_ELF_DTPOFF_RELOC(htab) \ htab->dtpoff_reloc #define SPARC_ELF_DTPMOD_RELOC(htab) \ htab->dtpmod_reloc #define SPARC_ELF_TPOFF_RELOC(htab) \ htab->tpoff_reloc #define SPARC_ELF_BUILD_PLT_ENTRY(htab, obfd, splt, off, max, r_off) \ htab->build_plt_entry (obfd, splt, off, max, r_off) /* Create an entry in an SPARC ELF linker hash table. */ static struct bfd_hash_entry * link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct _bfd_sparc_elf_link_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = _bfd_elf_link_hash_newfunc (entry, table, string); if (entry != NULL) { struct _bfd_sparc_elf_link_hash_entry *eh; eh = (struct _bfd_sparc_elf_link_hash_entry *) entry; eh->dyn_relocs = NULL; eh->tls_type = GOT_UNKNOWN; } return entry; } /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF32_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" #define ELF64_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1" /* Create a SPARC ELF linker hash table. */ struct bfd_link_hash_table * _bfd_sparc_elf_link_hash_table_create (bfd *abfd) { struct _bfd_sparc_elf_link_hash_table *ret; bfd_size_type amt = sizeof (struct _bfd_sparc_elf_link_hash_table); ret = (struct _bfd_sparc_elf_link_hash_table *) bfd_zmalloc (amt); if (ret == NULL) return NULL; if (ABI_64_P (abfd)) { ret->put_word = sparc_put_word_64; ret->r_info = sparc_elf_r_info_64; ret->r_symndx = sparc_elf_r_symndx_64; ret->dtpoff_reloc = R_SPARC_TLS_DTPOFF64; ret->dtpmod_reloc = R_SPARC_TLS_DTPMOD64; ret->tpoff_reloc = R_SPARC_TLS_TPOFF64; ret->word_align_power = 3; ret->align_power_max = 4; ret->bytes_per_word = 8; ret->bytes_per_rela = sizeof (Elf64_External_Rela); ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER; ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER; } else { ret->put_word = sparc_put_word_32; ret->r_info = sparc_elf_r_info_32; ret->r_symndx = sparc_elf_r_symndx_32; ret->dtpoff_reloc = R_SPARC_TLS_DTPOFF32; ret->dtpmod_reloc = R_SPARC_TLS_DTPMOD32; ret->tpoff_reloc = R_SPARC_TLS_TPOFF32; ret->word_align_power = 2; ret->align_power_max = 3; ret->bytes_per_word = 4; ret->bytes_per_rela = sizeof (Elf32_External_Rela); ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER; ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER; } if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc, sizeof (struct _bfd_sparc_elf_link_hash_entry))) { free (ret); return NULL; } return &ret->elf.root; } /* Create .got and .rela.got sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bfd_boolean create_got_section (bfd *dynobj, struct bfd_link_info *info) { struct _bfd_sparc_elf_link_hash_table *htab; if (! _bfd_elf_create_got_section (dynobj, info)) return FALSE; htab = _bfd_sparc_elf_hash_table (info); htab->sgot = bfd_get_section_by_name (dynobj, ".got"); BFD_ASSERT (htab->sgot != NULL); htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); if (htab->srelgot == NULL || ! bfd_set_section_alignment (dynobj, htab->srelgot, htab->word_align_power)) return FALSE; if (htab->is_vxworks) { htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); if (!htab->sgotplt) return FALSE; } return TRUE; } /* Create .plt, .rela.plt, .got, .rela.got, .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts to them in our hash table. */ bfd_boolean _bfd_sparc_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) { struct _bfd_sparc_elf_link_hash_table *htab; htab = _bfd_sparc_elf_hash_table (info); if (!htab->sgot && !create_got_section (dynobj, info)) return FALSE; if (!_bfd_elf_create_dynamic_sections (dynobj, info)) return FALSE; htab->splt = bfd_get_section_by_name (dynobj, ".plt"); htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss"); if (!info->shared) htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss"); if (htab->is_vxworks) { if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2)) return FALSE; if (info->shared) { htab->plt_header_size = 4 * ARRAY_SIZE (sparc_vxworks_shared_plt0_entry); htab->plt_entry_size = 4 * ARRAY_SIZE (sparc_vxworks_shared_plt_entry); } else { htab->plt_header_size = 4 * ARRAY_SIZE (sparc_vxworks_exec_plt0_entry); htab->plt_entry_size = 4 * ARRAY_SIZE (sparc_vxworks_exec_plt_entry); } } else { if (ABI_64_P (dynobj)) { htab->build_plt_entry = sparc64_plt_entry_build; htab->plt_header_size = PLT64_HEADER_SIZE; htab->plt_entry_size = PLT64_ENTRY_SIZE; } else { htab->build_plt_entry = sparc32_plt_entry_build; htab->plt_header_size = PLT32_HEADER_SIZE; htab->plt_entry_size = PLT32_ENTRY_SIZE; } } if (!htab->splt || !htab->srelplt || !htab->sdynbss || (!info->shared && !htab->srelbss)) abort (); return TRUE; } /* Copy the extra info we tack onto an elf_link_hash_entry. */ void _bfd_sparc_elf_copy_indirect_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { struct _bfd_sparc_elf_link_hash_entry *edir, *eind; edir = (struct _bfd_sparc_elf_link_hash_entry *) dir; eind = (struct _bfd_sparc_elf_link_hash_entry *) ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct _bfd_sparc_elf_dyn_relocs **pp; struct _bfd_sparc_elf_dyn_relocs *p; /* Add reloc counts against the indirect sym to the direct sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) { struct _bfd_sparc_elf_dyn_relocs *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } if (ind->root.type == bfd_link_hash_indirect && dir->got.refcount <= 0) { edir->tls_type = eind->tls_type; eind->tls_type = GOT_UNKNOWN; } _bfd_elf_link_hash_copy_indirect (info, dir, ind); } static int sparc_elf_tls_transition (struct bfd_link_info *info, bfd *abfd, int r_type, int is_local) { if (! ABI_64_P (abfd) && r_type == R_SPARC_TLS_GD_HI22 && ! _bfd_sparc_elf_tdata (abfd)->has_tlsgd) r_type = R_SPARC_REV32; if (info->shared) return r_type; switch (r_type) { case R_SPARC_TLS_GD_HI22: if (is_local) return R_SPARC_TLS_LE_HIX22; return R_SPARC_TLS_IE_HI22; case R_SPARC_TLS_GD_LO10: if (is_local) return R_SPARC_TLS_LE_LOX10; return R_SPARC_TLS_IE_LO10; case R_SPARC_TLS_IE_HI22: if (is_local) return R_SPARC_TLS_LE_HIX22; return r_type; case R_SPARC_TLS_IE_LO10: if (is_local) return R_SPARC_TLS_LE_LOX10; return r_type; case R_SPARC_TLS_LDM_HI22: return R_SPARC_TLS_LE_HIX22; case R_SPARC_TLS_LDM_LO10: return R_SPARC_TLS_LE_LOX10; } return r_type; } /* Look through the relocs for a section during the first phase, and allocate space in the global offset table or procedure linkage table. */ bfd_boolean _bfd_sparc_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { struct _bfd_sparc_elf_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_vma *local_got_offsets; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sreloc; int num_relocs; bfd_boolean checked_tlsgd = FALSE; if (info->relocatable) return TRUE; htab = _bfd_sparc_elf_hash_table (info); symtab_hdr = &elf_symtab_hdr (abfd); sym_hashes = elf_sym_hashes (abfd); local_got_offsets = elf_local_got_offsets (abfd); sreloc = NULL; if (ABI_64_P (abfd)) num_relocs = NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr); else num_relocs = sec->reloc_count; BFD_ASSERT (is_sparc_elf (abfd) || num_relocs == 0); rel_end = relocs + num_relocs; for (rel = relocs; rel < rel_end; rel++) { unsigned int r_type; unsigned long r_symndx; struct elf_link_hash_entry *h; r_symndx = SPARC_ELF_R_SYMNDX (htab, rel->r_info); r_type = SPARC_ELF_R_TYPE (rel->r_info); if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) { (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd, r_symndx); return FALSE; } if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } /* Compatibility with old R_SPARC_REV32 reloc conflicting with R_SPARC_TLS_GD_HI22. */ if (! ABI_64_P (abfd) && ! checked_tlsgd) switch (r_type) { case R_SPARC_TLS_GD_HI22: { const Elf_Internal_Rela *relt; for (relt = rel + 1; relt < rel_end; relt++) if (ELF32_R_TYPE (relt->r_info) == R_SPARC_TLS_GD_LO10 || ELF32_R_TYPE (relt->r_info) == R_SPARC_TLS_GD_ADD || ELF32_R_TYPE (relt->r_info) == R_SPARC_TLS_GD_CALL) break; checked_tlsgd = TRUE; _bfd_sparc_elf_tdata (abfd)->has_tlsgd = relt < rel_end; } break; case R_SPARC_TLS_GD_LO10: case R_SPARC_TLS_GD_ADD: case R_SPARC_TLS_GD_CALL: checked_tlsgd = TRUE; _bfd_sparc_elf_tdata (abfd)->has_tlsgd = TRUE; break; } r_type = sparc_elf_tls_transition (info, abfd, r_type, h == NULL); switch (r_type) { case R_SPARC_TLS_LDM_HI22: case R_SPARC_TLS_LDM_LO10: htab->tls_ldm_got.refcount += 1; break; case R_SPARC_TLS_LE_HIX22: case R_SPARC_TLS_LE_LOX10: if (info->shared) goto r_sparc_plt32; break; case R_SPARC_TLS_IE_HI22: case R_SPARC_TLS_IE_LO10: if (info->shared) info->flags |= DF_STATIC_TLS; /* Fall through */ case R_SPARC_GOT10: case R_SPARC_GOT13: case R_SPARC_GOT22: case R_SPARC_GOTDATA_HIX22: case R_SPARC_GOTDATA_LOX10: case R_SPARC_GOTDATA_OP_HIX22: case R_SPARC_GOTDATA_OP_LOX10: case R_SPARC_TLS_GD_HI22: case R_SPARC_TLS_GD_LO10: /* This symbol requires a global offset table entry. */ { int tls_type, old_tls_type; switch (r_type) { default: case R_SPARC_GOT10: case R_SPARC_GOT13: case R_SPARC_GOT22: case R_SPARC_GOTDATA_HIX22: case R_SPARC_GOTDATA_LOX10: case R_SPARC_GOTDATA_OP_HIX22: case R_SPARC_GOTDATA_OP_LOX10: tls_type = GOT_NORMAL; break; case R_SPARC_TLS_GD_HI22: case R_SPARC_TLS_GD_LO10: tls_type = GOT_TLS_GD; break; case R_SPARC_TLS_IE_HI22: case R_SPARC_TLS_IE_LO10: tls_type = GOT_TLS_IE; break; } if (h != NULL) { h->got.refcount += 1; old_tls_type = _bfd_sparc_elf_hash_entry(h)->tls_type; } else { bfd_signed_vma *local_got_refcounts; /* This is a