URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [sparc/] [sparc.md] - Rev 192
Go to most recent revision | Compare with Previous | Blame | View Log
;; Machine description for SPARC chip for GCC
;; Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
;; 1999, 2000, 2001, 2002, 2003, 2004, 2005,2006, 2007 Free Software Foundation, Inc.
;; Contributed by Michael Tiemann (tiemann@cygnus.com)
;; 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
;; at Cygnus Support.
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
(define_constants
[(UNSPEC_MOVE_PIC 0)
(UNSPEC_UPDATE_RETURN 1)
(UNSPEC_LOAD_PCREL_SYM 2)
(UNSPEC_MOVE_PIC_LABEL 5)
(UNSPEC_SETH44 6)
(UNSPEC_SETM44 7)
(UNSPEC_SETHH 9)
(UNSPEC_SETLM 10)
(UNSPEC_EMB_HISUM 11)
(UNSPEC_EMB_TEXTUHI 13)
(UNSPEC_EMB_TEXTHI 14)
(UNSPEC_EMB_TEXTULO 15)
(UNSPEC_EMB_SETHM 18)
(UNSPEC_TLSGD 30)
(UNSPEC_TLSLDM 31)
(UNSPEC_TLSLDO 32)
(UNSPEC_TLSIE 33)
(UNSPEC_TLSLE 34)
(UNSPEC_TLSLD_BASE 35)
(UNSPEC_FPACK16 40)
(UNSPEC_FPACK32 41)
(UNSPEC_FPACKFIX 42)
(UNSPEC_FEXPAND 43)
(UNSPEC_FPMERGE 44)
(UNSPEC_MUL16AL 45)
(UNSPEC_MUL8UL 46)
(UNSPEC_MULDUL 47)
(UNSPEC_ALIGNDATA 48)
(UNSPEC_ALIGNADDR 49)
(UNSPEC_PDIST 50)
(UNSPEC_SP_SET 60)
(UNSPEC_SP_TEST 61)
])
(define_constants
[(UNSPECV_BLOCKAGE 0)
(UNSPECV_FLUSHW 1)
(UNSPECV_GOTO 2)
(UNSPECV_FLUSH 4)
(UNSPECV_SETJMP 5)
(UNSPECV_SAVEW 6)
(UNSPECV_MEMBAR 7)
(UNSPECV_CAS 8)
(UNSPECV_SWAP 9)
(UNSPECV_LDSTUB 10)
])
;; The upper 32 fp regs on the v9 can't hold SFmode values. To deal with this
;; a second register class, EXTRA_FP_REGS, exists for the v9 chip. The name
;; is a bit of a misnomer as it covers all 64 fp regs. The corresponding
;; constraint letter is 'e'. To avoid any confusion, 'e' is used instead of
;; 'f' for all DF/TFmode values, including those that are specific to the v8.
;; Attribute for cpu type.
;; These must match the values for enum processor_type in sparc.h.
(define_attr "cpu"
"v7,
cypress,
v8,
supersparc,
sparclite,f930,f934,
hypersparc,sparclite86x,
sparclet,tsc701,
v9,
ultrasparc,
ultrasparc3,
niagara"
(const (symbol_ref "sparc_cpu_attr")))
;; Attribute for the instruction set.
;; At present we only need to distinguish v9/!v9, but for clarity we
;; test TARGET_V8 too.
(define_attr "isa" "v7,v8,v9,sparclet"
(const
(cond [(symbol_ref "TARGET_V9") (const_string "v9")
(symbol_ref "TARGET_V8") (const_string "v8")
(symbol_ref "TARGET_SPARCLET") (const_string "sparclet")]
(const_string "v7"))))
;; Insn type.
(define_attr "type"
"ialu,compare,shift,
load,sload,store,
uncond_branch,branch,call,sibcall,call_no_delay_slot,return,
imul,idiv,
fpload,fpstore,
fp,fpmove,
fpcmove,fpcrmove,
fpcmp,
fpmul,fpdivs,fpdivd,
fpsqrts,fpsqrtd,
fga,fgm_pack,fgm_mul,fgm_pdist,fgm_cmp,
cmove,
ialuX,
multi,savew,flushw,iflush,trap"
(const_string "ialu"))
;; True if branch/call has empty delay slot and will emit a nop in it
(define_attr "empty_delay_slot" "false,true"
(symbol_ref "empty_delay_slot (insn)"))
(define_attr "branch_type" "none,icc,fcc,reg"
(const_string "none"))
(define_attr "pic" "false,true"
(symbol_ref "flag_pic != 0"))
(define_attr "calls_alloca" "false,true"
(symbol_ref "current_function_calls_alloca != 0"))
(define_attr "calls_eh_return" "false,true"
(symbol_ref "current_function_calls_eh_return !=0 "))
(define_attr "leaf_function" "false,true"
(symbol_ref "current_function_uses_only_leaf_regs != 0"))
(define_attr "delayed_branch" "false,true"
(symbol_ref "flag_delayed_branch != 0"))
;; Length (in # of insns).
;; Beware that setting a length greater or equal to 3 for conditional branches
;; has a side-effect (see output_cbranch and output_v9branch).
(define_attr "length" ""
(cond [(eq_attr "type" "uncond_branch,call")
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 2)
(const_int 1))
(eq_attr "type" "sibcall")
(if_then_else (eq_attr "leaf_function" "true")
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 3)
(const_int 2))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 2)
(const_int 1)))
(eq_attr "branch_type" "icc")
(if_then_else (match_operand 0 "noov_compare64_operator" "")
(if_then_else (lt (pc) (match_dup 1))
(if_then_else (lt (minus (match_dup 1) (pc)) (const_int 260000))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 2)
(const_int 1))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 4)
(const_int 3)))
(if_then_else (lt (minus (pc) (match_dup 1)) (const_int 260000))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 2)
(const_int 1))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 4)
(const_int 3))))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 2)
(const_int 1)))
(eq_attr "branch_type" "fcc")
(if_then_else (match_operand 0 "fcc0_register_operand" "")
(if_then_else (eq_attr "empty_delay_slot" "true")
(if_then_else (eq (symbol_ref "TARGET_V9") (const_int 0))
(const_int 3)
(const_int 2))
(if_then_else (eq (symbol_ref "TARGET_V9") (const_int 0))
(const_int 2)
(const_int 1)))
(if_then_else (lt (pc) (match_dup 2))
(if_then_else (lt (minus (match_dup 2) (pc)) (const_int 260000))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 2)
(const_int 1))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 4)
(const_int 3)))
(if_then_else (lt (minus (pc) (match_dup 2)) (const_int 260000))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 2)
(const_int 1))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 4)
(const_int 3)))))
(eq_attr "branch_type" "reg")
(if_then_else (lt (pc) (match_dup 2))
(if_then_else (lt (minus (match_dup 2) (pc)) (const_int 32000))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 2)
(const_int 1))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 4)
(const_int 3)))
(if_then_else (lt (minus (pc) (match_dup 2)) (const_int 32000))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 2)
(const_int 1))
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 4)
(const_int 3))))
] (const_int 1)))
;; FP precision.
(define_attr "fptype" "single,double"
(const_string "single"))
;; UltraSPARC-III integer load type.
(define_attr "us3load_type" "2cycle,3cycle"
(const_string "2cycle"))
(define_asm_attributes
[(set_attr "length" "2")
(set_attr "type" "multi")])
;; Attributes for instruction and branch scheduling
(define_attr "tls_call_delay" "false,true"
(symbol_ref "tls_call_delay (insn)"))
(define_attr "in_call_delay" "false,true"
(cond [(eq_attr "type" "uncond_branch,branch,call,sibcall,call_no_delay_slot,multi")
(const_string "false")
(eq_attr "type" "load,fpload,store,fpstore")
(if_then_else (eq_attr "length" "1")
(const_string "true")
(const_string "false"))]
(if_then_else (and (eq_attr "length" "1")
(eq_attr "tls_call_delay" "true"))
(const_string "true")
(const_string "false"))))
(define_attr "eligible_for_sibcall_delay" "false,true"
(symbol_ref "eligible_for_sibcall_delay (insn)"))
(define_attr "eligible_for_return_delay" "false,true"
(symbol_ref "eligible_for_return_delay (insn)"))
;; ??? !v9: Should implement the notion of predelay slots for floating-point
;; branches. This would allow us to remove the nop always inserted before
;; a floating point branch.
;; ??? It is OK for fill_simple_delay_slots to put load/store instructions
;; in a delay slot, but it is not OK for fill_eager_delay_slots to do so.
;; This is because doing so will add several pipeline stalls to the path
;; that the load/store did not come from. Unfortunately, there is no way
;; to prevent fill_eager_delay_slots from using load/store without completely
;; disabling them. For the SPEC benchmark set, this is a serious lose,
;; because it prevents us from moving back the final store of inner loops.
(define_attr "in_branch_delay" "false,true"
(if_then_else (and (eq_attr "type" "!uncond_branch,branch,call,sibcall,call_no_delay_slot,multi")
(eq_attr "length" "1"))
(const_string "true")
(const_string "false")))
(define_attr "in_uncond_branch_delay" "false,true"
(if_then_else (and (eq_attr "type" "!uncond_branch,branch,call,sibcall,call_no_delay_slot,multi")
(eq_attr "length" "1"))
(const_string "true")
(const_string "false")))
(define_attr "in_annul_branch_delay" "false,true"
(if_then_else (and (eq_attr "type" "!uncond_branch,branch,call,sibcall,call_no_delay_slot,multi")
(eq_attr "length" "1"))
(const_string "true")
(const_string "false")))
(define_delay (eq_attr "type" "call")
[(eq_attr "in_call_delay" "true") (nil) (nil)])
(define_delay (eq_attr "type" "sibcall")
[(eq_attr "eligible_for_sibcall_delay" "true") (nil) (nil)])
(define_delay (eq_attr "type" "branch")
[(eq_attr "in_branch_delay" "true")
(nil) (eq_attr "in_annul_branch_delay" "true")])
(define_delay (eq_attr "type" "uncond_branch")
[(eq_attr "in_uncond_branch_delay" "true")
(nil) (nil)])
(define_delay (eq_attr "type" "return")
[(eq_attr "eligible_for_return_delay" "true") (nil) (nil)])
;; Include SPARC DFA schedulers
(include "cypress.md")
(include "supersparc.md")
(include "hypersparc.md")
(include "sparclet.md")
(include "ultra1_2.md")
(include "ultra3.md")
(include "niagara.md")
;; Operand and operator predicates.
(include "predicates.md")
;; Compare instructions.
;; We generate RTL for comparisons and branches by having the cmpxx
;; patterns store away the operands. Then, the scc and bcc patterns
;; emit RTL for both the compare and the branch.
;;
;; We do this because we want to generate different code for an sne and
;; seq insn. In those cases, if the second operand of the compare is not
;; const0_rtx, we want to compute the xor of the two operands and test
;; it against zero.
;;
;; We start with the DEFINE_EXPANDs, then the DEFINE_INSNs to match
;; the patterns. Finally, we have the DEFINE_SPLITs for some of the scc
;; insns that actually require more than one machine instruction.
(define_expand "cmpsi"
[(set (reg:CC 100)
(compare:CC (match_operand:SI 0 "compare_operand" "")
(match_operand:SI 1 "arith_operand" "")))]
""
{
if (GET_CODE (operands[0]) == ZERO_EXTRACT && operands[1] != const0_rtx)
operands[0] = force_reg (SImode, operands[0]);
sparc_compare_op0 = operands[0];
sparc_compare_op1 = operands[1];
DONE;
})
(define_expand "cmpdi"
[(set (reg:CCX 100)
(compare:CCX (match_operand:DI 0 "compare_operand" "")
(match_operand:DI 1 "arith_operand" "")))]
"TARGET_ARCH64"
{
if (GET_CODE (operands[0]) == ZERO_EXTRACT && operands[1] != const0_rtx)
operands[0] = force_reg (DImode, operands[0]);
sparc_compare_op0 = operands[0];
sparc_compare_op1 = operands[1];
DONE;
})
(define_expand "cmpsf"
;; The 96 here isn't ever used by anyone.
[(set (reg:CCFP 96)
(compare:CCFP (match_operand:SF 0 "register_operand" "")
(match_operand:SF 1 "register_operand" "")))]
"TARGET_FPU"
{
sparc_compare_op0 = operands[0];
sparc_compare_op1 = operands[1];
DONE;
})
(define_expand "cmpdf"
;; The 96 here isn't ever used by anyone.
[(set (reg:CCFP 96)
(compare:CCFP (match_operand:DF 0 "register_operand" "")
(match_operand:DF 1 "register_operand" "")))]
"TARGET_FPU"
{
sparc_compare_op0 = operands[0];
sparc_compare_op1 = operands[1];
DONE;
})
(define_expand "cmptf"
;; The 96 here isn't ever used by anyone.
[(set (reg:CCFP 96)
(compare:CCFP (match_operand:TF 0 "register_operand" "")
(match_operand:TF 1 "register_operand" "")))]
"TARGET_FPU"
{
sparc_compare_op0 = operands[0];
sparc_compare_op1 = operands[1];
DONE;
})
;; Now the compare DEFINE_INSNs.
(define_insn "*cmpsi_insn"
[(set (reg:CC 100)
(compare:CC (match_operand:SI 0 "register_operand" "r")
(match_operand:SI 1 "arith_operand" "rI")))]
""
"cmp\t%0, %1"
[(set_attr "type" "compare")])
(define_insn "*cmpdi_sp64"
[(set (reg:CCX 100)
(compare:CCX (match_operand:DI 0 "register_operand" "r")
(match_operand:DI 1 "arith_operand" "rI")))]
"TARGET_ARCH64"
"cmp\t%0, %1"
[(set_attr "type" "compare")])
(define_insn "*cmpsf_fpe"
[(set (match_operand:CCFPE 0 "fcc_register_operand" "=c")
(compare:CCFPE (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_FPU"
{
if (TARGET_V9)
return "fcmpes\t%0, %1, %2";
return "fcmpes\t%1, %2";
}
[(set_attr "type" "fpcmp")])
(define_insn "*cmpdf_fpe"
[(set (match_operand:CCFPE 0 "fcc_register_operand" "=c")
(compare:CCFPE (match_operand:DF 1 "register_operand" "e")
(match_operand:DF 2 "register_operand" "e")))]
"TARGET_FPU"
{
if (TARGET_V9)
return "fcmped\t%0, %1, %2";
return "fcmped\t%1, %2";
}
[(set_attr "type" "fpcmp")
(set_attr "fptype" "double")])
(define_insn "*cmptf_fpe"
[(set (match_operand:CCFPE 0 "fcc_register_operand" "=c")
(compare:CCFPE (match_operand:TF 1 "register_operand" "e")
(match_operand:TF 2 "register_operand" "e")))]
"TARGET_FPU && TARGET_HARD_QUAD"
{
if (TARGET_V9)
return "fcmpeq\t%0, %1, %2";
return "fcmpeq\t%1, %2";
}
[(set_attr "type" "fpcmp")])
(define_insn "*cmpsf_fp"
[(set (match_operand:CCFP 0 "fcc_register_operand" "=c")
(compare:CCFP (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_FPU"
{
if (TARGET_V9)
return "fcmps\t%0, %1, %2";
return "fcmps\t%1, %2";
}
[(set_attr "type" "fpcmp")])
(define_insn "*cmpdf_fp"
[(set (match_operand:CCFP 0 "fcc_register_operand" "=c")
(compare:CCFP (match_operand:DF 1 "register_operand" "e")
(match_operand:DF 2 "register_operand" "e")))]
"TARGET_FPU"
{
if (TARGET_V9)
return "fcmpd\t%0, %1, %2";
return "fcmpd\t%1, %2";
}
[(set_attr "type" "fpcmp")
(set_attr "fptype" "double")])
(define_insn "*cmptf_fp"
[(set (match_operand:CCFP 0 "fcc_register_operand" "=c")
(compare:CCFP (match_operand:TF 1 "register_operand" "e")
(match_operand:TF 2 "register_operand" "e")))]
"TARGET_FPU && TARGET_HARD_QUAD"
{
if (TARGET_V9)
return "fcmpq\t%0, %1, %2";
return "fcmpq\t%1, %2";
}
[(set_attr "type" "fpcmp")])
;; Next come the scc insns. For seq, sne, sgeu, and sltu, we can do this
;; without jumps using the addx/subx instructions. For seq/sne on v9 we use
;; the same code as v8 (the addx/subx method has more applications). The
;; exception to this is "reg != 0" which can be done in one instruction on v9
;; (so we do it). For the rest, on v9 we use conditional moves; on v8, we do
;; branches.
;; Seq_special[_xxx] and sne_special[_xxx] clobber the CC reg, because they
;; generate addcc/subcc instructions.
(define_expand "seqsi_special"
[(set (match_dup 3)
(xor:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")))
(parallel [(set (match_operand:SI 0 "register_operand" "")
(eq:SI (match_dup 3) (const_int 0)))
(clobber (reg:CC 100))])]
""
{ operands[3] = gen_reg_rtx (SImode); })
(define_expand "seqdi_special"
[(set (match_dup 3)
(xor:DI (match_operand:DI 1 "register_operand" "")
(match_operand:DI 2 "register_operand" "")))
(set (match_operand:DI 0 "register_operand" "")
(eq:DI (match_dup 3) (const_int 0)))]
"TARGET_ARCH64"
{ operands[3] = gen_reg_rtx (DImode); })
(define_expand "snesi_special"
[(set (match_dup 3)
(xor:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")))
(parallel [(set (match_operand:SI 0 "register_operand" "")
(ne:SI (match_dup 3) (const_int 0)))
(clobber (reg:CC 100))])]
""
{ operands[3] = gen_reg_rtx (SImode); })
(define_expand "snedi_special"
[(set (match_dup 3)
(xor:DI (match_operand:DI 1 "register_operand" "")
(match_operand:DI 2 "register_operand" "")))
(set (match_operand:DI 0 "register_operand" "")
(ne:DI (match_dup 3) (const_int 0)))]
"TARGET_ARCH64"
{ operands[3] = gen_reg_rtx (DImode); })
(define_expand "seqdi_special_trunc"
[(set (match_dup 3)
(xor:DI (match_operand:DI 1 "register_operand" "")
(match_operand:DI 2 "register_operand" "")))
(set (match_operand:SI 0 "register_operand" "")
(eq:SI (match_dup 3) (const_int 0)))]
"TARGET_ARCH64"
{ operands[3] = gen_reg_rtx (DImode); })
(define_expand "snedi_special_trunc"
[(set (match_dup 3)
(xor:DI (match_operand:DI 1 "register_operand" "")
(match_operand:DI 2 "register_operand" "")))
(set (match_operand:SI 0 "register_operand" "")
(ne:SI (match_dup 3) (const_int 0)))]
"TARGET_ARCH64"
{ operands[3] = gen_reg_rtx (DImode); })
(define_expand "seqsi_special_extend"
[(set (match_dup 3)
(xor:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")))
(parallel [(set (match_operand:DI 0 "register_operand" "")
(eq:DI (match_dup 3) (const_int 0)))
(clobber (reg:CC 100))])]
"TARGET_ARCH64"
{ operands[3] = gen_reg_rtx (SImode); })
(define_expand "snesi_special_extend"
[(set (match_dup 3)
(xor:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")))
(parallel [(set (match_operand:DI 0 "register_operand" "")
(ne:DI (match_dup 3) (const_int 0)))
(clobber (reg:CC 100))])]
"TARGET_ARCH64"
{ operands[3] = gen_reg_rtx (SImode); })
;; ??? v9: Operand 0 needs a mode, so SImode was chosen.
;; However, the code handles both SImode and DImode.
(define_expand "seq"
[(set (match_operand:SI 0 "int_register_operand" "")
(eq:SI (match_dup 1) (const_int 0)))]
""
{
if (GET_MODE (sparc_compare_op0) == SImode)
{
rtx pat;
if (GET_MODE (operands[0]) == SImode)
pat = gen_seqsi_special (operands[0], sparc_compare_op0,
sparc_compare_op1);
else if (! TARGET_ARCH64)
FAIL;
else
pat = gen_seqsi_special_extend (operands[0], sparc_compare_op0,
sparc_compare_op1);
emit_insn (pat);
DONE;
}
else if (GET_MODE (sparc_compare_op0) == DImode)
{
rtx pat;
if (! TARGET_ARCH64)
FAIL;
else if (GET_MODE (operands[0]) == SImode)
pat = gen_seqdi_special_trunc (operands[0], sparc_compare_op0,
sparc_compare_op1);
else
pat = gen_seqdi_special (operands[0], sparc_compare_op0,
sparc_compare_op1);
emit_insn (pat);
DONE;
}
else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, EQ);
emit_jump_insn (gen_sne (operands[0]));
DONE;
}
else if (TARGET_V9)
{
if (gen_v9_scc (EQ, operands))
DONE;
/* fall through */
}
FAIL;
})
;; ??? v9: Operand 0 needs a mode, so SImode was chosen.
;; However, the code handles both SImode and DImode.
(define_expand "sne"
[(set (match_operand:SI 0 "int_register_operand" "")
(ne:SI (match_dup 1) (const_int 0)))]
""
{
if (GET_MODE (sparc_compare_op0) == SImode)
{
rtx pat;
if (GET_MODE (operands[0]) == SImode)
pat = gen_snesi_special (operands[0], sparc_compare_op0,
sparc_compare_op1);
else if (! TARGET_ARCH64)
FAIL;
else
pat = gen_snesi_special_extend (operands[0], sparc_compare_op0,
sparc_compare_op1);
emit_insn (pat);
DONE;
}
else if (GET_MODE (sparc_compare_op0) == DImode)
{
rtx pat;
if (! TARGET_ARCH64)
FAIL;
else if (GET_MODE (operands[0]) == SImode)
pat = gen_snedi_special_trunc (operands[0], sparc_compare_op0,
sparc_compare_op1);
else
pat = gen_snedi_special (operands[0], sparc_compare_op0,
sparc_compare_op1);
emit_insn (pat);
DONE;
}
else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, NE);
emit_jump_insn (gen_sne (operands[0]));
DONE;
}
else if (TARGET_V9)
{
if (gen_v9_scc (NE, operands))
DONE;
/* fall through */
}
FAIL;
})
(define_expand "sgt"
[(set (match_operand:SI 0 "int_register_operand" "")
(gt:SI (match_dup 1) (const_int 0)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GT);
emit_jump_insn (gen_sne (operands[0]));
DONE;
}
else if (TARGET_V9)
{
if (gen_v9_scc (GT, operands))
DONE;
/* fall through */
}
FAIL;
})
(define_expand "slt"
[(set (match_operand:SI 0 "int_register_operand" "")
(lt:SI (match_dup 1) (const_int 0)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LT);
emit_jump_insn (gen_sne (operands[0]));
DONE;
}
else if (TARGET_V9)
{
if (gen_v9_scc (LT, operands))
DONE;
/* fall through */
}
FAIL;
})
(define_expand "sge"
[(set (match_operand:SI 0 "int_register_operand" "")
(ge:SI (match_dup 1) (const_int 0)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GE);
emit_jump_insn (gen_sne (operands[0]));
DONE;
}
else if (TARGET_V9)
{
if (gen_v9_scc (GE, operands))
DONE;
/* fall through */
}
FAIL;
})
(define_expand "sle"
[(set (match_operand:SI 0 "int_register_operand" "")
(le:SI (match_dup 1) (const_int 0)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LE);
emit_jump_insn (gen_sne (operands[0]));
DONE;
}
else if (TARGET_V9)
{
if (gen_v9_scc (LE, operands))
DONE;
/* fall through */
}
FAIL;
})
(define_expand "sgtu"
[(set (match_operand:SI 0 "int_register_operand" "")
(gtu:SI (match_dup 1) (const_int 0)))]
""
{
if (! TARGET_V9)
{
rtx tem, pat;
/* We can do ltu easily, so if both operands are registers, swap them and
do a LTU. */
if ((GET_CODE (sparc_compare_op0) == REG
|| GET_CODE (sparc_compare_op0) == SUBREG)
&& (GET_CODE (sparc_compare_op1) == REG
|| GET_CODE (sparc_compare_op1) == SUBREG))
{
tem = sparc_compare_op0;
sparc_compare_op0 = sparc_compare_op1;
sparc_compare_op1 = tem;
pat = gen_sltu (operands[0]);
if (pat == NULL_RTX)
FAIL;
emit_insn (pat);
DONE;
}
}
else
{
if (gen_v9_scc (GTU, operands))
DONE;
}
FAIL;
})
(define_expand "sltu"
[(set (match_operand:SI 0 "int_register_operand" "")
(ltu:SI (match_dup 1) (const_int 0)))]
""
{
if (TARGET_V9)
{
if (gen_v9_scc (LTU, operands))
DONE;
}
operands[1] = gen_compare_reg (LTU);
})
(define_expand "sgeu"
[(set (match_operand:SI 0 "int_register_operand" "")
(geu:SI (match_dup 1) (const_int 0)))]
""
{
if (TARGET_V9)
{
if (gen_v9_scc (GEU, operands))
DONE;
}
operands[1] = gen_compare_reg (GEU);
})
(define_expand "sleu"
[(set (match_operand:SI 0 "int_register_operand" "")
(leu:SI (match_dup 1) (const_int 0)))]
""
{
if (! TARGET_V9)
{
rtx tem, pat;
/* We can do geu easily, so if both operands are registers, swap them and
do a GEU. */
if ((GET_CODE (sparc_compare_op0) == REG
|| GET_CODE (sparc_compare_op0) == SUBREG)
&& (GET_CODE (sparc_compare_op1) == REG
|| GET_CODE (sparc_compare_op1) == SUBREG))
{
tem = sparc_compare_op0;
sparc_compare_op0 = sparc_compare_op1;
sparc_compare_op1 = tem;
pat = gen_sgeu (operands[0]);
if (pat == NULL_RTX)
FAIL;
emit_insn (pat);
DONE;
}
}
else
{
if (gen_v9_scc (LEU, operands))
DONE;
}
FAIL;
})
;; Now the DEFINE_INSNs for the scc cases.
;; The SEQ and SNE patterns are special because they can be done
;; without any branching and do not involve a COMPARE. We want
;; them to always use the splits below so the results can be
;; scheduled.
(define_insn_and_split "*snesi_zero"
[(set (match_operand:SI 0 "register_operand" "=r")
(ne:SI (match_operand:SI 1 "register_operand" "r")
(const_int 0)))
(clobber (reg:CC 100))]
""
"#"
""
[(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1))
(const_int 0)))
(set (match_dup 0) (ltu:SI (reg:CC 100) (const_int 0)))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*neg_snesi_zero"
[(set (match_operand:SI 0 "register_operand" "=r")
(neg:SI (ne:SI (match_operand:SI 1 "register_operand" "r")
(const_int 0))))
(clobber (reg:CC 100))]
""
"#"
""
[(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1))
(const_int 0)))
(set (match_dup 0) (neg:SI (ltu:SI (reg:CC 100) (const_int 0))))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*snesi_zero_extend"
[(set (match_operand:DI 0 "register_operand" "=r")
(ne:DI (match_operand:SI 1 "register_operand" "r")
(const_int 0)))
(clobber (reg:CC 100))]
"TARGET_ARCH64"
"#"
"&& 1"
[(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (const_int 0)
(match_dup 1))
(const_int 0)))
(set (match_dup 0) (zero_extend:DI (plus:SI (plus:SI (const_int 0)
(const_int 0))
(ltu:SI (reg:CC_NOOV 100)
(const_int 0)))))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*snedi_zero"
[(set (match_operand:DI 0 "register_operand" "=&r")
(ne:DI (match_operand:DI 1 "register_operand" "r")
(const_int 0)))]
"TARGET_ARCH64"
"#"
"&& ! reg_overlap_mentioned_p (operands[1], operands[0])"
[(set (match_dup 0) (const_int 0))
(set (match_dup 0) (if_then_else:DI (ne:DI (match_dup 1)
(const_int 0))
(const_int 1)
(match_dup 0)))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*neg_snedi_zero"
[(set (match_operand:DI 0 "register_operand" "=&r")
(neg:DI (ne:DI (match_operand:DI 1 "register_operand" "r")
(const_int 0))))]
"TARGET_ARCH64"
"#"
"&& ! reg_overlap_mentioned_p (operands[1], operands[0])"
[(set (match_dup 0) (const_int 0))
(set (match_dup 0) (if_then_else:DI (ne:DI (match_dup 1)
(const_int 0))
(const_int -1)
(match_dup 0)))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*snedi_zero_trunc"
[(set (match_operand:SI 0 "register_operand" "=&r")
(ne:SI (match_operand:DI 1 "register_operand" "r")
(const_int 0)))]
"TARGET_ARCH64"
"#"
"&& ! reg_overlap_mentioned_p (operands[1], operands[0])"
[(set (match_dup 0) (const_int 0))
(set (match_dup 0) (if_then_else:SI (ne:DI (match_dup 1)
(const_int 0))
(const_int 1)
(match_dup 0)))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*seqsi_zero"
[(set (match_operand:SI 0 "register_operand" "=r")
(eq:SI (match_operand:SI 1 "register_operand" "r")
(const_int 0)))
(clobber (reg:CC 100))]
""
"#"
""
[(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1))
(const_int 0)))
(set (match_dup 0) (geu:SI (reg:CC 100) (const_int 0)))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*neg_seqsi_zero"
[(set (match_operand:SI 0 "register_operand" "=r")
(neg:SI (eq:SI (match_operand:SI 1 "register_operand" "r")
(const_int 0))))
(clobber (reg:CC 100))]
""
"#"
""
[(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1))
(const_int 0)))
(set (match_dup 0) (neg:SI (geu:SI (reg:CC 100) (const_int 0))))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*seqsi_zero_extend"
[(set (match_operand:DI 0 "register_operand" "=r")
(eq:DI (match_operand:SI 1 "register_operand" "r")
(const_int 0)))
(clobber (reg:CC 100))]
"TARGET_ARCH64"
"#"
"&& 1"
[(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (const_int 0)
(match_dup 1))
(const_int 0)))
(set (match_dup 0) (zero_extend:DI (minus:SI (minus:SI (const_int 0)
(const_int -1))
(ltu:SI (reg:CC_NOOV 100)
(const_int 0)))))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*seqdi_zero"
[(set (match_operand:DI 0 "register_operand" "=&r")
(eq:DI (match_operand:DI 1 "register_operand" "r")
(const_int 0)))]
"TARGET_ARCH64"
"#"
"&& ! reg_overlap_mentioned_p (operands[1], operands[0])"
[(set (match_dup 0) (const_int 0))
(set (match_dup 0) (if_then_else:DI (eq:DI (match_dup 1)
(const_int 0))
(const_int 1)
(match_dup 0)))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*neg_seqdi_zero"
[(set (match_operand:DI 0 "register_operand" "=&r")
(neg:DI (eq:DI (match_operand:DI 1 "register_operand" "r")
(const_int 0))))]
"TARGET_ARCH64"
"#"
"&& ! reg_overlap_mentioned_p (operands[1], operands[0])"
[(set (match_dup 0) (const_int 0))
(set (match_dup 0) (if_then_else:DI (eq:DI (match_dup 1)
(const_int 0))
(const_int -1)
(match_dup 0)))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*seqdi_zero_trunc"
[(set (match_operand:SI 0 "register_operand" "=&r")
(eq:SI (match_operand:DI 1 "register_operand" "r")
(const_int 0)))]
"TARGET_ARCH64"
"#"
"&& ! reg_overlap_mentioned_p (operands[1], operands[0])"
[(set (match_dup 0) (const_int 0))
(set (match_dup 0) (if_then_else:SI (eq:DI (match_dup 1)
(const_int 0))
(const_int 1)
(match_dup 0)))]
""
[(set_attr "length" "2")])
;; We can also do (x + (i == 0)) and related, so put them in.
;; ??? The addx/subx insns use the 32 bit carry flag so there are no DImode
;; versions for v9.
(define_insn_and_split "*x_plus_i_ne_0"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (ne:SI (match_operand:SI 1 "register_operand" "r")
(const_int 0))
(match_operand:SI 2 "register_operand" "r")))
(clobber (reg:CC 100))]
""
"#"
""
[(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1))
(const_int 0)))
(set (match_dup 0) (plus:SI (ltu:SI (reg:CC 100) (const_int 0))
(match_dup 2)))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*x_minus_i_ne_0"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (match_operand:SI 2 "register_operand" "r")
(ne:SI (match_operand:SI 1 "register_operand" "r")
(const_int 0))))
(clobber (reg:CC 100))]
""
"#"
""
[(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1))
(const_int 0)))
(set (match_dup 0) (minus:SI (match_dup 2)
(ltu:SI (reg:CC 100) (const_int 0))))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*x_plus_i_eq_0"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (eq:SI (match_operand:SI 1 "register_operand" "r")
(const_int 0))
(match_operand:SI 2 "register_operand" "r")))
(clobber (reg:CC 100))]
""
"#"
""
[(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1))
(const_int 0)))
(set (match_dup 0) (plus:SI (geu:SI (reg:CC 100) (const_int 0))
(match_dup 2)))]
""
[(set_attr "length" "2")])
(define_insn_and_split "*x_minus_i_eq_0"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (match_operand:SI 2 "register_operand" "r")
(eq:SI (match_operand:SI 1 "register_operand" "r")
(const_int 0))))
(clobber (reg:CC 100))]
""
"#"
""
[(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1))
(const_int 0)))
(set (match_dup 0) (minus:SI (match_dup 2)
(geu:SI (reg:CC 100) (const_int 0))))]
""
[(set_attr "length" "2")])
;; We can also do GEU and LTU directly, but these operate after a compare.
;; ??? The addx/subx insns use the 32 bit carry flag so there are no DImode
;; versions for v9.
