URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.20.1/] [gas/] [config/] [tc-mt.c] - Rev 299
Go to most recent revision | Compare with Previous | Blame | View Log
/* tc-mt.c -- Assembler for the Morpho Technologies mt . Copyright (C) 2005, 2006, 2007 Free Software Foundation. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "as.h" #include "dwarf2dbg.h" #include "subsegs.h" #include "symcat.h" #include "opcodes/mt-desc.h" #include "opcodes/mt-opc.h" #include "cgen.h" #include "elf/common.h" #include "elf/mt.h" #include "libbfd.h" /* Structure to hold all of the different components describing an individual instruction. */ typedef struct { const CGEN_INSN * insn; const CGEN_INSN * orig_insn; CGEN_FIELDS fields; #if CGEN_INT_INSN_P CGEN_INSN_INT buffer [1]; #define INSN_VALUE(buf) (*(buf)) #else unsigned char buffer [CGEN_MAX_INSN_SIZE]; #define INSN_VALUE(buf) (buf) #endif char * addr; fragS * frag; int num_fixups; fixS * fixups [GAS_CGEN_MAX_FIXUPS]; int indices [MAX_OPERAND_INSTANCES]; } mt_insn; const char comment_chars[] = ";"; const char line_comment_chars[] = "#"; const char line_separator_chars[] = ""; const char EXP_CHARS[] = "eE"; const char FLT_CHARS[] = "dD"; /* The target specific pseudo-ops which we support. */ const pseudo_typeS md_pseudo_table[] = { { "word", cons, 4 }, { NULL, NULL, 0 } }; static int no_scheduling_restrictions = 0; struct option md_longopts[] = { #define OPTION_NO_SCHED_REST (OPTION_MD_BASE) { "nosched", no_argument, NULL, OPTION_NO_SCHED_REST }, #define OPTION_MARCH (OPTION_MD_BASE + 1) { "march", required_argument, NULL, OPTION_MARCH}, { NULL, no_argument, NULL, 0 }, }; size_t md_longopts_size = sizeof (md_longopts); const char * md_shortopts = ""; /* Mach selected from command line. */ static int mt_mach = bfd_mach_ms1; static unsigned mt_mach_bitmask = 1 << MACH_MS1; /* Flags to set in the elf header */ static flagword mt_flags = EF_MT_CPU_MRISC; /* The architecture to use. */ enum mt_architectures { ms1_64_001, ms1_16_002, ms1_16_003, ms2 }; /* MT architecture we are using for this output file. */ static enum mt_architectures mt_arch = ms1_16_002; int md_parse_option (int c ATTRIBUTE_UNUSED, char * arg) { switch (c) { case OPTION_MARCH: if (strcmp (arg, "ms1-64-001") == 0) { mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MRISC; mt_mach = bfd_mach_ms1; mt_mach_bitmask = 1 << MACH_MS1; mt_arch = ms1_64_001; } else if (strcmp (arg, "ms1-16-002") == 0) { mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MRISC; mt_mach = bfd_mach_ms1; mt_mach_bitmask = 1 << MACH_MS1; mt_arch = ms1_16_002; } else if (strcmp (arg, "ms1-16-003") == 0) { mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MRISC2; mt_mach = bfd_mach_mrisc2; mt_mach_bitmask = 1 << MACH_MS1_003; mt_arch = ms1_16_003; } else if (strcmp (arg, "ms2") == 0) { mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MS2; mt_mach = bfd_mach_mrisc2; mt_mach_bitmask = 1 << MACH_MS2; mt_arch = ms2; } case OPTION_NO_SCHED_REST: no_scheduling_restrictions = 1; break; default: return 0; } return 1; } void md_show_usage (FILE * stream) { fprintf (stream, _("MT specific command line options:\n")); fprintf (stream, _(" -march=ms1-64-001 allow ms1-64-001 instructions\n")); fprintf (stream, _(" -march=ms1-16-002 allow ms1-16-002 instructions (default)\n")); fprintf (stream, _(" -march=ms1-16-003 allow ms1-16-003 instructions\n")); fprintf (stream, _(" -march=ms2 allow ms2 instructions \n")); fprintf (stream, _(" -nosched disable scheduling restrictions\n")); } void md_begin (void) { /* Initialize the `cgen' interface. */ /* Set the machine number and endian. */ gas_cgen_cpu_desc = mt_cgen_cpu_open (CGEN_CPU_OPEN_MACHS, mt_mach_bitmask, CGEN_CPU_OPEN_ENDIAN, CGEN_ENDIAN_BIG, CGEN_CPU_OPEN_END); mt_cgen_init_asm (gas_cgen_cpu_desc); /* This is a callback from cgen to gas to parse operands. */ cgen_set_parse_operand_fn (gas_cgen_cpu_desc, gas_cgen_parse_operand); /* Set the ELF flags if desired. */ if (mt_flags) bfd_set_private_flags (stdoutput, mt_flags); /* Set the machine type. */ bfd_default_set_arch_mach (stdoutput, bfd_arch_mt, mt_mach); } void md_assemble (char * str) { static long delayed_load_register = 0; static long prev_delayed_load_register = 0; static int