global offset table entry for a local symbol. */ local_got_refcounts = elf_local_got_refcounts (abfd); if (local_got_refcounts == NULL) { bfd_size_type size; size = symtab_hdr->sh_info; size *= (sizeof (bfd_signed_vma) + sizeof(char)); local_got_refcounts = ((bfd_signed_vma *) bfd_zalloc (abfd, size)); if (local_got_refcounts == NULL) return FALSE; elf_local_got_refcounts (abfd) = local_got_refcounts; _bfd_sparc_elf_local_got_tls_type (abfd) = (char *) (local_got_refcounts + symtab_hdr->sh_info); } local_got_refcounts[r_symndx] += 1; old_tls_type = _bfd_sparc_elf_local_got_tls_type (abfd) [r_symndx]; } /* If a TLS symbol is accessed using IE at least once, there is no point to use dynamic model for it. */ if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE)) { if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD) tls_type = old_tls_type; else { (*_bfd_error_handler) (_("%B: `%s' accessed both as normal and thread local symbol"), abfd, h ? h->root.root.string : "<local>"); return FALSE; } } if (old_tls_type != tls_type) { if (h != NULL) _bfd_sparc_elf_hash_entry (h)->tls_type = tls_type; else _bfd_sparc_elf_local_got_tls_type (abfd) [r_symndx] = tls_type; } } if (htab->sgot == NULL) { if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; if (!create_got_section (htab->elf.dynobj, info)) return FALSE; } break; case R_SPARC_TLS_GD_CALL: case R_SPARC_TLS_LDM_CALL: if (info->shared) { /* These are basically R_SPARC_TLS_WPLT30 relocs against __tls_get_addr. */ struct bfd_link_hash_entry *bh = NULL; if (! _bfd_generic_link_add_one_symbol (info, abfd, "__tls_get_addr", 0, bfd_und_section_ptr, 0, NULL, FALSE, FALSE, &bh)) return FALSE; h = (struct elf_link_hash_entry *) bh; } else break; /* Fall through */ case R_SPARC_PLT32: case R_SPARC_WPLT30: case R_SPARC_HIPLT22: case R_SPARC_LOPLT10: case R_SPARC_PCPLT32: case R_SPARC_PCPLT22: case R_SPARC_PCPLT10: case R_SPARC_PLT64: /* This symbol requires a procedure linkage table entry. We actually build the entry in adjust_dynamic_symbol, because this might be a case of linking PIC code without linking in any dynamic objects, in which case we don't need to generate a procedure linkage table after all. */ if (h == NULL) { if (! ABI_64_P (abfd)) { /* The Solaris native assembler will generate a WPLT30 reloc for a local symbol if you assemble a call from one section to another when using -K pic. We treat it as WDISP30. */ if (ELF32_R_TYPE (rel->r_info) == R_SPARC_PLT32) goto r_sparc_plt32; break; } /* PR 7027: We need similar behaviour for 64-bit binaries. */ else if (r_type == R_SPARC_WPLT30) break; /* It does not make sense to have a procedure linkage table entry for a local symbol. */ bfd_set_error (bfd_error_bad_value); return FALSE; } h->needs_plt = 1; { int this_r_type; this_r_type = SPARC_ELF_R_TYPE (rel->r_info); if (this_r_type == R_SPARC_PLT32 || this_r_type == R_SPARC_PLT64) goto r_sparc_plt32; } h->plt.refcount += 1; break; case R_SPARC_PC10: case R_SPARC_PC22: case R_SPARC_PC_HH22: case R_SPARC_PC_HM10: case R_SPARC_PC_LM22: if (h != NULL) h->non_got_ref = 1; if (h != NULL && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) break; /* Fall through. */ case R_SPARC_DISP8: case R_SPARC_DISP16: case R_SPARC_DISP32: case R_SPARC_DISP64: case R_SPARC_WDISP30: case R_SPARC_WDISP22: case R_SPARC_WDISP19: case R_SPARC_WDISP16: case R_SPARC_8: case R_SPARC_16: case R_SPARC_32: case R_SPARC_HI22: case R_SPARC_22: case R_SPARC_13: case R_SPARC_LO10: case R_SPARC_UA16: case R_SPARC_UA32: case R_SPARC_10: case R_SPARC_11: case R_SPARC_64: case R_SPARC_OLO10: case R_SPARC_HH22: case R_SPARC_HM10: case R_SPARC_LM22: case R_SPARC_7: case R_SPARC_5: case R_SPARC_6: case R_SPARC_HIX22: case R_SPARC_LOX10: case R_SPARC_H44: case R_SPARC_M44: case R_SPARC_L44: case R_SPARC_UA64: if (h != NULL) h->non_got_ref = 1; r_sparc_plt32: if (h != NULL && !info->shared) { /* We may need a .plt entry if the function this reloc refers to is in a shared lib. */ h->plt.refcount += 1; } /* If we are creating a shared library, and this is a reloc against a global symbol, or a non PC relative reloc against a local symbol, then we need to copy the reloc into the shared library. However, if we are linking with -Bsymbolic, we do not need to copy a reloc against a global symbol which is defined in an object we are including in the link (i.e., DEF_REGULAR is set). At this point we have not seen all the input files, so it is possible that DEF_REGULAR is not set now but will be set later (it is never cleared). In case of a weak definition, DEF_REGULAR may be cleared later by a strong definition in a shared library. We account for that possibility below by storing information in the relocs_copied field of the hash table entry. A similar situation occurs when creating shared libraries and symbol visibility changes render the symbol local. If on the other hand, we are creating an executable, we may need to keep relocations for symbols satisfied by a dynamic library if we manage to avoid copy relocs for the symbol. */ if ((info->shared && (sec->flags & SEC_ALLOC) != 0 && (! _bfd_sparc_elf_howto_table[r_type].pc_relative || (h != NULL && (! info->symbolic || h->root.type == bfd_link_hash_defweak || !h->def_regular)))) || (!info->shared && (sec->flags & SEC_ALLOC) != 0 && h != NULL && (h->root.type == bfd_link_hash_defweak || !h->def_regular))) { struct _bfd_sparc_elf_dyn_relocs *p; struct _bfd_sparc_elf_dyn_relocs **head; /* When creating a shared object, we must copy these relocs into the output file. We create a reloc section in dynobj and make room for the reloc. */ if (sreloc == NULL) { if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; sreloc = _bfd_elf_make_dynamic_reloc_section (sec, htab->elf.dynobj, htab->word_align_power, abfd, /*rela?*/ TRUE); if (sreloc == NULL) return FALSE; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) head = &((struct _bfd_sparc_elf_link_hash_entry *) h)->dyn_relocs; else { /* Track dynamic relocs needed for local syms too. We really need local syms available to do this easily. Oh well. */ asection *s; void *vpp; Elf_Internal_Sym *isym; isym = bfd_sym_from_r_symndx (&htab->sym_cache, abfd, r_symndx); if (isym == NULL) return FALSE; s = bfd_section_from_elf_index (abfd, isym->st_shndx); if (s == NULL) s = sec; vpp = &elf_section_data (s)->local_dynrel; head = (struct _bfd_sparc_elf_dyn_relocs **) vpp; } p = *head; if (p == NULL || p->sec != sec) { bfd_size_type amt = sizeof *p; p = ((struct _bfd_sparc_elf_dyn_relocs *) bfd_alloc (htab->elf.dynobj, amt)); if (p == NULL) return FALSE; p->next = *head; *head = p; p->sec = sec; p->count = 0; p->pc_count = 0; } p->count += 1; if (_bfd_sparc_elf_howto_table[r_type].pc_relative) p->pc_count += 1; } break; case R_SPARC_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; case R_SPARC_GNU_VTENTRY: BFD_ASSERT (h != NULL); if (h != NULL && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) return FALSE; break; case R_SPARC_REGISTER: /* Nothing to do. */ break; default: break; } } return TRUE; } asection * _bfd_sparc_elf_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) switch (SPARC_ELF_R_TYPE (rel->r_info)) { case R_SPARC_GNU_VTINHERIT: case R_SPARC_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } /* Update the got entry reference counts for the section being removed. */ bfd_boolean _bfd_sparc_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { struct _bfd_sparc_elf_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; if (info->relocatable) return TRUE; BFD_ASSERT (is_sparc_elf (abfd) || sec->reloc_count == 0); elf_section_data (sec)->local_dynrel = NULL; htab = _bfd_sparc_elf_hash_table (info); symtab_hdr = &elf_symtab_hdr (abfd); sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) { unsigned long r_symndx; unsigned int r_type; struct elf_link_hash_entry *h = NULL; r_symndx = SPARC_ELF_R_SYMNDX (htab, rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { struct _bfd_sparc_elf_link_hash_entry *eh; struct _bfd_sparc_elf_dyn_relocs **pp; struct _bfd_sparc_elf_dyn_relocs *p; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; eh = (struct _bfd_sparc_elf_link_hash_entry *) h; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) if (p->sec == sec) { /* Everything must go for SEC. */ *pp = p->next; break; } } r_type = SPARC_ELF_R_TYPE (rel->r_info); r_type = sparc_elf_tls_transition (info, abfd, r_type, h != NULL); switch (r_type) { case R_SPARC_TLS_LDM_HI22: case R_SPARC_TLS_LDM_LO10: if (_bfd_sparc_elf_hash_table (info)->tls_ldm_got.refcount > 0) _bfd_sparc_elf_hash_table (info)->tls_ldm_got.refcount -= 1; break; case R_SPARC_TLS_GD_HI22: case R_SPARC_TLS_GD_LO10: case R_SPARC_TLS_IE_HI22: case R_SPARC_TLS_IE_LO10: case R_SPARC_GOT10: case R_SPARC_GOT13: case R_SPARC_GOT22: case R_SPARC_GOTDATA_HIX22: case R_SPARC_GOTDATA_LOX10: case R_SPARC_GOTDATA_OP_HIX22: case R_SPARC_GOTDATA_OP_LOX10: if (h != NULL) { if (h->got.refcount > 0) h->got.refcount--; } else { if (local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx]--; } break; case R_SPARC_PC10: case R_SPARC_PC22: case R_SPARC_PC_HH22: case R_SPARC_PC_HM10: case R_SPARC_PC_LM22: if (h != NULL && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) break; /* Fall through. */ case R_SPARC_DISP8: case R_SPARC_DISP16: case R_SPARC_DISP32: case R_SPARC_DISP64: case R_SPARC_WDISP30: case R_SPARC_WDISP22: case R_SPARC_WDISP19: case R_SPARC_WDISP16: case R_SPARC_8: case R_SPARC_16: case R_SPARC_32: case R_SPARC_HI22: case R_SPARC_22: case R_SPARC_13: case R_SPARC_LO10: case R_SPARC_UA16: case R_SPARC_UA32: case R_SPARC_PLT32: case R_SPARC_10: case R_SPARC_11: case R_SPARC_64: case R_SPARC_OLO10: case R_SPARC_HH22: case R_SPARC_HM10: case R_SPARC_LM22: case R_SPARC_7: case R_SPARC_5: case R_SPARC_6: case R_SPARC_HIX22: case R_SPARC_LOX10: case R_SPARC_H44: case R_SPARC_M44: case R_SPARC_L44: case R_SPARC_UA64: if (info->shared) break; /* Fall through. */ case R_SPARC_WPLT30: if (h != NULL) { if (h->plt.refcount > 0) h->plt.refcount--; } break; default: break; } } return TRUE; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ bfd_boolean _bfd_sparc_elf_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { struct _bfd_sparc_elf_link_hash_table *htab; struct _bfd_sparc_elf_link_hash_entry * eh; struct _bfd_sparc_elf_dyn_relocs *p; asection *s; htab = _bfd_sparc_elf_hash_table (info); /* Make sure we know what is going on here. */ BFD_ASSERT (htab->elf.dynobj != NULL && (h->needs_plt || h->u.weakdef != NULL || (h->def_dynamic && h->ref_regular && !h->def_regular))); /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later (although we could actually do it here). The STT_NOTYPE condition is a hack specifically for the Oracle libraries delivered for Solaris; for some inexplicable reason, they define some of their functions as STT_NOTYPE when they really should be STT_FUNC. */ if (h->type == STT_FUNC || h->needs_plt || (h->type == STT_NOTYPE && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && (h->root.u.def.section->flags & SEC_CODE) != 0)) { if (h->plt.refcount <= 0 || (! info->shared && !h->def_dynamic && !h->ref_dynamic && h->root.type != bfd_link_hash_undefweak && h->root.type != bfd_link_hash_undefined)) { /* This case can occur if we saw a WPLT30 reloc in an input file, but the symbol was never referred to by a dynamic object, or if all references were garbage collected. In such a case, we don't actually need to build a procedure linkage table, and we can just do a WDISP30 reloc instead. */ h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } return TRUE; } else h->plt.offset = (bfd_vma) -1; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; return TRUE; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return TRUE; /* If there are no references to this symbol that do not use the GOT, we don't need to generate a copy reloc. */ if (!h->non_got_ref) return TRUE; eh = (struct _bfd_sparc_elf_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) break; } /* If we didn't find any dynamic relocs in read-only sections, then we'll be keeping the dynamic relocs and avoiding the copy reloc. */ if (p == NULL) { h->non_got_ref = 0; return TRUE; } if (h->size == 0) { (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), h->root.root.string); return TRUE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rel.bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { htab->srelbss->size += SPARC_ELF_RELA_BYTES (htab); h->needs_copy = 1; } s = htab->sdynbss; return _bfd_elf_adjust_dynamic_copy (h, s); } /* Allocate space in .plt, .got and associated reloc sections for dynamic relocs. */ static bfd_boolean allocate_dynrelocs (struct elf_link_hash_entry *h, PTR inf) { struct bfd_link_info *info; struct _bfd_sparc_elf_link_hash_table *htab; struct _bfd_sparc_elf_link_hash_entry *eh; struct _bfd_sparc_elf_dyn_relocs *p; if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) /* When warning symbols are created, they **replace** the "real" entry in the hash table, thus we never get to see the real symbol in a hash traversal. So look at it now. */ h = (struct elf_link_hash_entry *) h->root.u.i.link; info = (struct bfd_link_info *) inf; htab = _bfd_sparc_elf_hash_table (info); if (htab->elf.dynamic_sections_created && h->plt.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h)) { asection *s = htab->splt; /* Allocate room for the header. */ if (s->size == 0) { s->size = htab->plt_header_size; /* Allocate space for the .rela.plt.unloaded relocations. */ if (htab->is_vxworks && !info->shared) htab->srelplt2->size = sizeof (Elf32_External_Rela) * 2; } /* The procedure linkage table size is bounded by the magnitude of the offset we can describe in the entry. */ if (s->size >= (SPARC_ELF_WORD_BYTES(htab) == 8 ? (((bfd_vma)1 << 31) << 1) : 0x400000)) { bfd_set_error (bfd_error_bad_value); return FALSE; } if (SPARC_ELF_WORD_BYTES(htab) == 8 && s->size >= PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE) { bfd_vma off = s->size - PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE; off = (off % (160 * PLT64_ENTRY_SIZE)) / PLT64_ENTRY_SIZE; h->plt.offset = (s->size - (off * 8)); } else h->plt.offset = s->size; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (! info->shared && !h->def_regular) { h->root.u.def.section = s; h->root.u.def.value = h->plt.offset; } /* Make room for this entry. */ s->size += htab->plt_entry_size; /* We also need to make an entry in the .rela.plt section. */ htab->srelplt->size += SPARC_ELF_RELA_BYTES (htab); if (htab->is_vxworks) { /* Allocate space for the .got.plt entry. */ htab->sgotplt->size += 4; /* ...and for the .rela.plt.unloaded relocations. */ if (!info->shared) htab->srelplt2->size += sizeof (Elf32_External_Rela) * 3; } } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } /* If R_SPARC_TLS_IE_{HI22,LO10} symbol is now local to the binary, make it a R_SPARC_TLS_LE_{HI22,LO10} requiring no TLS entry. */ if (h->got.refcount > 0 && !info->shared && h->dynindx == -1 && _bfd_sparc_elf_hash_entry(h)->tls_type == GOT_TLS_IE) h->got.offset = (bfd_vma) -1; else if (h->got.refcount > 0) { asection *s; bfd_boolean dyn; int tls_type = _bfd_sparc_elf_hash_entry(h)->tls_type; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } s = htab->sgot; h->got.offset = s->size; s->size += SPARC_ELF_WORD_BYTES (htab); /* R_SPARC_TLS_GD_HI{22,LO10} needs 2 consecutive GOT slots. */ if (tls_type == GOT_TLS_GD) s->size += SPARC_ELF_WORD_BYTES (htab); dyn = htab->elf.dynamic_sections_created; /* R_SPARC_TLS_IE_{HI22,LO10} needs one dynamic relocation, R_SPARC_TLS_GD_{HI22,LO10} needs one if local symbol and two if global. */ if ((tls_type == GOT_TLS_GD && h->dynindx == -1) || tls_type == GOT_TLS_IE) htab->srelgot->size += SPARC_ELF_RELA_BYTES (htab); else if (tls_type == GOT_TLS_GD) htab->srelgot->size += 2 * SPARC_ELF_RELA_BYTES (htab); else if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)) htab->srelgot->size += SPARC_ELF_RELA_BYTES (htab); } else h->got.offset = (bfd_vma) -1; eh = (struct _bfd_sparc_elf_link_hash_entry *) h; if (eh->dyn_relocs == NULL) return TRUE; /* In the shared -Bsymbolic case, discard space allocated for dynamic pc-relative relocs against symbols which turn out to be defined in regular objects. For the normal shared case, discard space for pc-relative relocs that have become local due to symbol visibility changes. */ if (info->shared) { if (h->def_regular && (h->forced_local || info->symbolic)) { struct _bfd_sparc_elf_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } if (htab->is_vxworks) { struct _bfd_sparc_elf_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) { if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) *pp = p->next; else pp = &p->next; } } /* Also discard relocs on undefined weak syms with non-default visibility. */ if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak) { if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) eh->dyn_relocs = NULL; /* Make sure undefined weak symbols are output as a dynamic symbol in PIEs. */ else if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } } } else { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if (!h->non_got_ref && ((h->def_dynamic && !h->def_regular) || (htab->elf.dynamic_sections_created && (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->dyn_relocs = NULL; keep: ; } /* Finally, allocate space. */ for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *sreloc = elf_section_data (p->sec)->sreloc; sreloc->size += p->count * SPARC_ELF_RELA_BYTES (htab); } return TRUE; } /* Find any dynamic relocs that apply to read-only sections. */ static bfd_boolean readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf) { struct _bfd_sparc_elf_link_hash_entry *eh; struct _bfd_sparc_elf_dyn_relocs *p; if (h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; eh = (struct _bfd_sparc_elf_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) { struct bfd_link_info *info = (struct bfd_link_info *) inf; info->flags |= DF_TEXTREL; /* Not an error, just cut short the traversal. */ return FALSE; } } return TRUE; } /* Return true if the dynamic symbol for a given section should be omitted when creating a shared library. */ bfd_boolean _bfd_sparc_elf_omit_section_dynsym (bfd *output_bfd, struct bfd_link_info *info, asection *p) { /* We keep the .got section symbol so that explicit relocations against the _GLOBAL_OFFSET_TABLE_ symbol emitted in PIC mode can be turned into relocations against the .got symbol. */ if (strcmp (p->name, ".got") == 0) return FALSE; return _bfd_elf_link_omit_section_dynsym (output_bfd, info, p); } /* Set the sizes of the dynamic sections. */ bfd_boolean _bfd_sparc_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { struct _bfd_sparc_elf_link_hash_table *htab; bfd *dynobj; asection *s; bfd *ibfd; htab = _bfd_sparc_elf_hash_table (info); dynobj = htab->elf.dynobj; BFD_ASSERT (dynobj != NULL); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = htab->dynamic_interpreter_size; s->contents = (unsigned char *) htab->dynamic_interpreter; } } /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; char *local_tls_type; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; if (! is_sparc_elf (ibfd)) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct _bfd_sparc_elf_dyn_relocs *p; for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) { if (!bfd_is_abs_section (p->sec) && bfd_is_abs_section (p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (htab->is_vxworks && strcmp (p->sec->output_section->name, ".tls_vars") == 0) { /* Relocations in vxworks .tls_vars sections are handled specially by the loader. */ } else if (p->count != 0) { srel = elf_section_data (p->sec)->sreloc; srel->size += p->count * SPARC_ELF_RELA_BYTES (htab); if ((p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = &elf_symtab_hdr (ibfd); locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; local_tls_type = _bfd_sparc_elf_local_got_tls_type (ibfd); s = htab->sgot; srel = htab->srelgot; for (; local_got < end_local_got; ++local_got, ++local_tls_type) { if (*local_got > 0) { *local_got = s->size; s->size += SPARC_ELF_WORD_BYTES (htab); if (*local_tls_type == GOT_TLS_GD) s->size += SPARC_ELF_WORD_BYTES (htab); if (info->shared || *local_tls_type == GOT_TLS_GD || *local_tls_type == GOT_TLS_IE) srel->size += SPARC_ELF_RELA_BYTES (htab); } else *local_got = (bfd_vma) -1; } } if (htab->tls_ldm_got.refcount > 0) { /* Allocate 2 got entries and 1 dynamic reloc for R_SPARC_TLS_LDM_{HI22,LO10} relocs. */ htab->tls_ldm_got.offset = htab->sgot->size; htab->sgot->size += (2 * SPARC_ELF_WORD_BYTES (htab)); htab->srelgot->size += SPARC_ELF_RELA_BYTES (htab); } else htab->tls_ldm_got.offset = -1; /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info); if (! ABI_64_P (output_bfd) && !htab->is_vxworks && elf_hash_table (info)->dynamic_sections_created) { /* Make space for the trailing nop in .plt. */ if (htab->splt->size > 0) htab->splt->size += 1 * SPARC_INSN_BYTES; /* If the .got section is more than 0x1000 bytes, we add 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13 bit relocations have a greater chance of working. FIXME: Make this optimization work for 64-bit too. */ if (htab->sgot->size >= 0x1000 && elf_hash_table (info)->hgot->root.u.def.value == 0) elf_hash_table (info)->hgot->root.u.def.value = 0x1000; } /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ for (s = dynobj->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (s == htab->splt || s == htab->sgot || s == htab->sdynbss || s == htab->sgotplt) { /* Strip this section if we don't need it; see the comment below. */ } else if (CONST_STRNEQ (s->name, ".rela")) { if (s->size != 0) { /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else { /* It's not one of our sections. */ continue; } if (s->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. Zero the memory for the benefit of .rela.plt, which has 4 unused entries at the beginning, and we don't want garbage. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return FALSE; } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in _bfd_sparc_elf_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (info->executable) { if (!add_dynamic_entry (DT_DEBUG, 0)) return FALSE; } if (htab->srelplt->size != 0) { if (!add_dynamic_entry (DT_PLTGOT, 0) || !add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return FALSE; } if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, SPARC_ELF_RELA_BYTES (htab))) return FALSE; /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) == 0) elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info); if (info->flags & DF_TEXTREL) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } if (ABI_64_P (output_bfd)) { int reg; struct _bfd_sparc_elf_app_reg * app_regs; struct elf_strtab_hash *dynstr; struct elf_link_hash_table *eht = elf_hash_table (info); /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER entries if needed. */ app_regs = _bfd_sparc_elf_hash_table (info)->app_regs; dynstr = eht->dynstr; for (reg = 0; reg < 4; reg++) if (app_regs [reg].name != NULL) { struct elf_link_local_dynamic_entry *entry, *e; if (!add_dynamic_entry (DT_SPARC_REGISTER, 0)) return FALSE; entry = (struct elf_link_local_dynamic_entry *) bfd_hash_allocate (&info->hash->table, sizeof (*entry)); if (entry == NULL) return FALSE; /* We cheat here a little bit: the symbol will not be local, so we put it at the end of the dynlocal linked list. We will fix it later on, as we have to fix other fields anyway. */ entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4; entry->isym.st_size = 0; if (*app_regs [reg].name != '\0') entry->isym.st_name = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE); else entry->isym.st_name = 0; entry->isym.st_other = 0; entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER); entry->isym.st_shndx = app_regs [reg].shndx; entry->next = NULL; entry->input_bfd = output_bfd; entry->input_indx = -1; if (eht->dynlocal == NULL) eht->dynlocal = entry; else { for (e = eht->dynlocal; e->next; e = e->next) ; e->next = entry; } eht->dynsymcount++; } } if (htab->is_vxworks && !elf_vxworks_add_dynamic_entries (output_bfd, info)) return FALSE; } #undef add_dynamic_entry return TRUE; } bfd_boolean _bfd_sparc_elf_new_section_hook (bfd *abfd, asection *sec) { if (!sec->used_by_bfd) { struct _bfd_sparc_elf_section_data *sdata; bfd_size_type amt = sizeof (*sdata); sdata = bfd_zalloc (abfd, amt); if (sdata == NULL) return FALSE; sec->used_by_bfd = sdata; } return _bfd_elf_new_section_hook (abfd, sec); } bfd_boolean _bfd_sparc_elf_relax_section (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_section *section, struct bfd_link_info *link_info ATTRIBUTE_UNUSED, bfd_boolean *again) { if (link_info->relocatable) (*link_info->callbacks->einfo) (_("%P%F: --relax and -r may not be used together\n")); *again = FALSE; sec_do_relax (section) = 1; return TRUE; } /* Return the base VMA address which should be subtracted from real addresses when resolving @dtpoff relocation. This is PT_TLS segment p_vaddr. */ static bfd_vma dtpoff_base (struct bfd_link_info *info) { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; return elf_hash_table (info)->tls_sec->vma; } /* Return the relocation value for @tpoff relocation if STT_TLS virtual address is ADDRESS. */ static bfd_vma tpoff (struct bfd_link_info *info, bfd_vma address) { struct elf_link_hash_table *htab = elf_hash_table (info); /* If tls_sec is NULL, we should have signalled an error already. */ if (htab->tls_sec == NULL) return 0; return address - htab->tls_size - htab->tls_sec->vma; } /* Relocate a SPARC ELF section. */ bfd_boolean _bfd_sparc_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { struct _bfd_sparc_elf_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_vma *local_got_offsets; bfd_vma got_base; asection *sreloc; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; int num_relocs; bfd_boolean is_vxworks_tls; htab = _bfd_sparc_elf_hash_table (info); symtab_hdr = &elf_symtab_hdr (input_bfd); sym_hashes = elf_sym_hashes (input_bfd); local_got_offsets = elf_local_got_offsets (input_bfd); if (elf_hash_table (info)->hgot == NULL) got_base = 0; else got_base = elf_hash_table (info)->hgot->root.u.def.value; sreloc = elf_section_data (input_section)->sreloc; /* We have to handle relocations in vxworks .tls_vars sections specially, because the dynamic loader is 'weird'. */ is_vxworks_tls = (htab->is_vxworks && info->shared && !strcmp (input_section->output_section->name, ".tls_vars")); rel = relocs; if (ABI_64_P (output_bfd)) num_relocs = NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr); else num_relocs = input_section->reloc_count; relend = relocs + num_relocs; for (; rel < relend; rel++) { int r_type, tls_type; reloc_howto_type *howto; unsigned long r_symndx; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; asection *sec; bfd_vma relocation, off; bfd_reloc_status_type r; bfd_boolean is_plt = FALSE; bfd_boolean unresolved_reloc; r_type = SPARC_ELF_R_TYPE (rel->r_info); if (r_type == R_SPARC_GNU_VTINHERIT || r_type == R_SPARC_GNU_VTENTRY) continue; if (r_type < 0 || r_type >= (int) R_SPARC_max_std) { bfd_set_error (bfd_error_bad_value); return FALSE; } howto = _bfd_sparc_elf_howto_table + r_type; r_symndx = SPARC_ELF_R_SYMNDX (htab, rel->r_info); h = NULL; sym = NULL; sec = NULL; unresolved_reloc = FALSE; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); } else { bfd_boolean warned; RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned); if (warned) { /* To avoid generating warning messages about truncated relocations, set the relocation's address to be the same as the start of this section. */ if (input_section->output_section != NULL) relocation = input_section->output_section->vma; else relocation = 0; } } if (sec != NULL && elf_discarded_section (sec)) { /* For relocs against symbols from removed linkonce sections, or sections discarded by a linker script, we just want the section contents zeroed. Avoid any special processing. */ _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); rel->r_info = 0; rel->r_addend = 0; continue; } if (info->relocatable) continue; switch (r_type) { case R_SPARC_GOTDATA_HIX22: case R_SPARC_GOTDATA_LOX10: case R_SPARC_GOTDATA_OP_HIX22: case R_SPARC_GOTDATA_OP_LOX10: /* We don't support these code transformation optimizations yet, so just leave the sequence alone and treat as GOT22/GOT10. */ if (r_type == R_SPARC_GOTDATA_HIX22 || r_type == R_SPARC_GOTDATA_OP_HIX22) r_type = R_SPARC_GOT22; else r_type = R_SPARC_GOT10; /* Fall through. */ case R_SPARC_GOT10: case R_SPARC_GOT13: case R_SPARC_GOT22: /* Relocation is to the entry for this symbol in the global offset table. */ if (htab->sgot == NULL) abort (); if (h != NULL) { bfd_boolean dyn; off = h->got.offset; BFD_ASSERT (off != (bfd_vma) -1); dyn = elf_hash_table (info)->dynamic_sections_created; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) || (info->shared && (info->symbolic || h->dynindx == -1 || h->forced_local) && h->def_regular)) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally, or the symbol was forced to be local because of a version file. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 8 for 64-bit and 4 for 32-bit, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rela.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { SPARC_ELF_PUT_WORD (htab, output_bfd, relocation, htab->sgot->contents + off); h->got.offset |= 1; } } else unresolved_reloc = FALSE; } else { BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) -1); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 8 on 64-bit and 4 on 32-bit. We use the least significant bit to record whether we have already processed this entry. */ if ((off & 1) != 0) off &= ~1; else { if (info->shared) { asection *s; Elf_Internal_Rela outrel; /* We need to generate a R_SPARC_RELATIVE reloc for the dynamic linker. */ s = htab->srelgot; BFD_ASSERT (s != NULL); outrel.r_offset = (htab->sgot->output_section->vma + htab->sgot->output_offset + off); outrel.r_info = SPARC_ELF_R_INFO (htab, NULL, 0, R_SPARC_RELATIVE); outrel.r_addend = relocation; relocation = 0; sparc_elf_append_rela (output_bfd, s, &outrel); } SPARC_ELF_PUT_WORD (htab, output_bfd, relocation, htab->sgot->contents + off); local_got_offsets[r_symndx] |= 1; } } relocation = htab->sgot->output_offset + off - got_base; break; case R_SPARC_PLT32: case R_SPARC_PLT64: if (h == NULL || h->plt.offset == (bfd_vma) -1) { r_type = (r_type == R_SPARC_PLT32) ? R_SPARC_32 : R_SPARC_64; goto r_sparc_plt32; } /* Fall through. */ case R_SPARC_WPLT30: case R_SPARC_HIPLT22: case R_SPARC_LOPLT10: case R_SPARC_PCPLT32: case R_SPARC_PCPLT22: case R_SPARC_PCPLT10: r_sparc_wplt30: /* Relocation is to the entry for this symbol in the procedure linkage table. */ if (! ABI_64_P (output_bfd)) { /* The Solaris native assembler will generate a WPLT30 reloc for a local symbol if you assemble a call from one section to another when using -K pic. We treat it as WDISP30. */ if (h == NULL) break; } /* PR 7027: We need similar behaviour for 64-bit binaries. */ else if (r_type == R_SPARC_WPLT30 && h == NULL) break; else { BFD_ASSERT (h != NULL); } if (h->plt.offset == (bfd_vma) -1 || htab->splt == NULL) { /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ break; } relocation = (htab->splt->output_section->vma + htab->splt->output_offset + h->plt.offset); unresolved_reloc = FALSE; if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64) { r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64; is_plt = TRUE; goto r_sparc_plt32; } break; case R_SPARC_PC10: case R_SPARC_PC22: case R_SPARC_PC_HH22: case R_SPARC_PC_HM10: case R_SPARC_PC_LM22: if (h != NULL && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) break; /* Fall through. */ case R_SPARC_DISP8: case R_SPARC_DISP16: case R_SPARC_DISP32: case R_SPARC_DISP64: case R_SPARC_WDISP30: case R_SPARC_WDISP22: case R_SPARC_WDISP19: case R_SPARC_WDISP16: case R_SPARC_8: case R_SPARC_16: case R_SPARC_32: case R_SPARC_HI22: case R_SPARC_22: case R_SPARC_13: case R_SPARC_LO10: case R_SPARC_UA16: case R_SPARC_UA32: case R_SPARC_10: case R_SPARC_11: case R_SPARC_64: case R_SPARC_OLO10: case R_SPARC_HH22: case R_SPARC_HM10: case R_SPARC_LM22: case R_SPARC_7: case R_SPARC_5: case R_SPARC_6: case R_SPARC_HIX22: case R_SPARC_LOX10: case R_SPARC_H44: case R_SPARC_M44: case R_SPARC_L44: case R_SPARC_UA64: r_sparc_plt32: if ((input_section->flags & SEC_ALLOC) == 0 || is_vxworks_tls) break; if ((info->shared && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && (! howto->pc_relative || (h != NULL && h->dynindx != -1 && (! info->symbolic || !h->def_regular)))) || (!info->shared && h != NULL && h->dynindx != -1 && !h->non_got_ref && ((h->def_dynamic && !h->def_regular) || h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined))) { Elf_Internal_Rela outrel; bfd_boolean skip, relocate = FALSE; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ BFD_ASSERT (sreloc != NULL); skip = FALSE; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1) skip = TRUE; else if (outrel.r_offset == (bfd_vma) -2) skip = TRUE, relocate = TRUE; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); /* Optimize unaligned reloc usage now that we know where it finally resides. */ switch (r_type) { case R_SPARC_16: if (outrel.r_offset & 1) r_type = R_SPARC_UA16; break; case R_SPARC_UA16: if (!(outrel.r_offset & 1)) r_type = R_SPARC_16; break; case R_SPARC_32: if (outrel.r_offset & 3) r_type = R_SPARC_UA32; break; case R_SPARC_UA32: if (!(outrel.r_offset & 3)) r_type = R_SPARC_32; break; case R_SPARC_64: if (outrel.r_offset & 7) r_type = R_SPARC_UA64; break; case R_SPARC_UA64: if (!(outrel.r_offset & 7)) r_type = R_SPARC_64; break; case R_SPARC_DISP8: case R_SPARC_DISP16: case R_SPARC_DISP32: case R_SPARC_DISP64: /* If the symbol is not dynamic, we should not keep a dynamic relocation. But an .rela.* slot has been allocated for it, output R_SPARC_NONE. FIXME: Add code tracking needed dynamic relocs as e.g. i386 has. */ if (h->dynindx == -1) skip = TRUE, relocate = TRUE; break; } if (skip) memset (&outrel, 0, sizeof outrel); /* h->dynindx may be -1 if the symbol was marked to become local. */ else if (h != NULL && ! is_plt && ((! info->symbolic && h->dynindx != -1) || !h->def_regular)) { BFD_ASSERT (h->dynindx != -1); outrel.r_info = SPARC_ELF_R_INFO (htab, rel, h->dynindx, r_type); outrel.r_addend = rel->r_addend; } else { if (r_type == R_SPARC_32 || r_type == R_SPARC_64) { outrel.r_info = SPARC_ELF_R_INFO (htab, NULL, 0, R_SPARC_RELATIVE); outrel.r_addend = relocation + rel->r_addend; } else { long indx; outrel.r_addend = relocation + rel->r_addend; if (is_plt) sec = htab->splt; if (bfd_is_abs_section (sec)) indx = 0; else if (sec == NULL || sec->owner == NULL) { bfd_set_error (bfd_error_bad_value); return FALSE; } else { asection *osec; /* We are turning this relocation into one against a section symbol. It would be proper to subtract the symbol's value, osec->vma, from the emitted reloc addend, but ld.so expects buggy relocs. */ osec = sec->output_section; indx = elf_section_data (osec)->dynindx; if (indx == 0) { osec = htab->elf.text_index_section; indx = elf_section_data (osec)->dynindx; } /* FIXME: we really should be able to link non-pic shared libraries. */ if (indx == 0) { BFD_FAIL (); (*_bfd_error_handler) (_("%B: probably compiled without -fPIC?"), input_bfd); bfd_set_error (bfd_error_bad_value); return FALSE; } } outrel.r_info = SPARC_ELF_R_INFO (htab, rel, indx, r_type); } } sparc_elf_append_rela (output_bfd, sreloc, &outrel); /* This reloc will be computed at runtime, so there's no need to do anything now. */ if (! relocate) continue; } break; case R_SPARC_TLS_GD_HI22: if (! ABI_64_P (input_bfd) && ! _bfd_sparc_elf_tdata (input_bfd)->has_tlsgd) { /* R_SPARC_REV32 used the same reloc number as R_SPARC_TLS_GD_HI22. */ r_type = R_SPARC_REV32; break; } /* Fall through */ case R_SPARC_TLS_GD_LO10: case R_SPARC_TLS_IE_HI22: case R_SPARC_TLS_IE_LO10: r_type = sparc_elf_tls_transition (info, input_bfd, r_type, h == NULL); tls_type = GOT_UNKNOWN; if (h == NULL && local_got_offsets) tls_type = _bfd_sparc_elf_local_got_tls_type (input_bfd) [r_symndx]; else if (h != NULL) { tls_type = _bfd_sparc_elf_hash_entry(h)->tls_type; if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE) switch (SPARC_ELF_R_TYPE (rel->r_info)) { case R_SPARC_TLS_GD_HI22: case R_SPARC_TLS_IE_HI22: r_type = R_SPARC_TLS_LE_HIX22; break; default: r_type = R_SPARC_TLS_LE_LOX10; break; } } if (tls_type == GOT_TLS_IE) switch (r_type) { case R_SPARC_TLS_GD_HI22: r_type = R_SPARC_TLS_IE_HI22; break; case R_SPARC_TLS_GD_LO10: r_type = R_SPARC_TLS_IE_LO10; break; } if (r_type == R_SPARC_TLS_LE_HIX22) { relocation = tpoff (info, relocation); break; } if (r_type == R_SPARC_TLS_LE_LOX10) { /* Change add into xor. */ relocation = tpoff (info, relocation); bfd_put_32 (output_bfd, (bfd_get_32 (input_bfd, contents + rel->r_offset) | 0x80182000), contents + rel->r_offset); break; } if (h != NULL) { off = h->got.offset; h->got.offset |= 1; } else { BFD_ASSERT (local_got_offsets != NULL); off = local_got_offsets[r_symndx]; local_got_offsets[r_symndx] |= 1; } r_sparc_tlsldm: if (htab->sgot == NULL) abort (); if ((off & 1) != 0) off &= ~1; else { Elf_Internal_Rela outrel; int dr_type, indx; if (htab->srelgot == NULL) abort (); SPARC_ELF_PUT_WORD (htab, output_bfd, 0, htab->sgot->contents + off); outrel.r_offset = (htab->sgot->output_section->vma + htab->sgot->output_offset + off); indx = h && h->dynindx != -1 ? h->dynindx : 0; if (r_type == R_SPARC_TLS_IE_HI22 || r_type == R_SPARC_TLS_IE_LO10) dr_type = SPARC_ELF_TPOFF_RELOC (htab); else dr_type = SPARC_ELF_DTPMOD_RELOC (htab); if (dr_type == SPARC_ELF_TPOFF_RELOC (htab) && indx == 0) outrel.r_addend = relocation - dtpoff_base (info); else outrel.r_addend = 0; outrel.r_info = SPARC_ELF_R_INFO (htab, NULL, indx, dr_type); sparc_elf_append_rela (output_bfd, htab->srelgot, &outrel); if (r_type == R_SPARC_TLS_GD_HI22 || r_type == R_SPARC_TLS_GD_LO10) { if (indx == 0) { BFD_ASSERT (! unresolved_reloc); SPARC_ELF_PUT_WORD (htab, output_bfd, relocation - dtpoff_base (info), (htab->sgot->contents + off + SPARC_ELF_WORD_BYTES (htab))); } else { SPARC_ELF_PUT_WORD (htab, output_bfd, 0, (htab->sgot->contents + off + SPARC_ELF_WORD_BYTES (htab))); outrel.r_info = SPARC_ELF_R_INFO (htab, NULL, indx, SPARC_ELF_DTPOFF_RELOC (htab)); outrel.r_offset += SPARC_ELF_WORD_BYTES (htab); sparc_elf_append_rela (output_bfd, htab->srelgot, &outrel); } } else if (dr_type == SPARC_ELF_DTPMOD_RELOC (htab)) { SPARC_ELF_PUT_WORD (htab, output_bfd, 0, (htab->sgot->contents + off + SPARC_ELF_WORD_BYTES (htab))); } } if (off >= (bfd_vma) -2) abort (); relocation = htab->sgot->output_offset + off - got_base; unresolved_reloc = FALSE; howto = _bfd_sparc_elf_howto_table + r_type; break; case R_SPARC_TLS_LDM_HI22: case R_SPARC_TLS_LDM_LO10: if (! info->shared) { bfd_put_32 (output_bfd, SPARC_NOP, contents + rel->r_offset); continue; } off = htab->tls_ldm_got.offset; htab->tls_ldm_got.offset |= 1; goto r_sparc_tlsldm; case R_SPARC_TLS_LDO_HIX22: case R_SPARC_TLS_LDO_LOX10: if (info->shared) { relocation -= dtpoff_base (info); break; } r_type = (r_type == R_SPARC_TLS_LDO_HIX22 ? R_SPARC_TLS_LE_HIX22 : R_SPARC_TLS_LE_LOX10); /* Fall through. */ case R_SPARC_TLS_LE_HIX22: case R_SPARC_TLS_LE_LOX10: if (info->shared) { Elf_Internal_Rela outrel; bfd_boolean skip, relocate = FALSE; BFD_ASSERT (sreloc != NULL); skip = FALSE; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1) skip = TRUE; else if (outrel.r_offset == (bfd_vma) -2) skip = TRUE, relocate = TRUE; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else { outrel.r_info = SPARC_ELF_R_INFO (htab, NULL, 0, r_type); outrel.r_addend = relocation - dtpoff_base (info) + rel->r_addend; } sparc_elf_append_rela (output_bfd, sreloc, &outrel); continue; } relocation = tpoff (info, relocation); break; case R_SPARC_TLS_LDM_CALL: if (! info->shared) { /* mov %g0, %o0 */ bfd_put_32 (output_bfd, 0x90100000, contents + rel->r_offset); continue; } /* Fall through */ case R_SPARC_TLS_GD_CALL: tls_type = GOT_UNKNOWN; if (h == NULL && local_got_offsets) tls_type = _bfd_sparc_elf_local_got_tls_type (input_bfd) [r_symndx]; else if (h != NULL) tls_type = _bfd_sparc_elf_hash_entry(h)->tls_type; if (! info->shared || (r_type == R_SPARC_TLS_GD_CALL && tls_type == GOT_TLS_IE)) { bfd_vma insn; if (!info->shared && (h == NULL || h->dynindx == -1)) { /* GD -> LE */ bfd_put_32 (output_bfd, SPARC_NOP, contents + rel->r_offset); continue; } /* GD -> IE */ if (rel + 1 < relend && SPARC_ELF_R_TYPE (rel[1].r_info) == R_SPARC_TLS_GD_ADD && rel[1].r_offset == rel->r_offset + 4 && SPARC_ELF_R_SYMNDX (htab, rel[1].r_info) == r_symndx && (((insn = bfd_get_32 (input_bfd, contents + rel[1].r_offset)) >> 25) & 0x1f) == 8) { /* We have call __tls_get_addr, %tgd_call(foo) add %reg1, %reg2, %o0, %tgd_add(foo) and change it into IE: {ld,ldx} [%reg1 + %reg2], %o0, %tie_ldx(foo) add %g7, %o0, %o0, %tie_add(foo). add is 0x80000000 | (rd << 25) | (rs1 << 14) | rs2, ld is 0xc0000000 | (rd << 25) | (rs1 << 14) | rs2, ldx is 0xc0580000 | (rd << 25) | (rs1 << 14) | rs2. */ bfd_put_32 (output_bfd, insn | (ABI_64_P (output_bfd) ? 0xc0580000 : 0xc0000000), contents + rel->r_offset); bfd_put_32 (output_bfd, 0x9001c008, contents + rel->r_offset + 4); rel++; continue; } bfd_put_32 (output_bfd, 0x9001c008, contents + rel->r_offset); continue; } h = (struct elf_link_hash_entry *) bfd_link_hash_lookup (info->hash, "__tls_get_addr", FALSE, FALSE, TRUE); BFD_ASSERT (h != NULL); r_type = R_SPARC_WPLT30; howto = _bfd_sparc_elf_howto_table + r_type; goto r_sparc_wplt30; case R_SPARC_TLS_GD_ADD: tls_type = GOT_UNKNOWN; if (h == NULL && local_got_offsets) tls_type = _bfd_sparc_elf_local_got_tls_type (input_bfd) [r_symndx]; else if (h != NULL) tls_type = _bfd_sparc_elf_hash_entry(h)->tls_type; if (! info->shared || tls_type == GOT_TLS_IE) { /* add %reg1, %reg2, %reg3, %tgd_add(foo) changed into IE: {ld,ldx} [%reg1 + %reg2], %reg3, %tie_ldx(foo) or LE: add %g7, %reg2, %reg3. */ bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset); if ((h != NULL && h->dynindx != -1) || info->shared) relocation = insn | (ABI_64_P (output_bfd) ? 0xc0580000 : 0xc0000000); else relocation = (insn & ~0x7c000) | 0x1c000; bfd_put_32 (output_bfd, relocation, contents + rel->r_offset); } continue; case R_SPARC_TLS_LDM_ADD: if (! info->shared) bfd_put_32 (output_bfd, SPARC_NOP, contents + rel->r_offset); continue; case R_SPARC_TLS_LDO_ADD: if (! info->shared) { /* Change rs1 into %g7. */ bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset); insn = (insn & ~0x7c000) | 0x1c000; bfd_put_32 (output_bfd, insn, contents + rel->r_offset); } continue; case R_SPARC_GOTDATA_OP: /* We don't support gotdata code transformation optimizations yet, so simply leave the sequence as-is. */ continue; case R_SPARC_TLS_IE_LD: case R_SPARC_TLS_IE_LDX: if (! info->shared && (h == NULL || h->dynindx == -1)) { bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset); int rs2 = insn & 0x1f; int rd = (insn >> 25) & 0x1f; if (rs2 == rd) relocation = SPARC_NOP; else relocation = 0x80100000 | (insn & 0x3e00001f); bfd_put_32 (output_bfd, relocation, contents + rel->r_offset); } continue; case R_SPARC_TLS_IE_ADD: /* Totally useless relocation. */ continue; case R_SPARC_TLS_DTPOFF32: case R_SPARC_TLS_DTPOFF64: relocation -= dtpoff_base (info); break; default: break; } /* Dynamic relocs are not propagated for SEC_DEBUGGING sections because such sections are not SEC_ALLOC and thus ld.so will not process them. */ if (unresolved_reloc && !((input_section->flags & SEC_DEBUGGING) != 0 && h->def_dynamic)) (*_bfd_error_handler) (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), input_bfd, input_section, (long) rel->r_offset, howto->name, h->root.root.string); r = bfd_reloc_continue; if (r_type == R_SPARC_OLO10) { bfd_vma x; if (! ABI_64_P (output_bfd)) abort (); relocation += rel->r_addend; relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info); x = bfd_get_32 (input_bfd, contents + rel->r_offset); x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff); bfd_put_32 (input_bfd, x, contents + rel->r_offset); r = bfd_check_overflow (howto->complain_on_overflow, howto->bitsize, howto->rightshift, bfd_arch_bits_per_address (input_bfd), relocation); } else if (r_type == R_SPARC_WDISP16) { bfd_vma x; relocation += rel->r_addend; relocation -= (input_section->output_section->vma + input_section->output_offset); relocation -= rel->r_offset; x = bfd_get_32 (input_bfd, contents + rel->r_offset); x |= ((((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff)); bfd_put_32 (input_bfd, x, contents + rel->r_offset); r = bfd_check_overflow (howto->complain_on_overflow, howto->bitsize, howto->rightshift, bfd_arch_bits_per_address (input_bfd), relocation); } else if (r_type == R_SPARC_REV32) { bfd_vma x; relocation = relocation + rel->r_addend; x = bfd_get_32 (input_bfd, contents + rel->r_offset); x = x + relocation; bfd_putl32 (/*input_bfd,*/ x, contents + rel->r_offset); r = bfd_reloc_ok; } else if (r_type == R_SPARC_TLS_LDO_HIX22 || r_type == R_SPARC_TLS_LE_HIX22) { bfd_vma x; relocation += rel->r_addend; if (r_type == R_SPARC_TLS_LE_HIX22) relocation ^= MINUS_ONE; x = bfd_get_32 (input_bfd, contents + rel->r_offset); x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff); bfd_put_32 (input_bfd, x, contents + rel->r_offset); r = bfd_reloc_ok; } else if (r_type == R_SPARC_TLS_LDO_LOX10 || r_type == R_SPARC_TLS_LE_LOX10) { bfd_vma x; relocation += rel->r_addend; relocation &= 0x3ff; if (r_type == R_SPARC_TLS_LE_LOX10) relocation |= 0x1c00; x = bfd_get_32 (input_bfd, contents + rel->r_offset); x = (x & ~(bfd_vma) 0x1fff) | relocation; bfd_put_32 (input_bfd, x, contents + rel->r_offset); r = bfd_reloc_ok; } else if (r_type == R_SPARC_HIX22) { bfd_vma x; relocation += rel->r_addend; relocation = relocation ^ MINUS_ONE; x = bfd_get_32 (input_bfd, contents + rel->r_offset); x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff); bfd_put_32 (input_bfd, x, contents + rel->r_offset); r = bfd_check_overflow (howto->complain_on_overflow, howto->bitsize, howto->rightshift, bfd_arch_bits_per_address (input_bfd), relocation); } else if (r_type == R_SPARC_LOX10) { bfd_vma x; relocation += rel->r_addend; relocation = (relocation & 0x3ff) | 0x1c00; x = bfd_get_32 (input_bfd, contents + rel->r_offset); x = (x & ~(bfd_vma) 0x1fff) | relocation; bfd_put_32 (input_bfd, x, contents + rel->r_offset); r = bfd_reloc_ok; } else if ((r_type == R_SPARC_WDISP30 || r_type == R_SPARC_WPLT30) && sec_do_relax (input_section) && rel->r_offset + 4 < input_section->size) { #define G0 0 #define O7 15 #define XCC (2 << 20) #define COND(x) (((x)&0xf)<<25) #define CONDA COND(0x8) #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC) #define INSN_BA (F2(0,2) | CONDA) #define INSN_OR F3(2, 0x2, 0) #define INSN_NOP F2(0,4) bfd_vma x, y; /* If the