(define_insn "*sltu_insn"
[(set (match_operand:SI 0 "register_operand" "=r")
(ltu:SI (reg:CC 100) (const_int 0)))]
""
"addx\t%%g0, 0, %0"
[(set_attr "type" "ialuX")])
(define_insn "*neg_sltu_insn"
[(set (match_operand:SI 0 "register_operand" "=r")
(neg:SI (ltu:SI (reg:CC 100) (const_int 0))))]
""
"subx\t%%g0, 0, %0"
[(set_attr "type" "ialuX")])
;; ??? Combine should canonicalize these next two to the same pattern.
(define_insn "*neg_sltu_minus_x"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (neg:SI (ltu:SI (reg:CC 100) (const_int 0)))
(match_operand:SI 1 "arith_operand" "rI")))]
""
"subx\t%%g0, %1, %0"
[(set_attr "type" "ialuX")])
(define_insn "*neg_sltu_plus_x"
[(set (match_operand:SI 0 "register_operand" "=r")
(neg:SI (plus:SI (ltu:SI (reg:CC 100) (const_int 0))
(match_operand:SI 1 "arith_operand" "rI"))))]
""
"subx\t%%g0, %1, %0"
[(set_attr "type" "ialuX")])
(define_insn "*sgeu_insn"
[(set (match_operand:SI 0 "register_operand" "=r")
(geu:SI (reg:CC 100) (const_int 0)))]
""
"subx\t%%g0, -1, %0"
[(set_attr "type" "ialuX")])
(define_insn "*neg_sgeu_insn"
[(set (match_operand:SI 0 "register_operand" "=r")
(neg:SI (geu:SI (reg:CC 100) (const_int 0))))]
""
"addx\t%%g0, -1, %0"
[(set_attr "type" "ialuX")])
;; We can also do (x + ((unsigned) i >= 0)) and related, so put them in.
;; ??? The addx/subx insns use the 32 bit carry flag so there are no DImode
;; versions for v9.
(define_insn "*sltu_plus_x"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (ltu:SI (reg:CC 100) (const_int 0))
(match_operand:SI 1 "arith_operand" "rI")))]
""
"addx\t%%g0, %1, %0"
[(set_attr "type" "ialuX")])
(define_insn "*sltu_plus_x_plus_y"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (ltu:SI (reg:CC 100) (const_int 0))
(plus:SI (match_operand:SI 1 "arith_operand" "%r")
(match_operand:SI 2 "arith_operand" "rI"))))]
""
"addx\t%1, %2, %0"
[(set_attr "type" "ialuX")])
(define_insn "*x_minus_sltu"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (match_operand:SI 1 "register_operand" "r")
(ltu:SI (reg:CC 100) (const_int 0))))]
""
"subx\t%1, 0, %0"
[(set_attr "type" "ialuX")])
;; ??? Combine should canonicalize these next two to the same pattern.
(define_insn "*x_minus_y_minus_sltu"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ")
(match_operand:SI 2 "arith_operand" "rI"))
(ltu:SI (reg:CC 100) (const_int 0))))]
""
"subx\t%r1, %2, %0"
[(set_attr "type" "ialuX")])
(define_insn "*x_minus_sltu_plus_y"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ")
(plus:SI (ltu:SI (reg:CC 100) (const_int 0))
(match_operand:SI 2 "arith_operand" "rI"))))]
""
"subx\t%r1, %2, %0"
[(set_attr "type" "ialuX")])
(define_insn "*sgeu_plus_x"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (geu:SI (reg:CC 100) (const_int 0))
(match_operand:SI 1 "register_operand" "r")))]
""
"subx\t%1, -1, %0"
[(set_attr "type" "ialuX")])
(define_insn "*x_minus_sgeu"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (match_operand:SI 1 "register_operand" "r")
(geu:SI (reg:CC 100) (const_int 0))))]
""
"addx\t%1, -1, %0"
[(set_attr "type" "ialuX")])
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(match_operator:SI 2 "noov_compare_operator"
[(match_operand 1 "icc_or_fcc_register_operand" "")
(const_int 0)]))]
"TARGET_V9
&& REGNO (operands[1]) == SPARC_ICC_REG
&& (GET_MODE (operands[1]) == CCXmode
/* 32 bit LTU/GEU are better implemented using addx/subx. */
|| (GET_CODE (operands[2]) != LTU && GET_CODE (operands[2]) != GEU))"
[(set (match_dup 0) (const_int 0))
(set (match_dup 0)
(if_then_else:SI (match_op_dup:SI 2 [(match_dup 1) (const_int 0)])
(const_int 1)
(match_dup 0)))]
"")
;; These control RTL generation for conditional jump insns
;; The quad-word fp compare library routines all return nonzero to indicate
;; true, which is different from the equivalent libgcc routines, so we must
;; handle them specially here.
(define_expand "beq"
[(set (pc)
(if_then_else (eq (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode)
{
emit_v9_brxx_insn (EQ, sparc_compare_op0, operands[0]);
DONE;
}
else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, EQ);
emit_jump_insn (gen_bne (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (EQ);
})
(define_expand "bne"
[(set (pc)
(if_then_else (ne (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode)
{
emit_v9_brxx_insn (NE, sparc_compare_op0, operands[0]);
DONE;
}
else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, NE);
emit_jump_insn (gen_bne (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (NE);
})
(define_expand "bgt"
[(set (pc)
(if_then_else (gt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode)
{
emit_v9_brxx_insn (GT, sparc_compare_op0, operands[0]);
DONE;
}
else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GT);
emit_jump_insn (gen_bne (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (GT);
})
(define_expand "bgtu"
[(set (pc)
(if_then_else (gtu (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
operands[1] = gen_compare_reg (GTU);
})
(define_expand "blt"
[(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode)
{
emit_v9_brxx_insn (LT, sparc_compare_op0, operands[0]);
DONE;
}
else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LT);
emit_jump_insn (gen_bne (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (LT);
})
(define_expand "bltu"
[(set (pc)
(if_then_else (ltu (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
operands[1] = gen_compare_reg (LTU);
})
(define_expand "bge"
[(set (pc)
(if_then_else (ge (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode)
{
emit_v9_brxx_insn (GE, sparc_compare_op0, operands[0]);
DONE;
}
else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GE);
emit_jump_insn (gen_bne (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (GE);
})
(define_expand "bgeu"
[(set (pc)
(if_then_else (geu (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
operands[1] = gen_compare_reg (GEU);
})
(define_expand "ble"
[(set (pc)
(if_then_else (le (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode)
{
emit_v9_brxx_insn (LE, sparc_compare_op0, operands[0]);
DONE;
}
else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LE);
emit_jump_insn (gen_bne (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (LE);
})
(define_expand "bleu"
[(set (pc)
(if_then_else (leu (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
operands[1] = gen_compare_reg (LEU);
})
(define_expand "bunordered"
[(set (pc)
(if_then_else (unordered (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1,
UNORDERED);
emit_jump_insn (gen_beq (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (UNORDERED);
})
(define_expand "bordered"
[(set (pc)
(if_then_else (ordered (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, ORDERED);
emit_jump_insn (gen_bne (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (ORDERED);
})
(define_expand "bungt"
[(set (pc)
(if_then_else (ungt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNGT);
emit_jump_insn (gen_bgt (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (UNGT);
})
(define_expand "bunlt"
[(set (pc)
(if_then_else (unlt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNLT);
emit_jump_insn (gen_bne (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (UNLT);
})
(define_expand "buneq"
[(set (pc)
(if_then_else (uneq (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNEQ);
emit_jump_insn (gen_beq (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (UNEQ);
})
(define_expand "bunge"
[(set (pc)
(if_then_else (unge (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNGE);
emit_jump_insn (gen_bne (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (UNGE);
})
(define_expand "bunle"
[(set (pc)
(if_then_else (unle (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNLE);
emit_jump_insn (gen_bne (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (UNLE);
})
(define_expand "bltgt"
[(set (pc)
(if_then_else (ltgt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD)
{
sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LTGT);
emit_jump_insn (gen_bne (operands[0]));
DONE;
}
operands[1] = gen_compare_reg (LTGT);
})
;; Now match both normal and inverted jump.
;; XXX fpcmp nop braindamage
(define_insn "*normal_branch"
[(set (pc)
(if_then_else (match_operator 0 "noov_compare_operator"
[(reg 100) (const_int 0)])
(label_ref (match_operand 1 "" ""))
(pc)))]
""
{
return output_cbranch (operands[0], operands[1], 1, 0,
final_sequence && INSN_ANNULLED_BRANCH_P (insn),
insn);
}
[(set_attr "type" "branch")
(set_attr "branch_type" "icc")])
;; XXX fpcmp nop braindamage
(define_insn "*inverted_branch"
[(set (pc)
(if_then_else (match_operator 0 "noov_compare_operator"
[(reg 100) (const_int 0)])
(pc)
(label_ref (match_operand 1 "" ""))))]
""
{
return output_cbranch (operands[0], operands[1], 1, 1,
final_sequence && INSN_ANNULLED_BRANCH_P (insn),
insn);
}
[(set_attr "type" "branch")
(set_attr "branch_type" "icc")])
;; XXX fpcmp nop braindamage
(define_insn "*normal_fp_branch"
[(set (pc)
(if_then_else (match_operator 1 "comparison_operator"
[(match_operand:CCFP 0 "fcc_register_operand" "c")
(const_int 0)])
(label_ref (match_operand 2 "" ""))
(pc)))]
""
{
return output_cbranch (operands[1], operands[2], 2, 0,
final_sequence && INSN_ANNULLED_BRANCH_P (insn),
insn);
}
[(set_attr "type" "branch")
(set_attr "branch_type" "fcc")])
;; XXX fpcmp nop braindamage
(define_insn "*inverted_fp_branch"
[(set (pc)
(if_then_else (match_operator 1 "comparison_operator"
[(match_operand:CCFP 0 "fcc_register_operand" "c")
(const_int 0)])
(pc)
(label_ref (match_operand 2 "" ""))))]
""
{
return output_cbranch (operands[1], operands[2], 2, 1,
final_sequence && INSN_ANNULLED_BRANCH_P (insn),
insn);
}
[(set_attr "type" "branch")
(set_attr "branch_type" "fcc")])
;; XXX fpcmp nop braindamage
(define_insn "*normal_fpe_branch"
[(set (pc)
(if_then_else (match_operator 1 "comparison_operator"
[(match_operand:CCFPE 0 "fcc_register_operand" "c")
(const_int 0)])
(label_ref (match_operand 2 "" ""))
(pc)))]
""
{
return output_cbranch (operands[1], operands[2], 2, 0,
final_sequence && INSN_ANNULLED_BRANCH_P (insn),
insn);
}
[(set_attr "type" "branch")
(set_attr "branch_type" "fcc")])
;; XXX fpcmp nop braindamage
(define_insn "*inverted_fpe_branch"
[(set (pc)
(if_then_else (match_operator 1 "comparison_operator"
[(match_operand:CCFPE 0 "fcc_register_operand" "c")
(const_int 0)])
(pc)
(label_ref (match_operand 2 "" ""))))]
""
{
return output_cbranch (operands[1], operands[2], 2, 1,
final_sequence && INSN_ANNULLED_BRANCH_P (insn),
insn);
}
[(set_attr "type" "branch")
(set_attr "branch_type" "fcc")])
;; SPARC V9-specific jump insns. None of these are guaranteed to be
;; in the architecture.
;; There are no 32 bit brreg insns.
;; XXX
(define_insn "*normal_int_branch_sp64"
[(set (pc)
(if_then_else (match_operator 0 "v9_register_compare_operator"
[(match_operand:DI 1 "register_operand" "r")
(const_int 0)])
(label_ref (match_operand 2 "" ""))
(pc)))]
"TARGET_ARCH64"
{
return output_v9branch (operands[0], operands[2], 1, 2, 0,
final_sequence && INSN_ANNULLED_BRANCH_P (insn),
insn);
}
[(set_attr "type" "branch")
(set_attr "branch_type" "reg")])
;; XXX
(define_insn "*inverted_int_branch_sp64"
[(set (pc)
(if_then_else (match_operator 0 "v9_register_compare_operator"
[(match_operand:DI 1 "register_operand" "r")
(const_int 0)])
(pc)
(label_ref (match_operand 2 "" ""))))]
"TARGET_ARCH64"
{
return output_v9branch (operands[0], operands[2], 1, 2, 1,
final_sequence && INSN_ANNULLED_BRANCH_P (insn),
insn);
}
[(set_attr "type" "branch")
(set_attr "branch_type" "reg")])
(define_mode_macro P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
;; Load in operand 0 the (absolute) address of operand 1, which is a symbolic
;; value subject to a PC-relative relocation. Operand 2 is a helper function
;; that adds the PC value at the call point to operand 0.
(define_insn "load_pcrel_sym<P:mode>"
[(set (match_operand:P 0 "register_operand" "=r")
(unspec:P [(match_operand:P 1 "symbolic_operand" "")
(match_operand:P 2 "call_address_operand" "")] UNSPEC_LOAD_PCREL_SYM))
(clobber (reg:P 15))]
""
{
if (flag_delayed_branch)
return "sethi\t%%hi(%a1-4), %0\n\tcall\t%a2\n\t add\t%0, %%lo(%a1+4), %0";
else
return "sethi\t%%hi(%a1-8), %0\n\tadd\t%0, %%lo(%a1-4), %0\n\tcall\t%a2\n\t nop";
}
[(set (attr "type") (const_string "multi"))
(set (attr "length")
(if_then_else (eq_attr "delayed_branch" "true")
(const_int 3)
(const_int 4)))])
;; Integer move instructions
(define_expand "movqi"
[(set (match_operand:QI 0 "nonimmediate_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
{
if (sparc_expand_move (QImode, operands))
DONE;
})
(define_insn "*movqi_insn"
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m")
(match_operand:QI 1 "input_operand" "rI,m,rJ"))]
"(register_operand (operands[0], QImode)
|| register_or_zero_operand (operands[1], QImode))"
"@
mov\t%1, %0
ldub\t%1, %0
stb\t%r1, %0"
[(set_attr "type" "*,load,store")
(set_attr "us3load_type" "*,3cycle,*")])
(define_expand "movhi"
[(set (match_operand:HI 0 "nonimmediate_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
{
if (sparc_expand_move (HImode, operands))
DONE;
})
(define_insn "*movhi_insn"
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,m")
(match_operand:HI 1 "input_operand" "rI,K,m,rJ"))]
"(register_operand (operands[0], HImode)
|| register_or_zero_operand (operands[1], HImode))"
"@
mov\t%1, %0
sethi\t%%hi(%a1), %0
lduh\t%1, %0
sth\t%r1, %0"
[(set_attr "type" "*,*,load,store")
(set_attr "us3load_type" "*,*,3cycle,*")])
;; We always work with constants here.
(define_insn "*movhi_lo_sum"
[(set (match_operand:HI 0 "register_operand" "=r")
(ior:HI (match_operand:HI 1 "register_operand" "%r")
(match_operand:HI 2 "small_int_operand" "I")))]
""
"or\t%1, %2, %0")
(define_expand "movsi"
[(set (match_operand:SI 0 "nonimmediate_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
{
if (sparc_expand_move (SImode, operands))
DONE;
})
(define_insn "*movsi_insn"
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,m,!f,!f,!m,d")
(match_operand:SI 1 "input_operand" "rI,K,m,rJ,f,m,f,J"))]
"(register_operand (operands[0], SImode)
|| register_or_zero_operand (operands[1], SImode))"
"@
mov\t%1, %0
sethi\t%%hi(%a1), %0
ld\t%1, %0
st\t%r1, %0
fmovs\t%1, %0
ld\t%1, %0
st\t%1, %0
fzeros\t%0"
[(set_attr "type" "*,*,load,store,fpmove,fpload,fpstore,fga")])
(define_insn "*movsi_lo_sum"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "immediate_operand" "in")))]
""
"or\t%1, %%lo(%a2), %0")
(define_insn "*movsi_high"
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (match_operand:SI 1 "immediate_operand" "in")))]
""
"sethi\t%%hi(%a1), %0")
;; The next two patterns must wrap the SYMBOL_REF in an UNSPEC
;; so that CSE won't optimize the address computation away.
(define_insn "movsi_lo_sum_pic"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(unspec:SI [(match_operand:SI 2 "immediate_operand" "in")] UNSPEC_MOVE_PIC)))]
"flag_pic"
"or\t%1, %%lo(%a2), %0")
(define_insn "movsi_high_pic"
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (unspec:SI [(match_operand 1 "" "")] UNSPEC_MOVE_PIC)))]
"flag_pic && check_pic (1)"
"sethi\t%%hi(%a1), %0")
(define_expand "movsi_pic_label_ref"
[(set (match_dup 3) (high:SI
(unspec:SI [(match_operand:SI 1 "label_ref_operand" "")
(match_dup 2)] UNSPEC_MOVE_PIC_LABEL)))
(set (match_dup 4) (lo_sum:SI (match_dup 3)
(unspec:SI [(match_dup 1) (match_dup 2)] UNSPEC_MOVE_PIC_LABEL)))
(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (match_dup 5) (match_dup 4)))]
"flag_pic"
{
current_function_uses_pic_offset_table = 1;
operands[2] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
if (no_new_pseudos)
{
operands[3] = operands[0];
operands[4] = operands[0];
}
else
{
operands[3] = gen_reg_rtx (SImode);
operands[4] = gen_reg_rtx (SImode);
}
operands[5] = pic_offset_table_rtx;
})
(define_insn "*movsi_high_pic_label_ref"
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI
(unspec:SI [(match_operand:SI 1 "label_ref_operand" "")
(match_operand:SI 2 "" "")] UNSPEC_MOVE_PIC_LABEL)))]
"flag_pic"
"sethi\t%%hi(%a2-(%a1-.)), %0")
(define_insn "*movsi_lo_sum_pic_label_ref"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(unspec:SI [(match_operand:SI 2 "label_ref_operand" "")
(match_operand:SI 3 "" "")] UNSPEC_MOVE_PIC_LABEL)))]
"flag_pic"
"or\t%1, %%lo(%a3-(%a2-.)), %0")
(define_expand "movdi"
[(set (match_operand:DI 0 "nonimmediate_operand" "")
(match_operand:DI 1 "general_operand" ""))]
""
{
if (sparc_expand_move (DImode, operands))
DONE;
})
;; Be careful, fmovd does not exist when !v9.
;; We match MEM moves directly when we have correct even
;; numbered registers, but fall into splits otherwise.
;; The constraint ordering here is really important to
;; avoid insane problems in reload, especially for patterns
;; of the form:
;;
;; (set (mem:DI (plus:SI (reg:SI 30 %fp)
;; (const_int -5016)))
;; (reg:DI 2 %g2))
;;
(define_insn "*movdi_insn_sp32"
[(set (match_operand:DI 0 "nonimmediate_operand"
"=o,T,U,o,r,r,r,?T,?f,?f,?o,?f")
(match_operand:DI 1 "input_operand"
" J,U,T,r,o,i,r, f, T, o, f, f"))]
"! TARGET_V9
&& (register_operand (operands[0], DImode)
|| register_or_zero_operand (operands[1], DImode))"
"@
#
std\t%1, %0
ldd\t%1, %0
#
#
#
#
std\t%1, %0
ldd\t%1, %0
#
#
#"
[(set_attr "type" "store,store,load,*,*,*,*,fpstore,fpload,*,*,*")
(set_attr "length" "2,*,*,2,2,2,2,*,*,2,2,2")])
(define_insn "*movdi_insn_sp32_v9"
[(set (match_operand:DI 0 "nonimmediate_operand"
"=T,o,T,U,o,r,r,r,?T,?f,?f,?o,?e,?e,?W")
(match_operand:DI 1 "input_operand"
" J,J,U,T,r,o,i,r, f, T, o, f, e, W, e"))]
"! TARGET_ARCH64
&& TARGET_V9
&& (register_operand (operands[0], DImode)
|| register_or_zero_operand (operands[1], DImode))"
"@
stx\t%%g0, %0
#
std\t%1, %0
ldd\t%1, %0
#
#
#
#
std\t%1, %0
ldd\t%1, %0
#
#
fmovd\\t%1, %0
ldd\\t%1, %0
std\\t%1, %0"
[(set_attr "type" "store,store,store,load,*,*,*,*,fpstore,fpload,*,*,fpmove,fpload,fpstore")
(set_attr "length" "*,2,*,*,2,2,2,2,*,*,2,2,*,*,*")
(set_attr "fptype" "*,*,*,*,*,*,*,*,*,*,*,*,double,*,*")])
(define_insn "*movdi_insn_sp64"
[(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,r,m,?e,?e,?W,b")
(match_operand:DI 1 "input_operand" "rI,N,m,rJ,e,W,e,J"))]
"TARGET_ARCH64
&& (register_operand (operands[0], DImode)
|| register_or_zero_operand (operands[1], DImode))"
"@
mov\t%1, %0
sethi\t%%hi(%a1), %0
ldx\t%1, %0
stx\t%r1, %0
fmovd\t%1, %0
ldd\t%1, %0
std\t%1, %0
fzero\t%0"
[(set_attr "type" "*,*,load,store,fpmove,fpload,fpstore,fga")
(set_attr "fptype" "*,*,*,*,double,*,*,double")])
(define_expand "movdi_pic_label_ref"
[(set (match_dup 3) (high:DI
(unspec:DI [(match_operand:DI 1 "label_ref_operand" "")
(match_dup 2)] UNSPEC_MOVE_PIC_LABEL)))
(set (match_dup 4) (lo_sum:DI (match_dup 3)
(unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_MOVE_PIC_LABEL)))
(set (match_operand:DI 0 "register_operand" "=r")
(minus:DI (match_dup 5) (match_dup 4)))]
"TARGET_ARCH64 && flag_pic"
{
current_function_uses_pic_offset_table = 1;
operands[2] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
if (no_new_pseudos)
{
operands[3] = operands[0];
operands[4] = operands[0];
}
else
{
operands[3] = gen_reg_rtx (DImode);
operands[4] = gen_reg_rtx (DImode);
}
operands[5] = pic_offset_table_rtx;
})
(define_insn "*movdi_high_pic_label_ref"
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI
(unspec:DI [(match_operand:DI 1 "label_ref_operand" "")
(match_operand:DI 2 "" "")] UNSPEC_MOVE_PIC_LABEL)))]
"TARGET_ARCH64 && flag_pic"
"sethi\t%%hi(%a2-(%a1-.)), %0")
(define_insn "*movdi_lo_sum_pic_label_ref"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(unspec:DI [(match_operand:DI 2 "label_ref_operand" "")
(match_operand:DI 3 "" "")] UNSPEC_MOVE_PIC_LABEL)))]
"TARGET_ARCH64 && flag_pic"
"or\t%1, %%lo(%a3-(%a2-.)), %0")
;; SPARC-v9 code model support insns. See sparc_emit_set_symbolic_const64
;; in sparc.c to see what is going on here... PIC stuff comes first.
(define_insn "movdi_lo_sum_pic"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(unspec:DI [(match_operand:DI 2 "immediate_operand" "in")] UNSPEC_MOVE_PIC)))]
"TARGET_ARCH64 && flag_pic"
"or\t%1, %%lo(%a2), %0")
(define_insn "movdi_high_pic"
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI (unspec:DI [(match_operand 1 "" "")] UNSPEC_MOVE_PIC)))]
"TARGET_ARCH64 && flag_pic && check_pic (1)"
"sethi\t%%hi(%a1), %0")
(define_insn "*sethi_di_medlow_embmedany_pic"
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI (match_operand:DI 1 "medium_pic_operand" "")))]
"(TARGET_CM_MEDLOW || TARGET_CM_EMBMEDANY) && check_pic (1)"
"sethi\t%%hi(%a1), %0")
(define_insn "*sethi_di_medlow"
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI (match_operand:DI 1 "symbolic_operand" "")))]
"TARGET_CM_MEDLOW && check_pic (1)"
"sethi\t%%hi(%a1), %0")
(define_insn "*losum_di_medlow"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "symbolic_operand" "")))]
"TARGET_CM_MEDLOW"
"or\t%1, %%lo(%a2), %0")
(define_insn "seth44"
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] UNSPEC_SETH44)))]
"TARGET_CM_MEDMID"
"sethi\t%%h44(%a1), %0")
(define_insn "setm44"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(unspec:DI [(match_operand:DI 2 "symbolic_operand" "")] UNSPEC_SETM44)))]
"TARGET_CM_MEDMID"
"or\t%1, %%m44(%a2), %0")
(define_insn "setl44"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "symbolic_operand" "")))]
"TARGET_CM_MEDMID"
"or\t%1, %%l44(%a2), %0")
(define_insn "sethh"
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] UNSPEC_SETHH)))]
"TARGET_CM_MEDANY"
"sethi\t%%hh(%a1), %0")
(define_insn "setlm"
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] UNSPEC_SETLM)))]
"TARGET_CM_MEDANY"
"sethi\t%%lm(%a1), %0")
(define_insn "sethm"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(unspec:DI [(match_operand:DI 2 "symbolic_operand" "")] UNSPEC_EMB_SETHM)))]
"TARGET_CM_MEDANY"
"or\t%1, %%hm(%a2), %0")
(define_insn "setlo"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "symbolic_operand" "")))]
"TARGET_CM_MEDANY"
"or\t%1, %%lo(%a2), %0")
(define_insn "embmedany_sethi"
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI (unspec:DI [(match_operand:DI 1 "data_segment_operand" "")] UNSPEC_EMB_HISUM)))]
"TARGET_CM_EMBMEDANY && check_pic (1)"
"sethi\t%%hi(%a1), %0")
(define_insn "embmedany_losum"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "data_segment_operand" "")))]
"TARGET_CM_EMBMEDANY"
"add\t%1, %%lo(%a2), %0")
(define_insn "embmedany_brsum"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "register_operand" "r")] UNSPEC_EMB_HISUM))]
"TARGET_CM_EMBMEDANY"
"add\t%1, %_, %0")
(define_insn "embmedany_textuhi"
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI (unspec:DI [(match_operand:DI 1 "text_segment_operand" "")] UNSPEC_EMB_TEXTUHI)))]
"TARGET_CM_EMBMEDANY && check_pic (1)"
"sethi\t%%uhi(%a1), %0")
(define_insn "embmedany_texthi"
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI (unspec:DI [(match_operand:DI 1 "text_segment_operand" "")] UNSPEC_EMB_TEXTHI)))]
"TARGET_CM_EMBMEDANY && check_pic (1)"
"sethi\t%%hi(%a1), %0")
(define_insn "embmedany_textulo"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(unspec:DI [(match_operand:DI 2 "text_segment_operand" "")] UNSPEC_EMB_TEXTULO)))]
"TARGET_CM_EMBMEDANY"
"or\t%1, %%ulo(%a2), %0")
(define_insn "embmedany_textlo"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "text_segment_operand" "")))]
"TARGET_CM_EMBMEDANY"
"or\t%1, %%lo(%a2), %0")
;; Now some patterns to help reload out a bit.
(define_expand "reload_indi"
[(parallel [(match_operand:DI 0 "register_operand" "=r")
(match_operand:DI 1 "immediate_operand" "")
(match_operand:TI 2 "register_operand" "=&r")])]
"(TARGET_CM_MEDANY
|| TARGET_CM_EMBMEDANY)
&& ! flag_pic"
{
sparc_emit_set_symbolic_const64 (operands[0], operands[1], operands[2]);
DONE;
})
(define_expand "reload_outdi"
[(parallel [(match_operand:DI 0 "register_operand" "=r")
(match_operand:DI 1 "immediate_operand" "")
(match_operand:TI 2 "register_operand" "=&r")])]
"(TARGET_CM_MEDANY
|| TARGET_CM_EMBMEDANY)
&& ! flag_pic"
{
sparc_emit_set_symbolic_const64 (operands[0], operands[1], operands[2]);
DONE;
})
;; Split up putting CONSTs and REGs into DI regs when !arch64
(define_split
[(set (match_operand:DI 0 "register_operand" "")
(match_operand:DI 1 "const_int_operand" ""))]
"! TARGET_ARCH64 && reload_completed"
[(clobber (const_int 0))]
{
#if HOST_BITS_PER_WIDE_INT == 32
emit_insn (gen_movsi (gen_highpart (SImode, operands[0]),
(INTVAL (operands[1]) < 0) ?
constm1_rtx :
const0_rtx));
emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]),
operands[1]));
#else
unsigned int low, high;
low = trunc_int_for_mode (INTVAL (operands[1]), SImode);
high = trunc_int_for_mode (INTVAL (operands[1]) >> 32, SImode);
emit_insn (gen_movsi (gen_highpart (SImode, operands[0]), GEN_INT (high)));
/* Slick... but this trick loses if this subreg constant part
can be done in one insn. */
if (low == high
&& ! SPARC_SETHI32_P (high)
&& ! SPARC_SIMM13_P (high))
emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]),
gen_highpart (SImode, operands[0])));
else
emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), GEN_INT (low)));
#endif
DONE;
})
(define_split
[(set (match_operand:DI 0 "register_operand" "")
(match_operand:DI 1 "const_double_operand" ""))]
"reload_completed
&& (! TARGET_V9
|| (! TARGET_ARCH64
&& ((GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) < 32)
|| (GET_CODE (operands[0]) == SUBREG
&& GET_CODE (SUBREG_REG (operands[0])) == REG
&& REGNO (SUBREG_REG (operands[0])) < 32))))"
[(clobber (const_int 0))]
{
emit_insn (gen_movsi (gen_highpart (SImode, operands[0]),
GEN_INT (CONST_DOUBLE_HIGH (operands[1]))));
/* Slick... but this trick loses if this subreg constant part
can be done in one insn. */
if (CONST_DOUBLE_LOW (operands[1]) == CONST_DOUBLE_HIGH (operands[1])
&& ! SPARC_SETHI32_P (CONST_DOUBLE_HIGH (operands[1]))
&& ! SPARC_SIMM13_P (CONST_DOUBLE_HIGH (operands[1])))
{
emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]),
gen_highpart (SImode, operands[0])));
}
else
{
emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]),
GEN_INT (CONST_DOUBLE_LOW (operands[1]))));
}
DONE;
})
(define_split
[(set (match_operand:DI 0 "register_operand" "")
(match_operand:DI 1 "register_operand" ""))]
"reload_completed
&& (! TARGET_V9
|| (! TARGET_ARCH64
&& ((GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) < 32)
|| (GET_CODE (operands[0]) == SUBREG
&& GET_CODE (SUBREG_REG (operands[0])) == REG
&& REGNO (SUBREG_REG (operands[0])) < 32))))"
[(clobber (const_int 0))]
{
rtx set_dest = operands[0];
rtx set_src = operands[1];
rtx dest1, dest2;
rtx src1, src2;
dest1 = gen_highpart (SImode, set_dest);
dest2 = gen_lowpart (SImode, set_dest);
src1 = gen_highpart (SImode, set_src);
src2 = gen_lowpart (SImode, set_src);
/* Now emit using the real source and destination we found, swapping
the order if we detect overlap. */
if (reg_overlap_mentioned_p (dest1, src2))
{
emit_insn (gen_movsi (dest2, src2));
emit_insn (gen_movsi (dest1, src1));
}
else
{
emit_insn (gen_movsi (dest1, src1));
emit_insn (gen_movsi (dest2, src2));
}
DONE;
})
;; Now handle the cases of memory moves from/to non-even
;; DI mode register pairs.
(define_split
[(set (match_operand:DI 0 "register_operand" "")
(match_operand:DI 1 "memory_operand" ""))]
"(! TARGET_ARCH64
&& reload_completed
&& sparc_splitdi_legitimate (operands[0], operands[1]))"
[(clobber (const_int 0))]
{
rtx word0 = adjust_address (operands[1], SImode, 0);
rtx word1 = adjust_address (operands[1], SImode, 4);
rtx high_part = gen_highpart (SImode, operands[0]);
rtx low_part = gen_lowpart (SImode, operands[0]);
if (reg_overlap_mentioned_p (high_part, word1))
{
emit_insn (gen_movsi (low_part, word1));
emit_insn (gen_movsi (high_part, word0));
}
else
{
emit_insn (gen_movsi (high_part, word0));
emit_insn (gen_movsi (low_part, word1));
}
DONE;
})
(define_split
[(set (match_operand:DI 0 "memory_operand" "")
(match_operand:DI 1 "register_operand" ""))]
"(! TARGET_ARCH64
&& reload_completed
&& sparc_splitdi_legitimate (operands[1], operands[0]))"
[(clobber (const_int 0))]
{
emit_insn (gen_movsi (adjust_address (operands[0], SImode, 0),
gen_highpart (SImode, operands[1])));
emit_insn (gen_movsi (adjust_address (operands[0], SImode, 4),
gen_lowpart (SImode, operands[1])));
DONE;
})
(define_split
[(set (match_operand:DI 0 "memory_operand" "")
(match_operand:DI 1 "const_zero_operand" ""))]
"reload_completed
&& (! TARGET_V9
|| (! TARGET_ARCH64
&& ! mem_min_alignment (operands[0], 8)))
&& offsettable_memref_p (operands[0])"
[(clobber (const_int 0))]
{
emit_insn (gen_movsi (adjust_address (operands[0], SImode, 0), const0_rtx));
emit_insn (gen_movsi (adjust_address (operands[0], SImode, 4), const0_rtx));
DONE;
})
;; Floating point and vector move instructions
;; We don't define V1SI because SI should work just fine.
(define_mode_macro V32 [SF V2HI V4QI])
;; Yes, you guessed it right, the former movsf expander.
