URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.20.1/] [opcodes/] [tic30-dis.c] - Rev 205
Compare with Previous | Blame | View Log
/* Disassembly routines for TMS320C30 architecture Copyright 1998, 1999, 2000, 2002, 2005, 2007, 2009 Free Software Foundation, Inc. Contributed by Steven Haworth (steve@pm.cse.rmit.edu.au) This file is part of the GNU opcodes library. This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this file; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include <errno.h> #include <math.h> #include "sysdep.h" #include "dis-asm.h" #include "opcode/tic30.h" #define NORMAL_INSN 1 #define PARALLEL_INSN 2 /* Gets the type of instruction based on the top 2 or 3 bits of the instruction word. */ #define GET_TYPE(insn) (insn & 0x80000000 ? insn & 0xC0000000 : insn & 0xE0000000) /* Instruction types. */ #define TWO_OPERAND_1 0x00000000 #define TWO_OPERAND_2 0x40000000 #define THREE_OPERAND 0x20000000 #define PAR_STORE 0xC0000000 #define MUL_ADDS 0x80000000 #define BRANCHES 0x60000000 /* Specific instruction id bits. */ #define NORMAL_IDEN 0x1F800000 #define PAR_STORE_IDEN 0x3E000000 #define MUL_ADD_IDEN 0x2C000000 #define BR_IMM_IDEN 0x1F000000 #define BR_COND_IDEN 0x1C3F0000 /* Addressing modes. */ #define AM_REGISTER 0x00000000 #define AM_DIRECT 0x00200000 #define AM_INDIRECT 0x00400000 #define AM_IMM 0x00600000 #define P_FIELD 0x03000000 #define REG_AR0 0x08 #define LDP_INSN 0x08700000 /* TMS320C30 program counter for current instruction. */ static unsigned int _pc; struct instruction { int type; insn_template *tm; partemplate *ptm; }; static int get_tic30_instruction (unsigned long insn_word, struct instruction *insn) { switch (GET_TYPE (insn_word)) { case TWO_OPERAND_1: case TWO_OPERAND_2: case THREE_OPERAND: insn->type = NORMAL_INSN; { insn_template *current_optab = (insn_template *) tic30_optab; for (; current_optab < tic30_optab_end; current_optab++) { if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word)) { if (current_optab->operands == 0) { if (current_optab->base_opcode == insn_word) { insn->tm = current_optab; break; } } else if ((current_optab->base_opcode & NORMAL_IDEN) == (insn_word & NORMAL_IDEN)) { insn->tm = current_optab; break; } } } } break; case PAR_STORE: insn->type = PARALLEL_INSN; { partemplate *current_optab = (partemplate *) tic30_paroptab; for (; current_optab < tic30_paroptab_end; current_optab++) { if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word)) { if ((current_optab->base_opcode & PAR_STORE_IDEN) == (insn_word & PAR_STORE_IDEN)) { insn->ptm = current_optab; break; } } } } break; case MUL_ADDS: insn->type = PARALLEL_INSN; { partemplate *current_optab = (partemplate *) tic30_paroptab; for (; current_optab < tic30_paroptab_end; current_optab++) { if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word)) { if ((current_optab->base_opcode & MUL_ADD_IDEN) == (insn_word & MUL_ADD_IDEN)) { insn->ptm = current_optab; break; } } } } break; case BRANCHES: insn->type = NORMAL_INSN; { insn_template *current_optab = (insn_template *) tic30_optab; for (; current_optab < tic30_optab_end; current_optab++) { if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word)) { if (current_optab->operand_types[0] & Imm24) { if ((current_optab->base_opcode & BR_IMM_IDEN) == (insn_word & BR_IMM_IDEN)) { insn->tm = current_optab; break; } } else if (current_optab->operands > 0) { if ((current_optab->base_opcode & BR_COND_IDEN) == (insn_word & BR_COND_IDEN)) { insn->tm = current_optab; break; } } else { if ((current_optab->base_opcode & (BR_COND_IDEN | 0x00800000)) == (insn_word & (BR_COND_IDEN | 0x00800000))) { insn->tm = current_optab; break; } } } } } break; default: return 0; } return 1; } static int get_register_operand (unsigned char fragment, char *buffer) { const reg *current_reg = tic30_regtab; if (buffer == NULL) return 0; for (; current_reg < tic30_regtab_end; current_reg++) { if ((fragment & 0x1F) == current_reg->opcode) { strcpy (buffer, current_reg->name); return 1; } } return 0; } static int get_indirect_operand (unsigned short fragment, int