URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [dfp-bit.c] - Rev 318
Go to most recent revision | Compare with Previous | Blame | View Log
/* This is a software decimal floating point library. Copyright (C) 2005, 2006 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* This implements IEEE 754R decimal floating point arithmetic, but does not provide a mechanism for setting the rounding mode, or for generating or handling exceptions. Conversions between decimal floating point types and other types depend on C library functions. Contributed by Ben Elliston <bje@au.ibm.com>. */ /* The intended way to use this file is to make two copies, add `#define ' to one copy, then compile both copies and add them to libgcc.a. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <limits.h> #include "config/dfp-bit.h" /* Forward declarations. */ #if WIDTH == 32 || WIDTH_TO == 32 void __host_to_ieee_32 (_Decimal32 in, decimal32 *out); void __ieee_to_host_32 (decimal32 in, _Decimal32 *out); #endif #if WIDTH == 64 || WIDTH_TO == 64 void __host_to_ieee_64 (_Decimal64 in, decimal64 *out); void __ieee_to_host_64 (decimal64 in, _Decimal64 *out); #endif #if WIDTH == 128 || WIDTH_TO == 128 void __host_to_ieee_128 (_Decimal128 in, decimal128 *out); void __ieee_to_host_128 (decimal128 in, _Decimal128 *out); #endif /* A pointer to a unary decNumber operation. */ typedef decNumber* (*dfp_unary_func) (decNumber *, decNumber *, decContext *); /* A pointer to a binary decNumber operation. */ typedef decNumber* (*dfp_binary_func) (decNumber *, decNumber *, decNumber *, decContext *); extern unsigned long __dec_byte_swap (unsigned long); /* Unary operations. */ static inline DFP_C_TYPE dfp_unary_op (dfp_unary_func op, DFP_C_TYPE arg) { DFP_C_TYPE result; decContext context; decNumber arg1, res; IEEE_TYPE a, encoded_result; HOST_TO_IEEE (arg, &a); decContextDefault (&context, CONTEXT_INIT); context.round = CONTEXT_ROUND; TO_INTERNAL (&a, &arg1); /* Perform the operation. */ op (&res, &arg1, &context); if (CONTEXT_TRAPS && CONTEXT_ERRORS (context)) DFP_RAISE (0); TO_ENCODED (&encoded_result, &res, &context); IEEE_TO_HOST (encoded_result, &result); return result; } /* Binary operations. */ static inline DFP_C_TYPE dfp_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { DFP_C_TYPE result; decContext context; decNumber arg1, arg2, res; IEEE_TYPE a, b, encoded_result; HOST_TO_IEEE (arg_a, &a); HOST_TO_IEEE (arg_b, &b); decContextDefault (&context, CONTEXT_INIT); context.round = CONTEXT_ROUND; TO_INTERNAL (&a, &arg1); TO_INTERNAL (&b, &arg2); /* Perform the operation. */ op (&res, &arg1, &arg2, &context); if (CONTEXT_TRAPS && CONTEXT_ERRORS (context)) DFP_RAISE (0); TO_ENCODED (&encoded_result, &res, &context); IEEE_TO_HOST (encoded_result, &result); return result; } /* Comparison operations. */ static inline int dfp_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { IEEE_TYPE a, b; decContext context; decNumber arg1, arg2, res; int result; HOST_TO_IEEE (arg_a, &a); HOST_TO_IEEE (arg_b, &b); decContextDefault (&context, CONTEXT_INIT); context.round = CONTEXT_ROUND; TO_INTERNAL (&a, &arg1); TO_INTERNAL (&b, &arg2); /* Perform the comparison. */ op (&res, &arg1, &arg2, &context); if (CONTEXT_TRAPS && CONTEXT_ERRORS (context)) DFP_RAISE (0); if (decNumberIsNegative (&res)) result = -1; else if (decNumberIsZero (&res)) result = 0; else result = 1; return result; } #if defined(L_conv_sd) void __host_to_ieee_32 (_Decimal32 in, decimal32 *out) { uint32_t t; if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN) { memcpy (&t, &in, 4); t = __dec_byte_swap (t); memcpy (out, &t, 4); } else memcpy (out, &in, 4); } void __ieee_to_host_32 (decimal32 in, _Decimal32 *out) { uint32_t t; if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN) { memcpy (&t, &in, 4); t = __dec_byte_swap (t); memcpy (out, &t, 4); } else memcpy (out, &in, 4); } #endif /* L_conv_sd */ #if defined(L_conv_dd) static void __swap64 (char *src, char *dst) { uint32_t t1, t2; if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN) { memcpy (&t1, src, 4); memcpy (&t2, src + 4, 4); t1 = __dec_byte_swap (t1); t2 = __dec_byte_swap (t2); memcpy (dst, &t2, 4); memcpy (dst + 4, &t1, 4); } else memcpy (dst, src, 8); } void __host_to_ieee_64 (_Decimal64 