(define_expand "mov<V32:mode>"
[(set (match_operand:V32 0 "nonimmediate_operand" "")
(match_operand:V32 1 "general_operand" ""))]
"<V32:MODE>mode == SFmode || TARGET_VIS"
{
if (sparc_expand_move (<V32:MODE>mode, operands))
DONE;
})
(define_insn "*movsf_insn"
[(set (match_operand:V32 0 "nonimmediate_operand" "=d,f,*r,*r,*r,f,*r,m,m")
(match_operand:V32 1 "input_operand" "GY,f,*rRY,Q,S,m,m,f,*rGY"))]
"TARGET_FPU
&& (register_operand (operands[0], <V32:MODE>mode)
|| register_or_zero_operand (operands[1], <V32:MODE>mode))"
{
if (GET_CODE (operands[1]) == CONST_DOUBLE
&& (which_alternative == 2
|| which_alternative == 3
|| which_alternative == 4))
{
REAL_VALUE_TYPE r;
long i;
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_SINGLE (r, i);
operands[1] = GEN_INT (i);
}
switch (which_alternative)
{
case 0:
return "fzeros\t%0";
case 1:
return "fmovs\t%1, %0";
case 2:
return "mov\t%1, %0";
case 3:
return "sethi\t%%hi(%a1), %0";
case 4:
return "#";
case 5:
case 6:
return "ld\t%1, %0";
case 7:
case 8:
return "st\t%r1, %0";
default:
gcc_unreachable ();
}
}
[(set_attr "type" "fga,fpmove,*,*,*,fpload,load,fpstore,store")])
;; Exactly the same as above, except that all `f' cases are deleted.
;; This is necessary to prevent reload from ever trying to use a `f' reg
;; when -mno-fpu.
(define_insn "*movsf_insn_no_fpu"
[(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,r,m")
(match_operand:SF 1 "input_operand" "rR,Q,S,m,rG"))]
"! TARGET_FPU
&& (register_operand (operands[0], SFmode)
|| register_or_zero_operand (operands[1], SFmode))"
{
if (GET_CODE (operands[1]) == CONST_DOUBLE
&& (which_alternative == 0
|| which_alternative == 1
|| which_alternative == 2))
{
REAL_VALUE_TYPE r;
long i;
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_SINGLE (r, i);
operands[1] = GEN_INT (i);
}
switch (which_alternative)
{
case 0:
return "mov\t%1, %0";
case 1:
return "sethi\t%%hi(%a1), %0";
case 2:
return "#";
case 3:
return "ld\t%1, %0";
case 4:
return "st\t%r1, %0";
default:
gcc_unreachable ();
}
}
[(set_attr "type" "*,*,*,load,store")])
;; The following 3 patterns build SFmode constants in integer registers.
(define_insn "*movsf_lo_sum"
[(set (match_operand:SF 0 "register_operand" "=r")
(lo_sum:SF (match_operand:SF 1 "register_operand" "r")
(match_operand:SF 2 "fp_const_high_losum_operand" "S")))]
""
{
REAL_VALUE_TYPE r;
long i;
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[2]);
REAL_VALUE_TO_TARGET_SINGLE (r, i);
operands[2] = GEN_INT (i);
return "or\t%1, %%lo(%a2), %0";
})
(define_insn "*movsf_high"
[(set (match_operand:SF 0 "register_operand" "=r")
(high:SF (match_operand:SF 1 "fp_const_high_losum_operand" "S")))]
""
{
REAL_VALUE_TYPE r;
long i;
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_SINGLE (r, i);
operands[1] = GEN_INT (i);
return "sethi\t%%hi(%1), %0";
})
(define_split
[(set (match_operand:SF 0 "register_operand" "")
(match_operand:SF 1 "fp_const_high_losum_operand" ""))]
"REG_P (operands[0]) && REGNO (operands[0]) < 32"
[(set (match_dup 0) (high:SF (match_dup 1)))
(set (match_dup 0) (lo_sum:SF (match_dup 0) (match_dup 1)))])
(define_mode_macro V64 [DF V2SI V4HI V8QI])
;; Yes, you again guessed it right, the former movdf expander.
(define_expand "mov<V64:mode>"
[(set (match_operand:V64 0 "nonimmediate_operand" "")
(match_operand:V64 1 "general_operand" ""))]
"<V64:MODE>mode == DFmode || TARGET_VIS"
{
if (sparc_expand_move (<V64:MODE>mode, operands))
DONE;
})
;; Be careful, fmovd does not exist when !v9.
(define_insn "*movdf_insn_sp32"
[(set (match_operand:DF 0 "nonimmediate_operand" "=e,W,U,T,o,e,*r,o,e,o")
(match_operand:DF 1 "input_operand" "W#F,e,T,U,G,e,*rFo,*r,o#F,e"))]
"TARGET_FPU
&& ! TARGET_V9
&& (register_operand (operands[0], DFmode)
|| register_or_zero_operand (operands[1], DFmode))"
"@
ldd\t%1, %0
std\t%1, %0
ldd\t%1, %0
std\t%1, %0
#
#
#
#
#
#"
[(set_attr "type" "fpload,fpstore,load,store,*,*,*,*,*,*")
(set_attr "length" "*,*,*,*,2,2,2,2,2,2")])
(define_insn "*movdf_insn_sp32_no_fpu"
[(set (match_operand:DF 0 "nonimmediate_operand" "=U,T,o,r,o")
(match_operand:DF 1 "input_operand" "T,U,G,ro,r"))]
"! TARGET_FPU
&& ! TARGET_V9
&& (register_operand (operands[0], DFmode)
|| register_or_zero_operand (operands[1], DFmode))"
"@
ldd\t%1, %0
std\t%1, %0
#
#
#"
[(set_attr "type" "load,store,*,*,*")
(set_attr "length" "*,*,2,2,2")])
;; We have available v9 double floats but not 64-bit integer registers.
(define_insn "*movdf_insn_sp32_v9"
[(set (match_operand:V64 0 "nonimmediate_operand" "=b,e,e,T,W,U,T,f,*r,o")
(match_operand:V64 1 "input_operand" "GY,e,W#F,GY,e,T,U,o#F,*roGYF,*rGYf"))]
"TARGET_FPU
&& TARGET_V9
&& ! TARGET_ARCH64
&& (register_operand (operands[0], <V64:MODE>mode)
|| register_or_zero_operand (operands[1], <V64:MODE>mode))"
"@
fzero\t%0
fmovd\t%1, %0
ldd\t%1, %0
stx\t%r1, %0
std\t%1, %0
ldd\t%1, %0
std\t%1, %0
#
#
#"
[(set_attr "type" "fga,fpmove,load,store,store,load,store,*,*,*")
(set_attr "length" "*,*,*,*,*,*,*,2,2,2")
(set_attr "fptype" "double,double,*,*,*,*,*,*,*,*")])
(define_insn "*movdf_insn_sp32_v9_no_fpu"
[(set (match_operand:DF 0 "nonimmediate_operand" "=U,T,T,r,o")
(match_operand:DF 1 "input_operand" "T,U,G,ro,rG"))]
"! TARGET_FPU
&& TARGET_V9
&& ! TARGET_ARCH64
&& (register_operand (operands[0], DFmode)
|| register_or_zero_operand (operands[1], DFmode))"
"@
ldd\t%1, %0
std\t%1, %0
stx\t%r1, %0
#
#"
[(set_attr "type" "load,store,store,*,*")
(set_attr "length" "*,*,*,2,2")])
;; We have available both v9 double floats and 64-bit integer registers.
(define_insn "*movdf_insn_sp64"
[(set (match_operand:V64 0 "nonimmediate_operand" "=b,e,e,W,*r,*r,m,*r")
(match_operand:V64 1 "input_operand" "GY,e,W#F,e,*rGY,m,*rGY,F"))]
"TARGET_FPU
&& TARGET_ARCH64
&& (register_operand (operands[0], <V64:MODE>mode)
|| register_or_zero_operand (operands[1], <V64:MODE>mode))"
"@
fzero\t%0
fmovd\t%1, %0
ldd\t%1, %0
std\t%1, %0
mov\t%r1, %0
ldx\t%1, %0
stx\t%r1, %0
#"
[(set_attr "type" "fga,fpmove,load,store,*,load,store,*")
(set_attr "length" "*,*,*,*,*,*,*,2")
(set_attr "fptype" "double,double,*,*,*,*,*,*")])
(define_insn "*movdf_insn_sp64_no_fpu"
[(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,m")
(match_operand:DF 1 "input_operand" "r,m,rG"))]
"! TARGET_FPU
&& TARGET_ARCH64
&& (register_operand (operands[0], DFmode)
|| register_or_zero_operand (operands[1], DFmode))"
"@
mov\t%1, %0
ldx\t%1, %0
stx\t%r1, %0"
[(set_attr "type" "*,load,store")])
;; This pattern build DFmode constants in integer registers.
(define_split
[(set (match_operand:DF 0 "register_operand" "")
(match_operand:DF 1 "const_double_operand" ""))]
"TARGET_FPU
&& (GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) < 32)
&& ! const_zero_operand(operands[1], DFmode)
&& reload_completed"
[(clobber (const_int 0))]
{
REAL_VALUE_TYPE r;
long l[2];
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_DOUBLE (r, l);
operands[0] = gen_rtx_raw_REG (DImode, REGNO (operands[0]));
if (TARGET_ARCH64)
{
#if HOST_BITS_PER_WIDE_INT == 32
gcc_unreachable ();
#else
HOST_WIDE_INT val;
val = ((HOST_WIDE_INT)(unsigned long)l[1] |
((HOST_WIDE_INT)(unsigned long)l[0] << 32));
emit_insn (gen_movdi (operands[0], gen_int_mode (val, DImode)));
#endif
}
else
{
emit_insn (gen_movsi (gen_highpart (SImode, operands[0]),
gen_int_mode (l[0], SImode)));
/* Slick... but this trick loses if this subreg constant part
can be done in one insn. */
if (l[1] == l[0]
&& ! SPARC_SETHI32_P (l[0])
&& ! SPARC_SIMM13_P (l[0]))
{
emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]),
gen_highpart (SImode, operands[0])));
}
else
{
emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]),
gen_int_mode (l[1], SImode)));
}
}
DONE;
})
;; Ok, now the splits to handle all the multi insn and
;; mis-aligned memory address cases.
;; In these splits please take note that we must be
;; careful when V9 but not ARCH64 because the integer
;; register DFmode cases must be handled.
(define_split
[(set (match_operand:V64 0 "register_operand" "")
(match_operand:V64 1 "register_operand" ""))]
"(! TARGET_V9
|| (! TARGET_ARCH64
&& ((GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) < 32)
|| (GET_CODE (operands[0]) == SUBREG
&& GET_CODE (SUBREG_REG (operands[0])) == REG
&& REGNO (SUBREG_REG (operands[0])) < 32))))
&& reload_completed"
[(clobber (const_int 0))]
{
rtx set_dest = operands[0];
rtx set_src = operands[1];
rtx dest1, dest2;
rtx src1, src2;
enum machine_mode half_mode;
/* We can be expanded for DFmode or integral vector modes. */
if (<V64:MODE>mode == DFmode)
half_mode = SFmode;
else
half_mode = SImode;
dest1 = gen_highpart (half_mode, set_dest);
dest2 = gen_lowpart (half_mode, set_dest);
src1 = gen_highpart (half_mode, set_src);
src2 = gen_lowpart (half_mode, set_src);
/* Now emit using the real source and destination we found, swapping
the order if we detect overlap. */
if (reg_overlap_mentioned_p (dest1, src2))
{
emit_move_insn_1 (dest2, src2);
emit_move_insn_1 (dest1, src1);
}
else
{
emit_move_insn_1 (dest1, src1);
emit_move_insn_1 (dest2, src2);
}
DONE;
})
(define_split
[(set (match_operand:V64 0 "register_operand" "")
(match_operand:V64 1 "memory_operand" ""))]
"reload_completed
&& ! TARGET_ARCH64
&& (((REGNO (operands[0]) % 2) != 0)
|| ! mem_min_alignment (operands[1], 8))
&& offsettable_memref_p (operands[1])"
[(clobber (const_int 0))]
{
enum machine_mode half_mode;
rtx word0, word1;
/* We can be expanded for DFmode or integral vector modes. */
if (<V64:MODE>mode == DFmode)
half_mode = SFmode;
else
half_mode = SImode;
word0 = adjust_address (operands[1], half_mode, 0);
word1 = adjust_address (operands[1], half_mode, 4);
if (reg_overlap_mentioned_p (gen_highpart (half_mode, operands[0]), word1))
{
emit_move_insn_1 (gen_lowpart (half_mode, operands[0]), word1);
emit_move_insn_1 (gen_highpart (half_mode, operands[0]), word0);
}
else
{
emit_move_insn_1 (gen_highpart (half_mode, operands[0]), word0);
emit_move_insn_1 (gen_lowpart (half_mode, operands[0]), word1);
}
DONE;
})
(define_split
[(set (match_operand:V64 0 "memory_operand" "")
(match_operand:V64 1 "register_operand" ""))]
"reload_completed
&& ! TARGET_ARCH64
&& (((REGNO (operands[1]) % 2) != 0)
|| ! mem_min_alignment (operands[0], 8))
&& offsettable_memref_p (operands[0])"
[(clobber (const_int 0))]
{
enum machine_mode half_mode;
rtx word0, word1;
/* We can be expanded for DFmode or integral vector modes. */
if (<V64:MODE>mode == DFmode)
half_mode = SFmode;
else
half_mode = SImode;
word0 = adjust_address (operands[0], half_mode, 0);
word1 = adjust_address (operands[0], half_mode, 4);
emit_move_insn_1 (word0, gen_highpart (half_mode, operands[1]));
emit_move_insn_1 (word1, gen_lowpart (half_mode, operands[1]));
DONE;
})
(define_split
[(set (match_operand:V64 0 "memory_operand" "")
(match_operand:V64 1 "const_zero_operand" ""))]
"reload_completed
&& (! TARGET_V9
|| (! TARGET_ARCH64
&& ! mem_min_alignment (operands[0], 8)))
&& offsettable_memref_p (operands[0])"
[(clobber (const_int 0))]
{
enum machine_mode half_mode;
rtx dest1, dest2;
/* We can be expanded for DFmode or integral vector modes. */
if (<V64:MODE>mode == DFmode)
half_mode = SFmode;
else
half_mode = SImode;
dest1 = adjust_address (operands[0], half_mode, 0);
dest2 = adjust_address (operands[0], half_mode, 4);
emit_move_insn_1 (dest1, CONST0_RTX (half_mode));
emit_move_insn_1 (dest2, CONST0_RTX (half_mode));
DONE;
})
(define_split
[(set (match_operand:V64 0 "register_operand" "")
(match_operand:V64 1 "const_zero_operand" ""))]
"reload_completed
&& ! TARGET_ARCH64
&& ((GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) < 32)
|| (GET_CODE (operands[0]) == SUBREG
&& GET_CODE (SUBREG_REG (operands[0])) == REG
&& REGNO (SUBREG_REG (operands[0])) < 32))"
[(clobber (const_int 0))]
{
enum machine_mode half_mode;
rtx set_dest = operands[0];
rtx dest1, dest2;
/* We can be expanded for DFmode or integral vector modes. */
if (<V64:MODE>mode == DFmode)
half_mode = SFmode;
else
half_mode = SImode;
dest1 = gen_highpart (half_mode, set_dest);
dest2 = gen_lowpart (half_mode, set_dest);
emit_move_insn_1 (dest1, CONST0_RTX (half_mode));
emit_move_insn_1 (dest2, CONST0_RTX (half_mode));
DONE;
})
(define_expand "movtf"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(match_operand:TF 1 "general_operand" ""))]
""
{
if (sparc_expand_move (TFmode, operands))
DONE;
})
(define_insn "*movtf_insn_sp32"
[(set (match_operand:TF 0 "nonimmediate_operand" "=b,e,o,U,r")
(match_operand:TF 1 "input_operand" "G,oe,GeUr,o,roG"))]
"TARGET_FPU
&& ! TARGET_ARCH64
&& (register_operand (operands[0], TFmode)
|| register_or_zero_operand (operands[1], TFmode))"
"#"
[(set_attr "length" "4")])
;; Exactly the same as above, except that all `e' cases are deleted.
;; This is necessary to prevent reload from ever trying to use a `e' reg
;; when -mno-fpu.
(define_insn "*movtf_insn_sp32_no_fpu"
[(set (match_operand:TF 0 "nonimmediate_operand" "=o,U,o,r,o")
(match_operand:TF 1 "input_operand" "G,o,U,roG,r"))]
"! TARGET_FPU
&& ! TARGET_ARCH64
&& (register_operand (operands[0], TFmode)
|| register_or_zero_operand (operands[1], TFmode))"
"#"
[(set_attr "length" "4")])
(define_insn "*movtf_insn_sp64"
[(set (match_operand:TF 0 "nonimmediate_operand" "=b,e,o,r")
(match_operand:TF 1 "input_operand" "G,oe,Ger,roG"))]
"TARGET_FPU
&& TARGET_ARCH64
&& ! TARGET_HARD_QUAD
&& (register_operand (operands[0], TFmode)
|| register_or_zero_operand (operands[1], TFmode))"
"#"
[(set_attr "length" "2")])
(define_insn "*movtf_insn_sp64_hq"
[(set (match_operand:TF 0 "nonimmediate_operand" "=b,e,e,m,o,r")
(match_operand:TF 1 "input_operand" "G,e,m,e,rG,roG"))]
"TARGET_FPU
&& TARGET_ARCH64
&& TARGET_HARD_QUAD
&& (register_operand (operands[0], TFmode)
|| register_or_zero_operand (operands[1], TFmode))"
"@
#
fmovq\t%1, %0
ldq\t%1, %0
stq\t%1, %0
#
#"
[(set_attr "type" "*,fpmove,fpload,fpstore,*,*")
(set_attr "length" "2,*,*,*,2,2")])
(define_insn "*movtf_insn_sp64_no_fpu"
[(set (match_operand:TF 0 "nonimmediate_operand" "=r,o")
(match_operand:TF 1 "input_operand" "orG,rG"))]
"! TARGET_FPU
&& TARGET_ARCH64
&& (register_operand (operands[0], TFmode)
|| register_or_zero_operand (operands[1], TFmode))"
"#"
[(set_attr "length" "2")])
;; Now all the splits to handle multi-insn TF mode moves.
(define_split
[(set (match_operand:TF 0 "register_operand" "")
(match_operand:TF 1 "register_operand" ""))]
"reload_completed
&& (! TARGET_ARCH64
|| (TARGET_FPU
&& ! TARGET_HARD_QUAD)
|| ! fp_register_operand (operands[0], TFmode))"
[(clobber (const_int 0))]
{
rtx set_dest = operands[0];
rtx set_src = operands[1];
rtx dest1, dest2;
rtx src1, src2;
dest1 = gen_df_reg (set_dest, 0);
dest2 = gen_df_reg (set_dest, 1);
src1 = gen_df_reg (set_src, 0);
src2 = gen_df_reg (set_src, 1);
/* Now emit using the real source and destination we found, swapping
the order if we detect overlap. */
if (reg_overlap_mentioned_p (dest1, src2))
{
emit_insn (gen_movdf (dest2, src2));
emit_insn (gen_movdf (dest1, src1));
}
else
{
emit_insn (gen_movdf (dest1, src1));
emit_insn (gen_movdf (dest2, src2));
}
DONE;
})
(define_split
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(match_operand:TF 1 "const_zero_operand" ""))]
"reload_completed"
[(clobber (const_int 0))]
{
rtx set_dest = operands[0];
rtx dest1, dest2;
switch (GET_CODE (set_dest))
{
case REG:
dest1 = gen_df_reg (set_dest, 0);
dest2 = gen_df_reg (set_dest, 1);
break;
case MEM:
dest1 = adjust_address (set_dest, DFmode, 0);
dest2 = adjust_address (set_dest, DFmode, 8);
break;
default:
gcc_unreachable ();
}
emit_insn (gen_movdf (dest1, CONST0_RTX (DFmode)));
emit_insn (gen_movdf (dest2, CONST0_RTX (DFmode)));
DONE;
})
(define_split
[(set (match_operand:TF 0 "register_operand" "")
(match_operand:TF 1 "memory_operand" ""))]
"(reload_completed
&& offsettable_memref_p (operands[1])
&& (! TARGET_ARCH64
|| ! TARGET_HARD_QUAD
|| ! fp_register_operand (operands[0], TFmode)))"
[(clobber (const_int 0))]
{
rtx word0 = adjust_address (operands[1], DFmode, 0);
rtx word1 = adjust_address (operands[1], DFmode, 8);
rtx set_dest, dest1, dest2;
set_dest = operands[0];
dest1 = gen_df_reg (set_dest, 0);
dest2 = gen_df_reg (set_dest, 1);
/* Now output, ordering such that we don't clobber any registers
mentioned in the address. */
if (reg_overlap_mentioned_p (dest1, word1))
{
emit_insn (gen_movdf (dest2, word1));
emit_insn (gen_movdf (dest1, word0));
}
else
{
emit_insn (gen_movdf (dest1, word0));
emit_insn (gen_movdf (dest2, word1));
}
DONE;
})
(define_split
[(set (match_operand:TF 0 "memory_operand" "")
(match_operand:TF 1 "register_operand" ""))]
"(reload_completed
&& offsettable_memref_p (operands[0])
&& (! TARGET_ARCH64
|| ! TARGET_HARD_QUAD
|| ! fp_register_operand (operands[1], TFmode)))"
[(clobber (const_int 0))]
{
rtx set_src = operands[1];
emit_insn (gen_movdf (adjust_address (operands[0], DFmode, 0),
gen_df_reg (set_src, 0)));
emit_insn (gen_movdf (adjust_address (operands[0], DFmode, 8),
gen_df_reg (set_src, 1)));
DONE;
})
;; SPARC-V9 conditional move instructions.
;; We can handle larger constants here for some flavors, but for now we keep
;; it simple and only allow those constants supported by all flavors.
;; Note that emit_conditional_move canonicalizes operands 2,3 so that operand
;; 3 contains the constant if one is present, but we handle either for
;; generality (sparc.c puts a constant in operand 2).
(define_expand "movqicc"
[(set (match_operand:QI 0 "register_operand" "")
(if_then_else:QI (match_operand 1 "comparison_operator" "")
(match_operand:QI 2 "arith10_operand" "")
(match_operand:QI 3 "arith10_operand" "")))]
"TARGET_V9"
{
enum rtx_code code = GET_CODE (operands[1]);
if (GET_MODE (sparc_compare_op0) == DImode
&& ! TARGET_ARCH64)
FAIL;
if (sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode
&& v9_regcmp_p (code))
{
operands[1] = gen_rtx_fmt_ee (code, DImode,
sparc_compare_op0, sparc_compare_op1);
}
else
{
rtx cc_reg = gen_compare_reg (code);
operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx);
}
})
(define_expand "movhicc"
[(set (match_operand:HI 0 "register_operand" "")
(if_then_else:HI (match_operand 1 "comparison_operator" "")
(match_operand:HI 2 "arith10_operand" "")
(match_operand:HI 3 "arith10_operand" "")))]
"TARGET_V9"
{
enum rtx_code code = GET_CODE (operands[1]);
if (GET_MODE (sparc_compare_op0) == DImode
&& ! TARGET_ARCH64)
FAIL;
if (sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode
&& v9_regcmp_p (code))
{
operands[1] = gen_rtx_fmt_ee (code, DImode,
sparc_compare_op0, sparc_compare_op1);
}
else
{
rtx cc_reg = gen_compare_reg (code);
operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx);
}
})
(define_expand "movsicc"
[(set (match_operand:SI 0 "register_operand" "")
(if_then_else:SI (match_operand 1 "comparison_operator" "")
(match_operand:SI 2 "arith10_operand" "")
(match_operand:SI 3 "arith10_operand" "")))]
"TARGET_V9"
{
enum rtx_code code = GET_CODE (operands[1]);
enum machine_mode op0_mode = GET_MODE (sparc_compare_op0);
if (sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& (TARGET_ARCH64 && op0_mode == DImode && v9_regcmp_p (code)))
{
operands[1] = gen_rtx_fmt_ee (code, op0_mode,
sparc_compare_op0, sparc_compare_op1);
}
else
{
rtx cc_reg = gen_compare_reg (code);
operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg),
cc_reg, const0_rtx);
}
})
(define_expand "movdicc"
[(set (match_operand:DI 0 "register_operand" "")
(if_then_else:DI (match_operand 1 "comparison_operator" "")
(match_operand:DI 2 "arith10_operand" "")
(match_operand:DI 3 "arith10_operand" "")))]
"TARGET_ARCH64"
{
enum rtx_code code = GET_CODE (operands[1]);
if (sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode
&& v9_regcmp_p (code))
{
operands[1] = gen_rtx_fmt_ee (code, DImode,
sparc_compare_op0, sparc_compare_op1);
}
else
{
rtx cc_reg = gen_compare_reg (code);
operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg),
cc_reg, const0_rtx);
}
})
(define_expand "movsfcc"
[(set (match_operand:SF 0 "register_operand" "")
(if_then_else:SF (match_operand 1 "comparison_operator" "")
(match_operand:SF 2 "register_operand" "")
(match_operand:SF 3 "register_operand" "")))]
"TARGET_V9 && TARGET_FPU"
{
enum rtx_code code = GET_CODE (operands[1]);
if (GET_MODE (sparc_compare_op0) == DImode
&& ! TARGET_ARCH64)
FAIL;
if (sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode
&& v9_regcmp_p (code))
{
operands[1] = gen_rtx_fmt_ee (code, DImode,
sparc_compare_op0, sparc_compare_op1);
}
else
{
rtx cc_reg = gen_compare_reg (code);
operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx);
}
})
(define_expand "movdfcc"
[(set (match_operand:DF 0 "register_operand" "")
(if_then_else:DF (match_operand 1 "comparison_operator" "")
(match_operand:DF 2 "register_operand" "")
(match_operand:DF 3 "register_operand" "")))]
"TARGET_V9 && TARGET_FPU"
{
enum rtx_code code = GET_CODE (operands[1]);
if (GET_MODE (sparc_compare_op0) == DImode
&& ! TARGET_ARCH64)
FAIL;
if (sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode
&& v9_regcmp_p (code))
{
operands[1] = gen_rtx_fmt_ee (code, DImode,
sparc_compare_op0, sparc_compare_op1);
}
else
{
rtx cc_reg = gen_compare_reg (code);
operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx);
}
})
(define_expand "movtfcc"
[(set (match_operand:TF 0 "register_operand" "")
(if_then_else:TF (match_operand 1 "comparison_operator" "")
(match_operand:TF 2 "register_operand" "")
(match_operand:TF 3 "register_operand" "")))]
"TARGET_V9 && TARGET_FPU"
{
enum rtx_code code = GET_CODE (operands[1]);
if (GET_MODE (sparc_compare_op0) == DImode
&& ! TARGET_ARCH64)
FAIL;
if (sparc_compare_op1 == const0_rtx
&& GET_CODE (sparc_compare_op0) == REG
&& GET_MODE (sparc_compare_op0) == DImode
&& v9_regcmp_p (code))
{
operands[1] = gen_rtx_fmt_ee (code, DImode,
sparc_compare_op0, sparc_compare_op1);
}
else
{
rtx cc_reg = gen_compare_reg (code);
operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx);
}
})
;; Conditional move define_insns.
(define_insn "*movqi_cc_sp64"
[(set (match_operand:QI 0 "register_operand" "=r,r")
(if_then_else:QI (match_operator 1 "comparison_operator"
[(match_operand 2 "icc_or_fcc_register_operand" "X,X")
(const_int 0)])
(match_operand:QI 3 "arith11_operand" "rL,0")
(match_operand:QI 4 "arith11_operand" "0,rL")))]
"TARGET_V9"
"@
mov%C1\t%x2, %3, %0
mov%c1\t%x2, %4, %0"
[(set_attr "type" "cmove")])
(define_insn "*movhi_cc_sp64"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(if_then_else:HI (match_operator 1 "comparison_operator"
[(match_operand 2 "icc_or_fcc_register_operand" "X,X")
(const_int 0)])
(match_operand:HI 3 "arith11_operand" "rL,0")
(match_operand:HI 4 "arith11_operand" "0,rL")))]
"TARGET_V9"
"@
mov%C1\t%x2, %3, %0
mov%c1\t%x2, %4, %0"
[(set_attr "type" "cmove")])
(define_insn "*movsi_cc_sp64"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(if_then_else:SI (match_operator 1 "comparison_operator"
[(match_operand 2 "icc_or_fcc_register_operand" "X,X")
(const_int 0)])
(match_operand:SI 3 "arith11_operand" "rL,0")
(match_operand:SI 4 "arith11_operand" "0,rL")))]
"TARGET_V9"
"@
mov%C1\t%x2, %3, %0
mov%c1\t%x2, %4, %0"
[(set_attr "type" "cmove")])
(define_insn "*movdi_cc_sp64"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(if_then_else:DI (match_operator 1 "comparison_operator"
[(match_operand 2 "icc_or_fcc_register_operand" "X,X")
(const_int 0)])
(match_operand:DI 3 "arith11_operand" "rL,0")
(match_operand:DI 4 "arith11_operand" "0,rL")))]
"TARGET_ARCH64"
"@
mov%C1\t%x2, %3, %0
mov%c1\t%x2, %4, %0"
[(set_attr "type" "cmove")])
(define_insn "*movdi_cc_sp64_trunc"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(if_then_else:SI (match_operator 1 "comparison_operator"
[(match_operand 2 "icc_or_fcc_register_operand" "X,X")
(const_int 0)])
(match_operand:SI 3 "arith11_operand" "rL,0")
(match_operand:SI 4 "arith11_operand" "0,rL")))]
"TARGET_ARCH64"
"@
mov%C1\t%x2, %3, %0
mov%c1\t%x2, %4, %0"
[(set_attr "type" "cmove")])
(define_insn "*movsf_cc_sp64"
[(set (match_operand:SF 0 "register_operand" "=f,f")
(if_then_else:SF (match_operator 1 "comparison_operator"
[(match_operand 2 "icc_or_fcc_register_operand" "X,X")
(const_int 0)])
(match_operand:SF 3 "register_operand" "f,0")
(match_operand:SF 4 "register_operand" "0,f")))]
"TARGET_V9 && TARGET_FPU"
"@
fmovs%C1\t%x2, %3, %0
fmovs%c1\t%x2, %4, %0"
[(set_attr "type" "fpcmove")])
(define_insn "movdf_cc_sp64"
[(set (match_operand:DF 0 "register_operand" "=e,e")
(if_then_else:DF (match_operator 1 "comparison_operator"
[(match_operand 2 "icc_or_fcc_register_operand" "X,X")
(const_int 0)])
(match_operand:DF 3 "register_operand" "e,0")
(match_operand:DF 4 "register_operand" "0,e")))]
"TARGET_V9 && TARGET_FPU"
"@
fmovd%C1\t%x2, %3, %0
fmovd%c1\t%x2, %4, %0"
[(set_attr "type" "fpcmove")
(set_attr "fptype" "double")])
(define_insn "*movtf_cc_hq_sp64"
[(set (match_operand:TF 0 "register_operand" "=e,e")
(if_then_else:TF (match_operator 1 "comparison_operator"
[(match_operand 2 "icc_or_fcc_register_operand" "X,X")
(const_int 0)])
(match_operand:TF 3 "register_operand" "e,0")
(match_operand:TF 4 "register_operand" "0,e")))]
"TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD"
"@
fmovq%C1\t%x2, %3, %0
fmovq%c1\t%x2, %4, %0"
[(set_attr "type" "fpcmove")])
(define_insn_and_split "*movtf_cc_sp64"
[(set (match_operand:TF 0 "register_operand" "=e,e")
(if_then_else:TF (match_operator 1 "comparison_operator"
[(match_operand 2 "icc_or_fcc_register_operand" "X,X")
(const_int 0)])
(match_operand:TF 3 "register_operand" "e,0")
(match_operand:TF 4 "register_operand" "0,e")))]
"TARGET_V9 && TARGET_FPU && !TARGET_HARD_QUAD"
"#"
"&& reload_completed"
[(clobber (const_int 0))]
{
rtx set_dest = operands[0];
rtx set_srca = operands[3];
rtx set_srcb = operands[4];
int third = rtx_equal_p (set_dest, set_srca);
rtx dest1, dest2;
rtx srca1, srca2, srcb1, srcb2;
dest1 = gen_df_reg (set_dest, 0);
dest2 = gen_df_reg (set_dest, 1);
srca1 = gen_df_reg (set_srca, 0);
srca2 = gen_df_reg (set_srca, 1);
srcb1 = gen_df_reg (set_srcb, 0);
srcb2 = gen_df_reg (set_srcb, 1);
/* Now emit using the real source and destination we found, swapping
the order if we detect overlap. */
if ((third && reg_overlap_mentioned_p (dest1, srcb2))
|| (!third && reg_overlap_mentioned_p (dest1, srca2)))
{
emit_insn (gen_movdf_cc_sp64 (dest2, operands[1], operands[2], srca2, srcb2));
emit_insn (gen_movdf_cc_sp64 (dest1, operands[1], operands[2], srca1, srcb1));
}
else
{
emit_insn (gen_movdf_cc_sp64 (dest1, operands[1], operands[2], srca1, srcb1));
emit_insn (gen_movdf_cc_sp64 (dest2, operands[1], operands[2], srca2, srcb2));
}
DONE;
}
[(set_attr "length" "2")])
(define_insn "*movqi_cc_reg_sp64"
[(set (match_operand:QI 0 "register_operand" "=r,r")
(if_then_else:QI (match_operator 1 "v9_register_compare_operator"
[(match_operand:DI 2 "register_operand" "r,r")
(const_int 0)])
(match_operand:QI 3 "arith10_operand" "rM,0")
(match_operand:QI 4 "arith10_operand" "0,rM")))]
"TARGET_ARCH64"
"@
movr%D1\t%2, %r3, %0
movr%d1\t%2, %r4, %0"
[(set_attr "type" "cmove")])
(define_insn "*movhi_cc_reg_sp64"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(if_then_else:HI (match_operator 1 "v9_register_compare_operator"
[(match_operand:DI 2 "register_operand" "r,r")
(const_int 0)])
(match_operand:HI 3 "arith10_operand" "rM,0")
(match_operand:HI 4 "arith10_operand" "0,rM")))]
"TARGET_ARCH64"
"@
movr%D1\t%2, %r3, %0
movr%d1\t%2, %r4, %0"
[(set_attr "type" "cmove")])
(define_insn "*movsi_cc_reg_sp64"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(if_then_else:SI (match_operator 1 "v9_register_compare_operator"
[(match_operand:DI 2 "register_operand" "r,r")
(const_int 0)])
(match_operand:SI 3 "arith10_operand" "rM,0")
(match_operand:SI 4 "arith10_operand" "0,rM")))]
"TARGET_ARCH64"
"@
movr%D1\t%2, %r3, %0
movr%d1\t%2, %r4, %0"
[(set_attr "type" "cmove")])
(define_insn "*movdi_cc_reg_sp64"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(if_then_else:DI (match_operator 1 "v9_register_compare_operator"
[(match_operand:DI 2 "register_operand" "r,r")
(const_int 0)])
(match_operand:DI 3 "arith10_operand" "rM,0")
(match_operand:DI 4 "arith10_operand" "0,rM")))]
"TARGET_ARCH64"
"@
movr%D1\t%2, %r3, %0
movr%d1\t%2, %r4, %0"
[(set_attr "type" "cmove")])
(define_insn "*movsf_cc_reg_sp64"
[(set (match_operand:SF 0 "register_operand" "=f,f")
(if_then_else:SF (match_operator 1 "v9_register_compare_operator"
[(match_operand:DI 2 "register_operand" "r,r")
(const_int 0)])
(match_operand:SF 3 "register_operand" "f,0")
(match_operand:SF 4 "register_operand" "0,f")))]
"TARGET_ARCH64 && TARGET_FPU"
"@
fmovrs%D1\t%2, %3, %0
fmovrs%d1\t%2, %4, %0"
[(set_attr "type" "fpcrmove")])
(define_insn "movdf_cc_reg_sp64"
[(set (match_operand:DF 0 "register_operand" "=e,e")
(if_then_else:DF (match_operator 1 "v9_register_compare_operator"
[(match_operand:DI 2 "register_operand" "r,r")
(const_int 0)])
(match_operand:DF 3 "register_operand" "e,0")
(match_operand:DF 4 "register_operand" "0,e")))]
"TARGET_ARCH64 && TARGET_FPU"
"@
fmovrd%D1\t%2, %3, %0
fmovrd%d1\t%2, %4, %0"
[(set_attr "type" "fpcrmove")
(set_attr "fptype" "double")])
(define_insn "*movtf_cc_reg_hq_sp64"
[(set (match_operand:TF 0 "register_operand" "=e,e")
(if_then_else:TF (match_operator 1 "v9_register_compare_operator"
[(match_operand:DI 2 "register_operand" "r,r")
(const_int 0)])
(match_operand:TF 3 "register_operand" "e,0")
(match_operand:TF 4 "register_operand" "0,e")))]
"TARGET_ARCH64 && TARGET_FPU && TARGET_HARD_QUAD"
"@
fmovrq%D1\t%2, %3, %0
fmovrq%d1\t%2, %4, %0"
[(set_attr "type" "fpcrmove")])
(define_insn_and_split "*movtf_cc_reg_sp64"
[(set (match_operand:TF 0 "register_operand" "=e,e")
(if_then_else:TF (match_operator 1 "v9_register_compare_operator"
[(match_operand:DI 2 "register_operand" "r,r")
(const_int 0)])
(match_operand:TF 3 "register_operand" "e,0")
(match_operand:TF 4 "register_operand" "0,e")))]
"TARGET_ARCH64 && TARGET_FPU && ! TARGET_HARD_QUAD"
"#"
"&& reload_completed"
[(clobber (const_int 0))]
{
rtx set_dest = operands[0];
rtx set_srca = operands[3];
rtx set_srcb = operands[4];
int third = rtx_equal_p (set_dest, set_srca);
rtx dest1, dest2;
rtx srca1, srca2, srcb1, srcb2;
dest1 = gen_df_reg (set_dest, 0);
dest2 = gen_df_reg (set_dest, 1);
srca1 = gen_df_reg (set_srca, 0);
srca2 = gen_df_reg (set_srca, 1);
srcb1 = gen_df_reg (set_srcb, 0);
srcb2 = gen_df_reg (set_srcb, 1);
/* Now emit using the real source and destination we found, swapping
the order if we detect overlap. */
if ((third && reg_overlap_mentioned_p (dest1, srcb2))
|| (!third && reg_overlap_mentioned_p (dest1, srca2)))
{
emit_insn (gen_movdf_cc_reg_sp64 (dest2, operands[1], operands[2], srca2, srcb2));
emit_insn (gen_movdf_cc_reg_sp64 (dest1, operands[1], operands[2], srca1, srcb1));
}
else
{
emit_insn (gen_movdf_cc_reg_sp64 (dest1, operands[1], operands[2], srca1, srcb1));
emit_insn (gen_movdf_cc_reg_sp64 (dest2, operands[1], operands[2], srca2, srcb2));
}
DONE;
}
[(set_attr "length" "2")])
;; Zero-extension instructions
;; These patterns originally accepted general_operands, however, slightly
;; better code is generated by only accepting register_operands, and then
;; letting combine generate the ldu[hb] insns.