last_insn_had_delay_slot = 0; static int last_insn_in_noncond_delay_slot = 0; static int last_insn_has_load_delay = 0; static int last_insn_was_memory_access = 0; static int last_insn_was_io_insn = 0; static int last_insn_was_arithmetic_or_logic = 0; static int last_insn_was_branch_insn = 0; static int last_insn_was_conditional_branch_insn = 0; mt_insn insn; char * errmsg; /* Initialize GAS's cgen interface for a new instruction. */ gas_cgen_init_parse (); insn.insn = mt_cgen_assemble_insn (gas_cgen_cpu_desc, str, & insn.fields, insn.buffer, & errmsg); if (!insn.insn) { as_bad ("%s", errmsg); return; } /* Doesn't really matter what we pass for RELAX_P here. */ gas_cgen_finish_insn (insn.insn, insn.buffer, CGEN_FIELDS_BITSIZE (& insn.fields), 1, NULL); /* Handle Scheduling Restrictions. */ if (!no_scheduling_restrictions) { /* Detect consecutive Memory Accesses. */ if (last_insn_was_memory_access && CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_MEMORY_ACCESS) && mt_mach == ms1_64_001) as_warn (_("instruction %s may not follow another memory access instruction."), CGEN_INSN_NAME (insn.insn)); /* Detect consecutive I/O Instructions. */ else if (last_insn_was_io_insn && CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_IO_INSN)) as_warn (_("instruction %s may not follow another I/O instruction."), CGEN_INSN_NAME (insn.insn)); /* Detect consecutive branch instructions. */ else if (last_insn_was_branch_insn && CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN)) as_warn (_("%s may not occupy the delay slot of another branch insn."), CGEN_INSN_NAME (insn.insn)); /* Detect data dependencies on delayed loads: memory and input insns. */ if (last_insn_has_load_delay && delayed_load_register) { if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1) && insn.fields.f_sr1 == delayed_load_register) as_warn (_("operand references R%ld of previous load."), insn.fields.f_sr1); if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2) && insn.fields.f_sr2 == delayed_load_register) as_warn (_("operand references R%ld of previous load."), insn.fields.f_sr2); } /* Detect JAL/RETI hazard */ if (mt_mach == ms2 && CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_JAL_HAZARD)) { if ((CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1) && insn.fields.f_sr1 == delayed_load_register) || (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2) && insn.fields.f_sr2 == delayed_load_register)) as_warn (_("operand references R%ld of previous instrutcion."), delayed_load_register); else if ((CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1) && insn.fields.f_sr1 == prev_delayed_load_register) || (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2) && insn.fields.f_sr2 == prev_delayed_load_register)) as_warn (_("operand references R%ld of instructcion before previous."), prev_delayed_load_register); } /* Detect data dependency between conditional branch instruction and an immediately preceding arithmetic or logical instruction. */ if (last_insn_was_arithmetic_or_logic && !last_insn_in_noncond_delay_slot && (delayed_load_register != 0) && CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN) && mt_arch == ms1_64_001) { if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1) && insn.fields.f_sr1 == delayed_load_register) as_warn (_("conditional branch or jal insn's operand references R%ld of previous arithmetic or logic insn."), insn.fields.f_sr1); if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2) && insn.fields.f_sr2 == delayed_load_register) as_warn (_("conditional branch or jal insn's operand references R%ld of previous arithmetic or logic insn."), insn.fields.f_sr2); } } /* Keep track of details of this insn for processing next insn. */ last_insn_in_noncond_delay_slot = last_insn_was_branch_insn && !last_insn_was_conditional_branch_insn; last_insn_had_delay_slot = CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_DELAY_SLOT); last_insn_has_load_delay = CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_LOAD_DELAY); last_insn_was_memory_access = CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_MEMORY_ACCESS); last_insn_was_io_insn = CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_IO_INSN); last_insn_was_arithmetic_or_logic = CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_AL_INSN); last_insn_was_branch_insn = CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN); last_insn_was_conditional_branch_insn = CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN) && CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2); prev_delayed_load_register = delayed_load_register; if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRDR)) delayed_load_register = insn.fields.f_dr; else if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRDRRR)) delayed_load_register = insn.fields.f_drrr; else /* Insns has no destination register. */ delayed_load_register = 0; /* Generate dwarf2 line numbers. */ dwarf2_emit_insn (4); } valueT md_section_align (segT segment, valueT size) { int align = bfd_get_section_alignment (stdoutput, segment); return ((size + (1 << align) - 1) & (-1 << align)); } symbolS * md_undefined_symbol (char * name ATTRIBUTE_UNUSED) { return NULL; } int md_estimate_size_before_relax (fragS * fragP ATTRIBUTE_UNUSED, segT segment ATTRIBUTE_UNUSED) { as_fatal (_("md_estimate_size_before_relax\n")); return 1; } /* *fragP has been relaxed to its final size, and now needs to have the bytes inside it modified to conform to the new size. Called after relaxation is finished. fragP->fr_type == rs_machine_dependent. fragP->fr_subtype is the subtype of what the address relaxed to. */ void md_convert_frag (bfd * abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED, fragS * fragP ATTRIBUTE_UNUSED) { } /* Functions concerning relocs. */ long md_pcrel_from_section (fixS *fixP, segT sec) { if (fixP->fx_addsy != (symbolS *) NULL && (!S_IS_DEFINED (fixP->fx_addsy) || S_GET_SEGMENT (fixP->fx_addsy) != sec)) /* The symbol is undefined (or is defined but not in this section). Let the linker figure it out. */ return 0; /* Return the address of the opcode - cgen adjusts for opcode size itself, to be consistent with the disassembler, which must do so. */ return fixP->fx_where + fixP->fx_frag->fr_address; } /* Return the bfd reloc type for OPERAND of INSN at fixup FIXP. Returns BFD_RELOC_NONE if no reloc type can be found. *FIXP may be modified if desired. */ bfd_reloc_code_real_type md_cgen_lookup_reloc (const CGEN_INSN * insn ATTRIBUTE_UNUSED, const CGEN_OPERAND * operand, fixS * fixP ATTRIBUTE_UNUSED) { bfd_reloc_code_real_type result; result = BFD_RELOC_NONE; switch (operand->type) { case MT_OPERAND_IMM16O: result = BFD_RELOC_16_PCREL; fixP->fx_pcrel = 1; /* fixP->fx_no_overflow = 1; */ break; case MT_OPERAND_IMM16: case MT_OPERAND_IMM16Z: /* These may have been processed at parse time. */ if (fixP->fx_cgen.opinfo != 0) result = fixP->fx_cgen.opinfo; fixP->fx_no_overflow = 1; break; case MT_OPERAND_LOOPSIZE: result = BFD_RELOC_MT_PCINSN8; fixP->fx_pcrel = 1; /* Adjust for the delay slot, which is not part of the loop */ fixP->fx_offset -= 8; break; default: result = BFD_RELOC_NONE; break; } return result; } /* Write a value out to the object file, using the appropriate endianness. */ void md_number_to_chars (char * buf, valueT val, int n) { number_to_chars_bigendian (buf, val, n); } char * md_atof (int type, char * litP, int * sizeP) { return ieee_md_atof (type, litP, sizeP, FALSE); } /* See whether we need to force a relocation into the output file. */ int mt_force_relocation (fixS * fixp ATTRIBUTE_UNUSED) { return 0; } void mt_apply_fix (fixS *fixP, valueT *valueP, segT seg) { if ((fixP->fx_pcrel != 0) && (fixP->fx_r_type == BFD_RELOC_32)) fixP->fx_r_type = BFD_RELOC_32_PCREL; gas_cgen_md_apply_fix (fixP, valueP, seg); } bfd_boolean mt_fix_adjustable (fixS * fixP) { bfd_reloc_code_real_type reloc_type; if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED) { const CGEN_INSN *insn = NULL; int opindex = (int) fixP->fx_r_type - (int) BFD_RELOC_UNUSED; const CGEN_OPERAND *operand; operand = cgen_operand_lookup_by_num(gas_cgen_cpu_desc, opindex); reloc_type = md_cgen_lookup_reloc (insn, operand, fixP); } else reloc_type = fixP->fx_r_type; if (fixP->fx_addsy == NULL) return TRUE; /* Prevent all adjustments to global symbols. */ if (S_IS_EXTERNAL (fixP->fx_addsy)) return FALSE; if (S_IS_WEAK (fixP->fx_addsy)) return FALSE; return 1; }
Go to most recent revision | Compare with Previous | Blame | View Log