URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [function.c] - Rev 310
Go to most recent revision | Compare with Previous | Blame | View Log
/* Expands front end tree to back end RTL for GCC. Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* This file handles the generation of rtl code from tree structure at the level of the function as a whole. It creates the rtl expressions for parameters and auto variables and has full responsibility for allocating stack slots. `expand_function_start' is called at the beginning of a function, before the function body is parsed, and `expand_function_end' is called after parsing the body. Call `assign_stack_local' to allocate a stack slot for a local variable. This is usually done during the RTL generation for the function body, but it can also be done in the reload pass when a pseudo-register does not get a hard register. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "flags.h" #include "except.h" #include "function.h" #include "expr.h" #include "optabs.h" #include "libfuncs.h" #include "regs.h" #include "hard-reg-set.h" #include "insn-config.h" #include "recog.h" #include "output.h" #include "basic-block.h" #include "toplev.h" #include "hashtab.h" #include "ggc.h" #include "tm_p.h" #include "integrate.h" #include "langhooks.h" #include "target.h" #include "cfglayout.h" #include "tree-gimple.h" #include "tree-pass.h" #include "predict.h" #include "vecprim.h" #ifndef LOCAL_ALIGNMENT #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT #endif #ifndef STACK_ALIGNMENT_NEEDED #define STACK_ALIGNMENT_NEEDED 1 #endif #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT) /* Some systems use __main in a way incompatible with its use in gcc, in these cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to give the same symbol without quotes for an alternative entry point. You must define both, or neither. */ #ifndef NAME__MAIN #define NAME__MAIN "__main" #endif /* Round a value to the lowest integer less than it that is a multiple of the required alignment. Avoid using division in case the value is negative. Assume the alignment is a power of two. */ #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1)) /* Similar, but round to the next highest integer that meets the alignment. */ #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1)) /* Nonzero if function being compiled doesn't contain any calls (ignoring the prologue and epilogue). This is set prior to local register allocation and is valid for the remaining compiler passes. */ int current_function_is_leaf; /* Nonzero if function being compiled doesn't modify the stack pointer (ignoring the prologue and epilogue). This is only valid after life_analysis has run. */ int current_function_sp_is_unchanging; /* Nonzero if the function being compiled is a leaf function which only uses leaf registers. This is valid after reload (specifically after sched2) and is useful only if the port defines LEAF_REGISTERS. */ int current_function_uses_only_leaf_regs; /* Nonzero once virtual register instantiation has been done. assign_stack_local uses frame_pointer_rtx when this is nonzero. calls.c:emit_library_call_value_1 uses it to set up post-instantiation libcalls. */ int virtuals_instantiated; /* Assign unique numbers to labels generated for profiling, debugging, etc. */ static GTY(()) int funcdef_no; /* These variables hold pointers to functions to create and destroy target specific, per-function data structures. */ struct machine_function * (*init_machine_status) (void); /* The currently compiled function. */ struct function *cfun = 0; /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */ static VEC(int,heap) *prologue; static VEC(int,heap) *epilogue; /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue in this function. */ static VEC(int,heap) *sibcall_epilogue; /* In order to evaluate some expressions, such as function calls returning structures in memory, we need to temporarily allocate stack locations. We record each allocated temporary in the following structure. Associated with each temporary slot is a nesting level. When we pop up one level, all temporaries associated with the previous level are freed. Normally, all temporaries are freed after the execution of the statement in which they were created. However, if we are inside a ({...}) grouping, the result may be in a temporary and hence must be preserved. If the result could be in a temporary, we preserve it if we can determine which one it is in. If we cannot determine which temporary may contain the result, all temporaries are preserved. A temporary is preserved by pretending it was allocated at the previous nesting level. Automatic variables are also assigned temporary slots, at the nesting level where they are defined. They are marked a "kept" so that free_temp_slots will not free them. */ struct temp_slot GTY(()) { /* Points to next temporary slot. */ struct temp_slot *next; /* Points to previous temporary slot. */ struct temp_slot *prev; /* The rtx to used to reference the slot. */ rtx slot; /* The rtx used to represent the address if not the address of the slot above. May be an EXPR_LIST if multiple addresses exist. */ rtx address; /* The alignment (in bits) of the slot. */ unsigned int align; /* The size, in units, of the slot. */ HOST_WIDE_INT size; /* The type of the object in the slot, or zero if it doesn't correspond to a type. We use this to determine whether a slot can be reused. It can be reused if objects of the type of the new slot will always conflict with objects of the type of the old slot. */ tree type; /* Nonzero if this temporary is currently in use. */ char in_use; /* Nonzero if this temporary has its address taken. */ char addr_taken; /* Nesting level at which this slot is being used. */ int level; /* Nonzero if this should survive a call to free_temp_slots. */ int keep; /* The offset of the slot from the frame_pointer, including extra space for alignment. This info is for combine_temp_slots. */ HOST_WIDE_INT base_offset; /* The size of the slot, including extra space for alignment. This info is for combine_temp_slots. */ HOST_WIDE_INT full_size; }; /* Forward declarations. */ static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int, struct function *); static struct temp_slot *find_temp_slot_from_address (rtx); static void pad_to_arg_alignment (struct args_size *, int, struct args_size *); static void pad_below (struct args_size *, enum machine_mode, tree); static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **); static int all_blocks (tree, tree *); static tree *get_block_vector (tree, int *); extern tree debug_find_var_in_block_tree (tree, tree); /* We always define `record_insns' even if it's not used so that we can always export `prologue_epilogue_contains'. */ static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED; static int contains (rtx, VEC(int,heap) **); #ifdef HAVE_return static void emit_return_into_block (basic_block, rtx); #endif #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX) static rtx keep_stack_depressed (rtx); #endif static void prepare_function_start (tree); static void do_clobber_return_reg (rtx, void *); static void do_use_return_reg (rtx, void *); static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED; /* Pointer to chain of `struct function' for containing functions. */ struct function *outer_function_chain; /* Given a function decl for a containing function, return the `struct function' for it. */ struct function * find_function_data (tree decl) { struct function *p; for (p = outer_function_chain; p; p = p->outer) if (p->decl == decl) return p; gcc_unreachable (); } /* Save the current context for compilation of a nested function. This is called from language-specific code. The caller should use the enter_nested langhook to save any language-specific state, since this function knows only about language-independent variables. */ void push_function_context_to (tree context ATTRIBUTE_UNUSED) { struct function *p; if (cfun == 0) init_dummy_function_start (); p = cfun; p->outer = outer_function_chain; outer_function_chain = p; lang_hooks.function.enter_nested (p); cfun = 0; } void push_function_context (void) { push_function_context_to (current_function_decl); } /* Restore the last saved context, at the end of a nested function. This function is called from language-specific code. */ void pop_function_context_from (tree context ATTRIBUTE_UNUSED) { struct function *p = outer_function_chain; cfun = p; outer_function_chain = p->outer; current_function_decl = p->decl; lang_hooks.function.leave_nested (p); /* Reset variables that have known state during rtx generation. */ virtuals_instantiated = 0; generating_concat_p = 1; } void pop_function_context (void) { pop_function_context_from (current_function_decl); } /* Clear out all parts of the state in F that can safely be discarded after the function has been parsed, but not compiled, to let garbage collection reclaim the memory. */ void free_after_parsing (struct function *f) { /* f->expr->forced_labels is used by code generation. */ /* f->emit->regno_reg_rtx is used by code generation. */ /* f->varasm is used by code generation. */ /* f->eh->eh_return_stub_label is used by code generation. */ lang_hooks.function.final (f); } /* Clear out all parts of the state in F that can safely be discarded after the function has been compiled, to let garbage collection reclaim the memory. */ void free_after_compilation (struct function *f) { VEC_free (int, heap, prologue); VEC_free (int, heap, epilogue); VEC_free (int, heap, sibcall_epilogue); f->eh = NULL; f->expr = NULL; f->emit = NULL; f->varasm = NULL; f->machine = NULL; f->cfg = NULL; f->x_avail_temp_slots = NULL; f->x_used_temp_slots = NULL; f->arg_offset_rtx = NULL; f->return_rtx = NULL; f->internal_arg_pointer = NULL; f->x_nonlocal_goto_handler_labels = NULL; f->x_return_label = NULL; f->x_naked_return_label = NULL; f->x_stack_slot_list = NULL; f->x_stack_check_probe_note = NULL; f->x_arg_pointer_save_area = NULL; f->x_parm_birth_insn = NULL; f->epilogue_delay_list = NULL; } /* Allocate fixed slots in the stack frame of the current function. */ /* Return size needed for stack frame based on slots so far allocated in function F. This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY; the caller may have to do that. */ static HOST_WIDE_INT get_func_frame_size (struct function *f) { if (FRAME_GROWS_DOWNWARD) return -f->x_frame_offset; else return f->x_frame_offset; } /* Return size needed for stack frame based on slots so far allocated. This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY; the caller may have to do that. */ HOST_WIDE_INT get_frame_size (void) { return get_func_frame_size (cfun); } /* Issue an error message and return TRUE if frame OFFSET overflows in the signed target pointer arithmetics for function FUNC. Otherwise return FALSE. */ bool frame_offset_overflow (HOST_WIDE_INT offset, tree func) { unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset; if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1)) /* Leave room for the fixed part of the frame. */ - 64 * UNITS_PER_WORD) { error ("%Jtotal size of local objects too large", func); return TRUE; } return FALSE; } /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it with machine mode MODE. ALIGN controls the amount of alignment for the address of the slot: 0 means according to MODE, -1 means use BIGGEST_ALIGNMENT and round size to multiple of that, -2 means use BITS_PER_UNIT, positive specifies alignment boundary in bits. We do not round to stack_boundary here. FUNCTION specifies the function to allocate in. */ static rtx assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align, struct function *function) { rtx x, addr; int bigend_correction = 0; unsigned int alignment; int frame_off, frame_alignment, frame_phase; if (align == 0) { tree type; if (mode == BLKmode) alignment = BIGGEST_ALIGNMENT; else alignment = GET_MODE_ALIGNMENT (mode); /* Allow the target to (possibly) increase the alignment of this stack slot. */ type = lang_hooks.types.type_for_mode (mode, 0); if (type) alignment = LOCAL_ALIGNMENT (type, alignment); alignment /= BITS_PER_UNIT; } else if (align == -1) { alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT; size = CEIL_ROUND (size, alignment); } else if (align == -2) alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */ else alignment = align / BITS_PER_UNIT; if (FRAME_GROWS_DOWNWARD) function->x_frame_offset -= size; /* Ignore alignment we can't do with expected alignment of the boundary. */ if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY) alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; if (function->stack_alignment_needed < alignment * BITS_PER_UNIT) function->stack_alignment_needed = alignment * BITS_PER_UNIT; /* Calculate how many bytes the start of local variables is off from stack alignment. */ frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; frame_off = STARTING_FRAME_OFFSET % frame_alignment; frame_phase = frame_off ? frame_alignment - frame_off : 0; /* Round the frame offset to the specified alignment. The default is to always honor requests to align the stack but a port may choose to do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */ if (STACK_ALIGNMENT_NEEDED || mode != BLKmode || size != 0) { /* We must be careful here, since FRAME_OFFSET might be negative and division with a negative dividend isn't as well defined as we might like. So we instead assume that ALIGNMENT is a power of two and use logical operations which are unambiguous. */ if (FRAME_GROWS_DOWNWARD) function->x_frame_offset = (FLOOR_ROUND (function->x_frame_offset - frame_phase, (unsigned HOST_WIDE_INT) alignment) + frame_phase); else function->x_frame_offset = (CEIL_ROUND (function->x_frame_offset - frame_phase, (unsigned HOST_WIDE_INT) alignment) + frame_phase); } /* On a big-endian machine, if we are allocating more space than we will use, use the least significant bytes of those that are allocated. */ if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size) bigend_correction = size - GET_MODE_SIZE (mode); /* If we have already instantiated virtual registers, return the actual address relative to the frame pointer. */ if (function == cfun && virtuals_instantiated) addr = plus_constant (frame_pointer_rtx, trunc_int_for_mode (frame_offset + bigend_correction + STARTING_FRAME_OFFSET, Pmode)); else addr = plus_constant (virtual_stack_vars_rtx, trunc_int_for_mode (function->x_frame_offset + bigend_correction, Pmode)); if (!FRAME_GROWS_DOWNWARD) function->x_frame_offset += size; x = gen_rtx_MEM (mode, addr); MEM_NOTRAP_P (x) = 1; function->x_stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list); if (frame_offset_overflow (function->x_frame_offset, function->decl)) function->x_frame_offset = 0; return x; } /* Wrapper around assign_stack_local_1; assign a local stack slot for the current function. */ rtx assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align) { return assign_stack_local_1 (mode, size, align, cfun); } /* Removes temporary slot TEMP from LIST. */ static void cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list) { if (temp->next) temp->next->prev = temp->prev; if (temp->prev) temp->prev->next = temp->next; else *list = temp->next; temp->prev = temp->next = NULL; } /* Inserts temporary slot TEMP to LIST. */ static void insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list) { temp->next = *list; if (*list) (*list)->prev = temp; temp->prev = NULL; *list = temp; } /* Returns the list of used temp slots at LEVEL. */ static struct temp_slot ** temp_slots_at_level (int level) { if (level >= (int) VEC_length (temp_slot_p, used_temp_slots)) { size_t old_length = VEC_length (temp_slot_p, used_temp_slots); temp_slot_p *p; VEC_safe_grow (temp_slot_p, gc, used_temp_slots, level + 1); p = VEC_address (temp_slot_p, used_temp_slots); memset (&p[old_length], 0, sizeof (temp_slot_p) * (level + 1 - old_length)); } return &(VEC_address (temp_slot_p, used_temp_slots)[level]); } /* Returns the maximal temporary slot level. */ static int max_slot_level (void) { if (!used_temp_slots) return -1; return VEC_length (temp_slot_p, used_temp_slots) - 1; } /* Moves temporary slot TEMP to LEVEL. */ static void move_slot_to_level (struct temp_slot *temp, int level) { cut_slot_from_list (temp, temp_slots_at_level (temp->level)); insert_slot_to_list (temp, temp_slots_at_level (level)); temp->level = level; } /* Make temporary slot TEMP available. */ static void make_slot_available (struct temp_slot *temp) { cut_slot_from_list (temp, temp_slots_at_level (temp->level)); insert_slot_to_list (temp, &avail_temp_slots); temp->in_use = 0; temp->level = -1; } /* Allocate a temporary stack slot and record it for possible later reuse. MODE is the machine mode to be given to the returned rtx. SIZE is the size in units of the space required. We do no rounding here since assign_stack_local will do any required rounding. KEEP is 1 if this slot is to be retained after a call to free_temp_slots. Automatic variables for a block are allocated with this flag. KEEP values of 2 or 3 were needed respectively for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs or for SAVE_EXPRs, but they are now unused. TYPE is the type that will be used for the stack slot. */ rtx assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep, tree type) { unsigned int align; struct temp_slot *p, *best_p = 0, *selected = NULL, **pp; rtx slot; /* If SIZE is -1 it means that somebody tried to allocate a temporary of a variable size. */ gcc_assert (size != -1); /* These are now unused. */ gcc_assert (keep <= 1); if (mode == BLKmode) align = BIGGEST_ALIGNMENT; else align = GET_MODE_ALIGNMENT (mode); if (! type) type = lang_hooks.types.type_for_mode (mode, 0); if (type) align = LOCAL_ALIGNMENT (type, align); /* Try to find an available, already-allocated temporary of the proper mode which meets the size and alignment requirements. Choose the smallest one with the closest alignment. If assign_stack_temp is called outside of the tree->rtl expansion, we cannot reuse the stack slots (that may still refer to VIRTUAL_STACK_VARS_REGNUM). */ if (!virtuals_instantiated) { for (p = avail_temp_slots; p; p = p->next) { if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode && objects_must_conflict_p (p->type, type) && (best_p == 0 || best_p->size > p->size || (best_p->size == p->size && best_p->align > p->align))) { if (p->align == align && p->size == size) { selected = p; cut_slot_from_list (selected, &avail_temp_slots); best_p = 0; break; } best_p = p; } } } /* Make our best, if any, the one to use. */ if (best_p) { selected = best_p; cut_slot_from_list (selected, &avail_temp_slots); /* If there are enough aligned bytes left over, make them into a new temp_slot so that the extra bytes don't get wasted. Do this only for BLKmode slots, so that we can be sure of the alignment. */ if (GET_MODE (best_p->slot) == BLKmode) { int alignment = best_p->align / BITS_PER_UNIT; HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment); if (best_p->size - rounded_size >= alignment) { p = ggc_alloc (sizeof (struct temp_slot)); p->in_use = p->addr_taken = 0; p->size = best_p->size - rounded_size; p->base_offset = best_p->base_offset + rounded_size; p->full_size = best_p->full_size - rounded_size; p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size); p->align = best_p->align; p->address = 0; p->type = best_p->type; insert_slot_to_list (p, &avail_temp_slots); stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot, stack_slot_list); best_p->size = rounded_size; best_p->full_size = rounded_size; } } } /* If we still didn't find one, make a new temporary. */ if (selected == 0) { HOST_WIDE_INT frame_offset_old = frame_offset; p = ggc_alloc (sizeof (struct temp_slot)); /* We are passing an explicit alignment request to assign_stack_local. One side effect of that is assign_stack_local will not round SIZE to ensure the frame offset remains suitably aligned. So for requests which depended on the rounding of SIZE, we go ahead and round it now. We also make sure ALIGNMENT is at least BIGGEST_ALIGNMENT. */ gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT); p->slot = assign_stack_local (mode, (mode == BLKmode ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT) : size), align); p->align = align; /* The following slot size computation is necessary because we don't know the actual size of the temporary slot until assign_stack_local has performed all the frame alignment and size rounding for the requested temporary. Note that extra space added for alignment can be either above or below this stack slot depending on which way the frame grows. We include the extra space if and only if it is above this slot. */ if (FRAME_GROWS_DOWNWARD) p->size = frame_offset_old - frame_offset; else p->size = size; /* Now define the fields used by combine_temp_slots. */ if (FRAME_GROWS_DOWNWARD) { p->base_offset = frame_offset; p->full_size = frame_offset_old - frame_offset; } else { p->base_offset = frame_offset_old; p->full_size = frame_offset - frame_offset_old; } p->address = 0; selected = p; } p = selected; p->in_use = 1; p->addr_taken = 0; p->type = type; p->level = temp_slot_level; p->keep = keep; pp = temp_slots_at_level (p->level); insert_slot_to_list (p, pp); /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */ slot = gen_rtx_MEM (mode, XEXP (p->slot, 0)); stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list); /* If we know the alias set for the memory that will be used, use it. If there's no TYPE, then we don't know anything about the alias set for the memory. */ set_mem_alias_set (slot, type ? get_alias_set (type) : 0); set_mem_align (slot, align); /* If a type is specified, set the relevant flags. */ if (type != 0) { MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type); MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type)); } MEM_NOTRAP_P (slot) = 1; return slot; } /* Allocate a temporary stack slot and record it for possible later reuse. First three arguments are same as in preceding function. */ rtx assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep) { return assign_stack_temp_for_type (mode, size, keep, NULL_TREE); } /* Assign a temporary. If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl and so that should be used in error messages. In either case, we allocate of the given type. KEEP is as for assign_stack_temp. MEMORY_REQUIRED is 1 if the result must be addressable stack memory; it is 0 if a register is OK. DONT_PROMOTE is 1 if we should not promote values in register to wider modes. */ rtx assign_temp (tree type_or_decl, int keep, int memory_required, int dont_promote ATTRIBUTE_UNUSED) { tree type, decl; enum machine_mode mode; #ifdef PROMOTE_MODE int unsignedp; #endif if (DECL_P (type_or_decl)) decl = type_or_decl, type = TREE_TYPE (decl); else decl = NULL, type = type_or_decl; mode = TYPE_MODE (type); #ifdef PROMOTE_MODE unsignedp = TYPE_UNSIGNED (type); #endif if (mode == BLKmode || memory_required) { HOST_WIDE_INT size = int_size_in_bytes (type); rtx tmp; /* Zero sized arrays are GNU C extension. Set size to 1 to avoid problems with allocating the stack space. */ if (size == 0) size = 1; /* Unfortunately, we don't yet know how to allocate variable-sized temporaries. However, sometimes we can find a fixed upper limit on the size, so try that instead. */ else if (size == -1) size = max_int_size_in_bytes (type); /* The size of the temporary may be too large to fit into an integer. */ /* ??? Not sure this should happen except for user silliness, so limit this to things that aren't compiler-generated temporaries. The rest of the time we'll die in assign_stack_temp_for_type. */ if (decl && size == -1 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST) { error ("size of variable %q+D is too large", decl); size = 1; } tmp = assign_stack_temp_for_type (mode, size, keep, type); return tmp; } #ifdef PROMOTE_MODE if (! dont_promote) mode = promote_mode (type, mode, &unsignedp, 0); #endif return gen_reg_rtx (mode); } /* Combine temporary stack slots which are adjacent on the stack. This allows for better use of already allocated stack space. This is only done for BLKmode slots because we can be sure that we won't have alignment problems in this case. */ static void combine_temp_slots (void) { struct temp_slot *p, *q, *next, *next_q; int num_slots; /* We can't combine slots, because the information about which slot is in which alias set will be lost. */ if (flag_strict_aliasing) return; /* If there are a lot of temp slots, don't do anything unless high levels of optimization. */ if (! flag_expensive_optimizations) for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++) if (num_slots > 100 || (num_slots > 10 && optimize == 0)) return; for (p = avail_temp_slots; p; p = next) { int delete_p = 0; next = p->next; if (GET_MODE (p->slot) != BLKmode) continue; for (q = p->next; q; q = next_q) { int delete_q = 0; next_q = q->next; if (GET_MODE (q->slot) != BLKmode) continue; if (p->base_offset + p->full_size == q->base_offset) { /* Q comes after P; combine Q into P. */ p->size += q->size; p->full_size += q->full_size; delete_q = 1; } else if (q->base_offset + q->full_size == p->base_offset) { /* P comes after Q; combine P into Q. */ q->size += p->size; q->full_size += p->full_size; delete_p = 1; break; } if (delete_q) cut_slot_from_list (q, &avail_temp_slots); } /* Either delete P or advance past it. */ if (delete_p) cut_slot_from_list (p, &avail_temp_slots); } } /* Find the temp slot corresponding to the object at address X. */ static struct temp_slot * find_temp_slot_from_address (rtx x) { struct temp_slot *p; rtx next; int i; for (i = max_slot_level (); i >= 0; i--) for (p = *temp_slots_at_level (i); p; p = p->next) { if (XEXP (p->slot, 0) == x || p->address == x || (GET_CODE (x) == PLUS && XEXP (x, 0) == virtual_stack_vars_rtx && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= p->base_offset && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)) return p; else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST) for (next = p->address; next; next = XEXP (next, 1)) if (XEXP (next, 0) == x) return p; } /* If we have a sum involving a register, see if it points to a temp slot. */ if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0)) && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0) return p; else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1)) && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0) return p; return 0; } /* Indicate that NEW is an alternate way of referring to the temp slot that previously was known by OLD. */ void update_temp_slot_address (rtx old, rtx new) { struct temp_slot *p; if (rtx_equal_p (old, new)) return; p = find_temp_slot_from_address (old); /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW is a register, see if one operand of the PLUS is a temporary location. If so, NEW points into it. Otherwise, if both OLD and NEW are a PLUS and if there is a register in common between them. If so, try a recursive call on those values. */ if (p == 0) { if (GET_CODE (old) != PLUS) return; if (REG_P (new)) { update_temp_slot_address (XEXP (old, 0), new); update_temp_slot_address (XEXP (old, 1), new); return; } else if (GET_CODE (new) != PLUS) return; if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0))) update_temp_slot_address (XEXP (old, 1), XEXP (new, 1)); else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0))) update_temp_slot_address (XEXP (old, 0), XEXP (new, 1)); else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1))) update_temp_slot_address (XEXP (old, 1), XEXP (new, 0)); else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1))) update_temp_slot_address (XEXP (old, 0), XEXP (new, 0)); return; } /* Otherwise add an alias for the temp's address. */ else if (p->address == 0) p->address = new; else { if (GET_CODE (p->address) != EXPR_LIST) p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX); p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address); } } /* If X could be a reference to a temporary slot, mark the fact that its address was taken. */ void mark_temp_addr_taken (rtx x) { struct temp_slot *p; if (x == 0) return; /* If X is not in memory or is at a constant address, it cannot be in a temporary slot. */ if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))) return; p = find_temp_slot_from_address (XEXP (x, 0)); if (p != 0) p->addr_taken = 1; } /* If X could be a reference to a temporary slot, mark that slot as belonging to the to one level higher than the current level. If X matched one of our slots, just mark that one. Otherwise, we can't easily predict which it is, so upgrade all of them. Kept slots need not be touched. This is called when an ({...}) construct occurs and a statement returns a value in memory. */ void preserve_temp_slots (rtx x) { struct temp_slot *p = 0, *next; /* If there is no result, we still might have some objects whose address were taken, so we need to make sure they stay around. */ if (x == 0) { for (p = *temp_slots_at_level (temp_slot_level); p; p = next) { next = p->next; if (p->addr_taken) move_slot_to_level (p, temp_slot_level - 1); } return; } /* If X is a register that is being used as a pointer, see if we have a temporary slot we know it points to. To be consistent with the code below, we really should preserve all non-kept slots if we can't find a match, but that seems to be much too costly. */ if (REG_P (x) && REG_POINTER (x)) p = find_temp_slot_from_address (x); /* If X is not in memory or is at a constant address, it cannot be in a temporary slot, but it can contain something whose address was taken. */ if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))) { for (p = *temp_slots_at_level (temp_slot_level); p; p = next) { next = p->next; if (p->addr_taken) move_slot_to_level (p, temp_slot_level - 1); } return; } /* First see if we can find a match. */ if (p == 0) p = find_temp_slot_from_address (XEXP (x, 0)); if (p != 0) { /* Move everything at our level whose address was taken to our new level in case we used its address. */ struct temp_slot *q; if (p->level == temp_slot_level) { for (q = *temp_slots_at_level (temp_slot_level); q; q = next) { next = q->next; if (p != q && q->addr_taken) move_slot_to_level (q, temp_slot_level - 1); } move_slot_to_level (p, temp_slot_level - 1); p->addr_taken = 0; } return; } /* Otherwise, preserve all non-kept slots at this level. */ for (p = *temp_slots_at_level (temp_slot_level); p; p = next) { next = p->next; if (!p->keep) move_slot_to_level (p, temp_slot_level - 1); } } /* Free all temporaries used so far. This is normally called at the end of generating code for a statement. */ void free_temp_slots (void) { struct temp_slot *p, *next; for (p = *temp_slots_at_level (temp_slot_level); p; p = next) { next = p->next; if (!p->keep) make_slot_available (p); } combine_temp_slots (); } /* Push deeper into the nesting level for stack temporaries. */ void push_temp_slots (void) { temp_slot_level++; } /* Pop a temporary nesting level. All slots in use in the current level are freed. */ void pop_temp_slots (void) { struct temp_slot *p, *next; for (p = *temp_slots_at_level (temp_slot_level); p; p = next) { next = p->next; make_slot_available (p); } combine_temp_slots (); temp_slot_level--; } /* Initialize temporary slots. */ void init_temp_slots (void) { /* We have not allocated any temporaries yet. */ avail_temp_slots = 0; used_temp_slots = 0; temp_slot_level = 0; } /* These routines are responsible for converting virtual register references to the actual hard register references once RTL generation is complete. The following four variables are used for communication between the routines. They contain the offsets of the virtual registers from their respective hard registers. */ static int in_arg_offset; static int var_offset; static int dynamic_offset; static int out_arg_offset; static int cfa_offset; /* In most machines, the stack pointer register is equivalent to the bottom of the stack. */ #ifndef STACK_POINTER_OFFSET #define STACK_POINTER_OFFSET 0 #endif /* If not defined, pick an appropriate default for the offset of dynamically allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS, REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */ #ifndef STACK_DYNAMIC_OFFSET /* The bottom of the stack points to the actual arguments. If REG_PARM_STACK_SPACE is defined, this includes the space for the register parameters. However, if OUTGOING_REG_PARM_STACK space is not defined, stack space for register parameters is not pushed by the caller, but rather part of the fixed stack areas and hence not included in `current_function_outgoing_args_size'. Nevertheless, we must allow for it when allocating stack dynamic objects. */ #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE) #define STACK_DYNAMIC_OFFSET(FNDECL) \ ((ACCUMULATE_OUTGOING_ARGS \ ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\ + (STACK_POINTER_OFFSET)) \ #else #define STACK_DYNAMIC_OFFSET(FNDECL) \ ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \ + (STACK_POINTER_OFFSET)) #endif #endif /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX is a virtual register, return the equivalent hard register and set the offset indirectly through the pointer. Otherwise, return 0. */ static rtx instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset) { rtx new; HOST_WIDE_INT offset; if (x == virtual_incoming_args_rtx) new = arg_pointer_rtx, offset = in_arg_offset; else if (x == virtual_stack_vars_rtx) new = frame_pointer_rtx, offset = var_offset; else if (x == virtual_stack_dynamic_rtx) new = stack_pointer_rtx, offset = dynamic_offset; else if (x == virtual_outgoing_args_rtx) new = stack_pointer_rtx, offset = out_arg_offset; else if (x == virtual_cfa_rtx) { #ifdef FRAME_POINTER_CFA_OFFSET new = frame_pointer_rtx; #else new = arg_pointer_rtx; #endif offset = cfa_offset; } else return NULL_RTX; *poffset = offset; return new; } /* A subroutine of instantiate_virtual_regs, called via for_each_rtx. Instantiate any virtual registers present inside of *LOC. The expression is simplified, as much as possible, but is not to be considered "valid" in any sense implied by the target. If any change is made, set CHANGED to true. */ static int instantiate_virtual_regs_in_rtx (rtx *loc, void *data) { HOST_WIDE_INT offset; bool *changed = (bool *) data; rtx x, new; x = *loc; if (x == 0) return 0; switch (GET_CODE (x)) { case REG: new = instantiate_new_reg (x, &offset); if (new) { *loc = plus_constant (new, offset); if (changed) *changed = true; } return -1; case PLUS: new = instantiate_new_reg (XEXP (x, 0), &offset); if (new) { new = plus_constant (new, offset); *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1)); if (changed) *changed = true; return -1; } /* FIXME -- from old code */ /* If we have (plus (subreg (virtual-reg)) (const_int)), we know we can commute the PLUS and SUBREG because pointers into the frame are well-behaved. */ break; default: break; } return 0; } /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X matches the predicate for insn CODE operand OPERAND. */ static int safe_insn_predicate (int code, int operand, rtx x) { const struct insn_operand_data *op_data; if (code < 0) return true; op_data = &insn_data[code].operand[operand]; if (op_data->predicate == NULL) return true; return op_data->predicate (x, op_data->mode); } /* A subroutine of instantiate_virtual_regs. Instantiate any virtual registers present inside of insn. The result will be a valid insn. */ static void instantiate_virtual_regs_in_insn (rtx insn) { HOST_WIDE_INT offset; int insn_code, i; bool any_change = false; rtx set, new, x, seq; /* There are some special cases to be handled first. */ set = single_set (insn); if (set) { /* We're allowed to assign to a virtual register. This is interpreted to mean that the underlying register gets assigned the inverse transformation. This is used, for example, in the handling of non-local gotos. */ new = instantiate_new_reg (SET_DEST (set), &offset); if (new) { start_sequence (); for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL); x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set), GEN_INT (-offset)); x = force_operand (x, new); if (x != new) emit_move_insn (new, x); seq = get_insns (); end_sequence (); emit_insn_before (seq, insn); delete_insn (insn); return; } /* Handle a straight copy from a virtual register by generating a new add insn. The difference between this and falling through to the generic case is avoiding a new pseudo and eliminating a move insn in the initial rtl stream. */ new = instantiate_new_reg (SET_SRC (set), &offset); if (new && offset != 0 && REG_P (SET_DEST (set)) && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) { start_sequence (); x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new, GEN_INT (offset), SET_DEST (set), 1, OPTAB_LIB_WIDEN); if (x != SET_DEST (set)) emit_move_insn (SET_DEST (set), x); seq = get_insns (); end_sequence (); emit_insn_before (seq, insn); delete_insn (insn); return; } extract_insn (insn); insn_code = INSN_CODE (insn); /* Handle a plus involving a virtual register by determining if the operands remain valid if they're modified in place. */ if (GET_CODE (SET_SRC (set)) == PLUS && recog_data.n_operands >= 3 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0) && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1) && GET_CODE (recog_data.operand[2]) == CONST_INT && (new = instantiate_new_reg (recog_data.operand[1], &offset))) { offset += INTVAL (recog_data.operand[2]); /* If the sum is zero, then replace with a plain move. */ if (offset == 0 && REG_P (SET_DEST (set)) && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) { start_sequence (); emit_move_insn (SET_DEST (set), new); seq = get_insns (); end_sequence (); emit_insn_before (seq, insn); delete_insn (insn); return; } x = gen_int_mode (offset, recog_data.operand_mode[2]); /* Using validate_change and apply_change_group here leaves recog_data in an invalid state. Since we know exactly what we want to check, do those two by hand. */ if (safe_insn_predicate (insn_code, 1, new) && safe_insn_predicate (insn_code, 2, x)) { *recog_data.operand_loc[1] = recog_data.operand[1] = new; *recog_data.operand_loc[2] = recog_data.operand[2] = x; any_change = true; /* Fall through into the regular operand fixup loop in order to take care of operands other than 1 and 2. */ } } } else { extract_insn (insn); insn_code = INSN_CODE (insn); } /* In the general case, we expect virtual registers to appear only in operands, and then only as either bare registers or inside memories. */ for (i = 0; i < recog_data.n_operands; ++i) { x = recog_data.operand[i]; switch (GET_CODE (x)) { case MEM: { rtx addr = XEXP (x, 0); bool changed = false; for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed); if (!changed) continue; start_sequence (); x = replace_equiv_address (x, addr); seq = get_insns (); end_sequence (); if (seq) emit_insn_before (seq, insn); } break; case REG: new = instantiate_new_reg (x, &offset); if (new == NULL) continue; if (offset == 0) x = new; else { start_sequence (); /* Careful, special mode predicates may have stuff in insn_data[insn_code].operand[i].mode that isn't useful to us for computing a new value. */ /* ??? Recognize address_operand and/or "p" constraints to see if (plus new offset) is a valid before we put this through expand_simple_binop. */ x = expand_simple_binop (GET_MODE (x), PLUS, new, GEN_INT (offset), NULL_RTX, 1, OPTAB_LIB_WIDEN); seq = get_insns (); end_sequence (); emit_insn_before (seq, insn); } break; case SUBREG: new = instantiate_new_reg (SUBREG_REG (x), &offset); if (new == NULL) continue; if (offset != 0) { start_sequence (); new = expand_simple_binop (GET_MODE (new), PLUS, new, GEN_INT (offset), NULL_RTX, 1, OPTAB_LIB_WIDEN); seq = get_insns (); end_sequence (); emit_insn_before (seq, insn); } x = simplify_gen_subreg (recog_data.operand_mode[i], new, GET_MODE (new), SUBREG_BYTE (x)); break; default: continue; } /* At this point, X contains the new value for the operand. Validate the new value vs the insn predicate. Note that asm insns will have insn_code -1 here. */ if (!safe_insn_predicate (insn_code, i, x)) { start_sequence (); x = force_reg (insn_data[insn_code].operand[i].mode, x); seq = get_insns (); end_sequence (); if (seq) emit_insn_before (seq, insn); } *recog_data.operand_loc[i] = recog_data.operand[i] = x; any_change = true; } if (any_change) { /* Propagate operand changes into the duplicates. */ for (i = 0; i < recog_data.n_dups; ++i) *recog_data.dup_loc[i] = recog_data.operand[(unsigned)recog_data.dup_num[i]]; /* Force re-recognition of the instruction for validation. */ INSN_CODE (insn) = -1; } if (asm_noperands (PATTERN (insn)) >= 0) { if (!check_asm_operands (PATTERN (insn))) { error_for_asm (insn, "impossible constraint in %<asm%>"); delete_insn (insn); } } else { if (recog_memoized (insn) < 0) fatal_insn_not_found (insn); } } /* Subroutine of instantiate_decls. Given RTL representing a decl, do any instantiation required. */ static void instantiate_decl (rtx x) { rtx addr; if (x == 0) return; /* If this is a CONCAT, recurse for the pieces. */ if (GET_CODE (x) == CONCAT) { instantiate_decl (XEXP (x, 0)); instantiate_decl (XEXP (x, 1)); return; } /* If this is not a MEM, no need to do anything. Similarly if the address is a constant or a register that is not a virtual register. */ if (!MEM_P (x)) return; addr = XEXP (x, 0); if (CONSTANT_P (addr) || (REG_P (addr) && (REGNO (addr) < FIRST_VIRTUAL_REGISTER || REGNO (addr) > LAST_VIRTUAL_REGISTER))) return; for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL); } /* Helper for instantiate_decls called via walk_tree: Process all decls in the given DECL_VALUE_EXPR. */ static tree instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) { tree t = *tp; if (! EXPR_P (t)) { *walk_subtrees = 0; if (DECL_P (t) && DECL_RTL_SET_P (t)) instantiate_decl (DECL_RTL (t)); } return NULL; } /* Subroutine of instantiate_decls: Process all decls in the given BLOCK node and all its subblocks. */ static void instantiate_decls_1 (tree let) { tree t; for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t)) { if (DECL_RTL_SET_P (t)) instantiate_decl (DECL_RTL (t)); if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t)) { tree v = DECL_VALUE_EXPR (t); walk_tree (&v, instantiate_expr, NULL, NULL); } } /* Process all subblocks. */ for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t)) instantiate_decls_1 (t); } /* Scan all decls in FNDECL (both variables and parameters) and instantiate all virtual registers in their DECL_RTL's. */ static void instantiate_decls (tree fndecl) { tree decl; /* Process all parameters of the function. */ for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl)) { instantiate_decl (DECL_RTL (decl)); instantiate_decl (DECL_INCOMING_RTL (decl)); if (DECL_HAS_VALUE_EXPR_P (decl)) { tree v = DECL_VALUE_EXPR (decl); walk_tree (&v, instantiate_expr, NULL, NULL); } } /* Now process all variables defined in the function or its subblocks. */ instantiate_decls_1 (DECL_INITIAL (fndecl)); } /* Pass through the INSNS of function FNDECL and convert virtual register references to hard register references. */ static unsigned int instantiate_virtual_regs (void) { rtx insn; /* Compute the offsets to use for this function. */ in_arg_offset = FIRST_PARM_OFFSET (current_function_decl); var_offset = STARTING_FRAME_OFFSET; dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl); out_arg_offset = STACK_POINTER_OFFSET; #ifdef FRAME_POINTER_CFA_OFFSET cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl); #else cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl); #endif /* Initialize recognition, indicating that volatile is OK. */ init_recog (); /* Scan through all the insns, instantiating every virtual register still present. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (INSN_P (insn)) { /* These patterns in the instruction stream can never be recognized. Fortunately, they shouldn't contain virtual registers either. */ if (GET_CODE (PATTERN (insn)) == USE || GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == ADDR_VEC || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC || GET_CODE (PATTERN (insn)) == ASM_INPUT) continue; instantiate_virtual_regs_in_insn (insn); if (INSN_DELETED_P (insn)) continue; for_each_rtx (®_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL); /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */ if (GET_CODE (insn) == CALL_INSN) for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn), instantiate_virtual_regs_in_rtx, NULL); } /* Instantiate the virtual registers in the DECLs for debugging purposes. */ instantiate_decls (current_function_decl); /* Indicate that, from now on, assign_stack_local should use frame_pointer_rtx. */ virtuals_instantiated = 1; return 0; } struct tree_opt_pass pass_instantiate_virtual_regs = { "vregs", /* name */ NULL, /* gate */ instantiate_virtual_regs, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ 0, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func, /* todo_flags_finish */ 0 /* letter */ }; /* Return 1 if EXP is an aggregate type (or a value with aggregate type). This means a type for which function calls must pass an address to the function or get an address back from the function. EXP may be a type node or an expression (whose type is tested). */ int aggregate_value_p (tree exp, tree fntype) { int i, regno, nregs; rtx reg; tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp); /* DECL node associated with FNTYPE when relevant, which we might need to check for by-invisible-reference returns, typically for CALL_EXPR input EXPressions. */ tree fndecl = NULL_TREE; if (fntype) switch (TREE_CODE (fntype)) { case CALL_EXPR: fndecl = get_callee_fndecl (fntype); fntype = fndecl ? TREE_TYPE (fndecl) : 0; break; case FUNCTION_DECL: fndecl = fntype; fntype = TREE_TYPE (fndecl); break; case FUNCTION_TYPE: case METHOD_TYPE: break; case IDENTIFIER_NODE: fntype = 0; break; default: /* We don't expect other rtl types here. */ gcc_unreachable (); } if (TREE_CODE (type) == VOID_TYPE) return 0; /* If the front end has decided that this needs to be passed by reference, do so. */ if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL) && DECL_BY_REFERENCE (exp)) return 1; /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the called function RESULT_DECL, meaning the function returns in memory by invisible reference. This check lets front-ends not set TREE_ADDRESSABLE on the function type, which used to be the way to request such a return mechanism but might now be causing troubles at gimplification time if temporaries with the function type need to be created. */ if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl) && DECL_BY_REFERENCE (DECL_RESULT (fndecl))) return 1; if (targetm.calls.return_in_memory (type, fntype)) return 1; /* Types that are TREE_ADDRESSABLE must be constructed in memory, and thus can't be returned in registers. */ if (TREE_ADDRESSABLE (type)) return 1; if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type)) return 1; /* Make sure we have suitable call-clobbered regs to return the value in; if not, we must return it in memory. */ reg = hard_function_value (type, 0, fntype, 0); /* If we have something other than a REG (e.g. a PARALLEL), then assume it is OK. */ if (!REG_P (reg)) return 0; regno = REGNO (reg); nregs = hard_regno_nregs[regno][TYPE_MODE (type)]; for (i = 0; i < nregs; i++) if (! call_used_regs[regno + i]) return 1; return 0; } /* Return true if we should assign DECL a pseudo register; false if it should live on the local stack. */ bool use_register_for_decl (tree decl) { /* Honor volatile. */ if (TREE_SIDE_EFFECTS (decl)) return false; /* Honor addressability. */ if (TREE_ADDRESSABLE (decl)) return false; /* Only register-like things go in registers. */ if (DECL_MODE (decl) == BLKmode) return false; /* If -ffloat-store specified, don't put explicit float variables into registers. */ /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa propagates values across these stores, and it probably shouldn't. */ if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl))) return false; /* If we're not interested in tracking debugging information for this decl, then we can certainly put it in a register. */ if (DECL_IGNORED_P (decl)) return true; return (optimize || DECL_REGISTER (decl)); } /* Return true if TYPE should be passed by invisible reference. */ bool pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode, tree type, bool named_arg) { if (type) { /* If this type contains non-trivial constructors, then it is forbidden for the middle-end to create any new copies. */ if (TREE_ADDRESSABLE (type)) return true; /* GCC post 3.4 passes *all* variable sized types by reference. */ if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) return true; } return targetm.calls.pass_by_reference (ca, mode, type, named_arg); } /* Return true if TYPE, which is passed by reference, should be callee copied instead of caller copied. */ bool reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode, tree type, bool named_arg) { if (type && TREE_ADDRESSABLE (type)) return false; return targetm.calls.callee_copies (ca, mode, type, named_arg); } /* Structures to communicate between the subroutines of assign_parms. The first holds data persistent across all parameters, the second is cleared out for each parameter. */ struct assign_parm_data_all { CUMULATIVE_ARGS args_so_far; struct args_size stack_args_size; tree function_result_decl; tree orig_fnargs; rtx conversion_insns; HOST_WIDE_INT pretend_args_size; HOST_WIDE_INT extra_pretend_bytes; int reg_parm_stack_space; }; struct assign_parm_data_one { tree nominal_type; tree passed_type; rtx entry_parm; rtx stack_parm; enum machine_mode nominal_mode; enum machine_mode passed_mode; enum machine_mode promoted_mode; struct locate_and_pad_arg_data locate; int partial; BOOL_BITFIELD named_arg : 1; BOOL_BITFIELD passed_pointer : 1; BOOL_BITFIELD on_stack : 1; BOOL_BITFIELD loaded_in_reg : 1; }; /* A subroutine of assign_parms. Initialize ALL. */ static void assign_parms_initialize_all (struct assign_parm_data_all *all) { tree fntype; memset (all, 0, sizeof (*all)); fntype = TREE_TYPE (current_function_decl); #ifdef INIT_CUMULATIVE_INCOMING_ARGS INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX); #else INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX, current_function_decl, -1); #endif #ifdef REG_PARM_STACK_SPACE all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl); #endif } /* If ARGS contains entries with complex types, split the entry into two entries of the component type. Return a new list of substitutions are needed, else the old list. */ static tree split_complex_args (tree args) { tree p; /* Before allocating memory, check for the common case of no complex. */ for (p = args; p; p = TREE_CHAIN (p)) { tree type = TREE_TYPE (p); if (TREE_CODE (type) == COMPLEX_TYPE && targetm.calls.split_complex_arg (type)) goto found; } return args; found: args = copy_list (args); for (p = args; p; p = TREE_CHAIN (p)) { tree type = TREE_TYPE (p); if (TREE_CODE (type) == COMPLEX_TYPE && targetm.calls.split_complex_arg (type)) { tree decl; tree subtype = TREE_TYPE (type); bool addressable = TREE_ADDRESSABLE (p); /* Rewrite the PARM_DECL's type with its component. */ TREE_TYPE (p) = subtype; DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p)); DECL_MODE (p) = VOIDmode; DECL_SIZE (p) = NULL; DECL_SIZE_UNIT (p) = NULL; /* If this arg must go in memory, put it in a pseudo here. We can't allow it to go in memory as per normal parms, because the usual place might not have the imag part adjacent to the real part. */ DECL_ARTIFICIAL (p) = addressable; DECL_IGNORED_P (p) = addressable; TREE_ADDRESSABLE (p) = 0; layout_decl (p, 0); /* Build a second synthetic decl. */ decl = build_decl (PARM_DECL, NULL_TREE, subtype); DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p); DECL_ARTIFICIAL (decl) = addressable; DECL_IGNORED_P (decl) = addressable; layout_decl (decl, 0); /* Splice it in; skip the new decl. */ TREE_CHAIN (decl) = TREE_CHAIN (p); TREE_CHAIN (p) = decl; p = decl; } } return args; } /* A subroutine of assign_parms. Adjust the parameter list to incorporate the hidden struct return argument, and (abi willing) complex args. Return the new parameter list. */ static tree assign_parms_augmented_arg_list (struct assign_parm_data_all *all) { tree fndecl = current_function_decl; tree fntype = TREE_TYPE (fndecl); tree fnargs = DECL_ARGUMENTS (fndecl); /* If struct value address is treated as the first argument, make it so. */ if (aggregate_value_p (DECL_RESULT (fndecl), fndecl) && ! current_function_returns_pcc_struct && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0) { tree type = build_pointer_type (TREE_TYPE (fntype)); tree decl; decl = build_decl (PARM_DECL, NULL_TREE, type); DECL_ARG_TYPE (decl) = type; DECL_ARTIFICIAL (decl) = 1; DECL_IGNORED_P (decl) = 1; TREE_CHAIN (decl) = fnargs; fnargs = decl; all->function_result_decl = decl; } all->orig_fnargs = fnargs; /* If the target wants to split complex arguments into scalars, do so. */ if (targetm.calls.split_complex_arg) fnargs = split_complex_args (fnargs); return fnargs; } /* A subroutine of assign_parms. Examine PARM and pull out type and mode data for the parameter. Incorporate ABI specifics such as pass-by- reference and type promotion. */ static void assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm, struct assign_parm_data_one *data) { tree nominal_type, passed_type; enum machine_mode nominal_mode, passed_mode, promoted_mode; memset (data, 0, sizeof (*data)); /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */ if (!current_function_stdarg) data->named_arg = 1; /* No varadic parms. */ else if (TREE_CHAIN (parm)) data->named_arg = 1; /* Not the last non-varadic parm. */ else if (targetm.calls.strict_argument_naming (&all->args_so_far)) data->named_arg = 1; /* Only varadic ones are unnamed. */ else data->named_arg = 0; /* Treat as varadic. */ nominal_type = TREE_TYPE (parm); passed_type = DECL_ARG_TYPE (parm); /* Look out for errors propagating this far. Also, if the parameter's type is void then its value doesn't matter. */ if (TREE_TYPE (parm) == error_mark_node /* This can happen after weird syntax errors or if an enum type is defined among the parms. */ || TREE_CODE (parm) != PARM_DECL || passed_type == NULL || VOID_TYPE_P (nominal_type)) { nominal_type = passed_type = void_type_node; nominal_mode = passed_mode = promoted_mode = VOIDmode; goto egress; } /* Find mode of arg as it is passed, and mode of arg as it should be during execution of this function. */ passed_mode = TYPE_MODE (passed_type); nominal_mode = TYPE_MODE (nominal_type); /* If the parm is to be passed as a transparent union, use the type of the first field for the tests below. We have already verified that the modes are the same. */ if (TREE_CODE (passed_type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (passed_type)) passed_type = TREE_TYPE (TYPE_FIELDS (passed_type)); /* See if this arg was passed by invisible reference. */ if (pass_by_reference (&all->args_so_far, passed_mode, passed_type, data->named_arg)) { passed_type = nominal_type = build_pointer_type (passed_type); data->passed_pointer = true; passed_mode = nominal_mode = Pmode; } /* Find mode as it is passed by the ABI. */ promoted_mode = passed_mode; if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl))) { int unsignedp = TYPE_UNSIGNED (passed_type); promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1); } egress: data->nominal_type = nominal_type; data->passed_type = passed_type; data->nominal_mode = nominal_mode; data->passed_mode = passed_mode; data->promoted_mode = promoted_mode; } /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */ static void assign_parms_setup_varargs (struct assign_parm_data_all *all, struct assign_parm_data_one *data, bool no_rtl) { int varargs_pretend_bytes = 0; targetm.calls.setup_incoming_varargs (&all->args_so_far, data->promoted_mode, data->passed_type, &varargs_pretend_bytes, no_rtl); /* If the back-end has requested extra stack space, record how much is needed. Do not change pretend_args_size otherwise since it may be nonzero from an earlier partial argument. */ if (varargs_pretend_bytes > 0) all->pretend_args_size = varargs_pretend_bytes; } /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to the incoming location of the current parameter. */ static void assign_parm_find_entry_rtl (struct assign_parm_data_all *all, struct assign_parm_data_one *data) { HOST_WIDE_INT pretend_bytes = 0; rtx entry_parm; bool in_regs; if (data->promoted_mode == VOIDmode) { data->entry_parm = data->stack_parm = const0_rtx; return; } #ifdef FUNCTION_INCOMING_ARG entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode, data->passed_type, data->named_arg); #else entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode, data->passed_type, data->named_arg); #endif if (entry_parm == 0) data->promoted_mode = data->passed_mode; /* Determine parm's home in the stack, in case it arrives in the stack or we should pretend it did. Compute the stack position and rtx where the argument arrives and its size. There is one complexity here: If this was a parameter that would have been passed in registers, but wasn't only because it is __builtin_va_alist, we want locate_and_pad_parm to treat it as if it came in a register so that REG_PARM_STACK_SPACE isn't skipped. In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0 as it was the previous time. */ in_regs = entry_parm != 0; #ifdef STACK_PARMS_IN_REG_PARM_AREA in_regs = true; #endif if (!in_regs && !data->named_arg) { if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far)) { rtx tem; #ifdef FUNCTION_INCOMING_ARG tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode, data->passed_type, true); #else tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode, data->passed_type, true); #endif in_regs = tem != NULL; } } /* If this parameter was passed both in registers and in the stack, use the copy on the stack. */ if (targetm.calls.must_pass_in_stack (data->promoted_mode, data->passed_type)) entry_parm = 0; if (entry_parm) { int partial; partial = targetm.calls.arg_partial_bytes (&all->args_so_far, data->promoted_mode, data->passed_type, data->named_arg); data->partial = partial; /* The caller might already have allocated stack space for the register parameters. */ if (partial != 0 && all->reg_parm_stack_space == 0) { /* Part of this argument is passed in registers and part is passed on the stack. Ask the prologue code to extend the stack part so that we can recreate the full value. PRETEND_BYTES is the size of the registers we need to store. CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra stack space that the prologue should allocate. Internally, gcc assumes that the argument pointer is aligned to STACK_BOUNDARY bits. This is used both for alignment optimizations (see init_emit) and to locate arguments that are aligned to more than PARM_BOUNDARY bits. We must preserve this invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack boundary. */ /* We assume at most one partial arg, and it must be the first argument on the stack. */ gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size); pretend_bytes = partial; all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES); /* We want to align relative to the actual stack pointer, so don't include this in the stack size until later. */ all->extra_pretend_bytes = all->pretend_args_size; } } locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs, entry_parm ? data->partial : 0, current_function_decl, &all->stack_args_size, &data->locate); /* Adjust offsets to include the pretend args. */ pretend_bytes = all->extra_pretend_bytes - pretend_bytes; data->locate.slot_offset.constant += pretend_bytes; data->locate.offset.constant += pretend_bytes; data->entry_parm = entry_parm; } /* A subroutine of assign_parms. If there is actually space on the stack for this parm, count it in stack_args_size and return true. */ static bool assign_parm_is_stack_parm (struct assign_parm_data_all *all, struct assign_parm_data_one *data) { /* Trivially true if we've no incoming register. */ if (data->entry_parm == NULL) ; /* Also true if we're partially in registers and partially not, since we've arranged to drop the entire argument on the stack. */ else if (data->partial != 0) ; /* Also true if the target says that it's passed in both registers and on the stack. */ else if (GET_CODE (data->entry_parm) == PARALLEL && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX) ; /* Also true if the target says that there's stack allocated for all register parameters. */ else if (all->reg_parm_stack_space > 0) ; /* Otherwise, no, this parameter has no ABI defined stack slot. */ else return false; all->stack_args_size.constant += data->locate.size.constant; if (data->locate.size.var) ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var); return true; } /* A subroutine of assign_parms. Given that this parameter is allocated stack space by the ABI, find it. */ static void assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data) { rtx offset_rtx, stack_parm; unsigned int align, boundary; /* If we're passing this arg using a reg, make its stack home the aligned stack slot. */ if (data->entry_parm) offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset); else offset_rtx = ARGS_SIZE_RTX (data->locate.offset); stack_parm = current_function_internal_arg_pointer; if (offset_rtx != const0_rtx) stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx); stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm); set_mem_attributes (stack_parm, parm, 1); boundary = data->locate.boundary; align = BITS_PER_UNIT; /* If we're padding upward, we know that the alignment of the slot is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're intentionally forcing upward padding. Otherwise we have to come up with a guess at the alignment based on OFFSET_RTX. */ if (data->locate.where_pad != downward || data->entry_parm) align = boundary; else if (GET_CODE (offset_rtx) == CONST_INT) { align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary; align = align & -align; } set_mem_align (stack_parm, align); if (data->entry_parm) set_reg_attrs_for_parm (data->entry_parm, stack_parm); data->stack_parm = stack_parm; } /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's always valid and contiguous. */ static void assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data) { rtx entry_parm = data->entry_parm; rtx stack_parm = data->stack_parm; /* If this parm was passed part in regs and part in memory, pretend it arrived entirely in memory by pushing the register-part onto the stack. In the special case of a DImode or DFmode that is split, we could put it together in a pseudoreg directly, but for now that's not worth bothering with. */ if (data->partial != 0) { /* Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (entry_parm) == PARALLEL) emit_group_store (validize_mem (stack_parm), entry_parm, data->passed_type, int_size_in_bytes (data->passed_type)); else { gcc_assert (data->partial % UNITS_PER_WORD == 0); move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm), data->partial / UNITS_PER_WORD); } entry_parm = stack_parm; } /* If we didn't decide this parm came in a register, by default it came on the stack. */ else if (entry_parm == NULL) entry_parm = stack_parm; /* When an argument is passed in multiple locations, we can't make use of this information, but we can save some copying if the whole argument is passed in a single register. */ else if (GET_CODE (entry_parm) == PARALLEL && data->nominal_mode != BLKmode && data->passed_mode != BLKmode) { size_t i, len = XVECLEN (entry_parm, 0); for (i = 0; i < len; i++) if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0)) && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == data->passed_mode) && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0) { entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0); break; } } data->entry_parm = entry_parm; } /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's always valid and properly aligned. */ static void assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data) { rtx stack_parm = data->stack_parm; /* If we can't trust the parm stack slot to be aligned enough for its ultimate type, don't use that slot after entry. We'll make another stack slot, if we need one. */ if (stack_parm && ((STRICT_ALIGNMENT && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)) || (data->nominal_type && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm) && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY))) stack_parm = NULL; /* If parm was passed in memory, and we need to convert it on entry, don't store it back in that same slot. */ else if (data->entry_parm == stack_parm && data->nominal_mode != BLKmode && data->nominal_mode != data->passed_mode) stack_parm = NULL; /* If stack protection is in effect for this function, don't leave any pointers in their passed stack slots. */ else if (cfun->stack_protect_guard && (flag_stack_protect == 2 || data->passed_pointer || POINTER_TYPE_P (data->nominal_type))) stack_parm = NULL; data->stack_parm = stack_parm; } /* A subroutine of assign_parms. Return true if the current parameter should be stored as a BLKmode in the current frame. */ static bool assign_parm_setup_block_p (struct assign_parm_data_one *data) { if (data->nominal_mode == BLKmode) return true; if (GET_CODE (data->entry_parm) == PARALLEL) return true; #ifdef BLOCK_REG_PADDING /* Only assign_parm_setup_block knows how to deal with register arguments that are padded at the least significant end. */ if (REG_P (data->entry_parm) && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1) == (BYTES_BIG_ENDIAN ? upward : downward))) return true; #endif return false; } /* A subroutine of assign_parms. Arrange for the parameter to be present and valid in DATA->STACK_RTL. */ static void assign_parm_setup_block (struct assign_parm_data_all *all, tree parm, struct assign_parm_data_one *data) { rtx entry_parm = data->entry_parm; rtx stack_parm = data->stack_parm; HOST_WIDE_INT size; HOST_WIDE_INT size_stored; rtx orig_entry_parm = entry_parm; if (GET_CODE (entry_parm) == PARALLEL) entry_parm = emit_group_move_into_temps (entry_parm); /* If we've a non-block object that's nevertheless passed in parts, reconstitute it in register operations rather than on the stack. */ if (GET_CODE (entry_parm) == PARALLEL && data->nominal_mode != BLKmode) { rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0); if ((XVECLEN (entry_parm, 0) > 1 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1) && use_register_for_decl (parm)) { rtx parmreg = gen_reg_rtx (data->nominal_mode); push_to_sequence (all->conversion_insns); /* For values returned in multiple registers, handle possible incompatible calls to emit_group_store. For example, the following would be invalid, and would have to be fixed by the conditional below: emit_group_store ((reg:SF), (parallel:DF)) emit_group_store ((reg:SI), (parallel:DI)) An example of this are doubles in e500 v2: (parallel:DF (expr_list (reg:SI) (const_int 0)) (expr_list (reg:SI) (const_int 4))). */ if (data->nominal_mode != data->passed_mode) { rtx t = gen_reg_rtx (GET_MODE (entry_parm)); emit_group_store (t, entry_parm, NULL_TREE, GET_MODE_SIZE (GET_MODE (entry_parm))); convert_move (parmreg, t, 0); } else emit_group_store (parmreg, entry_parm, data->nominal_type, int_size_in_bytes (data->nominal_type)); all->conversion_insns = get_insns (); end_sequence (); SET_DECL_RTL (parm, parmreg); return; } } size = int_size_in_bytes (data->passed_type); size_stored = CEIL_ROUND (size, UNITS_PER_WORD); if (stack_parm == 0) { DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD); stack_parm = assign_stack_local (BLKmode, size_stored, DECL_ALIGN (parm)); if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size) PUT_MODE (stack_parm, GET_MODE (entry_parm)); set_mem_attributes (stack_parm, parm, 1); } /* If a BLKmode arrives in registers, copy it to a stack slot. Handle calls that pass values in multiple non-contiguous locations. */ if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL) { rtx mem; /* Note that we will be storing an integral number of words. So we have to be careful to ensure that we allocate an integral number of words. We do this above when we call assign_stack_local if space was not allocated in the argument list. If it was, this will not work if PARM_BOUNDARY is not a multiple of BITS_PER_WORD. It isn't clear how to fix this if it becomes a problem. Exception is when BLKmode arrives with arguments not conforming to word_mode. */ if (data->stack_parm == 0) ; else if (GET_CODE (entry_parm) == PARALLEL) ; else gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD)); mem = validize_mem (stack_parm); /* Handle values in multiple non-contiguous locations. */ if (GET_CODE (entry_parm) == PARALLEL) { push_to_sequence (all->conversion_insns); emit_group_store (mem, entry_parm, data->passed_type, size); all->conversion_insns = get_insns (); end_sequence (); } else if (size == 0) ; /* If SIZE is that of a mode no bigger than a word, just use that mode's store operation. */ else if (size <= UNITS_PER_WORD) { enum machine_mode mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0); if (mode != BLKmode #ifdef BLOCK_REG_PADDING && (size == UNITS_PER_WORD || (BLOCK_REG_PADDING (mode, data->passed_type, 1) != (BYTES_BIG_ENDIAN ? upward : downward))) #endif ) { rtx reg = gen_rtx_REG (mode, REGNO (entry_parm)); emit_move_insn (change_address (mem, mode, 0), reg); } /* Blocks smaller than a word on a BYTES_BIG_ENDIAN machine must be aligned to the left before storing to memory. Note that the previous test doesn't handle all cases (e.g. SIZE == 3). */ else if (size != UNITS_PER_WORD #ifdef BLOCK_REG_PADDING && (BLOCK_REG_PADDING (mode, data->passed_type, 1) == downward) #else && BYTES_BIG_ENDIAN #endif ) { rtx tem, x; int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT; rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); x = expand_shift (LSHIFT_EXPR, word_mode, reg, build_int_cst (NULL_TREE, by), NULL_RTX, 1); tem = change_address (mem, word_mode, 0); emit_move_insn (tem, x); } else move_block_from_reg (REGNO (entry_parm), mem, size_stored / UNITS_PER_WORD); } else move_block_from_reg (REGNO (entry_parm), mem, size_stored / UNITS_PER_WORD); } else if (data->stack_parm == 0) { push_to_sequence (all->conversion_insns); emit_block_move (stack_parm, data->entry_parm, GEN_INT (size), BLOCK_OP_NORMAL); all->conversion_insns = get_insns (); end_sequence (); } data->stack_parm = stack_parm; SET_DECL_RTL (parm, stack_parm); } /* A subroutine of assign_parms. Allocate a pseudo to hold the current parameter. Get it there. Perform all ABI specified conversions. */ static void assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm, struct assign_parm_data_one *data) { rtx parmreg; enum machine_mode promoted_nominal_mode; int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm)); bool did_conversion = false; /* Store the parm in a pseudoregister during the function, but we may need to do it in a wider mode. */ /* This is not really promoting for a call. However we need to be consistent with assign_parm_find_data_types and expand_expr_real_1. */ promoted_nominal_mode = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1); parmreg = gen_reg_rtx (promoted_nominal_mode); if (!DECL_ARTIFICIAL (parm)) mark_user_reg (parmreg); /* If this was an item that we received a pointer to, set DECL_RTL appropriately. */ if (data->passed_pointer) { rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg); set_mem_attributes (x, parm, 1); SET_DECL_RTL (parm, x); } else SET_DECL_RTL (parm, parmreg); /* Copy the value into the register. */ if (data->nominal_mode != data->passed_mode || promoted_nominal_mode != data->promoted_mode) { int save_tree_used; /* ENTRY_PARM has been converted to PROMOTED_MODE, its mode, by the caller. We now have to convert it to NOMINAL_MODE, if different. However, PARMREG may be in a different mode than NOMINAL_MODE if it is being stored promoted. If ENTRY_PARM is a hard register, it might be in a register not valid for operating in its mode (e.g., an odd-numbered register for a DFmode). In that case, moves are the only thing valid, so we can't do a convert from there. This occurs when the calling sequence allow such misaligned usages. In addition, the conversion may involve a call, which could clobber parameters which haven't been copied to pseudo registers yet. Therefore, we must first copy the parm to a pseudo reg here, and save the conversion until after all parameters have been moved. */ rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); emit_move_insn (tempreg, validize_mem (data->entry_parm)); push_to_sequence (all->conversion_insns); tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp); if (GET_CODE (tempreg) == SUBREG && GET_MODE (tempreg) == data->nominal_mode && REG_P (SUBREG_REG (tempreg)) && data->nominal_mode == data->passed_mode && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm) && GET_MODE_SIZE (GET_MODE (tempreg)) < GET_MODE_SIZE (GET_MODE (data->entry_parm))) { /* The argument is already sign/zero extended, so note it into the subreg. */ SUBREG_PROMOTED_VAR_P (tempreg) = 1; SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp); } /* TREE_USED gets set erroneously during expand_assignment. */ save_tree_used = TREE_USED (parm); expand_assignment (parm, make_tree (data->nominal_type, tempreg)); TREE_USED (parm) = save_tree_used; all->conversion_insns = get_insns (); end_sequence (); did_conversion = true; } else emit_move_insn (parmreg, validize_mem (data->entry_parm)); /* If we were passed a pointer but the actual value can safely live in a register, put it in one. */ if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode /* If by-reference argument was promoted, demote it. */ && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm)) || use_register_for_decl (parm))) { /* We can't use nominal_mode, because it will have been set to Pmode above. We must use the actual mode of the parm. */ parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm))); mark_user_reg (parmreg); if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm))) { rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm))); int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm)); push_to_sequence (all->conversion_insns); emit_move_insn (tempreg, DECL_RTL (parm)); tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p); emit_move_insn (parmreg, tempreg); all->conversion_insns = get_insns (); end_sequence (); did_conversion = true; } else emit_move_insn (parmreg, DECL_RTL (parm)); SET_DECL_RTL (parm, parmreg); /* STACK_PARM is the pointer, not the parm, and PARMREG is now the parm. */ data->stack_parm = NULL; } /* Mark the register as eliminable if we did no conversion and it was copied from memory at a fixed offset, and the arg pointer was not copied to a pseudo-reg. If the arg pointer is a pseudo reg or the offset formed an invalid address, such memory-equivalences as we make here would screw up life analysis for it. */ if (data->nominal_mode == data->passed_mode && !did_conversion && data->stack_parm != 0 && MEM_P (data->stack_parm) && data->locate.offset.var == 0 && reg_mentioned_p (virtual_incoming_args_rtx, XEXP (data->stack_parm, 0))) { rtx linsn = get_last_insn (); rtx sinsn, set; /* Mark complex types separately. */ if (GET_CODE (parmreg) == CONCAT) { enum machine_mode submode = GET_MODE_INNER (GET_MODE (parmreg)); int regnor = REGNO (XEXP (parmreg, 0)); int regnoi = REGNO (XEXP (parmreg, 1)); rtx stackr = adjust_address_nv (data->stack_parm, submode, 0); rtx stacki = adjust_address_nv (data->stack_parm, submode, GET_MODE_SIZE (submode)); /* Scan backwards for the set of the real and imaginary parts. */ for (sinsn = linsn; sinsn != 0; sinsn = prev_nonnote_insn (sinsn)) { set = single_set (sinsn); if (set == 0) continue; if (SET_DEST (set) == regno_reg_rtx [regnoi]) REG_NOTES (sinsn) = gen_rtx_EXPR_LIST (REG_EQUIV, stacki, REG_NOTES (sinsn)); else if (SET_DEST (set) == regno_reg_rtx [regnor]) REG_NOTES (sinsn) = gen_rtx_EXPR_LIST (REG_EQUIV, stackr, REG_NOTES (sinsn)); } } else if ((set = single_set (linsn)) != 0 && SET_DEST (set) == parmreg) REG_NOTES (linsn) = gen_rtx_EXPR_LIST (REG_EQUIV, data->stack_parm, REG_NOTES (linsn)); } /* For pointer data type, suggest pointer register. */ if (POINTER_TYPE_P (TREE_TYPE (parm))) mark_reg_pointer (parmreg, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); } /* A subroutine of assign_parms. Allocate stack space to hold the current parameter. Get it there. Perform all ABI specified conversions. */ static void assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm, struct assign_parm_data_one *data) { /* Value must be stored in the stack slot STACK_PARM during function execution. */ bool to_conversion = false; if (data->promoted_mode != data->nominal_mode) { /* Conversion is required. */ rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); emit_move_insn (tempreg, validize_mem (data->entry_parm)); push_to_sequence (all->conversion_insns); to_conversion = true; data->entry_parm = convert_to_mode (data->nominal_mode, tempreg, TYPE_UNSIGNED (TREE_TYPE (parm))); if (data->stack_parm) /* ??? This may need a big-endian conversion on sparc64. */ data->stack_parm = adjust_address (data->stack_parm, data->nominal_mode, 0); } if (data->entry_parm != data->stack_parm) { rtx src, dest; if (data->stack_parm == 0) { data->stack_parm = assign_stack_local (GET_MODE (data->entry_parm), GET_MODE_SIZE (GET_MODE (data->entry_parm)), TYPE_ALIGN (data->passed_type)); set_mem_attributes (data->stack_parm, parm, 1); } dest = validize_mem (data->stack_parm); src = validize_mem (data->entry_parm); if (MEM_P (src)) { /* Use a block move to handle potentially misaligned entry_parm. */ if (!to_conversion) push_to_sequence (all->conversion_insns); to_conversion = true; emit_block_move (dest, src, GEN_INT (int_size_in_bytes (data->passed_type)), BLOCK_OP_NORMAL); } else emit_move_insn (dest, src); } if (to_conversion) { all->conversion_insns = get_insns (); end_sequence (); } SET_DECL_RTL (parm, data->stack_parm); } /* A subroutine of assign_parms. If the ABI splits complex arguments, then undo the frobbing that we did in assign_parms_augmented_arg_list. */ static void assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs) { tree parm; tree orig_fnargs = all->orig_fnargs; for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm)) { if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE && targetm.calls.split_complex_arg (TREE_TYPE (parm))) { rtx tmp, real, imag; enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm)); real = DECL_RTL (fnargs); imag = DECL_RTL (TREE_CHAIN (fnargs)); if (inner != GET_MODE (real)) { real = gen_lowpart_SUBREG (inner, real); imag = gen_lowpart_SUBREG (inner, imag); } if (TREE_ADDRESSABLE (parm)) { rtx rmem, imem; HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm)); /* split_complex_arg put the real and imag parts in pseudos. Move them to memory. */ tmp = assign_stack_local (DECL_MODE (parm), size, TYPE_ALIGN (TREE_TYPE (parm))); set_mem_attributes (tmp, parm, 1); rmem = adjust_address_nv (tmp, inner, 0); imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner)); push_to_sequence (all->conversion_insns); emit_move_insn (rmem, real); emit_move_insn (imem, imag); all->conversion_insns = get_insns (); end_sequence (); } else tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); SET_DECL_RTL (parm, tmp); real = DECL_INCOMING_RTL (fnargs); imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs)); if (inner != GET_MODE (real)) { real = gen_lowpart_SUBREG (inner, real); imag = gen_lowpart_SUBREG (inner, imag); } tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); set_decl_incoming_rtl (parm, tmp); fnargs = TREE_CHAIN (fnargs); } else { SET_DECL_RTL (parm, DECL_RTL (fnargs)); set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs)); /* Set MEM_EXPR to the original decl, i.e. to PARM, instead of the copy of decl, i.e. FNARGS. */ if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm))) set_mem_expr (DECL_INCOMING_RTL (parm), parm); } fnargs = TREE_CHAIN (fnargs); } } /* Assign RTL expressions to the function's parameters. This may involve copying them into registers and using those registers as the DECL_RTL. */ static void assign_parms (tree fndecl) { struct assign_parm_data_all all; tree fnargs, parm; current_function_internal_arg_pointer = targetm.calls.internal_arg_pointer (); assign_parms_initialize_all (&all); fnargs = assign_parms_augmented_arg_list (&all); for (parm = fnargs; parm; parm = TREE_CHAIN (parm)) { struct assign_parm_data_one data; /* Extract the type of PARM; adjust it according to ABI. */ assign_parm_find_data_types (&all, parm, &data); /* Early out for errors and void parameters. */ if (data.passed_mode == VOIDmode) { SET_DECL_RTL (parm, const0_rtx); DECL_INCOMING_RTL (parm) = DECL_RTL (parm); continue; } if (current_function_stdarg && !TREE_CHAIN (parm)) assign_parms_setup_varargs (&all, &data, false); /* Find out where the parameter arrives in this function. */ assign_parm_find_entry_rtl (&all, &data); /* Find out where stack space for this parameter might be. */ if (assign_parm_is_stack_parm (&all, &data)) { assign_parm_find_stack_rtl (parm, &data); assign_parm_adjust_entry_rtl (&data); } /* Record permanently how this parm was passed. */ set_decl_incoming_rtl (parm, data.entry_parm); /* Update info on where next arg arrives in registers. */ FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode, data.passed_type, data.named_arg); assign_parm_adjust_stack_rtl (&data); if (assign_parm_setup_block_p (&data)) assign_parm_setup_block (&all, parm, &data); else if (data.passed_pointer || use_register_for_decl (parm)) assign_parm_setup_reg (&all, parm, &data); else assign_parm_setup_stack (&all, parm, &data); } if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs) assign_parms_unsplit_complex (&all, fnargs); /* Output all parameter conversion instructions (possibly including calls) now that all parameters have been copied out of hard registers. */ emit_insn (all.conversion_insns); /* If we are receiving a struct value address as the first argument, set up the RTL for the function result. As this might require code to convert the transmitted address to Pmode, we do this here to ensure that possible preliminary conversions of the address have been emitted already. */ if (all.function_result_decl) { tree result = DECL_RESULT (current_function_decl); rtx addr = DECL_RTL (all.function_result_decl); rtx x; if (DECL_BY_REFERENCE (result)) x = addr; else { addr = convert_memory_address (Pmode, addr); x = gen_rtx_MEM (DECL_MODE (result), addr); set_mem_attributes (x, result, 1); } SET_DECL_RTL (result, x); } /* We have aligned all the args, so add space for the pretend args. */ current_function_pretend_args_size = all.pretend_args_size; all.stack_args_size.constant += all.extra_pretend_bytes; current_function_args_size = all.stack_args_size.constant; /* Adjust function incoming argument size for alignment and minimum length. */ #ifdef REG_PARM_STACK_SPACE current_function_args_size = MAX (current_function_args_size, REG_PARM_STACK_SPACE (fndecl)); #endif current_function_args_size = CEIL_ROUND (current_function_args_size, PARM_BOUNDARY / BITS_PER_UNIT); #ifdef ARGS_GROW_DOWNWARD current_function_arg_offset_rtx = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant) : expand_expr (size_diffop (all.stack_args_size.var, size_int (-all.stack_args_size.constant)), NULL_RTX, VOIDmode, 0)); #else current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size); #endif /* See how many bytes, if any, of its args a function should try to pop on return. */ current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl), current_function_args_size); /* For stdarg.h function, save info about regs and stack space used by the named args. */ current_function_args_info = all.args_so_far; /* Set the rtx used for the function return value. Put this in its own variable so any optimizers that need this information don't have to include tree.h. Do this here so it gets done when an inlined function gets output. */ current_function_return_rtx = (DECL_RTL_SET_P (DECL_RESULT (fndecl)) ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX); /* If scalar return value was computed in a pseudo-reg, or was a named return value that got dumped to the stack, copy that to the hard return register. */ if (DECL_RTL_SET_P (DECL_RESULT (fndecl))) { tree decl_result = DECL_RESULT (fndecl); rtx decl_rtl = DECL_RTL (decl_result); if (REG_P (decl_rtl) ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER : DECL_REGISTER (decl_result)) { rtx real_decl_rtl; real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result), fndecl, true); REG_FUNCTION_VALUE_P (real_decl_rtl) = 1; /* The delay slot scheduler assumes that current_function_return_rtx holds the hard register containing the return value, not a temporary pseudo. */ current_function_return_rtx = real_decl_rtl; } } } /* A subroutine of gimplify_parameters, invoked via walk_tree. For all seen types, gimplify their sizes. */ static tree gimplify_parm_type (tree *tp, int *walk_subtrees, void *data) { tree t = *tp; *walk_subtrees = 0; if (TYPE_P (t)) { if (POINTER_TYPE_P (t)) *walk_subtrees = 1; else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t)) && !TYPE_SIZES_GIMPLIFIED (t)) { gimplify_type_sizes (t, (tree *) data); *walk_subtrees = 1; } } return NULL; } /* Gimplify the parameter list for current_function_decl. This involves evaluating SAVE_EXPRs of variable sized parameters and generating code to implement callee-copies reference parameters. Returns a list of statements to add to the beginning of the function, or NULL if nothing to do. */ tree gimplify_parameters (void) { struct assign_parm_data_all all; tree fnargs, parm, stmts = NULL; assign_parms_initialize_all (&all); fnargs = assign_parms_augmented_arg_list (&all); for (parm = fnargs; parm; parm = TREE_CHAIN (parm)) { struct assign_parm_data_one data; /* Extract the type of PARM; adjust it according to ABI. */ assign_parm_find_data_types (&all, parm, &data); /* Early out for errors and void parameters. */ if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL) continue; /* Update info on where next arg arrives in registers. */ FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode, data.passed_type, data.named_arg); /* ??? Once upon a time variable_size stuffed parameter list SAVE_EXPRs (amongst others) onto a pending sizes list. This turned out to be less than manageable in the gimple world. Now we have to hunt them down ourselves. */ walk_tree_without_duplicates (&data.passed_type, gimplify_parm_type, &stmts); if (!TREE_CONSTANT (DECL_SIZE (parm))) { gimplify_one_sizepos (&DECL_SIZE (parm), &stmts); gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts); } if (data.passed_pointer) { tree type = TREE_TYPE (data.passed_type); if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type), type, data.named_arg)) { tree local, t; /* For constant sized objects, this is trivial; for variable-sized objects, we have to play games. */ if (TREE_CONSTANT (DECL_SIZE (parm))) { local = create_tmp_var (type, get_name (parm)); DECL_IGNORED_P (local) = 0; } else { tree ptr_type, addr, args; ptr_type = build_pointer_type (type); addr = create_tmp_var (ptr_type, get_name (parm)); DECL_IGNORED_P (addr) = 0; local = build_fold_indirect_ref (addr); args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL); t = built_in_decls[BUILT_IN_ALLOCA]; t = build_function_call_expr (t, args); t = fold_convert (ptr_type, t); t = build2 (MODIFY_EXPR, void_type_node, addr, t); gimplify_and_add (t, &stmts); } t = build2 (MODIFY_EXPR, void_type_node, local, parm); gimplify_and_add (t, &stmts); SET_DECL_VALUE_EXPR (parm, local); DECL_HAS_VALUE_EXPR_P (parm) = 1; } } } return stmts; } /* Indicate whether REGNO is an incoming argument to the current function that was promoted to a wider mode. If so, return the RTX for the register (to get its mode). PMODE and PUNSIGNEDP are set to the mode that REGNO is promoted from and whether the promotion was signed or unsigned. */ rtx promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp) { tree arg; for (arg = DECL_ARGUMENTS (current_function_decl); arg; arg = TREE_CHAIN (arg)) if (REG_P (DECL_INCOMING_RTL (arg)) && REGNO (DECL_INCOMING_RTL (arg)) == regno && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg))) { enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg)); int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg)); mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1); if (mode == GET_MODE (DECL_INCOMING_RTL (arg)) && mode != DECL_MODE (arg)) { *pmode = DECL_MODE (arg); *punsignedp = unsignedp; return DECL_INCOMING_RTL (arg); } } return 0; } /* Compute the size and offset from the start of the stacked arguments for a parm passed in mode PASSED_MODE and with type TYPE. INITIAL_OFFSET_PTR points to the current