(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "")
(zero_extend:SI (match_operand:HI 1 "register_operand" "")))]
""
{
rtx temp = gen_reg_rtx (SImode);
rtx shift_16 = GEN_INT (16);
int op1_subbyte = 0;
if (GET_CODE (operand1) == SUBREG)
{
op1_subbyte = SUBREG_BYTE (operand1);
op1_subbyte /= GET_MODE_SIZE (SImode);
op1_subbyte *= GET_MODE_SIZE (SImode);
operand1 = XEXP (operand1, 0);
}
emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte),
shift_16));
emit_insn (gen_lshrsi3 (operand0, temp, shift_16));
DONE;
})
(define_insn "*zero_extendhisi2_insn"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (match_operand:HI 1 "memory_operand" "m")))]
""
"lduh\t%1, %0"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_expand "zero_extendqihi2"
[(set (match_operand:HI 0 "register_operand" "")
(zero_extend:HI (match_operand:QI 1 "register_operand" "")))]
""
"")
(define_insn "*zero_extendqihi2_insn"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(zero_extend:HI (match_operand:QI 1 "input_operand" "r,m")))]
"GET_CODE (operands[1]) != CONST_INT"
"@
and\t%1, 0xff, %0
ldub\t%1, %0"
[(set_attr "type" "*,load")
(set_attr "us3load_type" "*,3cycle")])
(define_expand "zero_extendqisi2"
[(set (match_operand:SI 0 "register_operand" "")
(zero_extend:SI (match_operand:QI 1 "register_operand" "")))]
""
"")
(define_insn "*zero_extendqisi2_insn"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(zero_extend:SI (match_operand:QI 1 "input_operand" "r,m")))]
"GET_CODE (operands[1]) != CONST_INT"
"@
and\t%1, 0xff, %0
ldub\t%1, %0"
[(set_attr "type" "*,load")
(set_attr "us3load_type" "*,3cycle")])
(define_expand "zero_extendqidi2"
[(set (match_operand:DI 0 "register_operand" "")
(zero_extend:DI (match_operand:QI 1 "register_operand" "")))]
"TARGET_ARCH64"
"")
(define_insn "*zero_extendqidi2_insn"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(zero_extend:DI (match_operand:QI 1 "input_operand" "r,m")))]
"TARGET_ARCH64 && GET_CODE (operands[1]) != CONST_INT"
"@
and\t%1, 0xff, %0
ldub\t%1, %0"
[(set_attr "type" "*,load")
(set_attr "us3load_type" "*,3cycle")])
(define_expand "zero_extendhidi2"
[(set (match_operand:DI 0 "register_operand" "")
(zero_extend:DI (match_operand:HI 1 "register_operand" "")))]
"TARGET_ARCH64"
{
rtx temp = gen_reg_rtx (DImode);
rtx shift_48 = GEN_INT (48);
int op1_subbyte = 0;
if (GET_CODE (operand1) == SUBREG)
{
op1_subbyte = SUBREG_BYTE (operand1);
op1_subbyte /= GET_MODE_SIZE (DImode);
op1_subbyte *= GET_MODE_SIZE (DImode);
operand1 = XEXP (operand1, 0);
}
emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte),
shift_48));
emit_insn (gen_lshrdi3 (operand0, temp, shift_48));
DONE;
})
(define_insn "*zero_extendhidi2_insn"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (match_operand:HI 1 "memory_operand" "m")))]
"TARGET_ARCH64"
"lduh\t%1, %0"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
;; ??? Write truncdisi pattern using sra?
(define_expand "zero_extendsidi2"
[(set (match_operand:DI 0 "register_operand" "")
(zero_extend:DI (match_operand:SI 1 "register_operand" "")))]
""
"")
(define_insn "*zero_extendsidi2_insn_sp64"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(zero_extend:DI (match_operand:SI 1 "input_operand" "r,m")))]
"TARGET_ARCH64 && GET_CODE (operands[1]) != CONST_INT"
"@
srl\t%1, 0, %0
lduw\t%1, %0"
[(set_attr "type" "shift,load")])
(define_insn_and_split "*zero_extendsidi2_insn_sp32"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (match_operand:SI 1 "register_operand" "r")))]
"! TARGET_ARCH64"
"#"
"&& reload_completed"
[(set (match_dup 2) (match_dup 3))
(set (match_dup 4) (match_dup 5))]
{
rtx dest1, dest2;
dest1 = gen_highpart (SImode, operands[0]);
dest2 = gen_lowpart (SImode, operands[0]);
/* Swap the order in case of overlap. */
if (REGNO (dest1) == REGNO (operands[1]))
{
operands[2] = dest2;
operands[3] = operands[1];
operands[4] = dest1;
operands[5] = const0_rtx;
}
else
{
operands[2] = dest1;
operands[3] = const0_rtx;
operands[4] = dest2;
operands[5] = operands[1];
}
}
[(set_attr "length" "2")])
;; Simplify comparisons of extended values.
(define_insn "*cmp_zero_extendqisi2"
[(set (reg:CC 100)
(compare:CC (zero_extend:SI (match_operand:QI 0 "register_operand" "r"))
(const_int 0)))]
""
"andcc\t%0, 0xff, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_zero_qi"
[(set (reg:CC 100)
(compare:CC (match_operand:QI 0 "register_operand" "r")
(const_int 0)))]
""
"andcc\t%0, 0xff, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_zero_extendqisi2_set"
[(set (reg:CC 100)
(compare:CC (zero_extend:SI (match_operand:QI 1 "register_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (match_dup 1)))]
""
"andcc\t%1, 0xff, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_zero_extendqisi2_andcc_set"
[(set (reg:CC 100)
(compare:CC (and:SI (match_operand:SI 1 "register_operand" "r")
(const_int 255))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (subreg:QI (match_dup 1) 0)))]
""
"andcc\t%1, 0xff, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_zero_extendqidi2"
[(set (reg:CCX 100)
(compare:CCX (zero_extend:DI (match_operand:QI 0 "register_operand" "r"))
(const_int 0)))]
"TARGET_ARCH64"
"andcc\t%0, 0xff, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_zero_qi_sp64"
[(set (reg:CCX 100)
(compare:CCX (match_operand:QI 0 "register_operand" "r")
(const_int 0)))]
"TARGET_ARCH64"
"andcc\t%0, 0xff, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_zero_extendqidi2_set"
[(set (reg:CCX 100)
(compare:CCX (zero_extend:DI (match_operand:QI 1 "register_operand" "r"))
(const_int 0)))
(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (match_dup 1)))]
"TARGET_ARCH64"
"andcc\t%1, 0xff, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_zero_extendqidi2_andcc_set"
[(set (reg:CCX 100)
(compare:CCX (and:DI (match_operand:DI 1 "register_operand" "r")
(const_int 255))
(const_int 0)))
(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (subreg:QI (match_dup 1) 0)))]
"TARGET_ARCH64"
"andcc\t%1, 0xff, %0"
[(set_attr "type" "compare")])
;; Similarly, handle {SI,DI}->QI mode truncation followed by a compare.
(define_insn "*cmp_siqi_trunc"
[(set (reg:CC 100)
(compare:CC (subreg:QI (match_operand:SI 0 "register_operand" "r") 3)
(const_int 0)))]
""
"andcc\t%0, 0xff, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_siqi_trunc_set"
[(set (reg:CC 100)
(compare:CC (subreg:QI (match_operand:SI 1 "register_operand" "r") 3)
(const_int 0)))
(set (match_operand:QI 0 "register_operand" "=r")
(subreg:QI (match_dup 1) 3))]
""
"andcc\t%1, 0xff, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_diqi_trunc"
[(set (reg:CC 100)
(compare:CC (subreg:QI (match_operand:DI 0 "register_operand" "r") 7)
(const_int 0)))]
"TARGET_ARCH64"
"andcc\t%0, 0xff, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_diqi_trunc_set"
[(set (reg:CC 100)
(compare:CC (subreg:QI (match_operand:DI 1 "register_operand" "r") 7)
(const_int 0)))
(set (match_operand:QI 0 "register_operand" "=r")
(subreg:QI (match_dup 1) 7))]
"TARGET_ARCH64"
"andcc\t%1, 0xff, %0"
[(set_attr "type" "compare")])
;; Sign-extension instructions
;; These patterns originally accepted general_operands, however, slightly
;; better code is generated by only accepting register_operands, and then
;; letting combine generate the lds[hb] insns.
(define_expand "extendhisi2"
[(set (match_operand:SI 0 "register_operand" "")
(sign_extend:SI (match_operand:HI 1 "register_operand" "")))]
""
{
rtx temp = gen_reg_rtx (SImode);
rtx shift_16 = GEN_INT (16);
int op1_subbyte = 0;
if (GET_CODE (operand1) == SUBREG)
{
op1_subbyte = SUBREG_BYTE (operand1);
op1_subbyte /= GET_MODE_SIZE (SImode);
op1_subbyte *= GET_MODE_SIZE (SImode);
operand1 = XEXP (operand1, 0);
}
emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte),
shift_16));
emit_insn (gen_ashrsi3 (operand0, temp, shift_16));
DONE;
})
(define_insn "*sign_extendhisi2_insn"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:HI 1 "memory_operand" "m")))]
""
"ldsh\t%1, %0"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_expand "extendqihi2"
[(set (match_operand:HI 0 "register_operand" "")
(sign_extend:HI (match_operand:QI 1 "register_operand" "")))]
""
{
rtx temp = gen_reg_rtx (SImode);
rtx shift_24 = GEN_INT (24);
int op1_subbyte = 0;
int op0_subbyte = 0;
if (GET_CODE (operand1) == SUBREG)
{
op1_subbyte = SUBREG_BYTE (operand1);
op1_subbyte /= GET_MODE_SIZE (SImode);
op1_subbyte *= GET_MODE_SIZE (SImode);
operand1 = XEXP (operand1, 0);
}
if (GET_CODE (operand0) == SUBREG)
{
op0_subbyte = SUBREG_BYTE (operand0);
op0_subbyte /= GET_MODE_SIZE (SImode);
op0_subbyte *= GET_MODE_SIZE (SImode);
operand0 = XEXP (operand0, 0);
}
emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte),
shift_24));
if (GET_MODE (operand0) != SImode)
operand0 = gen_rtx_SUBREG (SImode, operand0, op0_subbyte);
emit_insn (gen_ashrsi3 (operand0, temp, shift_24));
DONE;
})
(define_insn "*sign_extendqihi2_insn"
[(set (match_operand:HI 0 "register_operand" "=r")
(sign_extend:HI (match_operand:QI 1 "memory_operand" "m")))]
""
"ldsb\t%1, %0"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_expand "extendqisi2"
[(set (match_operand:SI 0 "register_operand" "")
(sign_extend:SI (match_operand:QI 1 "register_operand" "")))]
""
{
rtx temp = gen_reg_rtx (SImode);
rtx shift_24 = GEN_INT (24);
int op1_subbyte = 0;
if (GET_CODE (operand1) == SUBREG)
{
op1_subbyte = SUBREG_BYTE (operand1);
op1_subbyte /= GET_MODE_SIZE (SImode);
op1_subbyte *= GET_MODE_SIZE (SImode);
operand1 = XEXP (operand1, 0);
}
emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte),
shift_24));
emit_insn (gen_ashrsi3 (operand0, temp, shift_24));
DONE;
})
(define_insn "*sign_extendqisi2_insn"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:QI 1 "memory_operand" "m")))]
""
"ldsb\t%1, %0"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_expand "extendqidi2"
[(set (match_operand:DI 0 "register_operand" "")
(sign_extend:DI (match_operand:QI 1 "register_operand" "")))]
"TARGET_ARCH64"
{
rtx temp = gen_reg_rtx (DImode);
rtx shift_56 = GEN_INT (56);
int op1_subbyte = 0;
if (GET_CODE (operand1) == SUBREG)
{
op1_subbyte = SUBREG_BYTE (operand1);
op1_subbyte /= GET_MODE_SIZE (DImode);
op1_subbyte *= GET_MODE_SIZE (DImode);
operand1 = XEXP (operand1, 0);
}
emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte),
shift_56));
emit_insn (gen_ashrdi3 (operand0, temp, shift_56));
DONE;
})
(define_insn "*sign_extendqidi2_insn"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (match_operand:QI 1 "memory_operand" "m")))]
"TARGET_ARCH64"
"ldsb\t%1, %0"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_expand "extendhidi2"
[(set (match_operand:DI 0 "register_operand" "")
(sign_extend:DI (match_operand:HI 1 "register_operand" "")))]
"TARGET_ARCH64"
{
rtx temp = gen_reg_rtx (DImode);
rtx shift_48 = GEN_INT (48);
int op1_subbyte = 0;
if (GET_CODE (operand1) == SUBREG)
{
op1_subbyte = SUBREG_BYTE (operand1);
op1_subbyte /= GET_MODE_SIZE (DImode);
op1_subbyte *= GET_MODE_SIZE (DImode);
operand1 = XEXP (operand1, 0);
}
emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte),
shift_48));
emit_insn (gen_ashrdi3 (operand0, temp, shift_48));
DONE;
})
(define_insn "*sign_extendhidi2_insn"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (match_operand:HI 1 "memory_operand" "m")))]
"TARGET_ARCH64"
"ldsh\t%1, %0"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_expand "extendsidi2"
[(set (match_operand:DI 0 "register_operand" "")
(sign_extend:DI (match_operand:SI 1 "register_operand" "")))]
"TARGET_ARCH64"
"")
(define_insn "*sign_extendsidi2_insn"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(sign_extend:DI (match_operand:SI 1 "input_operand" "r,m")))]
"TARGET_ARCH64"
"@
sra\t%1, 0, %0
ldsw\t%1, %0"
[(set_attr "type" "shift,sload")
(set_attr "us3load_type" "*,3cycle")])
;; Special pattern for optimizing bit-field compares. This is needed
;; because combine uses this as a canonical form.
(define_insn "*cmp_zero_extract"
[(set (reg:CC 100)
(compare:CC
(zero_extract:SI (match_operand:SI 0 "register_operand" "r")
(match_operand:SI 1 "small_int_operand" "I")
(match_operand:SI 2 "small_int_operand" "I"))
(const_int 0)))]
"INTVAL (operands[2]) > 19"
{
int len = INTVAL (operands[1]);
int pos = 32 - INTVAL (operands[2]) - len;
HOST_WIDE_INT mask = ((1 << len) - 1) << pos;
operands[1] = GEN_INT (mask);
return "andcc\t%0, %1, %%g0";
}
[(set_attr "type" "compare")])
(define_insn "*cmp_zero_extract_sp64"
[(set (reg:CCX 100)
(compare:CCX
(zero_extract:DI (match_operand:DI 0 "register_operand" "r")
(match_operand:SI 1 "small_int_operand" "I")
(match_operand:SI 2 "small_int_operand" "I"))
(const_int 0)))]
"TARGET_ARCH64 && INTVAL (operands[2]) > 51"
{
int len = INTVAL (operands[1]);
int pos = 64 - INTVAL (operands[2]) - len;
HOST_WIDE_INT mask = (((unsigned HOST_WIDE_INT) 1 << len) - 1) << pos;
operands[1] = GEN_INT (mask);
return "andcc\t%0, %1, %%g0";
}
[(set_attr "type" "compare")])
;; Conversions between float, double and long double.
(define_insn "extendsfdf2"
[(set (match_operand:DF 0 "register_operand" "=e")
(float_extend:DF
(match_operand:SF 1 "register_operand" "f")))]
"TARGET_FPU"
"fstod\t%1, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_expand "extendsftf2"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(float_extend:TF
(match_operand:SF 1 "register_operand" "")))]
"TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_cvt (FLOAT_EXTEND, operands); DONE;")
(define_insn "*extendsftf2_hq"
[(set (match_operand:TF 0 "register_operand" "=e")
(float_extend:TF
(match_operand:SF 1 "register_operand" "f")))]
"TARGET_FPU && TARGET_HARD_QUAD"
"fstoq\t%1, %0"
[(set_attr "type" "fp")])
(define_expand "extenddftf2"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(float_extend:TF
(match_operand:DF 1 "register_operand" "")))]
"TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_cvt (FLOAT_EXTEND, operands); DONE;")
(define_insn "*extenddftf2_hq"
[(set (match_operand:TF 0 "register_operand" "=e")
(float_extend:TF
(match_operand:DF 1 "register_operand" "e")))]
"TARGET_FPU && TARGET_HARD_QUAD"
"fdtoq\t%1, %0"
[(set_attr "type" "fp")])
(define_insn "truncdfsf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(float_truncate:SF
(match_operand:DF 1 "register_operand" "e")))]
"TARGET_FPU"
"fdtos\t%1, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_expand "trunctfsf2"
[(set (match_operand:SF 0 "register_operand" "")
(float_truncate:SF
(match_operand:TF 1 "general_operand" "")))]
"TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_cvt (FLOAT_TRUNCATE, operands); DONE;")
(define_insn "*trunctfsf2_hq"
[(set (match_operand:SF 0 "register_operand" "=f")
(float_truncate:SF
(match_operand:TF 1 "register_operand" "e")))]
"TARGET_FPU && TARGET_HARD_QUAD"
"fqtos\t%1, %0"
[(set_attr "type" "fp")])
(define_expand "trunctfdf2"
[(set (match_operand:DF 0 "register_operand" "")
(float_truncate:DF
(match_operand:TF 1 "general_operand" "")))]
"TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_cvt (FLOAT_TRUNCATE, operands); DONE;")
(define_insn "*trunctfdf2_hq"
[(set (match_operand:DF 0 "register_operand" "=e")
(float_truncate:DF
(match_operand:TF 1 "register_operand" "e")))]
"TARGET_FPU && TARGET_HARD_QUAD"
"fqtod\t%1, %0"
[(set_attr "type" "fp")])
;; Conversion between fixed point and floating point.
(define_insn "floatsisf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(float:SF (match_operand:SI 1 "register_operand" "f")))]
"TARGET_FPU"
"fitos\t%1, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_insn "floatsidf2"
[(set (match_operand:DF 0 "register_operand" "=e")
(float:DF (match_operand:SI 1 "register_operand" "f")))]
"TARGET_FPU"
"fitod\t%1, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_expand "floatsitf2"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(float:TF (match_operand:SI 1 "register_operand" "")))]
"TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_cvt (FLOAT, operands); DONE;")
(define_insn "*floatsitf2_hq"
[(set (match_operand:TF 0 "register_operand" "=e")
(float:TF (match_operand:SI 1 "register_operand" "f")))]
"TARGET_FPU && TARGET_HARD_QUAD"
"fitoq\t%1, %0"
[(set_attr "type" "fp")])
(define_expand "floatunssitf2"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(unsigned_float:TF (match_operand:SI 1 "register_operand" "")))]
"TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD"
"emit_tfmode_cvt (UNSIGNED_FLOAT, operands); DONE;")
;; Now the same for 64 bit sources.
(define_insn "floatdisf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(float:SF (match_operand:DI 1 "register_operand" "e")))]
"TARGET_V9 && TARGET_FPU"
"fxtos\t%1, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_expand "floatunsdisf2"
[(use (match_operand:SF 0 "register_operand" ""))
(use (match_operand:DI 1 "general_operand" ""))]
"TARGET_ARCH64 && TARGET_FPU"
"sparc_emit_floatunsdi (operands, SFmode); DONE;")
(define_insn "floatdidf2"
[(set (match_operand:DF 0 "register_operand" "=e")
(float:DF (match_operand:DI 1 "register_operand" "e")))]
"TARGET_V9 && TARGET_FPU"
"fxtod\t%1, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_expand "floatunsdidf2"
[(use (match_operand:DF 0 "register_operand" ""))
(use (match_operand:DI 1 "general_operand" ""))]
"TARGET_ARCH64 && TARGET_FPU"
"sparc_emit_floatunsdi (operands, DFmode); DONE;")
(define_expand "floatditf2"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(float:TF (match_operand:DI 1 "register_operand" "")))]
"TARGET_FPU && TARGET_V9 && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_cvt (FLOAT, operands); DONE;")
(define_insn "*floatditf2_hq"
[(set (match_operand:TF 0 "register_operand" "=e")
(float:TF (match_operand:DI 1 "register_operand" "e")))]
"TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD"
"fxtoq\t%1, %0"
[(set_attr "type" "fp")])
(define_expand "floatunsditf2"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(unsigned_float:TF (match_operand:DI 1 "register_operand" "")))]
"TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD"
"emit_tfmode_cvt (UNSIGNED_FLOAT, operands); DONE;")
;; Convert a float to an actual integer.
;; Truncation is performed as part of the conversion.
(define_insn "fix_truncsfsi2"
[(set (match_operand:SI 0 "register_operand" "=f")
(fix:SI (fix:SF (match_operand:SF 1 "register_operand" "f"))))]
"TARGET_FPU"
"fstoi\t%1, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_insn "fix_truncdfsi2"
[(set (match_operand:SI 0 "register_operand" "=f")
(fix:SI (fix:DF (match_operand:DF 1 "register_operand" "e"))))]
"TARGET_FPU"
"fdtoi\t%1, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_expand "fix_trunctfsi2"
[(set (match_operand:SI 0 "register_operand" "")
(fix:SI (match_operand:TF 1 "general_operand" "")))]
"TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_cvt (FIX, operands); DONE;")
(define_insn "*fix_trunctfsi2_hq"
[(set (match_operand:SI 0 "register_operand" "=f")
(fix:SI (match_operand:TF 1 "register_operand" "e")))]
"TARGET_FPU && TARGET_HARD_QUAD"
"fqtoi\t%1, %0"
[(set_attr "type" "fp")])
(define_expand "fixuns_trunctfsi2"
[(set (match_operand:SI 0 "register_operand" "")
(unsigned_fix:SI (match_operand:TF 1 "general_operand" "")))]
"TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD"
"emit_tfmode_cvt (UNSIGNED_FIX, operands); DONE;")
;; Now the same, for V9 targets
(define_insn "fix_truncsfdi2"
[(set (match_operand:DI 0 "register_operand" "=e")
(fix:DI (fix:SF (match_operand:SF 1 "register_operand" "f"))))]
"TARGET_V9 && TARGET_FPU"
"fstox\t%1, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_expand "fixuns_truncsfdi2"
[(use (match_operand:DI 0 "register_operand" ""))
(use (match_operand:SF 1 "general_operand" ""))]
"TARGET_ARCH64 && TARGET_FPU"
"sparc_emit_fixunsdi (operands, SFmode); DONE;")
(define_insn "fix_truncdfdi2"
[(set (match_operand:DI 0 "register_operand" "=e")
(fix:DI (fix:DF (match_operand:DF 1 "register_operand" "e"))))]
"TARGET_V9 && TARGET_FPU"
"fdtox\t%1, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_expand "fixuns_truncdfdi2"
[(use (match_operand:DI 0 "register_operand" ""))
(use (match_operand:DF 1 "general_operand" ""))]
"TARGET_ARCH64 && TARGET_FPU"
"sparc_emit_fixunsdi (operands, DFmode); DONE;")
(define_expand "fix_trunctfdi2"
[(set (match_operand:DI 0 "register_operand" "")
(fix:DI (match_operand:TF 1 "general_operand" "")))]
"TARGET_V9 && TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_cvt (FIX, operands); DONE;")
(define_insn "*fix_trunctfdi2_hq"
[(set (match_operand:DI 0 "register_operand" "=e")
(fix:DI (match_operand:TF 1 "register_operand" "e")))]
"TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD"
"fqtox\t%1, %0"
[(set_attr "type" "fp")])
(define_expand "fixuns_trunctfdi2"
[(set (match_operand:DI 0 "register_operand" "")
(unsigned_fix:DI (match_operand:TF 1 "general_operand" "")))]
"TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD"
"emit_tfmode_cvt (UNSIGNED_FIX, operands); DONE;")
;; Integer addition/subtraction instructions.