in, decimal64 *out) { __swap64 ((char *) &in, (char *) out); } void __ieee_to_host_64 (decimal64 in, _Decimal64 *out) { __swap64 ((char *) &in, (char *) out); } #endif /* L_conv_dd */ #if defined(L_conv_td) static void __swap128 (char *src, char *dst) { uint32_t t1, t2, t3, t4; if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN) { memcpy (&t1, src, 4); memcpy (&t2, src + 4, 4); memcpy (&t3, src + 8, 4); memcpy (&t4, src + 12, 4); t1 = __dec_byte_swap (t1); t2 = __dec_byte_swap (t2); t3 = __dec_byte_swap (t3); t4 = __dec_byte_swap (t4); memcpy (dst, &t4, 4); memcpy (dst + 4, &t3, 4); memcpy (dst + 8, &t2, 4); memcpy (dst + 12, &t1, 4); } else memcpy (dst, src, 16); } void __host_to_ieee_128 (_Decimal128 in, decimal128 *out) { __swap128 ((char *) &in, (char *) out); } void __ieee_to_host_128 (decimal128 in, _Decimal128 *out) { __swap128 ((char *) &in, (char *) out); } #endif /* L_conv_td */ #if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td) DFP_C_TYPE DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { return dfp_binary_op (decNumberAdd, arg_a, arg_b); } DFP_C_TYPE DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { return dfp_binary_op (decNumberSubtract, arg_a, arg_b); } #endif /* L_addsub */ #if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td) DFP_C_TYPE DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { return dfp_binary_op (decNumberMultiply, arg_a, arg_b); } #endif /* L_mul */ #if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td) DFP_C_TYPE DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { return dfp_binary_op (decNumberDivide, arg_a, arg_b); } #endif /* L_div */ #if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td) CMPtype DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { int stat; stat = dfp_compare_op (decNumberCompare, arg_a, arg_b); /* For EQ return zero for true, nonzero for false. */ return stat != 0; } #endif /* L_eq */ #if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td) CMPtype DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { int stat; stat = dfp_compare_op (decNumberCompare, arg_a, arg_b); /* For NE return nonzero for true, zero for false. */ return stat != 0; } #endif /* L_ne */ #if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td) CMPtype DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { int stat; stat = dfp_compare_op (decNumberCompare, arg_a, arg_b); /* For LT return -1 (<0) for true, 1 for false. */ return (stat == -1) ? -1 : 1; } #endif /* L_lt */ #if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td) CMPtype DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { int stat; stat = dfp_compare_op (decNumberCompare, arg_a, arg_b); /* For GT return 1 (>0) for true, -1 for false. */ return (stat == 1) ? 1 : -1; } #endif #if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td) CMPtype DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { int stat; stat = dfp_compare_op (decNumberCompare, arg_a, arg_b); /* For LE return 0 (<= 0) for true, 1 for false. */ return stat == 1; } #endif /* L_le */ #if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td) CMPtype DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { int stat; stat = dfp_compare_op (decNumberCompare, arg_a, arg_b); /* For GE return 1 (>=0) for true, -1 for false. */ return (stat != -1) ? 1 : -1; } #endif /* L_ge */ #define BUFMAX 128 #if defined (L_sd_to_dd) || defined (L_sd_to_td) || defined (L_dd_to_sd) \ || defined (L_dd_to_td) || defined (L_td_to_sd) || defined (L_td_to_dd) DFP_C_TYPE_TO DFP_TO_DFP (DFP_C_TYPE f_from) { DFP_C_TYPE_TO f_to; IEEE_TYPE s_from; IEEE_TYPE_TO s_to; decNumber d; decContext context; decContextDefault (&context, CONTEXT_INIT); context.round = CONTEXT_ROUND; HOST_TO_IEEE (f_from, &s_from); TO_INTERNAL (&s_from, &d); TO_ENCODED_TO (&s_to, &d, &context); if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0) DFP_RAISE (DEC_Inexact); IEEE_TO_HOST_TO (s_to, &f_to); return f_to; } #endif #if defined (L_sd_to_si) || defined (L_dd_to_si) || defined (L_td_to_si) \ || defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \ || defined (L_sd_to_usi) || defined (L_dd_to_usi) || defined (L_td_to_usi) \ || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi) INT_TYPE DFP_TO_INT (DFP_C_TYPE x) { /* decNumber's