size, char *buffer) { unsigned char mod; unsigned arnum; unsigned char disp; if (buffer == NULL) return 0; /* Determine which bits identify the sections of the indirect operand based on the size in bytes. */ switch (size) { case 1: mod = (fragment & 0x00F8) >> 3; arnum = (fragment & 0x0007); disp = 0; break; case 2: mod = (fragment & 0xF800) >> 11; arnum = (fragment & 0x0700) >> 8; disp = (fragment & 0x00FF); break; default: return 0; } { const ind_addr_type *current_ind = tic30_indaddr_tab; for (; current_ind < tic30_indaddrtab_end; current_ind++) { if (current_ind->modfield == mod) { if (current_ind->displacement == IMPLIED_DISP && size == 2) continue; else { size_t i, len; int bufcnt; len = strlen (current_ind->syntax); for (i = 0, bufcnt = 0; i < len; i++, bufcnt++) { buffer[bufcnt] = current_ind->syntax[i]; if (buffer[bufcnt - 1] == 'a' && buffer[bufcnt] == 'r') buffer[++bufcnt] = arnum + '0'; if (buffer[bufcnt] == '(' && current_ind->displacement == DISP_REQUIRED) { sprintf (&buffer[bufcnt + 1], "%u", disp); bufcnt += strlen (&buffer[bufcnt + 1]); } } buffer[bufcnt + 1] = '\0'; break; } } } } return 1; } static int cnvt_tmsfloat_ieee (unsigned long tmsfloat, int size, float *ieeefloat) { unsigned long exp, sign, mant; union { unsigned long l; float f; } val; if (size == 2) { if ((tmsfloat & 0x0000F000) == 0x00008000) tmsfloat = 0x80000000; else { tmsfloat <<= 16; tmsfloat = (long) tmsfloat >> 4; } } exp = tmsfloat & 0xFF000000; if (exp == 0x80000000) { *ieeefloat = 0.0; return 1; } exp += 0x7F000000; sign = (tmsfloat & 0x00800000) << 8; mant = tmsfloat & 0x007FFFFF; if (exp == 0xFF000000) { if (mant == 0) *ieeefloat = ERANGE; #ifdef HUGE_VALF if (sign == 0) *ieeefloat = HUGE_VALF; else *ieeefloat = -HUGE_VALF; #else if (sign == 0) *ieeefloat = 1.0 / 0.0; else *ieeefloat = -1.0 / 0.0; #endif return 1; } exp >>= 1; if (sign) { mant = (~mant) & 0x007FFFFF; mant += 1; exp += mant & 0x00800000; exp &= 0x7F800000; mant &= 0x007FFFFF; } if (tmsfloat == 0x80000000) sign = mant = exp = 0; tmsfloat = sign | exp | mant; val.l = tmsfloat; *ieeefloat = val.f; return 1; } static int print_two_operand (disassemble_info *info, unsigned long insn_word, struct instruction *insn) { char name[12]; char operand[2][13] = { {0}, {0} }; float f_number; if (insn->tm == NULL) return 0; strcpy (name, insn->tm->name); if (insn->tm->opcode_modifier == AddressMode) { int src_op, dest_op; /* Determine whether instruction is a store or a normal instruction. */ if ((insn->tm->operand_types[1] & (Direct | Indirect)) == (Direct | Indirect)) { src_op = 1; dest_op = 0; } else { src_op = 0; dest_op = 1; } /* Get the destination register. */ if (insn->tm->operands == 2) get_register_operand ((insn_word & 0x001F0000) >> 16, operand[dest_op]); /* Get the source operand based on addressing mode. */ switch (insn_word & AddressMode) { case AM_REGISTER: /* Check for the NOP instruction before getting the operand. */ if ((insn->tm->operand_types[0] & NotReq) == 0) get_register_operand ((insn_word & 0x0000001F), operand[src_op]); break; case AM_DIRECT: sprintf (operand[src_op], "@0x%lX", (insn_word & 0x0000FFFF)); break; case AM_INDIRECT: get_indirect_operand ((insn_word & 0x0000FFFF), 2, operand[src_op]); break; case AM_IMM: /* Get the value of the immediate operand based on variable type. */ switch (insn->tm->imm_arg_type) { case Imm_Float: cnvt_tmsfloat_ieee ((insn_word & 0x0000FFFF), 2, &f_number); sprintf (operand[src_op], "%2.2f", f_number); break; case Imm_SInt: sprintf (operand[src_op], "%d", (short) (insn_word & 0x0000FFFF)); break; case Imm_UInt: sprintf (operand[src_op], "%lu", (insn_word & 0x0000FFFF)); break; default: return 0; } /* Handle special case for LDP instruction. */ if ((insn_word & 0xFFFFFF00) == LDP_INSN) { strcpy (name, "ldp"); sprintf (operand[0], "0x%06lX", (insn_word & 0x000000FF) << 16); operand[1][0] = '\0'; } } } /* Handle case for stack and rotate instructions. */ else if (insn->tm->operands == 1) { if (insn->tm->opcode_modifier == StackOp) get_register_operand ((insn_word & 0x001F0000) >> 