(define_expand "adddi3"
[(set (match_operand:DI 0 "register_operand" "")
(plus:DI (match_operand:DI 1 "register_operand" "")
(match_operand:DI 2 "arith_double_add_operand" "")))]
""
{
if (! TARGET_ARCH64)
{
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2,
gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_PLUS (DImode, operands[1],
operands[2])),
gen_rtx_CLOBBER (VOIDmode,
gen_rtx_REG (CCmode, SPARC_ICC_REG)))));
DONE;
}
})
(define_insn_and_split "adddi3_insn_sp32"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_operand:DI 1 "arith_double_operand" "%r")
(match_operand:DI 2 "arith_double_operand" "rHI")))
(clobber (reg:CC 100))]
"! TARGET_ARCH64"
"#"
"&& reload_completed"
[(parallel [(set (reg:CC_NOOV 100)
(compare:CC_NOOV (plus:SI (match_dup 4)
(match_dup 5))
(const_int 0)))
(set (match_dup 3)
(plus:SI (match_dup 4) (match_dup 5)))])
(set (match_dup 6)
(plus:SI (plus:SI (match_dup 7)
(match_dup 8))
(ltu:SI (reg:CC_NOOV 100) (const_int 0))))]
{
operands[3] = gen_lowpart (SImode, operands[0]);
operands[4] = gen_lowpart (SImode, operands[1]);
operands[5] = gen_lowpart (SImode, operands[2]);
operands[6] = gen_highpart (SImode, operands[0]);
operands[7] = gen_highpart_mode (SImode, DImode, operands[1]);
#if HOST_BITS_PER_WIDE_INT == 32
if (GET_CODE (operands[2]) == CONST_INT)
{
if (INTVAL (operands[2]) < 0)
operands[8] = constm1_rtx;
else
operands[8] = const0_rtx;
}
else
#endif
operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
}
[(set_attr "length" "2")])
;; LTU here means "carry set"
(define_insn "addx"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (plus:SI (match_operand:SI 1 "arith_operand" "%r")
(match_operand:SI 2 "arith_operand" "rI"))
(ltu:SI (reg:CC_NOOV 100) (const_int 0))))]
""
"addx\t%1, %2, %0"
[(set_attr "type" "ialuX")])
(define_insn_and_split "*addx_extend_sp32"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (plus:SI (plus:SI
(match_operand:SI 1 "register_or_zero_operand" "%rJ")
(match_operand:SI 2 "arith_operand" "rI"))
(ltu:SI (reg:CC_NOOV 100) (const_int 0)))))]
"! TARGET_ARCH64"
"#"
"&& reload_completed"
[(set (match_dup 3) (plus:SI (plus:SI (match_dup 1) (match_dup 2))
(ltu:SI (reg:CC_NOOV 100) (const_int 0))))
(set (match_dup 4) (const_int 0))]
"operands[3] = gen_lowpart (SImode, operands[0]);
operands[4] = gen_highpart_mode (SImode, DImode, operands[1]);"
[(set_attr "length" "2")])
(define_insn "*addx_extend_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (plus:SI (plus:SI (match_operand:SI 1 "register_or_zero_operand" "%rJ")
(match_operand:SI 2 "arith_operand" "rI"))
(ltu:SI (reg:CC_NOOV 100) (const_int 0)))))]
"TARGET_ARCH64"
"addx\t%r1, %2, %0"
[(set_attr "type" "ialuX")])
(define_insn_and_split ""
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r"))
(match_operand:DI 2 "register_operand" "r")))
(clobber (reg:CC 100))]
"! TARGET_ARCH64"
"#"
"&& reload_completed"
[(parallel [(set (reg:CC_NOOV 100)
(compare:CC_NOOV (plus:SI (match_dup 3) (match_dup 1))
(const_int 0)))
(set (match_dup 5) (plus:SI (match_dup 3) (match_dup 1)))])
(set (match_dup 6)
(plus:SI (plus:SI (match_dup 4) (const_int 0))
(ltu:SI (reg:CC_NOOV 100) (const_int 0))))]
"operands[3] = gen_lowpart (SImode, operands[2]);
operands[4] = gen_highpart (SImode, operands[2]);
operands[5] = gen_lowpart (SImode, operands[0]);
operands[6] = gen_highpart (SImode, operands[0]);"
[(set_attr "length" "2")])
(define_insn "*adddi3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(plus:DI (match_operand:DI 1 "register_operand" "%r,r")
(match_operand:DI 2 "arith_add_operand" "rI,O")))]
"TARGET_ARCH64"
"@
add\t%1, %2, %0
sub\t%1, -%2, %0")
(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,d")
(plus:SI (match_operand:SI 1 "register_operand" "%r,r,d")
(match_operand:SI 2 "arith_add_operand" "rI,O,d")))]
""
"@
add\t%1, %2, %0
sub\t%1, -%2, %0
fpadd32s\t%1, %2, %0"
[(set_attr "type" "*,*,fga")
(set_attr "fptype" "*,*,single")])
(define_insn "*cmp_cc_plus"
[(set (reg:CC_NOOV 100)
(compare:CC_NOOV (plus:SI (match_operand:SI 0 "arith_operand" "%r")
(match_operand:SI 1 "arith_operand" "rI"))
(const_int 0)))]
""
"addcc\t%0, %1, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_plus"
[(set (reg:CCX_NOOV 100)
(compare:CCX_NOOV (plus:DI (match_operand:DI 0 "arith_operand" "%r")
(match_operand:DI 1 "arith_operand" "rI"))
(const_int 0)))]
"TARGET_ARCH64"
"addcc\t%0, %1, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_cc_plus_set"
[(set (reg:CC_NOOV 100)
(compare:CC_NOOV (plus:SI (match_operand:SI 1 "arith_operand" "%r")
(match_operand:SI 2 "arith_operand" "rI"))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"addcc\t%1, %2, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_plus_set"
[(set (reg:CCX_NOOV 100)
(compare:CCX_NOOV (plus:DI (match_operand:DI 1 "arith_operand" "%r")
(match_operand:DI 2 "arith_operand" "rI"))
(const_int 0)))
(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_dup 1) (match_dup 2)))]
"TARGET_ARCH64"
"addcc\t%1, %2, %0"
[(set_attr "type" "compare")])
(define_expand "subdi3"
[(set (match_operand:DI 0 "register_operand" "")
(minus:DI (match_operand:DI 1 "register_operand" "")
(match_operand:DI 2 "arith_double_add_operand" "")))]
""
{
if (! TARGET_ARCH64)
{
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2,
gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_MINUS (DImode, operands[1],
operands[2])),
gen_rtx_CLOBBER (VOIDmode,
gen_rtx_REG (CCmode, SPARC_ICC_REG)))));
DONE;
}
})
(define_insn_and_split "subdi3_insn_sp32"
[(set (match_operand:DI 0 "register_operand" "=r")
(minus:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "arith_double_operand" "rHI")))
(clobber (reg:CC 100))]
"! TARGET_ARCH64"
"#"
"&& reload_completed"
[(parallel [(set (reg:CC_NOOV 100)
(compare:CC_NOOV (minus:SI (match_dup 4)
(match_dup 5))
(const_int 0)))
(set (match_dup 3)
(minus:SI (match_dup 4) (match_dup 5)))])
(set (match_dup 6)
(minus:SI (minus:SI (match_dup 7)
(match_dup 8))
(ltu:SI (reg:CC_NOOV 100) (const_int 0))))]
{
operands[3] = gen_lowpart (SImode, operands[0]);
operands[4] = gen_lowpart (SImode, operands[1]);
operands[5] = gen_lowpart (SImode, operands[2]);
operands[6] = gen_highpart (SImode, operands[0]);
operands[7] = gen_highpart (SImode, operands[1]);
#if HOST_BITS_PER_WIDE_INT == 32
if (GET_CODE (operands[2]) == CONST_INT)
{
if (INTVAL (operands[2]) < 0)
operands[8] = constm1_rtx;
else
operands[8] = const0_rtx;
}
else
#endif
operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
}
[(set_attr "length" "2")])
;; LTU here means "carry set"
(define_insn "subx"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ")
(match_operand:SI 2 "arith_operand" "rI"))
(ltu:SI (reg:CC_NOOV 100) (const_int 0))))]
""
"subx\t%r1, %2, %0"
[(set_attr "type" "ialuX")])
(define_insn "*subx_extend_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (minus:SI (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ")
(match_operand:SI 2 "arith_operand" "rI"))
(ltu:SI (reg:CC_NOOV 100) (const_int 0)))))]
"TARGET_ARCH64"
"subx\t%r1, %2, %0"
[(set_attr "type" "ialuX")])
(define_insn_and_split "*subx_extend"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (minus:SI (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ")
(match_operand:SI 2 "arith_operand" "rI"))
(ltu:SI (reg:CC_NOOV 100) (const_int 0)))))]
"! TARGET_ARCH64"
"#"
"&& reload_completed"
[(set (match_dup 3) (minus:SI (minus:SI (match_dup 1) (match_dup 2))
(ltu:SI (reg:CC_NOOV 100) (const_int 0))))
(set (match_dup 4) (const_int 0))]
"operands[3] = gen_lowpart (SImode, operands[0]);
operands[4] = gen_highpart (SImode, operands[0]);"
[(set_attr "length" "2")])
(define_insn_and_split ""
[(set (match_operand:DI 0 "register_operand" "=r")
(minus:DI (match_operand:DI 1 "register_operand" "r")
(zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))
(clobber (reg:CC 100))]
"! TARGET_ARCH64"
"#"
"&& reload_completed"
[(parallel [(set (reg:CC_NOOV 100)
(compare:CC_NOOV (minus:SI (match_dup 3) (match_dup 2))
(const_int 0)))
(set (match_dup 5) (minus:SI (match_dup 3) (match_dup 2)))])
(set (match_dup 6)
(minus:SI (minus:SI (match_dup 4) (const_int 0))
(ltu:SI (reg:CC_NOOV 100) (const_int 0))))]
"operands[3] = gen_lowpart (SImode, operands[1]);
operands[4] = gen_highpart (SImode, operands[1]);
operands[5] = gen_lowpart (SImode, operands[0]);
operands[6] = gen_highpart (SImode, operands[0]);"
[(set_attr "length" "2")])
(define_insn "*subdi3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(minus:DI (match_operand:DI 1 "register_operand" "r,r")
(match_operand:DI 2 "arith_add_operand" "rI,O")))]
"TARGET_ARCH64"
"@
sub\t%1, %2, %0
add\t%1, -%2, %0")
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,d")
(minus:SI (match_operand:SI 1 "register_operand" "r,r,d")
(match_operand:SI 2 "arith_add_operand" "rI,O,d")))]
""
"@
sub\t%1, %2, %0
add\t%1, -%2, %0
fpsub32s\t%1, %2, %0"
[(set_attr "type" "*,*,fga")
(set_attr "fptype" "*,*,single")])
(define_insn "*cmp_minus_cc"
[(set (reg:CC_NOOV 100)
(compare:CC_NOOV (minus:SI (match_operand:SI 0 "register_or_zero_operand" "rJ")
(match_operand:SI 1 "arith_operand" "rI"))
(const_int 0)))]
""
"subcc\t%r0, %1, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_minus_ccx"
[(set (reg:CCX_NOOV 100)
(compare:CCX_NOOV (minus:DI (match_operand:DI 0 "register_operand" "r")
(match_operand:DI 1 "arith_operand" "rI"))
(const_int 0)))]
"TARGET_ARCH64"
"subcc\t%0, %1, %%g0"
[(set_attr "type" "compare")])
(define_insn "cmp_minus_cc_set"
[(set (reg:CC_NOOV 100)
(compare:CC_NOOV (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ")
(match_operand:SI 2 "arith_operand" "rI"))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (match_dup 1) (match_dup 2)))]
""
"subcc\t%r1, %2, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_minus_ccx_set"
[(set (reg:CCX_NOOV 100)
(compare:CCX_NOOV (minus:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "arith_operand" "rI"))
(const_int 0)))
(set (match_operand:DI 0 "register_operand" "=r")
(minus:DI (match_dup 1) (match_dup 2)))]
"TARGET_ARCH64"
"subcc\t%1, %2, %0"
[(set_attr "type" "compare")])
;; Integer multiply/divide instructions.
;; The 32 bit multiply/divide instructions are deprecated on v9, but at
;; least in UltraSPARC I, II and IIi it is a win tick-wise.
(define_insn "mulsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI (match_operand:SI 1 "arith_operand" "%r")
(match_operand:SI 2 "arith_operand" "rI")))]
"TARGET_HARD_MUL"
"smul\t%1, %2, %0"
[(set_attr "type" "imul")])
(define_expand "muldi3"
[(set (match_operand:DI 0 "register_operand" "")
(mult:DI (match_operand:DI 1 "arith_operand" "")
(match_operand:DI 2 "arith_operand" "")))]
"TARGET_ARCH64 || TARGET_V8PLUS"
{
if (TARGET_V8PLUS)
{
emit_insn (gen_muldi3_v8plus (operands[0], operands[1], operands[2]));
DONE;
}
})
(define_insn "*muldi3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI (match_operand:DI 1 "arith_operand" "%r")
(match_operand:DI 2 "arith_operand" "rI")))]
"TARGET_ARCH64"
"mulx\t%1, %2, %0"
[(set_attr "type" "imul")])
;; V8plus wide multiply.
;; XXX
(define_insn "muldi3_v8plus"
[(set (match_operand:DI 0 "register_operand" "=r,h")
(mult:DI (match_operand:DI 1 "arith_operand" "%r,0")
(match_operand:DI 2 "arith_operand" "rI,rI")))
(clobber (match_scratch:SI 3 "=&h,X"))
(clobber (match_scratch:SI 4 "=&h,X"))]
"TARGET_V8PLUS"
{
if (sparc_check_64 (operands[1], insn) <= 0)
output_asm_insn ("srl\t%L1, 0, %L1", operands);
if (which_alternative == 1)
output_asm_insn ("sllx\t%H1, 32, %H1", operands);
if (GET_CODE (operands[2]) == CONST_INT)
{
if (which_alternative == 1)
return "or\t%L1, %H1, %H1\n\tmulx\t%H1, %2, %L0\;srlx\t%L0, 32, %H0";
else
return "sllx\t%H1, 32, %3\n\tor\t%L1, %3, %3\n\tmulx\t%3, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0";
}
else if (rtx_equal_p (operands[1], operands[2]))
{
if (which_alternative == 1)
return "or\t%L1, %H1, %H1\n\tmulx\t%H1, %H1, %L0\;srlx\t%L0, 32, %H0";
else
return "sllx\t%H1, 32, %3\n\tor\t%L1, %3, %3\n\tmulx\t%3, %3, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0";
}
if (sparc_check_64 (operands[2], insn) <= 0)
output_asm_insn ("srl\t%L2, 0, %L2", operands);
if (which_alternative == 1)
return "or\t%L1, %H1, %H1\n\tsllx\t%H2, 32, %L1\n\tor\t%L2, %L1, %L1\n\tmulx\t%H1, %L1, %L0\;srlx\t%L0, 32, %H0";
else
return "sllx\t%H1, 32, %3\n\tsllx\t%H2, 32, %4\n\tor\t%L1, %3, %3\n\tor\t%L2, %4, %4\n\tmulx\t%3, %4, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0";
}
[(set_attr "type" "multi")
(set_attr "length" "9,8")])
(define_insn "*cmp_mul_set"
[(set (reg:CC 100)
(compare:CC (mult:SI (match_operand:SI 1 "arith_operand" "%r")
(match_operand:SI 2 "arith_operand" "rI"))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI (match_dup 1) (match_dup 2)))]
"TARGET_V8 || TARGET_SPARCLITE || TARGET_DEPRECATED_V8_INSNS"
"smulcc\t%1, %2, %0"
[(set_attr "type" "imul")])
(define_expand "mulsidi3"
[(set (match_operand:DI 0 "register_operand" "")
(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" ""))
(sign_extend:DI (match_operand:SI 2 "arith_operand" ""))))]
"TARGET_HARD_MUL"
{
if (CONSTANT_P (operands[2]))
{
if (TARGET_V8PLUS)
emit_insn (gen_const_mulsidi3_v8plus (operands[0], operands[1],
operands[2]));
else if (TARGET_ARCH32)
emit_insn (gen_const_mulsidi3_sp32 (operands[0], operands[1],
operands[2]));
else
emit_insn (gen_const_mulsidi3_sp64 (operands[0], operands[1],
operands[2]));
DONE;
}
if (TARGET_V8PLUS)
{
emit_insn (gen_mulsidi3_v8plus (operands[0], operands[1], operands[2]));
DONE;
}
})
;; V9 puts the 64 bit product in a 64 bit register. Only out or global
;; registers can hold 64 bit values in the V8plus environment.
;; XXX
(define_insn "mulsidi3_v8plus"
[(set (match_operand:DI 0 "register_operand" "=h,r")
(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r"))
(sign_extend:DI (match_operand:SI 2 "register_operand" "r,r"))))
(clobber (match_scratch:SI 3 "=X,&h"))]
"TARGET_V8PLUS"
"@
smul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0
smul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"
[(set_attr "type" "multi")
(set_attr "length" "2,3")])
;; XXX
(define_insn "const_mulsidi3_v8plus"
[(set (match_operand:DI 0 "register_operand" "=h,r")
(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r"))
(match_operand:DI 2 "small_int_operand" "I,I")))
(clobber (match_scratch:SI 3 "=X,&h"))]
"TARGET_V8PLUS"
"@
smul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0
smul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"
[(set_attr "type" "multi")
(set_attr "length" "2,3")])
;; XXX
(define_insn "*mulsidi3_sp32"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
(sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))]
"TARGET_HARD_MUL32"
{
return TARGET_SPARCLET
? "smuld\t%1, %2, %L0"
: "smul\t%1, %2, %L0\n\trd\t%%y, %H0";
}
[(set (attr "type")
(if_then_else (eq_attr "isa" "sparclet")
(const_string "imul") (const_string "multi")))
(set (attr "length")
(if_then_else (eq_attr "isa" "sparclet")
(const_int 1) (const_int 2)))])
(define_insn "*mulsidi3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
(sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))]
"TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64"
"smul\t%1, %2, %0"
[(set_attr "type" "imul")])
;; Extra pattern, because sign_extend of a constant isn't valid.
;; XXX
(define_insn "const_mulsidi3_sp32"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
(match_operand:DI 2 "small_int_operand" "I")))]
"TARGET_HARD_MUL32"
{
return TARGET_SPARCLET
? "smuld\t%1, %2, %L0"
: "smul\t%1, %2, %L0\n\trd\t%%y, %H0";
}
[(set (attr "type")
(if_then_else (eq_attr "isa" "sparclet")
(const_string "imul") (const_string "multi")))
(set (attr "length")
(if_then_else (eq_attr "isa" "sparclet")
(const_int 1) (const_int 2)))])
(define_insn "const_mulsidi3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
(match_operand:DI 2 "small_int_operand" "I")))]
"TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64"
"smul\t%1, %2, %0"
[(set_attr "type" "imul")])
(define_expand "smulsi3_highpart"
[(set (match_operand:SI 0 "register_operand" "")
(truncate:SI
(lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" ""))
(sign_extend:DI (match_operand:SI 2 "arith_operand" "")))
(const_int 32))))]
"TARGET_HARD_MUL && TARGET_ARCH32"
{
if (CONSTANT_P (operands[2]))
{
if (TARGET_V8PLUS)
{
emit_insn (gen_const_smulsi3_highpart_v8plus (operands[0],
operands[1],
operands[2],
GEN_INT (32)));
DONE;
}
emit_insn (gen_const_smulsi3_highpart (operands[0], operands[1], operands[2]));
DONE;
}
if (TARGET_V8PLUS)
{
emit_insn (gen_smulsi3_highpart_v8plus (operands[0], operands[1],
operands[2], GEN_INT (32)));
DONE;
}
})
;; XXX
(define_insn "smulsi3_highpart_v8plus"
[(set (match_operand:SI 0 "register_operand" "=h,r")
(truncate:SI
(lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r"))
(sign_extend:DI (match_operand:SI 2 "register_operand" "r,r")))
(match_operand:SI 3 "small_int_operand" "I,I"))))
(clobber (match_scratch:SI 4 "=X,&h"))]
"TARGET_V8PLUS"
"@
smul\t%1, %2, %0\;srlx\t%0, %3, %0
smul\t%1, %2, %4\;srlx\t%4, %3, %0"
[(set_attr "type" "multi")
(set_attr "length" "2")])
;; The combiner changes TRUNCATE in the previous pattern to SUBREG.
;; XXX
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=h,r")
(subreg:SI
(lshiftrt:DI
(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r"))
(sign_extend:DI (match_operand:SI 2 "register_operand" "r,r")))
(match_operand:SI 3 "small_int_operand" "I,I"))
4))
(clobber (match_scratch:SI 4 "=X,&h"))]
"TARGET_V8PLUS"
"@
smul\t%1, %2, %0\n\tsrlx\t%0, %3, %0
smul\t%1, %2, %4\n\tsrlx\t%4, %3, %0"
[(set_attr "type" "multi")
(set_attr "length" "2")])
;; XXX
(define_insn "const_smulsi3_highpart_v8plus"
[(set (match_operand:SI 0 "register_operand" "=h,r")
(truncate:SI
(lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r"))
(match_operand:DI 2 "small_int_operand" "I,I"))
(match_operand:SI 3 "small_int_operand" "I,I"))))
(clobber (match_scratch:SI 4 "=X,&h"))]
"TARGET_V8PLUS"
"@
smul\t%1, %2, %0\n\tsrlx\t%0, %3, %0
smul\t%1, %2, %4\n\tsrlx\t%4, %3, %0"
[(set_attr "type" "multi")
(set_attr "length" "2")])
;; XXX
(define_insn "*smulsi3_highpart_sp32"
[(set (match_operand:SI 0 "register_operand" "=r")
(truncate:SI
(lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
(sign_extend:DI (match_operand:SI 2 "register_operand" "r")))
(const_int 32))))]
"TARGET_HARD_MUL32"
"smul\t%1, %2, %%g0\n\trd\t%%y, %0"
[(set_attr "type" "multi")
(set_attr "length" "2")])
;; XXX
(define_insn "const_smulsi3_highpart"
[(set (match_operand:SI 0 "register_operand" "=r")
(truncate:SI
(lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
(match_operand:DI 2 "small_int_operand" "i"))
(const_int 32))))]
"TARGET_HARD_MUL32"
"smul\t%1, %2, %%g0\n\trd\t%%y, %0"
[(set_attr "type" "multi")
(set_attr "length" "2")])
(define_expand "umulsidi3"
[(set (match_operand:DI 0 "register_operand" "")
(mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" ""))
(zero_extend:DI (match_operand:SI 2 "uns_arith_operand" ""))))]
"TARGET_HARD_MUL"
{
if (CONSTANT_P (operands[2]))
{
if (TARGET_V8PLUS)
emit_insn (gen_const_umulsidi3_v8plus (operands[0], operands[1],
operands[2]));
else if (TARGET_ARCH32)
emit_insn (gen_const_umulsidi3_sp32 (operands[0], operands[1],
operands[2]));
else
emit_insn (gen_const_umulsidi3_sp64 (operands[0], operands[1],
operands[2]));
DONE;
}
if (TARGET_V8PLUS)
{
emit_insn (gen_umulsidi3_v8plus (operands[0], operands[1], operands[2]));
DONE;
}
})
;; XXX
(define_insn "umulsidi3_v8plus"
[(set (match_operand:DI 0 "register_operand" "=h,r")
(mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r"))
(zero_extend:DI (match_operand:SI 2 "register_operand" "r,r"))))
(clobber (match_scratch:SI 3 "=X,&h"))]
"TARGET_V8PLUS"
"@
umul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0
umul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"
[(set_attr "type" "multi")
(set_attr "length" "2,3")])
;; XXX
(define_insn "*umulsidi3_sp32"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r"))
(zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))]
"TARGET_HARD_MUL32"
{
return TARGET_SPARCLET
? "umuld\t%1, %2, %L0"
: "umul\t%1, %2, %L0\n\trd\t%%y, %H0";
}
[(set (attr "type")
(if_then_else (eq_attr "isa" "sparclet")
(const_string "imul") (const_string "multi")))
(set (attr "length")
(if_then_else (eq_attr "isa" "sparclet")
(const_int 1) (const_int 2)))])
(define_insn "*umulsidi3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r"))
(zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))]
"TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64"
"umul\t%1, %2, %0"
[(set_attr "type" "imul")])
;; Extra pattern, because sign_extend of a constant isn't valid.
;; XXX
(define_insn "const_umulsidi3_sp32"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r"))
(match_operand:DI 2 "uns_small_int_operand" "")))]
"TARGET_HARD_MUL32"
{
return TARGET_SPARCLET
? "umuld\t%1, %s2, %L0"
: "umul\t%1, %s2, %L0\n\trd\t%%y, %H0";
}
[(set (attr "type")
(if_then_else (eq_attr "isa" "sparclet")
(const_string "imul") (const_string "multi")))
(set (attr "length")
(if_then_else (eq_attr "isa" "sparclet")
(const_int 1) (const_int 2)))])
(define_insn "const_umulsidi3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r"))
(match_operand:DI 2 "uns_small_int_operand" "")))]
"TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64"
"umul\t%1, %s2, %0"
[(set_attr "type" "imul")])
;; XXX
(define_insn "const_umulsidi3_v8plus"
[(set (match_operand:DI 0 "register_operand" "=h,r")
(mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r"))
(match_operand:DI 2 "uns_small_int_operand" "")))
(clobber (match_scratch:SI 3 "=X,h"))]
"TARGET_V8PLUS"
"@
umul\t%1, %s2, %L0\n\tsrlx\t%L0, 32, %H0
umul\t%1, %s2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"
[(set_attr "type" "multi")
(set_attr "length" "2,3")])
(define_expand "umulsi3_highpart"
[(set (match_operand:SI 0 "register_operand" "")
(truncate:SI
(lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" ""))
(zero_extend:DI (match_operand:SI 2 "uns_arith_operand" "")))
(const_int 32))))]
"TARGET_HARD_MUL && TARGET_ARCH32"
{
if (CONSTANT_P (operands[2]))
{
if (TARGET_V8PLUS)
{
emit_insn (gen_const_umulsi3_highpart_v8plus (operands[0],
operands[1],
operands[2],
GEN_INT (32)));
DONE;
}
emit_insn (gen_const_umulsi3_highpart (operands[0], operands[1], operands[2]));
DONE;
}
if (TARGET_V8PLUS)
{
emit_insn (gen_umulsi3_highpart_v8plus (operands[0], operands[1],
operands[2], GEN_INT (32)));
DONE;
}
})
;; XXX
(define_insn "umulsi3_highpart_v8plus"
[(set (match_operand:SI 0 "register_operand" "=h,r")
(truncate:SI
(lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r"))
(zero_extend:DI (match_operand:SI 2 "register_operand" "r,r")))
(match_operand:SI 3 "small_int_operand" "I,I"))))
(clobber (match_scratch:SI 4 "=X,h"))]
"TARGET_V8PLUS"
"@
umul\t%1, %2, %0\n\tsrlx\t%0, %3, %0
umul\t%1, %2, %4\n\tsrlx\t%4, %3, %0"
[(set_attr "type" "multi")
(set_attr "length" "2")])
;; XXX
(define_insn "const_umulsi3_highpart_v8plus"
[(set (match_operand:SI 0 "register_operand" "=h,r")
(truncate:SI
(lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r"))
(match_operand:DI 2 "uns_small_int_operand" ""))
(match_operand:SI 3 "small_int_operand" "I,I"))))
(clobber (match_scratch:SI 4 "=X,h"))]
"TARGET_V8PLUS"
"@
umul\t%1, %s2, %0\n\tsrlx\t%0, %3, %0
umul\t%1, %s2, %4\n\tsrlx\t%4, %3, %0"
[(set_attr "type" "multi")
(set_attr "length" "2")])
;; XXX
(define_insn "*umulsi3_highpart_sp32"
[(set (match_operand:SI 0 "register_operand" "=r")
(truncate:SI
(lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r"))
(zero_extend:DI (match_operand:SI 2 "register_operand" "r")))
(const_int 32))))]
"TARGET_HARD_MUL32"
"umul\t%1, %2, %%g0\n\trd\t%%y, %0"
[(set_attr "type" "multi")
(set_attr "length" "2")])
;; XXX
(define_insn "const_umulsi3_highpart"
[(set (match_operand:SI 0 "register_operand" "=r")
(truncate:SI
(lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r"))
(match_operand:DI 2 "uns_small_int_operand" ""))
(const_int 32))))]
"TARGET_HARD_MUL32"
"umul\t%1, %s2, %%g0\n\trd\t%%y, %0"
[(set_attr "type" "multi")
(set_attr "length" "2")])
;; The V8 architecture specifies that there must be 3 instructions between
;; a Y register write and a use of it for correct results.
(define_expand "divsi3"
[(parallel [(set (match_operand:SI 0 "register_operand" "=r,r")
(div:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "input_operand" "rI,m")))
(clobber (match_scratch:SI 3 "=&r,&r"))])]
"TARGET_V8 || TARGET_DEPRECATED_V8_INSNS"
{
if (TARGET_ARCH64)
{
operands[3] = gen_reg_rtx(SImode);
emit_insn (gen_ashrsi3 (operands[3], operands[1], GEN_INT (31)));
emit_insn (gen_divsi3_sp64 (operands[0], operands[1], operands[2],
operands[3]));
DONE;
}
})
(define_insn "divsi3_sp32"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(div:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "input_operand" "rI,m")))
(clobber (match_scratch:SI 3 "=&r,&r"))]
"(TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
&& TARGET_ARCH32"
{
if (which_alternative == 0)
if (TARGET_V9)
return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tsdiv\t%1, %2, %0";
else
return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tnop\n\tnop\n\tnop\n\tsdiv\t%1, %2, %0";
else
if (TARGET_V9)
return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tld\t%2, %3\n\tsdiv\t%1, %3, %0";
else
return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tld\t%2, %3\n\tnop\n\tnop\n\tsdiv\t%1, %3, %0";
}
[(set_attr "type" "multi")
(set (attr "length")
(if_then_else (eq_attr "isa" "v9")
(const_int 4) (const_int 6)))])
(define_insn "divsi3_sp64"
[(set (match_operand:SI 0 "register_operand" "=r")
(div:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "input_operand" "rI")))
(use (match_operand:SI 3 "register_operand" "r"))]
"TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64"
"wr\t%%g0, %3, %%y\n\tsdiv\t%1, %2, %0"
[(set_attr "type" "multi")
(set_attr "length" "2")])
(define_insn "divdi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(div:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "arith_operand" "rI")))]
"TARGET_ARCH64"
"sdivx\t%1, %2, %0"
[(set_attr "type" "idiv")])
(define_insn "*cmp_sdiv_cc_set"
[(set (reg:CC 100)
(compare:CC (div:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI"))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(div:SI (match_dup 1) (match_dup 2)))
(clobber (match_scratch:SI 3 "=&r"))]
"TARGET_V8 || TARGET_DEPRECATED_V8_INSNS"
{
if (TARGET_V9)
return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tsdivcc\t%1, %2, %0";
else
return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tnop\n\tnop\n\tnop\n\tsdivcc\t%1, %2, %0";
}
[(set_attr "type" "multi")
(set (attr "length")
(if_then_else (eq_attr "isa" "v9")
(const_int 3) (const_int 6)))])
;; XXX
(define_expand "udivsi3"
[(set (match_operand:SI 0 "register_operand" "")
(udiv:SI (match_operand:SI 1 "nonimmediate_operand" "")
(match_operand:SI 2 "input_operand" "")))]
"TARGET_V8 || TARGET_DEPRECATED_V8_INSNS"
"")
;; The V8 architecture specifies that there must be 3 instructions between
;; a Y register write and a use of it for correct results.
(define_insn "udivsi3_sp32"
[(set (match_operand:SI 0 "register_operand" "=r,&r,&r")
(udiv:SI (match_operand:SI 1 "nonimmediate_operand" "r,r,m")
(match_operand:SI 2 "input_operand" "rI,m,r")))]
"(TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
&& TARGET_ARCH32"
{
output_asm_insn ("wr\t%%g0, %%g0, %%y", operands);
switch (which_alternative)
{
default:
return "nop\n\tnop\n\tnop\n\tudiv\t%1, %2, %0";
case 1:
return "ld\t%2, %0\n\tnop\n\tnop\n\tudiv\t%1, %0, %0";
case 2:
return "ld\t%1, %0\n\tnop\n\tnop\n\tudiv\t%0, %2, %0";
}
}
[(set_attr "type" "multi")
(set_attr "length" "5")])
(define_insn "udivsi3_sp64"
[(set (match_operand:SI 0 "register_operand" "=r")
(udiv:SI (match_operand:SI 1 "nonimmediate_operand" "r")
(match_operand:SI 2 "input_operand" "rI")))]
"TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64"
"wr\t%%g0, 0, %%y\n\tudiv\t%1, %2, %0"
[(set_attr "type" "multi")
(set_attr "length" "2")])
(define_insn "udivdi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(udiv:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "arith_operand" "rI")))]
"TARGET_ARCH64"
"udivx\t%1, %2, %0"
[(set_attr "type" "idiv")])
(define_insn "*cmp_udiv_cc_set"
[(set (reg:CC 100)
(compare:CC (udiv:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI"))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(udiv:SI (match_dup 1) (match_dup 2)))]
"TARGET_V8
|| TARGET_DEPRECATED_V8_INSNS"
{
if (TARGET_V9)
return "wr\t%%g0, %%g0, %%y\n\tudivcc\t%1, %2, %0";
else
return "wr\t%%g0, %%g0, %%y\n\tnop\n\tnop\n\tnop\n\tudivcc\t%1, %2, %0";
}
[(set_attr "type" "multi")
(set (attr "length")
(if_then_else (eq_attr "isa" "v9")
(const_int 2) (const_int 5)))])
; sparclet multiply/accumulate insns
(define_insn "*smacsi"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "arith_operand" "rI"))
(match_operand:SI 3 "register_operand" "0")))]
"TARGET_SPARCLET"
"smac\t%1, %2, %0"
[(set_attr "type" "imul")])
(define_insn "*smacdi"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (mult:DI (sign_extend:DI
(match_operand:SI 1 "register_operand" "%r"))
(sign_extend:DI
(match_operand:SI 2 "register_operand" "r")))
(match_operand:DI 3 "register_operand" "0")))]
"TARGET_SPARCLET"
"smacd\t%1, %2, %L0"
[(set_attr "type" "imul")])
(define_insn "*umacdi"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (mult:DI (zero_extend:DI
(match_operand:SI 1 "register_operand" "%r"))
(zero_extend:DI
(match_operand:SI 2 "register_operand" "r")))
(match_operand:DI 3 "register_operand" "0")))]
"TARGET_SPARCLET"
"umacd\t%1, %2, %L0"
[(set_attr "type" "imul")])
;; Boolean instructions.
;; We define DImode `and' so with DImode `not' we can get
;; DImode `andn'. Other combinations are possible.