decimal* types have the same format as C's _Decimal* types, but they have different calling conventions. */ IEEE_TYPE s; char buf[BUFMAX]; char *pos; decNumber qval, n1, n2; decContext context; decContextDefault (&context, CONTEXT_INIT); /* Need non-default rounding mode here. */ context.round = DEC_ROUND_DOWN; HOST_TO_IEEE (x, &s); TO_INTERNAL (&s, &n1); /* Rescale if the exponent is less than zero. */ decNumberToIntegralValue (&n2, &n1, &context); /* Get a value to use for the quantize call. */ decNumberFromString (&qval, (char *) "1.0", &context); /* Force the exponent to zero. */ decNumberQuantize (&n1, &n2, &qval, &context); /* This is based on text in N1107 section 5.1; it might turn out to be undefined behavior instead. */ if (context.status & DEC_Invalid_operation) { #if defined (L_sd_to_si) || defined (L_dd_to_si) || defined (L_td_to_si) if (decNumberIsNegative(&n2)) return INT_MIN; else return INT_MAX; #elif defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) if (decNumberIsNegative(&n2)) /* Find a defined constant that will work here. */ return (-9223372036854775807LL - 1LL); else /* Find a defined constant that will work here. */ return 9223372036854775807LL; #elif defined (L_sd_to_usi) || defined (L_dd_to_usi) || defined (L_td_to_usi) return UINT_MAX; #elif defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi) /* Find a defined constant that will work here. */ return 18446744073709551615ULL; #endif } /* Get a string, which at this point will not include an exponent. */ decNumberToString (&n1, buf); /* Ignore the fractional part. */ pos = strchr (buf, '.'); if (pos) *pos = 0; /* Use a C library function to convert to the integral type. */ return STR_TO_INT (buf, NULL, 10); } #endif #if defined (L_si_to_sd) || defined (L_si_to_dd) || defined (L_si_to_td) \ || defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \ || defined (L_usi_to_sd) || defined (L_usi_to_dd) || defined (L_usi_to_td) \ || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td) DFP_C_TYPE INT_TO_DFP (INT_TYPE i) { DFP_C_TYPE f; IEEE_TYPE s; char buf[BUFMAX]; decContext context; decContextDefault (&context, CONTEXT_INIT); context.round = CONTEXT_ROUND; /* Use a C library function to get a floating point string. */ sprintf (buf, INT_FMT ".0", CAST_FOR_FMT(i)); /* Convert from the floating point string to a decimal* type. */ FROM_STRING (&s, buf, &context); IEEE_TO_HOST (s, &f); if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0) DFP_RAISE (DEC_Inexact); return f; } #endif #if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \ || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \ || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \ && LIBGCC2_HAS_XF_MODE) BFP_TYPE DFP_TO_BFP (DFP_C_TYPE f) { IEEE_TYPE s; char buf[BUFMAX]; HOST_TO_IEEE (f, &s); /* Write the value to a string. */ TO_STRING (&s, buf); /* Read it as the binary floating point type and return that. */ return STR_TO_BFP (buf, NULL); } #endif #if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \ || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \ || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \ && LIBGCC2_HAS_XF_MODE) DFP_C_TYPE BFP_TO_DFP (BFP_TYPE x) { DFP_C_TYPE f; IEEE_TYPE s; char buf[BUFMAX]; decContext context; decContextDefault (&context, CONTEXT_INIT); context.round = CONTEXT_ROUND; /* Use a C library function to write the floating point value to a string. */ #ifdef BFP_VIA_TYPE /* FIXME: Is there a better way to output an XFmode variable in C? */ sprintf (buf, BFP_FMT, (BFP_VIA_TYPE) x); #else sprintf (buf, BFP_FMT, x); #endif /* Convert from the floating point string to a decimal* type. */ FROM_STRING (&s, buf, &context); IEEE_TO_HOST (s, &f); if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0) DFP_RAISE (DEC_Inexact); return f; } #endif #if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td) CMPtype DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b) { decNumber arg1, arg2; IEEE_TYPE a, b; HOST_TO_IEEE (arg_a, &a); HOST_TO_IEEE (arg_b, &b); TO_INTERNAL (&a, &arg1); TO_INTERNAL (&b, &arg2); return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2)); } #endif /* L_unord_sd || L_unord_dd || L_unord_td */
Go to most recent revision | Compare with Previous | Blame | View Log