instruction is a call with either: restore arithmetic instruction with rd == %o7 where rs1 != %o7 and rs2 if it is register != %o7 then we can optimize if the call destination is near by changing the call into a branch always. */ x = bfd_get_32 (input_bfd, contents + rel->r_offset); y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4); if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2)) { if (((y & OP3(~0)) == OP3(0x3d) /* restore */ || ((y & OP3(0x28)) == 0 /* arithmetic */ && (y & RD(~0)) == RD(O7))) && (y & RS1(~0)) != RS1(O7) && ((y & F3I(~0)) || (y & RS2(~0)) != RS2(O7))) { bfd_vma reloc; reloc = relocation + rel->r_addend - rel->r_offset; reloc -= (input_section->output_section->vma + input_section->output_offset); /* Ensure the branch fits into simm22. */ if ((reloc & 3) == 0 && ((reloc & ~(bfd_vma)0x7fffff) == 0 || ((reloc | 0x7fffff) == ~(bfd_vma)0))) { reloc >>= 2; /* Check whether it fits into simm19. */ if (((reloc & 0x3c0000) == 0 || (reloc & 0x3c0000) == 0x3c0000) && (ABI_64_P (output_bfd) || elf_elfheader (output_bfd)->e_flags & EF_SPARC_32PLUS)) x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */ else x = INSN_BA | (reloc & 0x3fffff); /* ba */ bfd_put_32 (input_bfd, x, contents + rel->r_offset); r = bfd_reloc_ok; if (rel->r_offset >= 4 && (y & (0xffffffff ^ RS1(~0))) == (INSN_OR | RD(O7) | RS2(G0))) { bfd_vma z; unsigned int reg; z = bfd_get_32 (input_bfd, contents + rel->r_offset - 4); if ((z & (0xffffffff ^ RD(~0))) != (INSN_OR | RS1(O7) | RS2(G0))) break; /* The sequence was or %o7, %g0, %rN call foo or %rN, %g0, %o7 If call foo was replaced with ba, replace or %rN, %g0, %o7 with nop. */ reg = (y & RS1(~0)) >> 14; if (reg != ((z & RD(~0)) >> 25) || reg == G0 || reg == O7) break; bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP, contents + rel->r_offset + 4); } } } } } if (r == bfd_reloc_continue) r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); if (r != bfd_reloc_ok) { switch (r) { default: case bfd_reloc_outofrange: abort (); case bfd_reloc_overflow: { const char *name; /* The Solaris native linker silently disregards overflows. We don't, but this breaks stabs debugging info, whose relocations are only 32-bits wide. Ignore overflows in this case and also for discarded entries. */ if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32) && (((input_section->flags & SEC_DEBUGGING) != 0 && strcmp (bfd_section_name (input_bfd, input_section), ".stab") == 0) || _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset) == (bfd_vma)-1)) break; if (h != NULL) { /* Assume this is a call protected by other code that detect the symbol is undefined. If this is the case, we can safely ignore the overflow. If not, the program is hosed anyway, and a little warning isn't going to help. */ if (h->root.type == bfd_link_hash_undefweak && howto->pc_relative) break; name = NULL; } else { name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (name == NULL) return FALSE; if (*name == '\0') name = bfd_section_name (input_bfd, sec); } if (! ((*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return FALSE; } break; } } } return TRUE; } /* Build a VxWorks PLT entry. PLT_INDEX is the index of the PLT entry and PLT_OFFSET is the byte offset from the start of .plt. GOT_OFFSET is the offset of the associated .got.plt entry from _GLOBAL_OFFSET_TABLE_. */ static void sparc_vxworks_build_plt_entry (bfd *output_bfd, struct bfd_link_info *info, bfd_vma plt_offset, bfd_vma plt_index, bfd_vma got_offset) { bfd_vma got_base; const bfd_vma *plt_entry; struct _bfd_sparc_elf_link_hash_table *htab; bfd_byte *loc; Elf_Internal_Rela rela; htab = _bfd_sparc_elf_hash_table (info); if (info->shared) { plt_entry = sparc_vxworks_shared_plt_entry; got_base = 0; } else { plt_entry = sparc_vxworks_exec_plt_entry; got_base = (htab->elf.hgot->root.u.def.value + htab->elf.hgot->root.u.def.section->output_offset + htab->elf.hgot->root.u.def.section->output_section->vma); } /* Fill in the entry in the procedure linkage table. */ bfd_put_32 (output_bfd, plt_entry[0] + ((got_base + got_offset) >> 10), htab->splt->contents + plt_offset); bfd_put_32 (output_bfd, plt_entry[1] + ((got_base + got_offset) & 0x3ff), htab->splt->contents + plt_offset + 4); bfd_put_32 (output_bfd, plt_entry[2], htab->splt->contents + plt_offset + 8); bfd_put_32 (output_bfd, plt_entry[3], htab->splt->contents + plt_offset + 12); bfd_put_32 (output_bfd, plt_entry[4], htab->splt->contents + plt_offset + 16); bfd_put_32 (output_bfd, plt_entry[5] + (plt_index >> 10), htab->splt->contents + plt_offset + 20); /* PC-relative displacement for a branch to the start of the PLT section. */ bfd_put_32 (output_bfd, plt_entry[6] + (((-plt_offset - 24) >> 2) & 0x003fffff), htab->splt->contents + plt_offset + 24); bfd_put_32 (output_bfd, plt_entry[7] + (plt_index & 0x3ff), htab->splt->contents + plt_offset + 28); /* Fill in the .got.plt entry, pointing initially at the second half of the PLT entry. */ BFD_ASSERT (htab->sgotplt != NULL); bfd_put_32 (output_bfd, htab->splt->output_section->vma + htab->splt->output_offset + plt_offset + 20, htab->sgotplt->contents + got_offset); /* Add relocations to .rela.plt.unloaded. */ if (!info->shared) { loc = (htab->srelplt2->contents + (2 + 3 * plt_index) * sizeof (Elf32_External_Rela)); /* Relocate the initial sethi. */ rela.r_offset = (htab->splt->output_section->vma + htab->splt->output_offset + plt_offset); rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_HI22); rela.r_addend = got_offset; bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); loc += sizeof (Elf32_External_Rela); /* Likewise the following or. */ rela.r_offset += 4; rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_LO10); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); loc += sizeof (Elf32_External_Rela); /* Relocate the .got.plt entry. */ rela.r_offset = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + got_offset); rela.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_SPARC_32); rela.r_addend = plt_offset + 20; bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); } } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ bfd_boolean _bfd_sparc_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { bfd *dynobj; struct _bfd_sparc_elf_link_hash_table *htab; const struct elf_backend_data *bed; htab = _bfd_sparc_elf_hash_table (info); dynobj = htab->elf.dynobj; bed = get_elf_backend_data (output_bfd); if (h->plt.offset != (bfd_vma) -1) { asection *splt; asection *srela; Elf_Internal_Rela rela; bfd_byte *loc; bfd_vma r_offset, got_offset; int rela_index; /* This symbol has an entry in the PLT. Set it up. */ BFD_ASSERT (h->dynindx != -1); splt = htab->splt; srela = htab->srelplt; BFD_ASSERT (splt != NULL && srela != NULL); /* Fill in the entry in the .rela.plt section. */ if (htab->is_vxworks) { /* Work out the index of this PLT entry. */ rela_index = ((h->plt.offset - htab->plt_header_size) / htab->plt_entry_size); /* Calculate the offset of the associated .got.plt entry. The first three entries are reserved. */ got_offset = (rela_index + 3) * 4; sparc_vxworks_build_plt_entry (output_bfd, info, h->plt.offset, rela_index, got_offset); /* On VxWorks, the relocation points to the .got.plt entry, not the .plt entry. */ rela.r_offset = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + got_offset); rela.r_addend = 0; } else { /* Fill in the entry in the procedure linkage table. */ rela_index = SPARC_ELF_BUILD_PLT_ENTRY (htab, output_bfd, splt, h->plt.offset, splt->size, &r_offset); rela.r_offset = r_offset + (splt->output_section->vma + splt->output_offset); if (! ABI_64_P (output_bfd) || h->plt.offset < (PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE)) { rela.r_addend = 0; } else { rela.r_addend = (-(h->plt.offset + 4) - splt->output_section->vma - splt->output_offset); } } rela.r_info = SPARC_ELF_R_INFO (htab, NULL, h->dynindx, R_SPARC_JMP_SLOT); /* Adjust for the first 4 reserved elements in the .plt section when setting the offset in the .rela.plt section. Sun forgot to read their own ABI and copied elf32-sparc behaviour, thus .plt[4] has corresponding .rela.plt[0] and so on. */ loc = srela->contents; loc += rela_index * bed->s->sizeof_rela; bed->s->swap_reloca_out (output_bfd, &rela, loc); if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; /* If the symbol is weak, we do need to clear the value. Otherwise, the PLT entry would provide a definition for the symbol even if the symbol wasn't defined anywhere, and so the symbol would never be NULL. */ if (!h->ref_regular_nonweak) sym->st_value = 0; } } if (h->got.offset != (bfd_vma) -1 && _bfd_sparc_elf_hash_entry(h)->tls_type != GOT_TLS_GD && _bfd_sparc_elf_hash_entry(h)->tls_type != GOT_TLS_IE) { asection *sgot; asection *srela; Elf_Internal_Rela rela; /* This symbol has an entry in the GOT. Set it up. */ sgot = htab->sgot; srela = htab->srelgot; BFD_ASSERT (sgot != NULL && srela != NULL); rela.r_offset = (sgot->output_section->vma + sgot->output_offset + (h->got.offset &~ (bfd_vma) 1)); /* If this is a -Bsymbolic link, and the symbol is defined locally, we just want to emit a RELATIVE reloc. Likewise if the symbol was forced to be local because of a version file. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && (info->symbolic || h->dynindx == -1) && h->def_regular) { asection *sec = h->root.u.def.section; rela.r_info = SPARC_ELF_R_INFO (htab, NULL, 0, R_SPARC_RELATIVE); rela.r_addend = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } else { rela.r_info = SPARC_ELF_R_INFO (htab, NULL, h->dynindx, R_SPARC_GLOB_DAT); rela.r_addend = 0; } SPARC_ELF_PUT_WORD (htab, output_bfd, 0, sgot->contents + (h->got.offset & ~(bfd_vma) 1)); sparc_elf_append_rela (output_bfd, srela, &rela); } if (h->needs_copy) { asection *s; Elf_Internal_Rela rela; /* This symbols needs a copy reloc. Set it up. */ BFD_ASSERT (h->dynindx != -1); s = bfd_get_section_by_name (h->root.u.def.section->owner, ".rela.bss"); BFD_ASSERT (s != NULL); rela.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rela.r_info = SPARC_ELF_R_INFO (htab, NULL, h->dynindx, R_SPARC_COPY); rela.r_addend = 0; sparc_elf_append_rela (output_bfd, s, &rela); } /* Mark some specially defined symbols as absolute. On VxWorks, _GLOBAL_OFFSET_TABLE_ is not absolute: it is relative to the ".got" section. Likewise _PROCEDURE_LINKAGE_TABLE_ and ".plt". */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || (!htab->is_vxworks && (h == htab->elf.hgot || h == htab->elf.hplt))) sym->st_shndx = SHN_ABS; return TRUE; } /* Finish up the dynamic sections. */ static bfd_boolean sparc_finish_dyn (bfd *output_bfd, struct bfd_link_info *info, bfd *dynobj, asection *sdyn, asection *splt ATTRIBUTE_UNUSED) { struct _bfd_sparc_elf_link_hash_table *htab; const struct elf_backend_data *bed; bfd_byte *dyncon, *dynconend; size_t dynsize; int stt_regidx = -1; bfd_boolean abi_64_p; htab = _bfd_sparc_elf_hash_table (info); bed = get_elf_backend_data (output_bfd); dynsize = bed->s->sizeof_dyn; dynconend = sdyn->contents + sdyn->size; abi_64_p = ABI_64_P (output_bfd); for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize) { Elf_Internal_Dyn dyn; const char *name; bfd_boolean size; bed->s->swap_dyn_in (dynobj, dyncon, &dyn); if (htab->is_vxworks && dyn.d_tag == DT_RELASZ) { /* On VxWorks, DT_RELASZ should not include the relocations in .rela.plt. */ if (htab->srelplt) { dyn.d_un.d_val -= htab->srelplt->size; bed->s->swap_dyn_out (output_bfd, &dyn, dyncon); } } else if (htab->is_vxworks && dyn.d_tag == DT_PLTGOT) { /* On VxWorks, DT_PLTGOT should point to the start of the GOT, not to the start of the PLT. */ if (htab->sgotplt) { dyn.d_un.d_val = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset); bed->s->swap_dyn_out (output_bfd, &dyn, dyncon); } } else if (htab->is_vxworks && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) bed->s->swap_dyn_out (output_bfd, &dyn, dyncon); else if (abi_64_p && dyn.d_tag == DT_SPARC_REGISTER) { if (stt_regidx == -1) { stt_regidx = _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1); if (stt_regidx == -1) return FALSE; } dyn.d_un.d_val = stt_regidx++; bed->s->swap_dyn_out (output_bfd, &dyn, dyncon); } else { switch (dyn.d_tag) { case DT_PLTGOT: name = ".plt"; size = FALSE; break; case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break; case DT_JMPREL: name = ".rela.plt"; size = FALSE; break; default: name = NULL; size = FALSE; break; } if (name != NULL) { asection *s; s = bfd_get_section_by_name (output_bfd, name); if (s == NULL) dyn.d_un.d_val = 0; else { if (! size) dyn.d_un.d_ptr = s->vma; else dyn.d_un.d_val = s->size; } bed->s->swap_dyn_out (output_bfd, &dyn, dyncon); } } } return TRUE; } /* Install the first PLT entry in a VxWorks executable and make sure that .rela.plt.unloaded relocations have the correct symbol indexes. */ static void sparc_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) { struct _bfd_sparc_elf_link_hash_table *htab; Elf_Internal_Rela rela; bfd_vma got_base; bfd_byte *loc; htab = _bfd_sparc_elf_hash_table (info); /* Calculate the absolute value of _GLOBAL_OFFSET_TABLE_. */ got_base = (htab->elf.hgot->root.u.def.section->output_section->vma + htab->elf.hgot->root.u.def.section->output_offset + htab->elf.hgot->root.u.def.value); /* Install the initial PLT entry. */ bfd_put_32 (output_bfd, sparc_vxworks_exec_plt0_entry[0] + ((got_base + 8) >> 10), htab->splt->contents); bfd_put_32 (output_bfd, sparc_vxworks_exec_plt0_entry[1] + ((got_base + 8) & 0x3ff), htab->splt->contents + 4); bfd_put_32 (output_bfd, sparc_vxworks_exec_plt0_entry[2], htab->splt->contents + 8); bfd_put_32 (output_bfd, sparc_vxworks_exec_plt0_entry[3], htab->splt->contents + 12); bfd_put_32 (output_bfd, sparc_vxworks_exec_plt0_entry[4], htab->splt->contents + 16); loc = htab->srelplt2->contents; /* Add an unloaded relocation for the initial entry's "sethi". */ rela.r_offset = (htab->splt->output_section->vma + htab->splt->output_offset); rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_HI22); rela.r_addend = 8; bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); loc += sizeof (Elf32_External_Rela); /* Likewise the following "or". */ rela.r_offset += 4; rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_LO10); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); loc += sizeof (Elf32_External_Rela); /* Fix up the remaining .rela.plt.unloaded relocations. They may have the wrong symbol index for _G_O_T_ or _P_L_T_ depending on the order in which symbols were output. */ while (loc < htab->srelplt2->contents + htab->srelplt2->size) { Elf_Internal_Rela rel; /* The entry's initial "sethi" (against _G_O_T_). */ bfd_elf32_swap_reloc_in (output_bfd, loc, &rel); rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_HI22); bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); /* The following "or" (also against _G_O_T_). */ bfd_elf32_swap_reloc_in (output_bfd, loc, &rel); rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_LO10); bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); /* The .got.plt entry (against _P_L_T_). */ bfd_elf32_swap_reloc_in (output_bfd, loc, &rel); rel.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_SPARC_32); bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); } } /* Install the first PLT entry in a VxWorks shared object. */ static void sparc_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) { struct _bfd_sparc_elf_link_hash_table *htab; unsigned int i; htab = _bfd_sparc_elf_hash_table (info); for (i = 0; i < ARRAY_SIZE (sparc_vxworks_shared_plt0_entry); i++) bfd_put_32 (output_bfd, sparc_vxworks_shared_plt0_entry[i], htab->splt->contents + i * 4); } bfd_boolean _bfd_sparc_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { bfd *dynobj; asection *sdyn; struct _bfd_sparc_elf_link_hash_table *htab; htab = _bfd_sparc_elf_hash_table (info); dynobj = htab->elf.dynobj; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (elf_hash_table (info)->dynamic_sections_created) { asection *splt; splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL && sdyn != NULL); if (!sparc_finish_dyn (output_bfd, info, dynobj, sdyn, splt)) return FALSE; /* Initialize the contents of the .plt section. */ if (splt->size > 0) { if (htab->is_vxworks) { if (info->shared) sparc_vxworks_finish_shared_plt (output_bfd, info); else sparc_vxworks_finish_exec_plt (output_bfd, info); } else { memset (splt->contents, 0, htab->plt_header_size); if (!ABI_64_P (output_bfd)) bfd_put_32 (output_bfd, (bfd_vma) SPARC_NOP, splt->contents + splt->size - 4); } } elf_section_data (splt->output_section)->this_hdr.sh_entsize = (htab->is_vxworks || !ABI_64_P (output_bfd)) ? 0 : htab->plt_entry_size; } /* Set the first entry in the global offset table to the address of the dynamic section. */ if (htab->sgot && htab->sgot->size > 0) { bfd_vma val = (sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0); SPARC_ELF_PUT_WORD (htab, output_bfd, val, htab->sgot->contents); } if (htab->sgot) elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize = SPARC_ELF_WORD_BYTES (htab); return TRUE; } /* Set the right machine number for a SPARC ELF file. */ bfd_boolean _bfd_sparc_elf_object_p (bfd *abfd) { if (ABI_64_P (abfd)) { unsigned long mach = bfd_mach_sparc_v9; if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3) mach = bfd_mach_sparc_v9b; else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1) mach = bfd_mach_sparc_v9a; return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach); } else { if (elf_elfheader (abfd)->e_machine == EM_SPARC32PLUS) { if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3) return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, bfd_mach_sparc_v8plusb); else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1) return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, bfd_mach_sparc_v8plusa); else if (elf_elfheader (abfd)->e_flags & EF_SPARC_32PLUS) return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, bfd_mach_sparc_v8plus); else return FALSE; } else if (elf_elfheader (abfd)->e_flags & EF_SPARC_LEDATA) return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, bfd_mach_sparc_sparclite_le); else return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, bfd_mach_sparc); } } /* Return address for Ith PLT stub in section PLT, for relocation REL or (bfd_vma) -1 if it should not be included. */ bfd_vma _bfd_sparc_elf_plt_sym_val (bfd_vma i, const asection *plt, const arelent *rel) { if (ABI_64_P (plt->owner)) { bfd_vma j; i += PLT64_HEADER_SIZE / PLT64_ENTRY_SIZE; if (i < PLT64_LARGE_THRESHOLD) return plt->vma + i * PLT64_ENTRY_SIZE; j = (i - PLT64_LARGE_THRESHOLD) % 160; i -= j; return plt->vma + i * PLT64_ENTRY_SIZE + j * 4 * 6; } else return rel->address; }
Go to most recent revision | Compare with Previous | Blame | View Log