(define_mode_macro V64I [DI V2SI V4HI V8QI])
(define_mode_macro V32I [SI V2HI V4QI])
(define_expand "and<V64I:mode>3"
[(set (match_operand:V64I 0 "register_operand" "")
(and:V64I (match_operand:V64I 1 "arith_double_operand" "")
(match_operand:V64I 2 "arith_double_operand" "")))]
""
"")
(define_insn "*and<V64I:mode>3_sp32"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(and:V64I (match_operand:V64I 1 "arith_double_operand" "%r,b")
(match_operand:V64I 2 "arith_double_operand" "rHI,b")))]
"! TARGET_ARCH64"
"@
#
fand\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "length" "2,*")
(set_attr "fptype" "*,double")])
(define_insn "*and<V64I:mode>3_sp64"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(and:V64I (match_operand:V64I 1 "arith_operand" "%r,b")
(match_operand:V64I 2 "arith_operand" "rI,b")))]
"TARGET_ARCH64"
"@
and\t%1, %2, %0
fand\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,double")])
(define_insn "and<V32I:mode>3"
[(set (match_operand:V32I 0 "register_operand" "=r,d")
(and:V32I (match_operand:V32I 1 "arith_operand" "%r,d")
(match_operand:V32I 2 "arith_operand" "rI,d")))]
""
"@
and\t%1, %2, %0
fands\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,single")])
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(and:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_compl_high_operand" "")))
(clobber (match_operand:SI 3 "register_operand" ""))]
""
[(set (match_dup 3) (match_dup 4))
(set (match_dup 0) (and:SI (not:SI (match_dup 3)) (match_dup 1)))]
{
operands[4] = GEN_INT (~INTVAL (operands[2]));
})
(define_insn_and_split "*and_not_<V64I:mode>_sp32"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(and:V64I (not:V64I (match_operand:V64I 1 "register_operand" "%r,b"))
(match_operand:V64I 2 "register_operand" "r,b")))]
"! TARGET_ARCH64"
"@
#
fandnot1\t%1, %2, %0"
"&& reload_completed
&& ((GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) < 32)
|| (GET_CODE (operands[0]) == SUBREG
&& GET_CODE (SUBREG_REG (operands[0])) == REG
&& REGNO (SUBREG_REG (operands[0])) < 32))"
[(set (match_dup 3) (and:SI (not:SI (match_dup 4)) (match_dup 5)))
(set (match_dup 6) (and:SI (not:SI (match_dup 7)) (match_dup 8)))]
"operands[3] = gen_highpart (SImode, operands[0]);
operands[4] = gen_highpart (SImode, operands[1]);
operands[5] = gen_highpart (SImode, operands[2]);
operands[6] = gen_lowpart (SImode, operands[0]);
operands[7] = gen_lowpart (SImode, operands[1]);
operands[8] = gen_lowpart (SImode, operands[2]);"
[(set_attr "type" "*,fga")
(set_attr "length" "2,*")
(set_attr "fptype" "*,double")])
(define_insn "*and_not_<V64I:mode>_sp64"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(and:V64I (not:V64I (match_operand:V64I 1 "register_operand" "%r,b"))
(match_operand:V64I 2 "register_operand" "r,b")))]
"TARGET_ARCH64"
"@
andn\t%2, %1, %0
fandnot1\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,double")])
(define_insn "*and_not_<V32I:mode>"
[(set (match_operand:V32I 0 "register_operand" "=r,d")
(and:V32I (not:V32I (match_operand:V32I 1 "register_operand" "%r,d"))
(match_operand:V32I 2 "register_operand" "r,d")))]
""
"@
andn\t%2, %1, %0
fandnot1s\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,single")])
(define_expand "ior<V64I:mode>3"
[(set (match_operand:V64I 0 "register_operand" "")
(ior:V64I (match_operand:V64I 1 "arith_double_operand" "")
(match_operand:V64I 2 "arith_double_operand" "")))]
""
"")
(define_insn "*ior<V64I:mode>3_sp32"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(ior:V64I (match_operand:V64I 1 "arith_double_operand" "%r,b")
(match_operand:V64I 2 "arith_double_operand" "rHI,b")))]
"! TARGET_ARCH64"
"@
#
for\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "length" "2,*")
(set_attr "fptype" "*,double")])
(define_insn "*ior<V64I:mode>3_sp64"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(ior:V64I (match_operand:V64I 1 "arith_operand" "%r,b")
(match_operand:V64I 2 "arith_operand" "rI,b")))]
"TARGET_ARCH64"
"@
or\t%1, %2, %0
for\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,double")])
(define_insn "ior<V32I:mode>3"
[(set (match_operand:V32I 0 "register_operand" "=r,d")
(ior:V32I (match_operand:V32I 1 "arith_operand" "%r,d")
(match_operand:V32I 2 "arith_operand" "rI,d")))]
""
"@
or\t%1, %2, %0
fors\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,single")])
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(ior:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_compl_high_operand" "")))
(clobber (match_operand:SI 3 "register_operand" ""))]
""
[(set (match_dup 3) (match_dup 4))
(set (match_dup 0) (ior:SI (not:SI (match_dup 3)) (match_dup 1)))]
{
operands[4] = GEN_INT (~INTVAL (operands[2]));
})
(define_insn_and_split "*or_not_<V64I:mode>_sp32"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(ior:V64I (not:V64I (match_operand:V64I 1 "register_operand" "r,b"))
(match_operand:V64I 2 "register_operand" "r,b")))]
"! TARGET_ARCH64"
"@
#
fornot1\t%1, %2, %0"
"&& reload_completed
&& ((GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) < 32)
|| (GET_CODE (operands[0]) == SUBREG
&& GET_CODE (SUBREG_REG (operands[0])) == REG
&& REGNO (SUBREG_REG (operands[0])) < 32))"
[(set (match_dup 3) (ior:SI (not:SI (match_dup 4)) (match_dup 5)))
(set (match_dup 6) (ior:SI (not:SI (match_dup 7)) (match_dup 8)))]
"operands[3] = gen_highpart (SImode, operands[0]);
operands[4] = gen_highpart (SImode, operands[1]);
operands[5] = gen_highpart (SImode, operands[2]);
operands[6] = gen_lowpart (SImode, operands[0]);
operands[7] = gen_lowpart (SImode, operands[1]);
operands[8] = gen_lowpart (SImode, operands[2]);"
[(set_attr "type" "*,fga")
(set_attr "length" "2,*")
(set_attr "fptype" "*,double")])
(define_insn "*or_not_<V64I:mode>_sp64"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(ior:V64I (not:V64I (match_operand:V64I 1 "register_operand" "r,b"))
(match_operand:V64I 2 "register_operand" "r,b")))]
"TARGET_ARCH64"
"@
orn\t%2, %1, %0
fornot1\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,double")])
(define_insn "*or_not_<V32I:mode>"
[(set (match_operand:V32I 0 "register_operand" "=r,d")
(ior:V32I (not:V32I (match_operand:V32I 1 "register_operand" "r,d"))
(match_operand:V32I 2 "register_operand" "r,d")))]
""
"@
orn\t%2, %1, %0
fornot1s\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,single")])
(define_expand "xor<V64I:mode>3"
[(set (match_operand:V64I 0 "register_operand" "")
(xor:V64I (match_operand:V64I 1 "arith_double_operand" "")
(match_operand:V64I 2 "arith_double_operand" "")))]
""
"")
(define_insn "*xor<V64I:mode>3_sp32"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(xor:V64I (match_operand:V64I 1 "arith_double_operand" "%r,b")
(match_operand:V64I 2 "arith_double_operand" "rHI,b")))]
"! TARGET_ARCH64"
"@
#
fxor\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "length" "2,*")
(set_attr "fptype" "*,double")])
(define_insn "*xor<V64I:mode>3_sp64"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(xor:V64I (match_operand:V64I 1 "arith_operand" "%rJ,b")
(match_operand:V64I 2 "arith_operand" "rI,b")))]
"TARGET_ARCH64"
"@
xor\t%r1, %2, %0
fxor\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,double")])
(define_insn "xor<V32I:mode>3"
[(set (match_operand:V32I 0 "register_operand" "=r,d")
(xor:V32I (match_operand:V32I 1 "arith_operand" "%rJ,d")
(match_operand:V32I 2 "arith_operand" "rI,d")))]
""
"@
xor\t%r1, %2, %0
fxors\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,single")])
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(xor:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_compl_high_operand" "")))
(clobber (match_operand:SI 3 "register_operand" ""))]
""
[(set (match_dup 3) (match_dup 4))
(set (match_dup 0) (not:SI (xor:SI (match_dup 3) (match_dup 1))))]
{
operands[4] = GEN_INT (~INTVAL (operands[2]));
})
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(not:SI (xor:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_compl_high_operand" ""))))
(clobber (match_operand:SI 3 "register_operand" ""))]
""
[(set (match_dup 3) (match_dup 4))
(set (match_dup 0) (xor:SI (match_dup 3) (match_dup 1)))]
{
operands[4] = GEN_INT (~INTVAL (operands[2]));
})
;; Split DImode logical operations requiring two instructions.
(define_split
[(set (match_operand:V64I 0 "register_operand" "")
(match_operator:V64I 1 "cc_arith_operator" ; AND, IOR, XOR
[(match_operand:V64I 2 "register_operand" "")
(match_operand:V64I 3 "arith_double_operand" "")]))]
"! TARGET_ARCH64
&& reload_completed
&& ((GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) < 32)
|| (GET_CODE (operands[0]) == SUBREG
&& GET_CODE (SUBREG_REG (operands[0])) == REG
&& REGNO (SUBREG_REG (operands[0])) < 32))"
[(set (match_dup 4) (match_op_dup:SI 1 [(match_dup 6) (match_dup 8)]))
(set (match_dup 5) (match_op_dup:SI 1 [(match_dup 7) (match_dup 9)]))]
{
operands[4] = gen_highpart (SImode, operands[0]);
operands[5] = gen_lowpart (SImode, operands[0]);
operands[6] = gen_highpart (SImode, operands[2]);
operands[7] = gen_lowpart (SImode, operands[2]);
#if HOST_BITS_PER_WIDE_INT == 32
if (GET_CODE (operands[3]) == CONST_INT && <V64I:MODE>mode == DImode)
{
if (INTVAL (operands[3]) < 0)
operands[8] = constm1_rtx;
else
operands[8] = const0_rtx;
}
else
#endif
operands[8] = gen_highpart_mode (SImode, <V64I:MODE>mode, operands[3]);
operands[9] = gen_lowpart (SImode, operands[3]);
})
;; xnor patterns. Note that (a ^ ~b) == (~a ^ b) == ~(a ^ b).
;; Combine now canonicalizes to the rightmost expression.
(define_insn_and_split "*xor_not_<V64I:mode>_sp32"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(not:V64I (xor:V64I (match_operand:V64I 1 "register_operand" "r,b")
(match_operand:V64I 2 "register_operand" "r,b"))))]
"! TARGET_ARCH64"
"@
#
fxnor\t%1, %2, %0"
"&& reload_completed
&& ((GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) < 32)
|| (GET_CODE (operands[0]) == SUBREG
&& GET_CODE (SUBREG_REG (operands[0])) == REG
&& REGNO (SUBREG_REG (operands[0])) < 32))"
[(set (match_dup 3) (not:SI (xor:SI (match_dup 4) (match_dup 5))))
(set (match_dup 6) (not:SI (xor:SI (match_dup 7) (match_dup 8))))]
"operands[3] = gen_highpart (SImode, operands[0]);
operands[4] = gen_highpart (SImode, operands[1]);
operands[5] = gen_highpart (SImode, operands[2]);
operands[6] = gen_lowpart (SImode, operands[0]);
operands[7] = gen_lowpart (SImode, operands[1]);
operands[8] = gen_lowpart (SImode, operands[2]);"
[(set_attr "type" "*,fga")
(set_attr "length" "2,*")
(set_attr "fptype" "*,double")])
(define_insn "*xor_not_<V64I:mode>_sp64"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(not:V64I (xor:V64I (match_operand:V64I 1 "register_or_zero_operand" "rJ,b")
(match_operand:V64I 2 "arith_operand" "rI,b"))))]
"TARGET_ARCH64"
"@
xnor\t%r1, %2, %0
fxnor\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,double")])
(define_insn "*xor_not_<V32I:mode>"
[(set (match_operand:V32I 0 "register_operand" "=r,d")
(not:V32I (xor:V32I (match_operand:V32I 1 "register_or_zero_operand" "rJ,d")
(match_operand:V32I 2 "arith_operand" "rI,d"))))]
""
"@
xnor\t%r1, %2, %0
fxnors\t%1, %2, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,single")])
;; These correspond to the above in the case where we also (or only)
;; want to set the condition code.
(define_insn "*cmp_cc_arith_op"
[(set (reg:CC 100)
(compare:CC
(match_operator:SI 2 "cc_arith_operator"
[(match_operand:SI 0 "arith_operand" "%r")
(match_operand:SI 1 "arith_operand" "rI")])
(const_int 0)))]
""
"%A2cc\t%0, %1, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_arith_op"
[(set (reg:CCX 100)
(compare:CCX
(match_operator:DI 2 "cc_arith_operator"
[(match_operand:DI 0 "arith_operand" "%r")
(match_operand:DI 1 "arith_operand" "rI")])
(const_int 0)))]
"TARGET_ARCH64"
"%A2cc\t%0, %1, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_cc_arith_op_set"
[(set (reg:CC 100)
(compare:CC
(match_operator:SI 3 "cc_arith_operator"
[(match_operand:SI 1 "arith_operand" "%r")
(match_operand:SI 2 "arith_operand" "rI")])
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(match_operator:SI 4 "cc_arith_operator" [(match_dup 1) (match_dup 2)]))]
"GET_CODE (operands[3]) == GET_CODE (operands[4])"
"%A3cc\t%1, %2, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_arith_op_set"
[(set (reg:CCX 100)
(compare:CCX
(match_operator:DI 3 "cc_arith_operator"
[(match_operand:DI 1 "arith_operand" "%r")
(match_operand:DI 2 "arith_operand" "rI")])
(const_int 0)))
(set (match_operand:DI 0 "register_operand" "=r")
(match_operator:DI 4 "cc_arith_operator" [(match_dup 1) (match_dup 2)]))]
"TARGET_ARCH64 && GET_CODE (operands[3]) == GET_CODE (operands[4])"
"%A3cc\t%1, %2, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_cc_xor_not"
[(set (reg:CC 100)
(compare:CC
(not:SI (xor:SI (match_operand:SI 0 "register_or_zero_operand" "%rJ")
(match_operand:SI 1 "arith_operand" "rI")))
(const_int 0)))]
""
"xnorcc\t%r0, %1, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_xor_not"
[(set (reg:CCX 100)
(compare:CCX
(not:DI (xor:DI (match_operand:DI 0 "register_or_zero_operand" "%rJ")
(match_operand:DI 1 "arith_operand" "rI")))
(const_int 0)))]
"TARGET_ARCH64"
"xnorcc\t%r0, %1, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_cc_xor_not_set"
[(set (reg:CC 100)
(compare:CC
(not:SI (xor:SI (match_operand:SI 1 "register_or_zero_operand" "%rJ")
(match_operand:SI 2 "arith_operand" "rI")))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(not:SI (xor:SI (match_dup 1) (match_dup 2))))]
""
"xnorcc\t%r1, %2, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_xor_not_set"
[(set (reg:CCX 100)
(compare:CCX
(not:DI (xor:DI (match_operand:DI 1 "register_or_zero_operand" "%rJ")
(match_operand:DI 2 "arith_operand" "rI")))
(const_int 0)))
(set (match_operand:DI 0 "register_operand" "=r")
(not:DI (xor:DI (match_dup 1) (match_dup 2))))]
"TARGET_ARCH64"
"xnorcc\t%r1, %2, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_cc_arith_op_not"
[(set (reg:CC 100)
(compare:CC
(match_operator:SI 2 "cc_arith_not_operator"
[(not:SI (match_operand:SI 0 "arith_operand" "rI"))
(match_operand:SI 1 "register_or_zero_operand" "rJ")])
(const_int 0)))]
""
"%B2cc\t%r1, %0, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_arith_op_not"
[(set (reg:CCX 100)
(compare:CCX
(match_operator:DI 2 "cc_arith_not_operator"
[(not:DI (match_operand:DI 0 "arith_operand" "rI"))
(match_operand:DI 1 "register_or_zero_operand" "rJ")])
(const_int 0)))]
"TARGET_ARCH64"
"%B2cc\t%r1, %0, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_cc_arith_op_not_set"
[(set (reg:CC 100)
(compare:CC
(match_operator:SI 3 "cc_arith_not_operator"
[(not:SI (match_operand:SI 1 "arith_operand" "rI"))
(match_operand:SI 2 "register_or_zero_operand" "rJ")])
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(match_operator:SI 4 "cc_arith_not_operator"
[(not:SI (match_dup 1)) (match_dup 2)]))]
"GET_CODE (operands[3]) == GET_CODE (operands[4])"
"%B3cc\t%r2, %1, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_arith_op_not_set"
[(set (reg:CCX 100)
(compare:CCX
(match_operator:DI 3 "cc_arith_not_operator"
[(not:DI (match_operand:DI 1 "arith_operand" "rI"))
(match_operand:DI 2 "register_or_zero_operand" "rJ")])
(const_int 0)))
(set (match_operand:DI 0 "register_operand" "=r")
(match_operator:DI 4 "cc_arith_not_operator"
[(not:DI (match_dup 1)) (match_dup 2)]))]
"TARGET_ARCH64 && GET_CODE (operands[3]) == GET_CODE (operands[4])"
"%B3cc\t%r2, %1, %0"
[(set_attr "type" "compare")])
;; We cannot use the "neg" pseudo insn because the Sun assembler
;; does not know how to make it work for constants.
(define_expand "negdi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(neg:DI (match_operand:DI 1 "register_operand" "r")))]
""
{
if (! TARGET_ARCH64)
{
emit_insn (gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (2,
gen_rtx_SET (VOIDmode, operand0,
gen_rtx_NEG (DImode, operand1)),
gen_rtx_CLOBBER (VOIDmode,
gen_rtx_REG (CCmode,
SPARC_ICC_REG)))));
DONE;
}
})
(define_insn_and_split "*negdi2_sp32"
[(set (match_operand:DI 0 "register_operand" "=r")
(neg:DI (match_operand:DI 1 "register_operand" "r")))
(clobber (reg:CC 100))]
"TARGET_ARCH32"
"#"
"&& reload_completed"
[(parallel [(set (reg:CC_NOOV 100)
(compare:CC_NOOV (minus:SI (const_int 0) (match_dup 5))
(const_int 0)))
(set (match_dup 4) (minus:SI (const_int 0) (match_dup 5)))])
(set (match_dup 2) (minus:SI (minus:SI (const_int 0) (match_dup 3))
(ltu:SI (reg:CC 100) (const_int 0))))]
"operands[2] = gen_highpart (SImode, operands[0]);
operands[3] = gen_highpart (SImode, operands[1]);
operands[4] = gen_lowpart (SImode, operands[0]);
operands[5] = gen_lowpart (SImode, operands[1]);"
[(set_attr "length" "2")])
(define_insn "*negdi2_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(neg:DI (match_operand:DI 1 "register_operand" "r")))]
"TARGET_ARCH64"
"sub\t%%g0, %1, %0")
(define_insn "negsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(neg:SI (match_operand:SI 1 "arith_operand" "rI")))]
""
"sub\t%%g0, %1, %0")
(define_insn "*cmp_cc_neg"
[(set (reg:CC_NOOV 100)
(compare:CC_NOOV (neg:SI (match_operand:SI 0 "arith_operand" "rI"))
(const_int 0)))]
""
"subcc\t%%g0, %0, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_neg"
[(set (reg:CCX_NOOV 100)
(compare:CCX_NOOV (neg:DI (match_operand:DI 0 "arith_operand" "rI"))
(const_int 0)))]
"TARGET_ARCH64"
"subcc\t%%g0, %0, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_cc_set_neg"
[(set (reg:CC_NOOV 100)
(compare:CC_NOOV (neg:SI (match_operand:SI 1 "arith_operand" "rI"))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(neg:SI (match_dup 1)))]
""
"subcc\t%%g0, %1, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_set_neg"
[(set (reg:CCX_NOOV 100)
(compare:CCX_NOOV (neg:DI (match_operand:DI 1 "arith_operand" "rI"))
(const_int 0)))
(set (match_operand:DI 0 "register_operand" "=r")
(neg:DI (match_dup 1)))]
"TARGET_ARCH64"
"subcc\t%%g0, %1, %0"
[(set_attr "type" "compare")])
;; We cannot use the "not" pseudo insn because the Sun assembler
;; does not know how to make it work for constants.
(define_expand "one_cmpl<V64I:mode>2"
[(set (match_operand:V64I 0 "register_operand" "")
(not:V64I (match_operand:V64I 1 "register_operand" "")))]
""
"")
(define_insn_and_split "*one_cmpl<V64I:mode>2_sp32"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(not:V64I (match_operand:V64I 1 "register_operand" "r,b")))]
"! TARGET_ARCH64"
"@
#
fnot1\t%1, %0"
"&& reload_completed
&& ((GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) < 32)
|| (GET_CODE (operands[0]) == SUBREG
&& GET_CODE (SUBREG_REG (operands[0])) == REG
&& REGNO (SUBREG_REG (operands[0])) < 32))"
[(set (match_dup 2) (not:SI (xor:SI (match_dup 3) (const_int 0))))
(set (match_dup 4) (not:SI (xor:SI (match_dup 5) (const_int 0))))]
"operands[2] = gen_highpart (SImode, operands[0]);
operands[3] = gen_highpart (SImode, operands[1]);
operands[4] = gen_lowpart (SImode, operands[0]);
operands[5] = gen_lowpart (SImode, operands[1]);"
[(set_attr "type" "*,fga")
(set_attr "length" "2,*")
(set_attr "fptype" "*,double")])
(define_insn "*one_cmpl<V64I:mode>2_sp64"
[(set (match_operand:V64I 0 "register_operand" "=r,b")
(not:V64I (match_operand:V64I 1 "arith_operand" "rI,b")))]
"TARGET_ARCH64"
"@
xnor\t%%g0, %1, %0
fnot1\t%1, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,double")])
(define_insn "one_cmpl<V32I:mode>2"
[(set (match_operand:V32I 0 "register_operand" "=r,d")
(not:V32I (match_operand:V32I 1 "arith_operand" "rI,d")))]
""
"@
xnor\t%%g0, %1, %0
fnot1s\t%1, %0"
[(set_attr "type" "*,fga")
(set_attr "fptype" "*,single")])
(define_insn "*cmp_cc_not"
[(set (reg:CC 100)
(compare:CC (not:SI (match_operand:SI 0 "arith_operand" "rI"))
(const_int 0)))]
""
"xnorcc\t%%g0, %0, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_not"
[(set (reg:CCX 100)
(compare:CCX (not:DI (match_operand:DI 0 "arith_operand" "rI"))
(const_int 0)))]
"TARGET_ARCH64"
"xnorcc\t%%g0, %0, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_cc_set_not"
[(set (reg:CC 100)
(compare:CC (not:SI (match_operand:SI 1 "arith_operand" "rI"))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(not:SI (match_dup 1)))]
""
"xnorcc\t%%g0, %1, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_set_not"
[(set (reg:CCX 100)
(compare:CCX (not:DI (match_operand:DI 1 "arith_operand" "rI"))
(const_int 0)))
(set (match_operand:DI 0 "register_operand" "=r")
(not:DI (match_dup 1)))]
"TARGET_ARCH64"
"xnorcc\t%%g0, %1, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_cc_set"
[(set (match_operand:SI 0 "register_operand" "=r")
(match_operand:SI 1 "register_operand" "r"))
(set (reg:CC 100)
(compare:CC (match_dup 1)
(const_int 0)))]
""
"orcc\t%1, 0, %0"
[(set_attr "type" "compare")])
(define_insn "*cmp_ccx_set64"
[(set (match_operand:DI 0 "register_operand" "=r")
(match_operand:DI 1 "register_operand" "r"))
(set (reg:CCX 100)
(compare:CCX (match_dup 1)
(const_int 0)))]
"TARGET_ARCH64"
"orcc\t%1, 0, %0"
[(set_attr "type" "compare")])
;; Floating point arithmetic instructions.
(define_expand "addtf3"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(plus:TF (match_operand:TF 1 "general_operand" "")
(match_operand:TF 2 "general_operand" "")))]
"TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_binop (PLUS, operands); DONE;")
(define_insn "*addtf3_hq"
[(set (match_operand:TF 0 "register_operand" "=e")
(plus:TF (match_operand:TF 1 "register_operand" "e")
(match_operand:TF 2 "register_operand" "e")))]
"TARGET_FPU && TARGET_HARD_QUAD"
"faddq\t%1, %2, %0"
[(set_attr "type" "fp")])
(define_insn "adddf3"
[(set (match_operand:DF 0 "register_operand" "=e")
(plus:DF (match_operand:DF 1 "register_operand" "e")
(match_operand:DF 2 "register_operand" "e")))]
"TARGET_FPU"
"faddd\t%1, %2, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_insn "addsf3"
[(set (match_operand:SF 0 "register_operand" "=f")
(plus:SF (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_FPU"
"fadds\t%1, %2, %0"
[(set_attr "type" "fp")])
(define_expand "subtf3"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(minus:TF (match_operand:TF 1 "general_operand" "")
(match_operand:TF 2 "general_operand" "")))]
"TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_binop (MINUS, operands); DONE;")
(define_insn "*subtf3_hq"
[(set (match_operand:TF 0 "register_operand" "=e")
(minus:TF (match_operand:TF 1 "register_operand" "e")
(match_operand:TF 2 "register_operand" "e")))]
"TARGET_FPU && TARGET_HARD_QUAD"
"fsubq\t%1, %2, %0"
[(set_attr "type" "fp")])
(define_insn "subdf3"
[(set (match_operand:DF 0 "register_operand" "=e")
(minus:DF (match_operand:DF 1 "register_operand" "e")
(match_operand:DF 2 "register_operand" "e")))]
"TARGET_FPU"
"fsubd\t%1, %2, %0"
[(set_attr "type" "fp")
(set_attr "fptype" "double")])
(define_insn "subsf3"
[(set (match_operand:SF 0 "register_operand" "=f")
(minus:SF (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_FPU"
"fsubs\t%1, %2, %0"
[(set_attr "type" "fp")])
(define_expand "multf3"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(mult:TF (match_operand:TF 1 "general_operand" "")
(match_operand:TF 2 "general_operand" "")))]
"TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_binop (MULT, operands); DONE;")
(define_insn "*multf3_hq"
[(set (match_operand:TF 0 "register_operand" "=e")
(mult:TF (match_operand:TF 1 "register_operand" "e")
(match_operand:TF 2 "register_operand" "e")))]
"TARGET_FPU && TARGET_HARD_QUAD"
"fmulq\t%1, %2, %0"
[(set_attr "type" "fpmul")])
(define_insn "muldf3"
[(set (match_operand:DF 0 "register_operand" "=e")
(mult:DF (match_operand:DF 1 "register_operand" "e")
(match_operand:DF 2 "register_operand" "e")))]
"TARGET_FPU"
"fmuld\t%1, %2, %0"
[(set_attr "type" "fpmul")
(set_attr "fptype" "double")])
(define_insn "mulsf3"
[(set (match_operand:SF 0 "register_operand" "=f")
(mult:SF (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_FPU"
"fmuls\t%1, %2, %0"
[(set_attr "type" "fpmul")])
(define_insn "*muldf3_extend"
[(set (match_operand:DF 0 "register_operand" "=e")
(mult:DF (float_extend:DF (match_operand:SF 1 "register_operand" "f"))
(float_extend:DF (match_operand:SF 2 "register_operand" "f"))))]
"(TARGET_V8 || TARGET_V9) && TARGET_FPU"
"fsmuld\t%1, %2, %0"
[(set_attr "type" "fpmul")
(set_attr "fptype" "double")])
(define_insn "*multf3_extend"
[(set (match_operand:TF 0 "register_operand" "=e")
(mult:TF (float_extend:TF (match_operand:DF 1 "register_operand" "e"))
(float_extend:TF (match_operand:DF 2 "register_operand" "e"))))]
"(TARGET_V8 || TARGET_V9) && TARGET_FPU && TARGET_HARD_QUAD"
"fdmulq\t%1, %2, %0"
[(set_attr "type" "fpmul")])
(define_expand "divtf3"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(div:TF (match_operand:TF 1 "general_operand" "")
(match_operand:TF 2 "general_operand" "")))]
"TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_binop (DIV, operands); DONE;")
;; don't have timing for quad-prec. divide.
(define_insn "*divtf3_hq"
[(set (match_operand:TF 0 "register_operand" "=e")
(div:TF (match_operand:TF 1 "register_operand" "e")
(match_operand:TF 2 "register_operand" "e")))]
"TARGET_FPU && TARGET_HARD_QUAD"
"fdivq\t%1, %2, %0"
[(set_attr "type" "fpdivd")])
(define_insn "divdf3"
[(set (match_operand:DF 0 "register_operand" "=e")
(div:DF (match_operand:DF 1 "register_operand" "e")
(match_operand:DF 2 "register_operand" "e")))]
"TARGET_FPU"
"fdivd\t%1, %2, %0"
[(set_attr "type" "fpdivd")
(set_attr "fptype" "double")])
(define_insn "divsf3"
[(set (match_operand:SF 0 "register_operand" "=f")
(div:SF (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_FPU"
"fdivs\t%1, %2, %0"
[(set_attr "type" "fpdivs")])
(define_expand "negtf2"
[(set (match_operand:TF 0 "register_operand" "=e,e")
(neg:TF (match_operand:TF 1 "register_operand" "0,e")))]
"TARGET_FPU"
"")
(define_insn_and_split "*negtf2_notv9"
[(set (match_operand:TF 0 "register_operand" "=e,e")
(neg:TF (match_operand:TF 1 "register_operand" "0,e")))]
; We don't use quad float insns here so we don't need TARGET_HARD_QUAD.
"TARGET_FPU
&& ! TARGET_V9"
"@
fnegs\t%0, %0
#"
"&& reload_completed
&& sparc_absnegfloat_split_legitimate (operands[0], operands[1])"
[(set (match_dup 2) (neg:SF (match_dup 3)))
(set (match_dup 4) (match_dup 5))
(set (match_dup 6) (match_dup 7))]
"operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]));
operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]));
operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1);
operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1);
operands[6] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2);
operands[7] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);"
[(set_attr "type" "fpmove,*")
(set_attr "length" "*,2")])
(define_insn_and_split "*negtf2_v9"
[(set (match_operand:TF 0 "register_operand" "=e,e")
(neg:TF (match_operand:TF 1 "register_operand" "0,e")))]
; We don't use quad float insns here so we don't need TARGET_HARD_QUAD.
"TARGET_FPU && TARGET_V9"
"@
fnegd\t%0, %0
#"
"&& reload_completed
&& sparc_absnegfloat_split_legitimate (operands[0], operands[1])"
[(set (match_dup 2) (neg:DF (match_dup 3)))
(set (match_dup 4) (match_dup 5))]
"operands[2] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]));
operands[3] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]));
operands[4] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2);
operands[5] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);"
[(set_attr "type" "fpmove,*")
(set_attr "length" "*,2")
(set_attr "fptype" "double")])
(define_expand "negdf2"
[(set (match_operand:DF 0 "register_operand" "")
(neg:DF (match_operand:DF 1 "register_operand" "")))]
"TARGET_FPU"
"")
(define_insn_and_split "*negdf2_notv9"
[(set (match_operand:DF 0 "register_operand" "=e,e")
(neg:DF (match_operand:DF 1 "register_operand" "0,e")))]
"TARGET_FPU && ! TARGET_V9"
"@
fnegs\t%0, %0
#"
"&& reload_completed
&& sparc_absnegfloat_split_legitimate (operands[0], operands[1])"
[(set (match_dup 2) (neg:SF (match_dup 3)))
(set (match_dup 4) (match_dup 5))]
"operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]));
operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]));
operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1);
operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1);"
[(set_attr "type" "fpmove,*")
(set_attr "length" "*,2")])
(define_insn "*negdf2_v9"
[(set (match_operand:DF 0 "register_operand" "=e")
(neg:DF (match_operand:DF 1 "register_operand" "e")))]
"TARGET_FPU && TARGET_V9"
"fnegd\t%1, %0"
[(set_attr "type" "fpmove")
(set_attr "fptype" "double")])
(define_insn "negsf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(neg:SF (match_operand:SF 1 "register_operand" "f")))]
"TARGET_FPU"
"fnegs\t%1, %0"
[(set_attr "type" "fpmove")])
(define_expand "abstf2"
[(set (match_operand:TF 0 "register_operand" "")
(abs:TF (match_operand:TF 1 "register_operand" "")))]
"TARGET_FPU"
"")
(define_insn_and_split "*abstf2_notv9"
[(set (match_operand:TF 0 "register_operand" "=e,e")
(abs:TF (match_operand:TF 1 "register_operand" "0,e")))]
; We don't use quad float insns here so we don't need TARGET_HARD_QUAD.
"TARGET_FPU && ! TARGET_V9"
"@
fabss\t%0, %0
#"
"&& reload_completed
&& sparc_absnegfloat_split_legitimate (operands[0], operands[1])"
[(set (match_dup 2) (abs:SF (match_dup 3)))
(set (match_dup 4) (match_dup 5))
(set (match_dup 6) (match_dup 7))]
"operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]));
operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]));
operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1);
operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1);
operands[6] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2);
operands[7] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);"
[(set_attr "type" "fpmove,*")
(set_attr "length" "*,2")])
(define_insn "*abstf2_hq_v9"
[(set (match_operand:TF 0 "register_operand" "=e,e")
(abs:TF (match_operand:TF 1 "register_operand" "0,e")))]
"TARGET_FPU && TARGET_V9 && TARGET_HARD_QUAD"
"@
fabsd\t%0, %0
fabsq\t%1, %0"
[(set_attr "type" "fpmove")
(set_attr "fptype" "double,*")])
(define_insn_and_split "*abstf2_v9"
[(set (match_operand:TF 0 "register_operand" "=e,e")
(abs:TF (match_operand:TF 1 "register_operand" "0,e")))]
"TARGET_FPU && TARGET_V9 && !TARGET_HARD_QUAD"
"@
fabsd\t%0, %0
#"
"&& reload_completed
&& sparc_absnegfloat_split_legitimate (operands[0], operands[1])"
[(set (match_dup 2) (abs:DF (match_dup 3)))
(set (match_dup 4) (match_dup 5))]
"operands[2] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]));
operands[3] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]));
operands[4] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2);
operands[5] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);"
[(set_attr "type" "fpmove,*")
(set_attr "length" "*,2")
(set_attr "fptype" "double,*")])
(define_expand "absdf2"
[(set (match_operand:DF 0 "register_operand" "")
(abs:DF (match_operand:DF 1 "register_operand" "")))]
"TARGET_FPU"
"")
(define_insn_and_split "*absdf2_notv9"
[(set (match_operand:DF 0 "register_operand" "=e,e")
(abs:DF (match_operand:DF 1 "register_operand" "0,e")))]
"TARGET_FPU && ! TARGET_V9"
"@
fabss\t%0, %0
#"
"&& reload_completed
&& sparc_absnegfloat_split_legitimate (operands[0], operands[1])"
[(set (match_dup 2) (abs:SF (match_dup 3)))
(set (match_dup 4) (match_dup 5))]
"operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]));
operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]));
operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1);
operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1);"
[(set_attr "type" "fpmove,*")
(set_attr "length" "*,2")])
(define_insn "*absdf2_v9"
[(set (match_operand:DF 0 "register_operand" "=e")
(abs:DF (match_operand:DF 1 "register_operand" "e")))]
"TARGET_FPU && TARGET_V9"
"fabsd\t%1, %0"
[(set_attr "type" "fpmove")
(set_attr "fptype" "double")])
(define_insn "abssf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(abs:SF (match_operand:SF 1 "register_operand" "f")))]
"TARGET_FPU"
"fabss\t%1, %0"
[(set_attr "type" "fpmove")])
(define_expand "sqrttf2"
[(set (match_operand:TF 0 "nonimmediate_operand" "")
(sqrt:TF (match_operand:TF 1 "general_operand" "")))]
"TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)"
"emit_tfmode_unop (SQRT, operands); DONE;")
(define_insn "*sqrttf2_hq"
[(set (match_operand:TF 0 "register_operand" "=e")
(sqrt:TF (match_operand:TF 1 "register_operand" "e")))]
"TARGET_FPU && TARGET_HARD_QUAD"
"fsqrtq\t%1, %0"
[(set_attr "type" "fpsqrtd")])
(define_insn "sqrtdf2"
[(set (match_operand:DF 0 "register_operand" "=e")
(sqrt:DF (match_operand:DF 1 "register_operand" "e")))]
"TARGET_FPU"
"fsqrtd\t%1, %0"
[(set_attr "type" "fpsqrtd")
(set_attr "fptype" "double")])
(define_insn "sqrtsf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(sqrt:SF (match_operand:SF 1 "register_operand" "f")))]
"TARGET_FPU"
"fsqrts\t%1, %0"
[(set_attr "type" "fpsqrts")])
;; Arithmetic shift instructions.
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(ashift:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI")))]
""
{
if (GET_CODE (operands[2]) == CONST_INT)
operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
return "sll\t%1, %2, %0";
}
[(set (attr "type")
(if_then_else (match_operand 2 "const_one_operand" "")
(const_string "ialu") (const_string "shift")))])
(define_expand "ashldi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashift:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI")))]
"TARGET_ARCH64 || TARGET_V8PLUS"
{
if (! TARGET_ARCH64)
{
if (GET_CODE (operands[2]) == CONST_INT)
FAIL;
emit_insn (gen_ashldi3_v8plus (operands[0], operands[1], operands[2]));
DONE;
}
})
(define_insn "*ashldi3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashift:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI")))]
"TARGET_ARCH64"
{
if (GET_CODE (operands[2]) == CONST_INT)
operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
return "sllx\t%1, %2, %0";
}
[(set (attr "type")
(if_then_else (match_operand 2 "const_one_operand" "")
(const_string "ialu") (const_string "shift")))])
;; XXX UGH!