16, operand[0]); } /* Output instruction to stream. */ info->fprintf_func (info->stream, " %s %s%c%s", name, operand[0][0] ? operand[0] : "", operand[1][0] ? ',' : ' ', operand[1][0] ? operand[1] : ""); return 1; } static int print_three_operand (disassemble_info *info, unsigned long insn_word, struct instruction *insn) { char operand[3][13] = { {0}, {0}, {0} }; if (insn->tm == NULL) return 0; switch (insn_word & AddressMode) { case AM_REGISTER: get_register_operand ((insn_word & 0x000000FF), operand[0]); get_register_operand ((insn_word & 0x0000FF00) >> 8, operand[1]); break; case AM_DIRECT: get_register_operand ((insn_word & 0x000000FF), operand[0]); get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1]); break; case AM_INDIRECT: get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0]); get_register_operand ((insn_word & 0x0000FF00) >> 8, operand[1]); break; case AM_IMM: get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0]); get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1]); break; default: return 0; } if (insn->tm->operands == 3) get_register_operand ((insn_word & 0x001F0000) >> 16, operand[2]); info->fprintf_func (info->stream, " %s %s,%s%c%s", insn->tm->name, operand[0], operand[1], operand[2][0] ? ',' : ' ', operand[2][0] ? operand[2] : ""); return 1; } static int print_par_insn (disassemble_info *info, unsigned long insn_word, struct instruction *insn) { size_t i, len; char *name1, *name2; char operand[2][3][13] = { { {0}, {0}, {0} }, { {0}, {0}, {0} } }; if (insn->ptm == NULL) return 0; /* Parse out the names of each of the parallel instructions from the q_insn1_insn2 format. */ name1 = (char *) strdup (insn->ptm->name + 2); name2 = ""; len = strlen (name1); for (i = 0; i < len; i++) { if (name1[i] == '_') { name2 = &name1[i + 1]; name1[i] = '\0'; break; } } /* Get the operands of the instruction based on the operand order. */ switch (insn->ptm->oporder) { case OO_4op1: get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][0]); get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]); get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]); get_register_operand ((insn_word >> 22) & 0x07, operand[0][1]); break; case OO_4op2: get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][0]); get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][0]); get_register_operand ((insn_word >> 19) & 0x07, operand[1][1]); get_register_operand ((insn_word >> 22) & 0x07, operand[0][1]); break; case OO_4op3: get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][1]); get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]); get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]); get_register_operand ((insn_word >> 22) & 0x07, operand[0][0]); break; case OO_5op1: get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][0]); get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]); get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]); get_register_operand ((insn_word >> 19) & 0x07, operand[0][1]); get_register_operand ((insn_word >> 22) & 0x07, operand[0][2]); break; case OO_5op2: get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][1]); get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]); get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]); get_register_operand ((insn_word >> 19) & 0x07, operand[0][0]); get_register_operand ((insn_word >> 22) & 0x07, operand[0][2]); break; case OO_PField: if (insn_word & 0x00800000) get_register_operand (0x01, operand[0][2]); else get_register_operand (0x00, operand[0][2]); if (insn_word & 0x00400000) get_register_operand (0x03, operand[1][2]); else get_register_operand (0x02, operand[1][2]); switch (insn_word & P_FIELD) { case 0x00000000: get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][1]); get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[0][0]); get_register_operand ((insn_word >> 16) & 0x07, operand[1][1]); get_register_operand ((insn_word >> 19) & 0x07, operand[1][0]); break; case 0x01000000: get_indirect_operand ((insn_word & 0x000000FF), 1, operand[1][0]); get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[0][0]); get_register_operand ((insn_word >> 16) & 0x07, operand[1][1]); get_register_operand ((insn_word >> 19) & 0x07, operand[0][1]); break; case 0x02000000: get_indirect_operand ((insn_word & 0x000000FF), 1, operand[1][1]); get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][0]); get_register_operand ((insn_word >> 16) & 0x07, operand[0][1]); get_register_operand ((insn_word >> 19) & 0x07, operand[0][0]); break; case 0x03000000: get_indirect_operand ((insn_word & 0x000000FF), 1, operand[1][1]); get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[0][0]); get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]); get_register_operand ((insn_word >> 19) & 0x07, operand[0][1]); break; } break; default: return 0; } info->fprintf_func (info->stream, " %s %s,%s%c%s", name1, operand[0][0], operand[0][1], operand[0][2][0] ? ',' : ' ', operand[0][2][0] ? operand[0][2] : ""); info->fprintf_func (info->stream, "\n\t\t\t|| %s %s,%s%c%s", name2, operand[1][0], operand[1][1], operand[1][2][0] ? ',' : ' ', operand[1][2][0] ? operand[1][2] : ""); free (name1); return 1; } static int print_branch (disassemble_info *info, unsigned long insn_word, struct instruction *insn) { char operand[2][13] = { {0}, {0} }; unsigned long address; int print_label = 0; if (insn->tm == NULL) return 0; /* Get the operands for 24-bit immediate jumps. */ if (insn->tm->operand_types[0] & Imm24) { address = insn_word & 0x00FFFFFF; sprintf (operand[0], "0x%lX", address); print_label = 1; } /* Get the operand for the trap instruction. */ else if (insn->tm->operand_types[0] & IVector) { address = insn_word & 0x0000001F; sprintf (operand[0], "0x%lX", address); } else { address = insn_word & 0x0000FFFF; /* Get the operands for the DB instructions. */ if (insn->tm->operands == 2) { get_register_operand (((insn_word & 0x01C00000) >> 22) + REG_AR0, operand[0]); if (insn_word & PCRel) { sprintf (operand[1], "%d", (short) address); print_label = 1; } else get_register_operand (insn_word & 0x0000001F, operand[1]); } /* Get the operands for the standard branches. */ else if (insn->tm->operands == 1) { if (insn_word & PCRel) { address = (short) address; sprintf (operand[0], "%ld", address); print_label = 1; } else get_register_operand (insn_word & 0x0000001F, operand[0]); } } info->fprintf_func (info->stream, " %s %s%c%s", insn->tm->name, operand[0][0] ? operand[0] : "", operand[1][0] ? ',' : ' ', operand[1][0] ? operand[1] : ""); /* Print destination of branch in relation to current symbol. */ if (print_label && info->symbols) { asymbol *sym = *info->symbols; if ((insn->tm->opcode_modifier == PCRel) && (insn_word & PCRel)) { address = (_pc + 1 + (short) address) - ((sym->section->vma + sym->value) / 4); /* Check for delayed instruction, if so adjust destination. */ if (insn_word & 0x00200000) address += 2; } else { address -= ((sym->section->vma + sym->value) / 4); } if (address == 0) info->fprintf_func (info->stream, " <%s>", sym->name); else info->fprintf_func (info->stream, " <%s %c %d>", sym->name, ((short) address < 0) ? '-' : '+', abs (address)); } return 1; } int print_insn_tic30 (bfd_vma pc, disassemble_info *info) { unsigned long insn_word; struct instruction insn = { 0, NULL, NULL }; bfd_vma bufaddr = pc - info->buffer_vma; /* Obtain the current instruction word from the buffer. */ insn_word = (*(info->buffer + bufaddr) << 24) | (*(info->buffer + bufaddr + 1) << 16) | (*(info->buffer + bufaddr + 2) << 8) | *(info->buffer + bufaddr + 3); _pc = pc / 4; /* Get the instruction refered to by the current instruction word and print it out based on its type. */ if (!get_tic30_instruction (insn_word, &insn)) return -1; switch (GET_TYPE (insn_word)) { case TWO_OPERAND_1: case TWO_OPERAND_2: if (!print_two_operand (info, insn_word, &insn)) return -1; break; case THREE_OPERAND: if (!print_three_operand (info, insn_word, &insn)) return -1; break; case PAR_STORE: case MUL_ADDS: if (!print_par_insn (info, insn_word, &insn)) return -1; break; case BRANCHES: if (!print_branch (info, insn_word, &insn)) return -1; break; } return 4; }