(define_insn "ashldi3_v8plus"
[(set (match_operand:DI 0 "register_operand" "=&h,&h,r")
(ashift:DI (match_operand:DI 1 "arith_operand" "rI,0,rI")
(match_operand:SI 2 "arith_operand" "rI,rI,rI")))
(clobber (match_scratch:SI 3 "=X,X,&h"))]
"TARGET_V8PLUS"
"* return output_v8plus_shift (operands, insn, \"sllx\");"
[(set_attr "type" "multi")
(set_attr "length" "5,5,6")])
;; Optimize (1LL<<x)-1
;; XXX this also needs to be fixed to handle equal subregs
;; XXX first before we could re-enable it.
;(define_insn ""
; [(set (match_operand:DI 0 "register_operand" "=h")
; (plus:DI (ashift:DI (const_int 1)
; (match_operand:SI 1 "arith_operand" "rI"))
; (const_int -1)))]
; "0 && TARGET_V8PLUS"
;{
; if (GET_CODE (operands[1]) == REG && REGNO (operands[1]) == REGNO (operands[0]))
; return "mov\t1, %L0\;sllx\t%L0, %1, %L0\;sub\t%L0, 1, %L0\;srlx\t%L0, 32, %H0";
; return "mov\t1, %H0\;sllx\t%H0, %1, %L0\;sub\t%L0, 1, %L0\;srlx\t%L0, 32, %H0";
;}
; [(set_attr "type" "multi")
; (set_attr "length" "4")])
(define_insn "*cmp_cc_ashift_1"
[(set (reg:CC_NOOV 100)
(compare:CC_NOOV (ashift:SI (match_operand:SI 0 "register_operand" "r")
(const_int 1))
(const_int 0)))]
""
"addcc\t%0, %0, %%g0"
[(set_attr "type" "compare")])
(define_insn "*cmp_cc_set_ashift_1"
[(set (reg:CC_NOOV 100)
(compare:CC_NOOV (ashift:SI (match_operand:SI 1 "register_operand" "r")
(const_int 1))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(ashift:SI (match_dup 1) (const_int 1)))]
""
"addcc\t%1, %1, %0"
[(set_attr "type" "compare")])
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(ashiftrt:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI")))]
""
{
if (GET_CODE (operands[2]) == CONST_INT)
operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
return "sra\t%1, %2, %0";
}
[(set_attr "type" "shift")])
(define_insn "*ashrsi3_extend"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (ashiftrt:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "r"))))]
"TARGET_ARCH64"
"sra\t%1, %2, %0"
[(set_attr "type" "shift")])
;; This handles the case as above, but with constant shift instead of
;; register. Combiner "simplifies" it for us a little bit though.
(define_insn "*ashrsi3_extend2"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashiftrt:DI (ashift:DI (subreg:DI (match_operand:SI 1 "register_operand" "r") 0)
(const_int 32))
(match_operand:SI 2 "small_int_operand" "I")))]
"TARGET_ARCH64 && INTVAL (operands[2]) >= 32 && INTVAL (operands[2]) < 64"
{
operands[2] = GEN_INT (INTVAL (operands[2]) - 32);
return "sra\t%1, %2, %0";
}
[(set_attr "type" "shift")])
(define_expand "ashrdi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashiftrt:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI")))]
"TARGET_ARCH64 || TARGET_V8PLUS"
{
if (! TARGET_ARCH64)
{
if (GET_CODE (operands[2]) == CONST_INT)
FAIL; /* prefer generic code in this case */
emit_insn (gen_ashrdi3_v8plus (operands[0], operands[1], operands[2]));
DONE;
}
})
(define_insn "*ashrdi3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(ashiftrt:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI")))]
"TARGET_ARCH64"
{
if (GET_CODE (operands[2]) == CONST_INT)
operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
return "srax\t%1, %2, %0";
}
[(set_attr "type" "shift")])
;; XXX
(define_insn "ashrdi3_v8plus"
[(set (match_operand:DI 0 "register_operand" "=&h,&h,r")
(ashiftrt:DI (match_operand:DI 1 "arith_operand" "rI,0,rI")
(match_operand:SI 2 "arith_operand" "rI,rI,rI")))
(clobber (match_scratch:SI 3 "=X,X,&h"))]
"TARGET_V8PLUS"
"* return output_v8plus_shift (operands, insn, \"srax\");"
[(set_attr "type" "multi")
(set_attr "length" "5,5,6")])
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(lshiftrt:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI")))]
""
{
if (GET_CODE (operands[2]) == CONST_INT)
operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
return "srl\t%1, %2, %0";
}
[(set_attr "type" "shift")])
;; This handles the case where
;; (zero_extend:DI (lshiftrt:SI (match_operand:SI) (match_operand:SI))),
;; but combiner "simplifies" it for us.
(define_insn "*lshrsi3_extend"
[(set (match_operand:DI 0 "register_operand" "=r")
(and:DI (subreg:DI (lshiftrt:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "r")) 0)
(match_operand 3 "const_int_operand" "")))]
"TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) == 0xffffffff"
"srl\t%1, %2, %0"
[(set_attr "type" "shift")])
;; This handles the case where
;; (lshiftrt:DI (zero_extend:DI (match_operand:SI)) (const_int >=0 < 32))
;; but combiner "simplifies" it for us.
(define_insn "*lshrsi3_extend2"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extract:DI (subreg:DI (match_operand:SI 1 "register_operand" "r") 0)
(match_operand 2 "small_int_operand" "I")
(const_int 32)))]
"TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32"
{
operands[2] = GEN_INT (32 - INTVAL (operands[2]));
return "srl\t%1, %2, %0";
}
[(set_attr "type" "shift")])
(define_expand "lshrdi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(lshiftrt:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI")))]
"TARGET_ARCH64 || TARGET_V8PLUS"
{
if (! TARGET_ARCH64)
{
if (GET_CODE (operands[2]) == CONST_INT)
FAIL;
emit_insn (gen_lshrdi3_v8plus (operands[0], operands[1], operands[2]));
DONE;
}
})
(define_insn "*lshrdi3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(lshiftrt:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:SI 2 "arith_operand" "rI")))]
"TARGET_ARCH64"
{
if (GET_CODE (operands[2]) == CONST_INT)
operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
return "srlx\t%1, %2, %0";
}
[(set_attr "type" "shift")])
;; XXX
(define_insn "lshrdi3_v8plus"
[(set (match_operand:DI 0 "register_operand" "=&h,&h,r")
(lshiftrt:DI (match_operand:DI 1 "arith_operand" "rI,0,rI")
(match_operand:SI 2 "arith_operand" "rI,rI,rI")))
(clobber (match_scratch:SI 3 "=X,X,&h"))]
"TARGET_V8PLUS"
"* return output_v8plus_shift (operands, insn, \"srlx\");"
[(set_attr "type" "multi")
(set_attr "length" "5,5,6")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(ashiftrt:SI (subreg:SI (lshiftrt:DI (match_operand:DI 1 "register_operand" "r")
(const_int 32)) 4)
(match_operand:SI 2 "small_int_operand" "I")))]
"TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32"
{
operands[2] = GEN_INT (INTVAL (operands[2]) + 32);
return "srax\t%1, %2, %0";
}
[(set_attr "type" "shift")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(lshiftrt:SI (subreg:SI (ashiftrt:DI (match_operand:DI 1 "register_operand" "r")
(const_int 32)) 4)
(match_operand:SI 2 "small_int_operand" "I")))]
"TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32"
{
operands[2] = GEN_INT (INTVAL (operands[2]) + 32);
return "srlx\t%1, %2, %0";
}
[(set_attr "type" "shift")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(ashiftrt:SI (subreg:SI (ashiftrt:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:SI 2 "small_int_operand" "I")) 4)
(match_operand:SI 3 "small_int_operand" "I")))]
"TARGET_ARCH64
&& (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 32
&& (unsigned HOST_WIDE_INT) INTVAL (operands[3]) < 32
&& (unsigned HOST_WIDE_INT) (INTVAL (operands[2]) + INTVAL (operands[3])) < 64"
{
operands[2] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[3]));
return "srax\t%1, %2, %0";
}
[(set_attr "type" "shift")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(lshiftrt:SI (subreg:SI (lshiftrt:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:SI 2 "small_int_operand" "I")) 4)
(match_operand:SI 3 "small_int_operand" "I")))]
"TARGET_ARCH64
&& (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 32
&& (unsigned HOST_WIDE_INT) INTVAL (operands[3]) < 32
&& (unsigned HOST_WIDE_INT) (INTVAL (operands[2]) + INTVAL (operands[3])) < 64"
{
operands[2] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[3]));
return "srlx\t%1, %2, %0";
}
[(set_attr "type" "shift")])
;; Unconditional and other jump instructions.
(define_insn "jump"
[(set (pc) (label_ref (match_operand 0 "" "")))]
""
"* return output_ubranch (operands[0], 0, insn);"
[(set_attr "type" "uncond_branch")])
(define_expand "tablejump"
[(parallel [(set (pc) (match_operand 0 "register_operand" "r"))
(use (label_ref (match_operand 1 "" "")))])]
""
{
gcc_assert (GET_MODE (operands[0]) == CASE_VECTOR_MODE);
/* In pic mode, our address differences are against the base of the
table. Add that base value back in; CSE ought to be able to combine
the two address loads. */
if (flag_pic)
{
rtx tmp, tmp2;
tmp = gen_rtx_LABEL_REF (Pmode, operands[1]);
tmp2 = operands[0];
if (CASE_VECTOR_MODE != Pmode)
tmp2 = gen_rtx_SIGN_EXTEND (Pmode, tmp2);
tmp = gen_rtx_PLUS (Pmode, tmp2, tmp);
operands[0] = memory_address (Pmode, tmp);
}
})
(define_insn "*tablejump_sp32"
[(set (pc) (match_operand:SI 0 "address_operand" "p"))
(use (label_ref (match_operand 1 "" "")))]
"! TARGET_ARCH64"
"jmp\t%a0%#"
[(set_attr "type" "uncond_branch")])
(define_insn "*tablejump_sp64"
[(set (pc) (match_operand:DI 0 "address_operand" "p"))
(use (label_ref (match_operand 1 "" "")))]
"TARGET_ARCH64"
"jmp\t%a0%#"
[(set_attr "type" "uncond_branch")])
;; Jump to subroutine instructions.
(define_expand "call"
;; Note that this expression is not used for generating RTL.
;; All the RTL is generated explicitly below.
[(call (match_operand 0 "call_operand" "")
(match_operand 3 "" "i"))]
;; operands[2] is next_arg_register
;; operands[3] is struct_value_size_rtx.
""
{
rtx fn_rtx;
gcc_assert (GET_MODE (operands[0]) == FUNCTION_MODE);
gcc_assert (GET_CODE (operands[3]) == CONST_INT);
if (GET_CODE (XEXP (operands[0], 0)) == LABEL_REF)
{
/* This is really a PIC sequence. We want to represent
it as a funny jump so its delay slots can be filled.
??? But if this really *is* a CALL, will not it clobber the
call-clobbered registers? We lose this if it is a JUMP_INSN.
Why cannot we have delay slots filled if it were a CALL? */
/* We accept negative sizes for untyped calls. */
if (! TARGET_ARCH64 && INTVAL (operands[3]) != 0)
emit_jump_insn
(gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (3,
gen_rtx_SET (VOIDmode, pc_rtx, XEXP (operands[0], 0)),
operands[3],
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)))));
else
emit_jump_insn
(gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (2,
gen_rtx_SET (VOIDmode, pc_rtx, XEXP (operands[0], 0)),
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)))));
goto finish_call;
}
fn_rtx = operands[0];
/* We accept negative sizes for untyped calls. */
if (! TARGET_ARCH64 && INTVAL (operands[3]) != 0)
emit_call_insn
(gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (3, gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx),
operands[3],
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)))));
else
emit_call_insn
(gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (2, gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx),
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)))));
finish_call:
DONE;
})
;; We can't use the same pattern for these two insns, because then registers
;; in the address may not be properly reloaded.
(define_insn "*call_address_sp32"
[(call (mem:SI (match_operand:SI 0 "address_operand" "p"))
(match_operand 1 "" ""))
(clobber (reg:SI 15))]
;;- Do not use operand 1 for most machines.
"! TARGET_ARCH64"
"call\t%a0, %1%#"
[(set_attr "type" "call")])
(define_insn "*call_symbolic_sp32"
[(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s"))
(match_operand 1 "" ""))
(clobber (reg:SI 15))]
;;- Do not use operand 1 for most machines.
"! TARGET_ARCH64"
"call\t%a0, %1%#"
[(set_attr "type" "call")])
(define_insn "*call_address_sp64"
[(call (mem:DI (match_operand:DI 0 "address_operand" "p"))
(match_operand 1 "" ""))
(clobber (reg:DI 15))]
;;- Do not use operand 1 for most machines.
"TARGET_ARCH64"
"call\t%a0, %1%#"
[(set_attr "type" "call")])
(define_insn "*call_symbolic_sp64"
[(call (mem:DI (match_operand:DI 0 "symbolic_operand" "s"))
(match_operand 1 "" ""))
(clobber (reg:DI 15))]
;;- Do not use operand 1 for most machines.
"TARGET_ARCH64"
"call\t%a0, %1%#"
[(set_attr "type" "call")])
;; This is a call that wants a structure value.
;; There is no such critter for v9 (??? we may need one anyway).
(define_insn "*call_address_struct_value_sp32"
[(call (mem:SI (match_operand:SI 0 "address_operand" "p"))
(match_operand 1 "" ""))
(match_operand 2 "immediate_operand" "")
(clobber (reg:SI 15))]
;;- Do not use operand 1 for most machines.
"! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0"
{
operands[2] = GEN_INT (INTVAL (operands[2]) & 0xfff);
return "call\t%a0, %1\n\t nop\n\tunimp\t%2";
}
[(set_attr "type" "call_no_delay_slot")
(set_attr "length" "3")])
;; This is a call that wants a structure value.
;; There is no such critter for v9 (??? we may need one anyway).
(define_insn "*call_symbolic_struct_value_sp32"
[(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s"))
(match_operand 1 "" ""))
(match_operand 2 "immediate_operand" "")
(clobber (reg:SI 15))]
;;- Do not use operand 1 for most machines.
"! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0"
{
operands[2] = GEN_INT (INTVAL (operands[2]) & 0xfff);
return "call\t%a0, %1\n\t nop\n\tunimp\t%2";
}
[(set_attr "type" "call_no_delay_slot")
(set_attr "length" "3")])
;; This is a call that may want a structure value. This is used for
;; untyped_calls.
(define_insn "*call_address_untyped_struct_value_sp32"
[(call (mem:SI (match_operand:SI 0 "address_operand" "p"))
(match_operand 1 "" ""))
(match_operand 2 "immediate_operand" "")
(clobber (reg:SI 15))]
;;- Do not use operand 1 for most machines.
"! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0"
"call\t%a0, %1\n\t nop\n\tnop"
[(set_attr "type" "call_no_delay_slot")
(set_attr "length" "3")])
;; This is a call that may want a structure value. This is used for
;; untyped_calls.
(define_insn "*call_symbolic_untyped_struct_value_sp32"
[(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s"))
(match_operand 1 "" ""))
(match_operand 2 "immediate_operand" "")
(clobber (reg:SI 15))]
;;- Do not use operand 1 for most machines.
"! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0"
"call\t%a0, %1\n\t nop\n\tnop"
[(set_attr "type" "call_no_delay_slot")
(set_attr "length" "3")])
(define_expand "call_value"
;; Note that this expression is not used for generating RTL.
;; All the RTL is generated explicitly below.
[(set (match_operand 0 "register_operand" "=rf")
(call (match_operand 1 "" "")
(match_operand 4 "" "")))]
;; operand 2 is stack_size_rtx
;; operand 3 is next_arg_register
""
{
rtx fn_rtx;
rtvec vec;
gcc_assert (GET_MODE (operands[1]) == FUNCTION_MODE);
fn_rtx = operands[1];
vec = gen_rtvec (2,
gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx)),
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)));
emit_call_insn (gen_rtx_PARALLEL (VOIDmode, vec));
DONE;
})
(define_insn "*call_value_address_sp32"
[(set (match_operand 0 "" "=rf")
(call (mem:SI (match_operand:SI 1 "address_operand" "p"))
(match_operand 2 "" "")))
(clobber (reg:SI 15))]
;;- Do not use operand 2 for most machines.
"! TARGET_ARCH64"
"call\t%a1, %2%#"
[(set_attr "type" "call")])
(define_insn "*call_value_symbolic_sp32"
[(set (match_operand 0 "" "=rf")
(call (mem:SI (match_operand:SI 1 "symbolic_operand" "s"))
(match_operand 2 "" "")))
(clobber (reg:SI 15))]
;;- Do not use operand 2 for most machines.
"! TARGET_ARCH64"
"call\t%a1, %2%#"
[(set_attr "type" "call")])
(define_insn "*call_value_address_sp64"
[(set (match_operand 0 "" "")
(call (mem:DI (match_operand:DI 1 "address_operand" "p"))
(match_operand 2 "" "")))
(clobber (reg:DI 15))]
;;- Do not use operand 2 for most machines.
"TARGET_ARCH64"
"call\t%a1, %2%#"
[(set_attr "type" "call")])
(define_insn "*call_value_symbolic_sp64"
[(set (match_operand 0 "" "")
(call (mem:DI (match_operand:DI 1 "symbolic_operand" "s"))
(match_operand 2 "" "")))
(clobber (reg:DI 15))]
;;- Do not use operand 2 for most machines.
"TARGET_ARCH64"
"call\t%a1, %2%#"
[(set_attr "type" "call")])
(define_expand "untyped_call"
[(parallel [(call (match_operand 0 "" "")
(const_int 0))
(match_operand:BLK 1 "memory_operand" "")
(match_operand 2 "" "")])]
""
{
rtx valreg1 = gen_rtx_REG (DImode, 8);
rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32);
rtx result = operands[1];
/* Pass constm1 to indicate that it may expect a structure value, but
we don't know what size it is. */
emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, constm1_rtx));
/* Save the function value registers. */
emit_move_insn (adjust_address (result, DImode, 0), valreg1);
emit_move_insn (adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8),
valreg2);
/* The optimizer does not know that the call sets the function value
registers we stored in the result block. We avoid problems by
claiming that all hard registers are used and clobbered at this
point. */
emit_insn (gen_blockage ());
DONE;
})
;; Tail call instructions.
(define_expand "sibcall"
[(parallel [(call (match_operand 0 "call_operand" "") (const_int 0))
(return)])]
""
"")
(define_insn "*sibcall_symbolic_sp32"
[(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s"))
(match_operand 1 "" ""))
(return)]
"! TARGET_ARCH64"
"* return output_sibcall(insn, operands[0]);"
[(set_attr "type" "sibcall")])
(define_insn "*sibcall_symbolic_sp64"
[(call (mem:DI (match_operand:DI 0 "symbolic_operand" "s"))
(match_operand 1 "" ""))
(return)]
"TARGET_ARCH64"
"* return output_sibcall(insn, operands[0]);"
[(set_attr "type" "sibcall")])
(define_expand "sibcall_value"
[(parallel [(set (match_operand 0 "register_operand" "=rf")
(call (match_operand 1 "" "") (const_int 0)))
(return)])]
""
"")
(define_insn "*sibcall_value_symbolic_sp32"
[(set (match_operand 0 "" "=rf")
(call (mem:SI (match_operand:SI 1 "symbolic_operand" "s"))
(match_operand 2 "" "")))
(return)]
"! TARGET_ARCH64"
"* return output_sibcall(insn, operands[1]);"
[(set_attr "type" "sibcall")])
(define_insn "*sibcall_value_symbolic_sp64"
[(set (match_operand 0 "" "")
(call (mem:DI (match_operand:DI 1 "symbolic_operand" "s"))
(match_operand 2 "" "")))
(return)]
"TARGET_ARCH64"
"* return output_sibcall(insn, operands[1]);"
[(set_attr "type" "sibcall")])
;; Special instructions.
(define_expand "prologue"
[(const_int 0)]
""
{
sparc_expand_prologue ();
DONE;
})
;; The "save register window" insn is modelled as follows so that the DWARF-2
;; backend automatically emits the required call frame debugging information
;; while it is parsing it. Therefore, the pattern should not be modified
;; without first studying the impact of the changes on the debug info.
;; [(set (%fp) (%sp))
;; (set (%sp) (unspec_volatile [(%sp) (-frame_size)] UNSPECV_SAVEW))
;; (set (%i7) (%o7))]
(define_insn "save_register_window<P:mode>"
[(set (reg:P 30) (reg:P 14))
(set (reg:P 14) (unspec_volatile:P [(reg:P 14)
(match_operand:P 0 "arith_operand" "rI")] UNSPECV_SAVEW))
(set (reg:P 31) (reg:P 15))]
""
"save\t%%sp, %0, %%sp"
[(set_attr "type" "savew")])
(define_expand "epilogue"
[(return)]
""
{
sparc_expand_epilogue ();
})
(define_expand "sibcall_epilogue"
[(return)]
""
{
sparc_expand_epilogue ();
DONE;
})
(define_expand "return"
[(return)]
"sparc_can_use_return_insn_p ()"
"")
(define_insn "*return_internal"
[(return)]
""
"* return output_return (insn);"
[(set_attr "type" "return")
(set (attr "length")
(cond [(eq_attr "leaf_function" "true")
(if_then_else (eq_attr "empty_delay_slot" "true")
(const_int 2)
(const_int 1))
(eq_attr "calls_eh_return" "true")
(if_then_else (eq_attr "delayed_branch" "true")
(if_then_else (eq_attr "isa" "v9")
(const_int 2)
(const_int 3))
(if_then_else (eq_attr "isa" "v9")
(const_int 3)
(const_int 4)))
(eq_attr "empty_delay_slot" "true")
(if_then_else (eq_attr "delayed_branch" "true")
(const_int 2)
(const_int 3))
] (const_int 1)))])
;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and
;; all of memory. This blocks insns from being moved across this point.
(define_insn "blockage"
[(unspec_volatile [(const_int 0)] UNSPECV_BLOCKAGE)]
""
""
[(set_attr "length" "0")])
;; Prepare to return any type including a structure value.
(define_expand "untyped_return"
[(match_operand:BLK 0 "memory_operand" "")
(match_operand 1 "" "")]
""
{
rtx valreg1 = gen_rtx_REG (DImode, 24);
rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32);
rtx result = operands[0];
if (! TARGET_ARCH64)
{
rtx rtnreg = gen_rtx_REG (SImode, (current_function_uses_only_leaf_regs
? 15 : 31));
rtx value = gen_reg_rtx (SImode);
/* Fetch the instruction where we will return to and see if it's an unimp
instruction (the most significant 10 bits will be zero). If so,
update the return address to skip the unimp instruction. */
emit_move_insn (value,
gen_rtx_MEM (SImode, plus_constant (rtnreg, 8)));
emit_insn (gen_lshrsi3 (value, value, GEN_INT (22)));
emit_insn (gen_update_return (rtnreg, value));
}
/* Reload the function value registers. */
emit_move_insn (valreg1, adjust_address (result, DImode, 0));
emit_move_insn (valreg2,
adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8));
/* Put USE insns before the return. */
emit_insn (gen_rtx_USE (VOIDmode, valreg1));
emit_insn (gen_rtx_USE (VOIDmode, valreg2));
/* Construct the return. */
expand_naked_return ();
DONE;
})
;; Adjust the return address conditionally. If the value of op1 is equal
;; to all zero then adjust the return address i.e. op0 = op0 + 4.
;; This is technically *half* the check required by the 32-bit SPARC
;; psABI. This check only ensures that an "unimp" insn was written by
;; the caller, but doesn't check to see if the expected size matches
;; (this is encoded in the 12 lower bits). This check is obsolete and
;; only used by the above code "untyped_return".
(define_insn "update_return"
[(unspec:SI [(match_operand:SI 0 "register_operand" "r")
(match_operand:SI 1 "register_operand" "r")] UNSPEC_UPDATE_RETURN)]
"! TARGET_ARCH64"
{
if (flag_delayed_branch)
return "cmp\t%1, 0\n\tbe,a\t.+8\n\t add\t%0, 4, %0";
else
return "cmp\t%1, 0\n\tbne\t.+12\n\t nop\n\tadd\t%0, 4, %0";
}
[(set (attr "type") (const_string "multi"))
(set (attr "length")
(if_then_else (eq_attr "delayed_branch" "true")
(const_int 3)
(const_int 4)))])
(define_insn "nop"
[(const_int 0)]
""
"nop")
(define_expand "indirect_jump"
[(set (pc) (match_operand 0 "address_operand" "p"))]
""
"")
(define_insn "*branch_sp32"
[(set (pc) (match_operand:SI 0 "address_operand" "p"))]
"! TARGET_ARCH64"
"jmp\t%a0%#"
[(set_attr "type" "uncond_branch")])
(define_insn "*branch_sp64"
[(set (pc) (match_operand:DI 0 "address_operand" "p"))]
"TARGET_ARCH64"
"jmp\t%a0%#"
[(set_attr "type" "uncond_branch")])
(define_expand "nonlocal_goto"
[(match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")
(match_operand:SI 3 "" "")]
""
{
rtx lab = operands[1];
rtx stack = operands[2];
rtx fp = operands[3];
rtx labreg;
/* Trap instruction to flush all the register windows. */
emit_insn (gen_flush_register_windows ());
/* Load the fp value for the containing fn into %fp. This is needed
because STACK refers to %fp. Note that virtual register instantiation
fails if the virtual %fp isn't set from a register. */
if (GET_CODE (fp) != REG)
fp = force_reg (Pmode, fp);
emit_move_insn (virtual_stack_vars_rtx, fp);
/* Find the containing function's current nonlocal goto handler,
which will do any cleanups and then jump to the label. */
labreg = gen_rtx_REG (Pmode, 8);
emit_move_insn (labreg, lab);
/* Restore %fp from stack pointer value for containing function.
The restore insn that follows will move this to %sp,
and reload the appropriate value into %fp. */
emit_move_insn (hard_frame_pointer_rtx, stack);
emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
emit_insn (gen_rtx_USE (VOIDmode, static_chain_rtx));
/* ??? The V9-specific version was disabled in rev 1.65. */
emit_jump_insn (gen_goto_handler_and_restore (labreg));
emit_barrier ();
DONE;
})
;; Special trap insn to flush register windows.
(define_insn "flush_register_windows"
[(unspec_volatile [(const_int 0)] UNSPECV_FLUSHW)]
""
{ return TARGET_V9 ? "flushw" : "ta\t3"; }
[(set_attr "type" "flushw")])
(define_insn "goto_handler_and_restore"
[(unspec_volatile [(match_operand 0 "register_operand" "=r")] UNSPECV_GOTO)]
"GET_MODE (operands[0]) == Pmode"
{
if (flag_delayed_branch)
return "jmp\t%0\n\t restore";
else
return "mov\t%0,%%g1\n\trestore\n\tjmp\t%%g1\n\t nop";
}
[(set (attr "type") (const_string "multi"))
(set (attr "length")
(if_then_else (eq_attr "delayed_branch" "true")
(const_int 2)
(const_int 4)))])
;; For __builtin_setjmp we need to flush register windows iff the function
;; calls alloca as well, because otherwise the register window might be
;; saved after %sp adjustment and thus setjmp would crash
(define_expand "builtin_setjmp_setup"
[(match_operand 0 "register_operand" "r")]
""
{
emit_insn (gen_do_builtin_setjmp_setup ());
DONE;
})
(define_insn "do_builtin_setjmp_setup"
[(unspec_volatile [(const_int 0)] UNSPECV_SETJMP)]
""
{
if (! current_function_calls_alloca)
return "";
if (! TARGET_V9)
return "\tta\t3\n";
fputs ("\tflushw\n", asm_out_file);
if (flag_pic)
fprintf (asm_out_file, "\tst%c\t%%l7, [%%sp+%d]\n",
TARGET_ARCH64 ? 'x' : 'w',
SPARC_STACK_BIAS + 7 * UNITS_PER_WORD);
fprintf (asm_out_file, "\tst%c\t%%fp, [%%sp+%d]\n",
TARGET_ARCH64 ? 'x' : 'w',
SPARC_STACK_BIAS + 14 * UNITS_PER_WORD);
fprintf (asm_out_file, "\tst%c\t%%i7, [%%sp+%d]\n",
TARGET_ARCH64 ? 'x' : 'w',
SPARC_STACK_BIAS + 15 * UNITS_PER_WORD);
return "";
}
[(set_attr "type" "multi")
(set (attr "length")
(cond [(eq_attr "calls_alloca" "false")
(const_int 0)
(eq_attr "isa" "!v9")
(const_int 1)
(eq_attr "pic" "true")
(const_int 4)] (const_int 3)))])
;; Pattern for use after a setjmp to store FP and the return register
;; into the stack area.
(define_expand "setjmp"
[(const_int 0)]
""
{
rtx mem;
mem = gen_rtx_MEM (Pmode,
plus_constant (stack_pointer_rtx,
SPARC_STACK_BIAS + 14 * UNITS_PER_WORD));
emit_insn (gen_rtx_SET (VOIDmode, mem, frame_pointer_rtx));
mem = gen_rtx_MEM (Pmode,
plus_constant (stack_pointer_rtx,
SPARC_STACK_BIAS + 15 * UNITS_PER_WORD));
emit_insn (gen_rtx_SET (VOIDmode, mem, gen_rtx_REG (Pmode, 31)));
DONE;
})
;; Special pattern for the FLUSH instruction.
; We do SImode and DImode versions of this to quiet down genrecog's complaints
; of the define_insn otherwise missing a mode. We make "flush", aka
; gen_flush, the default one since sparc_initialize_trampoline uses
; it on SImode mem values.
(define_insn "flush"
[(unspec_volatile [(match_operand:SI 0 "memory_operand" "m")] UNSPECV_FLUSH)]
""
{ return TARGET_V9 ? "flush\t%f0" : "iflush\t%f0"; }
[(set_attr "type" "iflush")])
(define_insn "flushdi"
[(unspec_volatile [(match_operand:DI 0 "memory_operand" "m")] UNSPECV_FLUSH)]
""
{ return TARGET_V9 ? "flush\t%f0" : "iflush\t%f0"; }
[(set_attr "type" "iflush")])
;; Find first set instructions.
;; The scan instruction searches from the most significant bit while ffs
;; searches from the least significant bit. The bit index and treatment of
;; zero also differ. It takes at least 7 instructions to get the proper
;; result. Here is an obvious 8 instruction sequence.
;; XXX
(define_insn "ffssi2"
[(set (match_operand:SI 0 "register_operand" "=&r")
(ffs:SI (match_operand:SI 1 "register_operand" "r")))
(clobber (match_scratch:SI 2 "=&r"))]
"TARGET_SPARCLITE || TARGET_SPARCLET"
{
return "sub\t%%g0, %1, %0\;and\t%0, %1, %0\;scan\t%0, 0, %0\;mov\t32, %2\;sub\t%2, %0, %0\;sra\t%0, 31, %2\;and\t%2, 31, %2\;add\t%2, %0, %0";
}
[(set_attr "type" "multi")
(set_attr "length" "8")])
;; ??? This should be a define expand, so that the extra instruction have
;; a chance of being optimized away.
;; Disabled because none of the UltraSPARCs implement popc. The HAL R1
;; does, but no one uses that and we don't have a switch for it.
;
;(define_insn "ffsdi2"
; [(set (match_operand:DI 0 "register_operand" "=&r")
; (ffs:DI (match_operand:DI 1 "register_operand" "r")))
; (clobber (match_scratch:DI 2 "=&r"))]
; "TARGET_ARCH64"
; "neg\t%1, %2\;xnor\t%1, %2, %2\;popc\t%2, %0\;movzr\t%1, 0, %0"
; [(set_attr "type" "multi")
; (set_attr "length" "4")])
;; Peepholes go at the end.
;; Optimize consecutive loads or stores into ldd and std when possible.
;; The conditions in which we do this are very restricted and are
;; explained in the code for {registers,memory}_ok_for_ldd functions.
(define_peephole2
[(set (match_operand:SI 0 "memory_operand" "")
(const_int 0))
(set (match_operand:SI 1 "memory_operand" "")
(const_int 0))]
"TARGET_V9
&& mems_ok_for_ldd_peep (operands[0], operands[1], NULL_RTX)"
[(set (match_dup 0)
(const_int 0))]
"operands[0] = widen_memory_access (operands[0], DImode, 0);")
(define_peephole2
[(set (match_operand:SI 0 "memory_operand" "")
(const_int 0))
(set (match_operand:SI 1 "memory_operand" "")
(const_int 0))]
"TARGET_V9
&& mems_ok_for_ldd_peep (operands[1], operands[0], NULL_RTX)"
[(set (match_dup 1)
(const_int 0))]
"operands[1] = widen_memory_access (operands[1], DImode, 0);")
(define_peephole2
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "memory_operand" ""))
(set (match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "memory_operand" ""))]
"registers_ok_for_ldd_peep (operands[0], operands[2])
&& mems_ok_for_ldd_peep (operands[1], operands[3], operands[0])"
[(set (match_dup 0)
(match_dup 1))]
"operands[1] = widen_memory_access (operands[1], DImode, 0);
operands[0] = gen_rtx_REG (DImode, REGNO (operands[0]));")
(define_peephole2
[(set (match_operand:SI 0 "memory_operand" "")
(match_operand:SI 1 "register_operand" ""))
(set (match_operand:SI 2 "memory_operand" "")
(match_operand:SI 3 "register_operand" ""))]
"registers_ok_for_ldd_peep (operands[1], operands[3])
&& mems_ok_for_ldd_peep (operands[0], operands[2], NULL_RTX)"
[(set (match_dup 0)
(match_dup 1))]
"operands[0] = widen_memory_access (operands[0], DImode, 0);
operands[1] = gen_rtx_REG (DImode, REGNO (operands[1]));")
(define_peephole2
[(set (match_operand:SF 0 "register_operand" "")
(match_operand:SF 1 "memory_operand" ""))
(set (match_operand:SF 2 "register_operand" "")
(match_operand:SF 3 "memory_operand" ""))]
"registers_ok_for_ldd_peep (operands[0], operands[2])
&& mems_ok_for_ldd_peep (operands[1], operands[3], operands[0])"
[(set (match_dup 0)
(match_dup 1))]
"operands[1] = widen_memory_access (operands[1], DFmode, 0);
operands[0] = gen_rtx_REG (DFmode, REGNO (operands[0]));")
(define_peephole2
[(set (match_operand:SF 0 "memory_operand" "")
(match_operand:SF 1 "register_operand" ""))
(set (match_operand:SF 2 "memory_operand" "")
(match_operand:SF 3 "register_operand" ""))]
"registers_ok_for_ldd_peep (operands[1], operands[3])
&& mems_ok_for_ldd_peep (operands[0], operands[2], NULL_RTX)"
[(set (match_dup 0)
(match_dup 1))]
"operands[0] = widen_memory_access (operands[0], DFmode, 0);
operands[1] = gen_rtx_REG (DFmode, REGNO (operands[1]));")
(define_peephole2
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "memory_operand" ""))
(set (match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "memory_operand" ""))]
"registers_ok_for_ldd_peep (operands[2], operands[0])
&& mems_ok_for_ldd_peep (operands[3], operands[1], operands[0])"
[(set (match_dup 2)
(match_dup 3))]
"operands[3] = widen_memory_access (operands[3], DImode, 0);
operands[2] = gen_rtx_REG (DImode, REGNO (operands[2]));")
(define_peephole2
[(set (match_operand:SI 0 "memory_operand" "")
(match_operand:SI 1 "register_operand" ""))
(set (match_operand:SI 2 "memory_operand" "")
(match_operand:SI 3 "register_operand" ""))]
"registers_ok_for_ldd_peep (operands[3], operands[1])
&& mems_ok_for_ldd_peep (operands[2], operands[0], NULL_RTX)"
[(set (match_dup 2)
(match_dup 3))]
"operands[2] = widen_memory_access (operands[2], DImode, 0);
operands[3] = gen_rtx_REG (DImode, REGNO (operands[3]));
")
(define_peephole2
[(set (match_operand:SF 0 "register_operand" "")
(match_operand:SF 1 "memory_operand" ""))
(set (match_operand:SF 2 "register_operand" "")
(match_operand:SF 3 "memory_operand" ""))]
"registers_ok_for_ldd_peep (operands[2], operands[0])
&& mems_ok_for_ldd_peep (operands[3], operands[1], operands[0])"
[(set (match_dup 2)
(match_dup 3))]
"operands[3] = widen_memory_access (operands[3], DFmode, 0);
operands[2] = gen_rtx_REG (DFmode, REGNO (operands[2]));")
(define_peephole2
[(set (match_operand:SF 0 "memory_operand" "")
(match_operand:SF 1 "register_operand" ""))
(set (match_operand:SF 2 "memory_operand" "")
(match_operand:SF 3 "register_operand" ""))]
"registers_ok_for_ldd_peep (operands[3], operands[1])
&& mems_ok_for_ldd_peep (operands[2], operands[0], NULL_RTX)"
[(set (match_dup 2)
(match_dup 3))]
"operands[2] = widen_memory_access (operands[2], DFmode, 0);
operands[3] = gen_rtx_REG (DFmode, REGNO (operands[3]));")
;; Optimize the case of following a reg-reg move with a test
;; of reg just moved. Don't allow floating point regs for operand 0 or 1.
;; This can result from a float to fix conversion.
(define_peephole2
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "register_operand" ""))
(set (reg:CC 100)
(compare:CC (match_operand:SI 2 "register_operand" "")
(const_int 0)))]
"(rtx_equal_p (operands[2], operands[0])
|| rtx_equal_p (operands[2], operands[1]))
&& ! SPARC_FP_REG_P (REGNO (operands[0]))
&& ! SPARC_FP_REG_P (REGNO (operands[1]))"
[(parallel [(set (match_dup 0) (match_dup 1))
(set (reg:CC 100)
(compare:CC (match_dup 1) (const_int 0)))])]
"")
(define_peephole2
[(set (match_operand:DI 0 "register_operand" "")
(match_operand:DI 1 "register_operand" ""))
(set (reg:CCX 100)
(compare:CCX (match_operand:DI 2 "register_operand" "")
(const_int 0)))]
"TARGET_ARCH64
&& (rtx_equal_p (operands[2], operands[0])
|| rtx_equal_p (operands[2], operands[1]))
&& ! SPARC_FP_REG_P (REGNO (operands[0]))
&& ! SPARC_FP_REG_P (REGNO (operands[1]))"
[(parallel [(set (match_dup 0) (match_dup 1))
(set (reg:CCX 100)
(compare:CCX (match_dup 1) (const_int 0)))])]
"")
;; Prefetch instructions.
;; ??? UltraSPARC-III note: A memory operation loading into the floating point register
;; ??? file, if it hits the prefetch cache, has a chance to dual-issue with other memory
;; ??? operations. With DFA we might be able to model this, but it requires a lot of
;; ??? state.
(define_expand "prefetch"
[(match_operand 0 "address_operand" "")
(match_operand 1 "const_int_operand" "")
(match_operand 2 "const_int_operand" "")]
"TARGET_V9"
{
if (TARGET_ARCH64)
emit_insn (gen_prefetch_64 (operands[0], operands[1], operands[2]));
else
emit_insn (gen_prefetch_32 (operands[0], operands[1], operands[2]));
DONE;
})
(define_insn "prefetch_64"
[(prefetch (match_operand:DI 0 "address_operand" "p")
(match_operand:DI 1 "const_int_operand" "n")
(match_operand:DI 2 "const_int_operand" "n"))]
""
{
static const char * const prefetch_instr[2][2] = {
{
"prefetch\t[%a0], 1", /* no locality: prefetch for one read */
"prefetch\t[%a0], 0", /* medium to high locality: prefetch for several reads */
},
{
"prefetch\t[%a0], 3", /* no locality: prefetch for one write */
"prefetch\t[%a0], 2", /* medium to high locality: prefetch for several writes */
}
};
int read_or_write = INTVAL (operands[1]);
int locality = INTVAL (operands[2]);
gcc_assert (read_or_write == 0 || read_or_write == 1);
gcc_assert (locality >= 0 && locality < 4);
return prefetch_instr [read_or_write][locality == 0 ? 0 : 1];
}
[(set_attr "type" "load")])
(define_insn "prefetch_32"
[(prefetch (match_operand:SI 0 "address_operand" "p")
(match_operand:SI 1 "const_int_operand" "n")
(match_operand:SI 2 "const_int_operand" "n"))]
""
{
static const char * const prefetch_instr[2][2] = {
{
"prefetch\t[%a0], 1", /* no locality: prefetch for one read */
"prefetch\t[%a0], 0", /* medium to high locality: prefetch for several reads */
},
{
"prefetch\t[%a0], 3", /* no locality: prefetch for one write */
"prefetch\t[%a0], 2", /* medium to high locality: prefetch for several writes */
}
};
int read_or_write = INTVAL (operands[1]);
int locality = INTVAL (operands[2]);
gcc_assert (read_or_write == 0 || read_or_write == 1);
gcc_assert (locality >= 0 && locality < 4);
return prefetch_instr [read_or_write][locality == 0 ? 0 : 1];
}
[(set_attr "type" "load")])
;; Trap instructions.
(define_insn "trap"
[(trap_if (const_int 1) (const_int 5))]
""
"ta\t5"
[(set_attr "type" "trap")])
(define_expand "conditional_trap"
[(trap_if (match_operator 0 "noov_compare_operator" [(match_dup 2) (match_dup 3)])
(match_operand:SI 1 "arith_operand" ""))]
""
"operands[2] = gen_compare_reg (GET_CODE (operands[0]));
if (GET_MODE (operands[2]) != CCmode && GET_MODE (operands[2]) != CCXmode)
FAIL;
operands[3] = const0_rtx;")
(define_insn ""
[(trap_if (match_operator 0 "noov_compare_operator" [(reg:CC 100) (const_int 0)])
(match_operand:SI 1 "arith_operand" "rM"))]
""
{
if (TARGET_V9)
return "t%C0\t%%icc, %1";
else
return "t%C0\t%1";
}
[(set_attr "type" "trap")])
(define_insn ""
[(trap_if (match_operator 0 "noov_compare_operator" [(reg:CCX 100) (const_int 0)])
(match_operand:SI 1 "arith_operand" "rM"))]
"TARGET_V9"
"t%C0\t%%xcc, %1"
[(set_attr "type" "trap")])
;; TLS support instructions.
(define_insn "tgd_hi22"
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (unspec:SI [(match_operand 1 "tgd_symbolic_operand" "")]
UNSPEC_TLSGD)))]
"TARGET_TLS"
"sethi\\t%%tgd_hi22(%a1), %0")
(define_insn "tgd_lo10"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(unspec:SI [(match_operand 2 "tgd_symbolic_operand" "")]
UNSPEC_TLSGD)))]
"TARGET_TLS"
"add\\t%1, %%tgd_lo10(%a2), %0")
(define_insn "tgd_add32"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (match_operand:SI 1 "register_operand" "r")
(unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tgd_symbolic_operand" "")]
UNSPEC_TLSGD)))]
"TARGET_TLS && TARGET_ARCH32"
"add\\t%1, %2, %0, %%tgd_add(%a3)")
(define_insn "tgd_add64"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_operand:DI 1 "register_operand" "r")
(unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tgd_symbolic_operand" "")]
UNSPEC_TLSGD)))]
"TARGET_TLS && TARGET_ARCH64"
"add\\t%1, %2, %0, %%tgd_add(%a3)")
(define_insn "tgd_call32"
[(set (match_operand 0 "register_operand" "=r")
(call (mem:SI (unspec:SI [(match_operand:SI 1 "symbolic_operand" "s")
(match_operand 2 "tgd_symbolic_operand" "")]
UNSPEC_TLSGD))
(match_operand 3 "" "")))
(clobber (reg:SI 15))]
"TARGET_TLS && TARGET_ARCH32"
"call\t%a1, %%tgd_call(%a2)%#"
[(set_attr "type" "call")])
(define_insn "tgd_call64"
[(set (match_operand 0 "register_operand" "=r")
(call (mem:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "s")
(match_operand 2 "tgd_symbolic_operand" "")]
UNSPEC_TLSGD))
(match_operand 3 "" "")))
(clobber (reg:DI 15))]
"TARGET_TLS && TARGET_ARCH64"
"call\t%a1, %%tgd_call(%a2)%#"
[(set_attr "type" "call")])
(define_insn "tldm_hi22"
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (unspec:SI [(const_int 0)] UNSPEC_TLSLDM)))]
"TARGET_TLS"
"sethi\\t%%tldm_hi22(%&), %0")
(define_insn "tldm_lo10"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(unspec:SI [(const_int 0)] UNSPEC_TLSLDM)))]
"TARGET_TLS"
"add\\t%1, %%tldm_lo10(%&), %0")
(define_insn "tldm_add32"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (match_operand:SI 1 "register_operand" "r")
(unspec:SI [(match_operand:SI 2 "register_operand" "r")]
UNSPEC_TLSLDM)))]
"TARGET_TLS && TARGET_ARCH32"
"add\\t%1, %2, %0, %%tldm_add(%&)")
(define_insn "tldm_add64"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_operand:DI 1 "register_operand" "r")
(unspec:DI [(match_operand:SI 2 "register_operand" "r")]
UNSPEC_TLSLDM)))]
"TARGET_TLS && TARGET_ARCH64"
"add\\t%1, %2, %0, %%tldm_add(%&)")
(define_insn "tldm_call32"
[(set (match_operand 0 "register_operand" "=r")
(call (mem:SI (unspec:SI [(match_operand:SI 1 "symbolic_operand" "s")]
UNSPEC_TLSLDM))
(match_operand 2 "" "")))
(clobber (reg:SI 15))]
"TARGET_TLS && TARGET_ARCH32"
"call\t%a1, %%tldm_call(%&)%#"
[(set_attr "type" "call")])
(define_insn "tldm_call64"
[(set (match_operand 0 "register_operand" "=r")
(call (mem:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "s")]
UNSPEC_TLSLDM))
(match_operand 2 "" "")))
(clobber (reg:DI 15))]
"TARGET_TLS && TARGET_ARCH64"
"call\t%a1, %%tldm_call(%&)%#"
[(set_attr "type" "call")])
(define_insn "tldo_hix22"
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (unspec:SI [(match_operand 1 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)))]
"TARGET_TLS"
"sethi\\t%%tldo_hix22(%a1), %0")
(define_insn "tldo_lox10"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(unspec:SI [(match_operand 2 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)))]
"TARGET_TLS"
"xor\\t%1, %%tldo_lox10(%a2), %0")
(define_insn "tldo_add32"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (match_operand:SI 1 "register_operand" "r")
(unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)))]
"TARGET_TLS && TARGET_ARCH32"
"add\\t%1, %2, %0, %%tldo_add(%a3)")
(define_insn "tldo_add64"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_operand:DI 1 "register_operand" "r")
(unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)))]
"TARGET_TLS && TARGET_ARCH64"
"add\\t%1, %2, %0, %%tldo_add(%a3)")
(define_insn "tie_hi22"
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (unspec:SI [(match_operand 1 "tie_symbolic_operand" "")]
UNSPEC_TLSIE)))]
"TARGET_TLS"
"sethi\\t%%tie_hi22(%a1), %0")
(define_insn "tie_lo10"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(unspec:SI [(match_operand 2 "tie_symbolic_operand" "")]
UNSPEC_TLSIE)))]
"TARGET_TLS"
"add\\t%1, %%tie_lo10(%a2), %0")
(define_insn "tie_ld32"
[(set (match_operand:SI 0 "register_operand" "=r")
(unspec:SI [(match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tie_symbolic_operand" "")]
UNSPEC_TLSIE))]
"TARGET_TLS && TARGET_ARCH32"
"ld\\t[%1 + %2], %0, %%tie_ld(%a3)"
[(set_attr "type" "load")])
(define_insn "tie_ld64"
[(set (match_operand:DI 0 "register_operand" "=r")
(unspec:DI [(match_operand:DI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tie_symbolic_operand" "")]
UNSPEC_TLSIE))]
"TARGET_TLS && TARGET_ARCH64"
"ldx\\t[%1 + %2], %0, %%tie_ldx(%a3)"
[(set_attr "type" "load")])
(define_insn "tie_add32"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (match_operand:SI 1 "register_operand" "r")
(unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tie_symbolic_operand" "")]
UNSPEC_TLSIE)))]
"TARGET_SUN_TLS && TARGET_ARCH32"
"add\\t%1, %2, %0, %%tie_add(%a3)")
(define_insn "tie_add64"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_operand:DI 1 "register_operand" "r")
(unspec:DI [(match_operand:DI 2 "register_operand" "r")
(match_operand 3 "tie_symbolic_operand" "")]
UNSPEC_TLSIE)))]
"TARGET_SUN_TLS && TARGET_ARCH64"
"add\\t%1, %2, %0, %%tie_add(%a3)")
(define_insn "tle_hix22_sp32"
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (unspec:SI [(match_operand 1 "tle_symbolic_operand" "")]
UNSPEC_TLSLE)))]
"TARGET_TLS && TARGET_ARCH32"
"sethi\\t%%tle_hix22(%a1), %0")
(define_insn "tle_lox10_sp32"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(unspec:SI [(match_operand 2 "tle_symbolic_operand" "")]
UNSPEC_TLSLE)))]
"TARGET_TLS && TARGET_ARCH32"
"xor\\t%1, %%tle_lox10(%a2), %0")
(define_insn "tle_hix22_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI (unspec:DI [(match_operand 1 "tle_symbolic_operand" "")]
UNSPEC_TLSLE)))]
"TARGET_TLS && TARGET_ARCH64"
"sethi\\t%%tle_hix22(%a1), %0")
(define_insn "tle_lox10_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "r")
(unspec:DI [(match_operand 2 "tle_symbolic_operand" "")]
UNSPEC_TLSLE)))]
"TARGET_TLS && TARGET_ARCH64"
"xor\\t%1, %%tle_lox10(%a2), %0")
;; Now patterns combining tldo_add{32,64} with some integer loads or stores
(define_insn "*tldo_ldub_sp32"
[(set (match_operand:QI 0 "register_operand" "=r")
(mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r"))))]
"TARGET_TLS && TARGET_ARCH32"
"ldub\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldub1_sp32"
[(set (match_operand:HI 0 "register_operand" "=r")
(zero_extend:HI (mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH32"
"ldub\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldub2_sp32"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH32"
"ldub\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldsb1_sp32"
[(set (match_operand:HI 0 "register_operand" "=r")
(sign_extend:HI (mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH32"
"ldsb\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldsb2_sp32"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH32"
"ldsb\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldub_sp64"
[(set (match_operand:QI 0 "register_operand" "=r")
(mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r"))))]
"TARGET_TLS && TARGET_ARCH64"
"ldub\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldub1_sp64"
[(set (match_operand:HI 0 "register_operand" "=r")
(zero_extend:HI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"ldub\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldub2_sp64"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"ldub\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldub3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"ldub\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldsb1_sp64"
[(set (match_operand:HI 0 "register_operand" "=r")
(sign_extend:HI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"ldsb\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldsb2_sp64"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"ldsb\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldsb3_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"ldsb\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_lduh_sp32"
[(set (match_operand:HI 0 "register_operand" "=r")
(mem:HI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r"))))]
"TARGET_TLS && TARGET_ARCH32"
"lduh\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_lduh1_sp32"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (mem:HI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH32"
"lduh\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldsh1_sp32"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (mem:HI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH32"
"ldsh\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_lduh_sp64"
[(set (match_operand:HI 0 "register_operand" "=r")
(mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r"))))]
"TARGET_TLS && TARGET_ARCH64"
"lduh\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_lduh1_sp64"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"lduh\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_lduh2_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"lduh\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldsh1_sp64"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"ldsh\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldsh2_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"ldsh\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_lduw_sp32"
[(set (match_operand:SI 0 "register_operand" "=r")
(mem:SI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r"))))]
"TARGET_TLS && TARGET_ARCH32"
"ld\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")])
(define_insn "*tldo_lduw_sp64"
[(set (match_operand:SI 0 "register_operand" "=r")
(mem:SI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r"))))]
"TARGET_TLS && TARGET_ARCH64"
"lduw\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")])
(define_insn "*tldo_lduw1_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (mem:SI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"lduw\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")])
(define_insn "*tldo_ldsw1_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (mem:SI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))))]
"TARGET_TLS && TARGET_ARCH64"
"ldsw\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "sload")
(set_attr "us3load_type" "3cycle")])
(define_insn "*tldo_ldx_sp64"
[(set (match_operand:DI 0 "register_operand" "=r")
(mem:DI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r"))))]
"TARGET_TLS && TARGET_ARCH64"
"ldx\t[%1 + %2], %0, %%tldo_add(%3)"
[(set_attr "type" "load")])
(define_insn "*tldo_stb_sp32"
[(set (mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r")))
(match_operand:QI 0 "register_operand" "=r"))]
"TARGET_TLS && TARGET_ARCH32"
"stb\t%0, [%1 + %2], %%tldo_add(%3)"
[(set_attr "type" "store")])
(define_insn "*tldo_stb_sp64"
[(set (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))
(match_operand:QI 0 "register_operand" "=r"))]
"TARGET_TLS && TARGET_ARCH64"
"stb\t%0, [%1 + %2], %%tldo_add(%3)"
[(set_attr "type" "store")])
(define_insn "*tldo_sth_sp32"
[(set (mem:HI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r")))
(match_operand:HI 0 "register_operand" "=r"))]
"TARGET_TLS && TARGET_ARCH32"
"sth\t%0, [%1 + %2], %%tldo_add(%3)"
[(set_attr "type" "store")])
(define_insn "*tldo_sth_sp64"
[(set (mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))
(match_operand:HI 0 "register_operand" "=r"))]
"TARGET_TLS && TARGET_ARCH64"
"sth\t%0, [%1 + %2], %%tldo_add(%3)"
[(set_attr "type" "store")])
(define_insn "*tldo_stw_sp32"
[(set (mem:SI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:SI 1 "register_operand" "r")))
(match_operand:SI 0 "register_operand" "=r"))]
"TARGET_TLS && TARGET_ARCH32"
"st\t%0, [%1 + %2], %%tldo_add(%3)"
[(set_attr "type" "store")])
(define_insn "*tldo_stw_sp64"
[(set (mem:SI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))
(match_operand:SI 0 "register_operand" "=r"))]
"TARGET_TLS && TARGET_ARCH64"
"stw\t%0, [%1 + %2], %%tldo_add(%3)"
[(set_attr "type" "store")])
(define_insn "*tldo_stx_sp64"
[(set (mem:DI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r")
(match_operand 3 "tld_symbolic_operand" "")]
UNSPEC_TLSLDO)
(match_operand:DI 1 "register_operand" "r")))
(match_operand:DI 0 "register_operand" "=r"))]
"TARGET_TLS && TARGET_ARCH64"
"stx\t%0, [%1 + %2], %%tldo_add(%3)"
[(set_attr "type" "store")])
;; Stack protector instructions.
(define_expand "stack_protect_set"
[(match_operand 0 "memory_operand" "")
(match_operand 1 "memory_operand" "")]
""
{
#ifdef TARGET_THREAD_SSP_OFFSET
rtx tlsreg = gen_rtx_REG (Pmode, 7);
rtx addr = gen_rtx_PLUS (Pmode, tlsreg, GEN_INT (TARGET_THREAD_SSP_OFFSET));
operands[1] = gen_rtx_MEM (Pmode, addr);
#endif
if (TARGET_ARCH64)
emit_insn (gen_stack_protect_setdi (operands[0], operands[1]));
else
emit_insn (gen_stack_protect_setsi (operands[0], operands[1]));
DONE;
})
(define_insn "stack_protect_setsi"
[(set (match_operand:SI 0 "memory_operand" "=m")
(unspec:SI [(match_operand:SI 1 "memory_operand" "m")] UNSPEC_SP_SET))
(set (match_scratch:SI 2 "=&r") (const_int 0))]
"TARGET_ARCH32"
"ld\t%1, %2\;st\t%2, %0\;mov\t0, %2"
[(set_attr "type" "multi")
(set_attr "length" "3")])
(define_insn "stack_protect_setdi"
[(set (match_operand:DI 0 "memory_operand" "=m")
(unspec:DI [(match_operand:DI 1 "memory_operand" "m")] UNSPEC_SP_SET))
(set (match_scratch:DI 2 "=&r") (const_int 0))]
"TARGET_ARCH64"
"ldx\t%1, %2\;stx\t%2, %0\;mov\t0, %2"
[(set_attr "type" "multi")
(set_attr "length" "3")])
(define_expand "stack_protect_test"
[(match_operand 0 "memory_operand" "")
(match_operand 1 "memory_operand" "")
(match_operand 2 "" "")]
""
{
#ifdef TARGET_THREAD_SSP_OFFSET
rtx tlsreg = gen_rtx_REG (Pmode, 7);
rtx addr = gen_rtx_PLUS (Pmode, tlsreg, GEN_INT (TARGET_THREAD_SSP_OFFSET));
operands[1] = gen_rtx_MEM (Pmode, addr);
#endif
if (TARGET_ARCH64)
{
rtx temp = gen_reg_rtx (Pmode);
emit_insn (gen_stack_protect_testdi (temp, operands[0], operands[1]));
sparc_compare_op0 = temp;
sparc_compare_op1 = const0_rtx;
}
else
{
emit_insn (gen_stack_protect_testsi (operands[0], operands[1]));
sparc_compare_op0 = operands[0];
sparc_compare_op1 = operands[1];
sparc_compare_emitted = gen_rtx_REG (CCmode, SPARC_ICC_REG);
}
emit_jump_insn (gen_beq (operands[2]));
DONE;
})
(define_insn "stack_protect_testsi"
[(set (reg:CC 100)
(unspec:CC [(match_operand:SI 0 "memory_operand" "m")
(match_operand:SI 1 "memory_operand" "m")]
UNSPEC_SP_TEST))
(set (match_scratch:SI 3 "=r") (const_int 0))
(clobber (match_scratch:SI 2 "=&r"))]
"TARGET_ARCH32"
"ld\t%0, %2\;ld\t%1, %3\;xorcc\t%2, %3, %2\;mov\t0, %3"
[(set_attr "type" "multi")
(set_attr "length" "4")])
(define_insn "stack_protect_testdi"
[(set (match_operand:DI 0 "register_operand" "=&r")
(unspec:DI [(match_operand:DI 1 "memory_operand" "m")
(match_operand:DI 2 "memory_operand" "m")]
UNSPEC_SP_TEST))
(set (match_scratch:DI 3 "=r") (const_int 0))]
"TARGET_ARCH64"
"ldx\t%1, %0\;ldx\t%2, %3\;xor\t%0, %3, %0\;mov\t0, %3"
[(set_attr "type" "multi")
(set_attr "length" "4")])
;; Vector instructions.
(define_insn "addv2si3"
[(set (match_operand:V2SI 0 "register_operand" "=e")
(plus:V2SI (match_operand:V2SI 1 "register_operand" "e")
(match_operand:V2SI 2 "register_operand" "e")))]
"TARGET_VIS"
"fpadd32\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
(define_insn "addv4hi3"
[(set (match_operand:V4HI 0 "register_operand" "=e")
(plus:V4HI (match_operand:V4HI 1 "register_operand" "e")
(match_operand:V4HI 2 "register_operand" "e")))]
"TARGET_VIS"
"fpadd16\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
;; fpadd32s is emitted by the addsi3 pattern.
(define_insn "addv2hi3"
[(set (match_operand:V2HI 0 "register_operand" "=f")
(plus:V2HI (match_operand:V2HI 1 "register_operand" "f")
(match_operand:V2HI 2 "register_operand" "f")))]
"TARGET_VIS"
"fpadd16s\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "single")])
(define_insn "subv2si3"
[(set (match_operand:V2SI 0 "register_operand" "=e")
(minus:V2SI (match_operand:V2SI 1 "register_operand" "e")
(match_operand:V2SI 2 "register_operand" "e")))]
"TARGET_VIS"
"fpsub32\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
(define_insn "subv4hi3"
[(set (match_operand:V4HI 0 "register_operand" "=e")
(minus:V4HI (match_operand:V4HI 1 "register_operand" "e")
(match_operand:V4HI 2 "register_operand" "e")))]
"TARGET_VIS"
"fpsub16\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
;; fpsub32s is emitted by the subsi3 pattern.
(define_insn "subv2hi3"
[(set (match_operand:V2HI 0 "register_operand" "=f")
(minus:V2HI (match_operand:V2HI 1 "register_operand" "f")
(match_operand:V2HI 2 "register_operand" "f")))]
"TARGET_VIS"
"fpsub16s\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "single")])
;; All other logical instructions have integer equivalents so they
;; are defined together.
;; (ior (not (op1)) (not (op2))) is the canonical form of NAND.
(define_insn "*nand<V64mode>_vis"
[(set (match_operand:V64 0 "register_operand" "=e")
(ior:V64 (not:V64 (match_operand:V64 1 "register_operand" "e"))
(not:V64 (match_operand:V64 2 "register_operand" "e"))))]
"TARGET_VIS"
"fnand\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
(define_insn "*nand<V32mode>_vis"
[(set (match_operand:V32 0 "register_operand" "=f")
(ior:V32 (not:V32 (match_operand:V32 1 "register_operand" "f"))
(not:V32 (match_operand:V32 2 "register_operand" "f"))))]
"TARGET_VIS"
"fnands\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "single")])
;; Hard to generate VIS instructions. We have builtins for these.
(define_insn "fpack16_vis"
[(set (match_operand:V4QI 0 "register_operand" "=f")
(unspec:V4QI [(match_operand:V4HI 1 "register_operand" "e")]
UNSPEC_FPACK16))]
"TARGET_VIS"
"fpack16\t%1, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
(define_insn "fpackfix_vis"
[(set (match_operand:V2HI 0 "register_operand" "=f")
(unspec:V2HI [(match_operand:V2SI 1 "register_operand" "e")]
UNSPEC_FPACKFIX))]
"TARGET_VIS"
"fpackfix\t%1, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
(define_insn "fpack32_vis"
[(set (match_operand:V8QI 0 "register_operand" "=e")
(unspec:V8QI [(match_operand:V2SI 1 "register_operand" "e")
(match_operand:V8QI 2 "register_operand" "e")]
UNSPEC_FPACK32))]
"TARGET_VIS"
"fpack32\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
(define_insn "fexpand_vis"
[(set (match_operand:V4HI 0 "register_operand" "=e")
(unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f")]
UNSPEC_FEXPAND))]
"TARGET_VIS"
"fexpand\t%1, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
;; It may be possible to describe this operation as (1 indexed):
;; (vec_select (vec_duplicate (vec_duplicate (vec_concat 1 2)))
;; 1,5,10,14,19,23,28,32)
;; Note that (vec_merge:V8QI [(V4QI) (V4QI)] (10101010 = 170) doesn't work
;; because vec_merge expects all the operands to be of the same type.
(define_insn "fpmerge_vis"
[(set (match_operand:V8QI 0 "register_operand" "=e")
(unspec:V8QI [(match_operand:V4QI 1 "register_operand" "f")
(match_operand:V4QI 2 "register_operand" "f")]
UNSPEC_FPMERGE))]
"TARGET_VIS"
"fpmerge\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
;; Partitioned multiply instructions
(define_insn "fmul8x16_vis"
[(set (match_operand:V4HI 0 "register_operand" "=e")
(mult:V4HI (match_operand:V4QI 1 "register_operand" "f")
(match_operand:V4HI 2 "register_operand" "e")))]
"TARGET_VIS"
"fmul8x16\t%1, %2, %0"
[(set_attr "type" "fpmul")
(set_attr "fptype" "double")])
;; Only one of the following two insns can be a multiply.
(define_insn "fmul8x16au_vis"
[(set (match_operand:V4HI 0 "register_operand" "=e")
(mult:V4HI (match_operand:V4QI 1 "register_operand" "f")
(match_operand:V2HI 2 "register_operand" "f")))]
"TARGET_VIS"
"fmul8x16au\t%1, %2, %0"
[(set_attr "type" "fpmul")
(set_attr "fptype" "double")])
(define_insn "fmul8x16al_vis"
[(set (match_operand:V4HI 0 "register_operand" "=e")
(unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f")
(match_operand:V2HI 2 "register_operand" "f")]
UNSPEC_MUL16AL))]
"TARGET_VIS"
"fmul8x16al\t%1, %2, %0"
[(set_attr "type" "fpmul")
(set_attr "fptype" "double")])
;; Only one of the following two insns can be a multiply.
(define_insn "fmul8sux16_vis"
[(set (match_operand:V4HI 0 "register_operand" "=e")
(mult:V4HI (match_operand:V8QI 1 "register_operand" "e")
(match_operand:V4HI 2 "register_operand" "e")))]
"TARGET_VIS"
"fmul8sux16\t%1, %2, %0"
[(set_attr "type" "fpmul")
(set_attr "fptype" "double")])
(define_insn "fmul8ulx16_vis"
[(set (match_operand:V4HI 0 "register_operand" "=e")
(unspec:V4HI [(match_operand:V8QI 1 "register_operand" "e")
(match_operand:V4HI 2 "register_operand" "e")]
UNSPEC_MUL8UL))]
"TARGET_VIS"
"fmul8ulx16\t%1, %2, %0"
[(set_attr "type" "fpmul")
(set_attr "fptype" "double")])
;; Only one of the following two insns can be a multiply.
(define_insn "fmuld8sux16_vis"
[(set (match_operand:V2SI 0 "register_operand" "=e")
(mult:V2SI (match_operand:V4QI 1 "register_operand" "f")
(match_operand:V2HI 2 "register_operand" "f")))]
"TARGET_VIS"
"fmuld8sux16\t%1, %2, %0"
[(set_attr "type" "fpmul")
(set_attr "fptype" "double")])
(define_insn "fmuld8ulx16_vis"
[(set (match_operand:V2SI 0 "register_operand" "=e")
(unspec:V2SI [(match_operand:V4QI 1 "register_operand" "f")
(match_operand:V2HI 2 "register_operand" "f")]
UNSPEC_MULDUL))]
"TARGET_VIS"
"fmuld8ulx16\t%1, %2, %0"
[(set_attr "type" "fpmul")
(set_attr "fptype" "double")])
;; Using faligndata only makes sense after an alignaddr since the choice of
;; bytes to take out of each operand is dependent on the results of the last
;; alignaddr.
(define_insn "faligndata<V64I:mode>_vis"
[(set (match_operand:V64I 0 "register_operand" "=e")
(unspec:V64I [(match_operand:V64I 1 "register_operand" "e")
(match_operand:V64I 2 "register_operand" "e")]
UNSPEC_ALIGNDATA))]
"TARGET_VIS"
"faligndata\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
(define_insn "alignaddr<P:mode>_vis"
[(set (match_operand:P 0 "register_operand" "=r")
(unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ")
(match_operand:P 2 "register_or_zero_operand" "rJ")]
UNSPEC_ALIGNADDR))]
"TARGET_VIS"
"alignaddr\t%r1, %r2, %0")
(define_insn "pdist_vis"
[(set (match_operand:DI 0 "register_operand" "=e")
(unspec:DI [(match_operand:V8QI 1 "register_operand" "e")
(match_operand:V8QI 2 "register_operand" "e")
(match_operand:DI 3 "register_operand" "0")]
UNSPEC_PDIST))]
"TARGET_VIS"
"pdist\t%1, %2, %0"
[(set_attr "type" "fga")
(set_attr "fptype" "double")])
(include "sync.md")
Go to most recent revision | Compare with Previous | Blame | View Log