offset into the stacked arguments. The starting offset and size for this parm are returned in LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is nonzero, the offset is that of stack slot, which is returned in LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of padding required from the initial offset ptr to the stack slot. IN_REGS is nonzero if the argument will be passed in registers. It will never be set if REG_PARM_STACK_SPACE is not defined. FNDECL is the function in which the argument was defined. There are two types of rounding that are done. The first, controlled by FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument list to be aligned to the specific boundary (in bits). This rounding affects the initial and starting offsets, but not the argument size. The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY, optionally rounds the size of the parm to PARM_BOUNDARY. The initial offset is not affected by this rounding, while the size always is and the starting offset may be. */ /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case; INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's callers pass in the total size of args so far as INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */ void locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs, int partial, tree fndecl ATTRIBUTE_UNUSED, struct args_size *initial_offset_ptr, struct locate_and_pad_arg_data *locate) { tree sizetree; enum direction where_pad; unsigned int boundary; int reg_parm_stack_space = 0; int part_size_in_regs; #ifdef REG_PARM_STACK_SPACE reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl); /* If we have found a stack parm before we reach the end of the area reserved for registers, skip that area. */ if (! in_regs) { if (reg_parm_stack_space > 0) { if (initial_offset_ptr->var) { initial_offset_ptr->var = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr), ssize_int (reg_parm_stack_space)); initial_offset_ptr->constant = 0; } else if (initial_offset_ptr->constant < reg_parm_stack_space) initial_offset_ptr->constant = reg_parm_stack_space; } } #endif /* REG_PARM_STACK_SPACE */ part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0); sizetree = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode)); where_pad = FUNCTION_ARG_PADDING (passed_mode, type); boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type); locate->where_pad = where_pad; locate->boundary = boundary; /* Remember if the outgoing parameter requires extra alignment on the calling function side. */ if (boundary > PREFERRED_STACK_BOUNDARY) boundary = PREFERRED_STACK_BOUNDARY; if (cfun->stack_alignment_needed < boundary) cfun->stack_alignment_needed = boundary; #ifdef ARGS_GROW_DOWNWARD locate->slot_offset.constant = -initial_offset_ptr->constant; if (initial_offset_ptr->var) locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0), initial_offset_ptr->var); { tree s2 = sizetree; if (where_pad != none && (!host_integerp (sizetree, 1) || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY)) s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT); SUB_PARM_SIZE (locate->slot_offset, s2); } locate->slot_offset.constant += part_size_in_regs; if (!in_regs #ifdef REG_PARM_STACK_SPACE || REG_PARM_STACK_SPACE (fndecl) > 0 #endif ) pad_to_arg_alignment (&locate->slot_offset, boundary, &locate->alignment_pad); locate->size.constant = (-initial_offset_ptr->constant - locate->slot_offset.constant); if (initial_offset_ptr->var) locate->size.var = size_binop (MINUS_EXPR, size_binop (MINUS_EXPR, ssize_int (0), initial_offset_ptr->var), locate->slot_offset.var); /* Pad_below needs the pre-rounded size to know how much to pad below. */ locate->offset = locate->slot_offset; if (where_pad == downward) pad_below (&locate->offset, passed_mode, sizetree); #else /* !ARGS_GROW_DOWNWARD */ if (!in_regs #ifdef REG_PARM_STACK_SPACE || REG_PARM_STACK_SPACE (fndecl) > 0 #endif ) pad_to_arg_alignment (initial_offset_ptr, boundary, &locate->alignment_pad); locate->slot_offset = *initial_offset_ptr; #ifdef PUSH_ROUNDING if (passed_mode != BLKmode) sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree))); #endif /* Pad_below needs the pre-rounded size to know how much to pad below so this must be done before rounding up. */ locate->offset = locate->slot_offset; if (where_pad == downward) pad_below (&locate->offset, passed_mode, sizetree); if (where_pad != none && (!host_integerp (sizetree, 1) || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY)) sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT); ADD_PARM_SIZE (locate->size, sizetree); locate->size.constant -= part_size_in_regs; #endif /* ARGS_GROW_DOWNWARD */ } /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY. BOUNDARY is measured in bits, but must be a multiple of a storage unit. */ static void pad_to_arg_alignment (struct args_size *offset_ptr, int boundary, struct args_size *alignment_pad) { tree save_var = NULL_TREE; HOST_WIDE_INT save_constant = 0; int boundary_in_bytes = boundary / BITS_PER_UNIT; HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET; #ifdef SPARC_STACK_BOUNDARY_HACK /* ??? The SPARC port may claim a STACK_BOUNDARY higher than the real alignment of %sp. However, when it does this, the alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */ if (SPARC_STACK_BOUNDARY_HACK) sp_offset = 0; #endif if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY) { save_var = offset_ptr->var; save_constant = offset_ptr->constant; } alignment_pad->var = NULL_TREE; alignment_pad->constant = 0; if (boundary > BITS_PER_UNIT) { if (offset_ptr->var) { tree sp_offset_tree = ssize_int (sp_offset); tree offset = size_binop (PLUS_EXPR, ARGS_SIZE_TREE (*offset_ptr), sp_offset_tree); #ifdef ARGS_GROW_DOWNWARD tree rounded = round_down (offset, boundary / BITS_PER_UNIT); #else tree rounded = round_up (offset, boundary / BITS_PER_UNIT); #endif offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree); /* ARGS_SIZE_TREE includes constant term. */ offset_ptr->constant = 0; if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY) alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var, save_var); } else { offset_ptr->constant = -sp_offset + #ifdef ARGS_GROW_DOWNWARD FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes); #else CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes); #endif if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY) alignment_pad->constant = offset_ptr->constant - save_constant; } } } static void pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree) { if (passed_mode != BLKmode) { if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY) offset_ptr->constant += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1) / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT) - GET_MODE_SIZE (passed_mode)); } else { if (TREE_CODE (sizetree) != INTEGER_CST || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY) { /* Round the size up to multiple of PARM_BOUNDARY bits. */ tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT); /* Add it in. */ ADD_PARM_SIZE (*offset_ptr, s2); SUB_PARM_SIZE (*offset_ptr, sizetree); } } } /* Walk the tree of blocks describing the binding levels within a function and warn about variables the might be killed by setjmp or vfork. This is done after calling flow_analysis and before global_alloc clobbers the pseudo-regs to hard regs. */ void setjmp_vars_warning (tree block) { tree decl, sub; for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl)) { if (TREE_CODE (decl) == VAR_DECL && DECL_RTL_SET_P (decl) && REG_P (DECL_RTL (decl)) && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl)))) warning (0, "variable %q+D might be clobbered by %<longjmp%>" " or %<vfork%>", decl); } for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub)) setjmp_vars_warning (sub); } /* Do the appropriate part of setjmp_vars_warning but for arguments instead of local variables. */ void setjmp_args_warning (void) { tree decl; for (decl = DECL_ARGUMENTS (current_function_decl); decl; decl = TREE_CHAIN (decl)) if (DECL_RTL (decl) != 0 && REG_P (DECL_RTL (decl)) && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl)))) warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>", decl); } /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */ /* ??? Need an option to either create block fragments or to create abstract origin duplicates of a source block. It really depends on what optimization has been performed. */ void reorder_blocks (void) { tree block = DECL_INITIAL (current_function_decl); VEC(tree,heap) *block_stack; if (block == NULL_TREE) return; block_stack = VEC_alloc (tree, heap, 10); /* Reset the TREE_ASM_WRITTEN bit for all blocks. */ clear_block_marks (block); /* Prune the old trees away, so that they don't get in the way. */ BLOCK_SUBBLOCKS (block) = NULL_TREE; BLOCK_CHAIN (block) = NULL_TREE; /* Recreate the block tree from the note nesting. */ reorder_blocks_1 (get_insns (), block, &block_stack); BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block)); VEC_free (tree, heap, block_stack); } /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */ void clear_block_marks (tree block) { while (block) { TREE_ASM_WRITTEN (block) = 0; clear_block_marks (BLOCK_SUBBLOCKS (block)); block = BLOCK_CHAIN (block); } } static void reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack) { rtx insn; for (insn = insns; insn; insn = NEXT_INSN (insn)) { if (NOTE_P (insn)) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG) { tree block = NOTE_BLOCK (insn); tree origin; origin = (BLOCK_FRAGMENT_ORIGIN (block) ? BLOCK_FRAGMENT_ORIGIN (block) : block); /* If we have seen this block before, that means it now spans multiple address regions. Create a new fragment. */ if (TREE_ASM_WRITTEN (block)) { tree new_block = copy_node (block); BLOCK_FRAGMENT_ORIGIN (new_block) = origin; BLOCK_FRAGMENT_CHAIN (new_block) = BLOCK_FRAGMENT_CHAIN (origin); BLOCK_FRAGMENT_CHAIN (origin) = new_block; NOTE_BLOCK (insn) = new_block; block = new_block; } BLOCK_SUBBLOCKS (block) = 0; TREE_ASM_WRITTEN (block) = 1; /* When there's only one block for the entire function, current_block == block and we mustn't do this, it will cause infinite recursion. */ if (block != current_block) { if (block != origin) gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block); BLOCK_SUPERCONTEXT (block) = current_block; BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block); BLOCK_SUBBLOCKS (current_block) = block; current_block = origin; } VEC_safe_push (tree, heap, *p_block_stack, block); } else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END) { NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack); BLOCK_SUBBLOCKS (current_block) = blocks_nreverse (BLOCK_SUBBLOCKS (current_block)); current_block = BLOCK_SUPERCONTEXT (current_block); } } } } /* Reverse the order of elements in the chain T of blocks, and return the new head of the chain (old last element). */ tree blocks_nreverse (tree t) { tree prev = 0, decl, next; for (decl = t; decl; decl = next) { next = BLOCK_CHAIN (decl); BLOCK_CHAIN (decl) = prev; prev = decl; } return prev; } /* Count the subblocks of the list starting with BLOCK. If VECTOR is non-NULL, list them all into VECTOR, in a depth-first preorder traversal of the block tree. Also clear TREE_ASM_WRITTEN in all blocks. */ static int all_blocks (tree block, tree *vector) { int n_blocks = 0; while (block) { TREE_ASM_WRITTEN (block) = 0; /* Record this block. */ if (vector) vector[n_blocks] = block; ++n_blocks; /* Record the subblocks, and their subblocks... */ n_blocks += all_blocks (BLOCK_SUBBLOCKS (block), vector ? vector + n_blocks : 0); block = BLOCK_CHAIN (block); } return n_blocks; } /* Return a vector containing all the blocks rooted at BLOCK. The number of elements in the vector is stored in N_BLOCKS_P. The vector is dynamically allocated; it is the caller's responsibility to call `free' on the pointer returned. */ static tree * get_block_vector (tree block, int *n_blocks_p) { tree *block_vector; *n_blocks_p = all_blocks (block, NULL); block_vector = XNEWVEC (tree, *n_blocks_p); all_blocks (block, block_vector); return block_vector; } static GTY(()) int next_block_index = 2; /* Set BLOCK_NUMBER for all the blocks in FN. */ void number_blocks (tree fn) { int i; int n_blocks; tree *block_vector; /* For SDB and XCOFF debugging output, we start numbering the blocks from 1 within each function, rather than keeping a running count. */ #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO) if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG) next_block_index = 1; #endif block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks); /* The top-level BLOCK isn't numbered at all. */ for (i = 1; i < n_blocks; ++i) /* We number the blocks from two. */ BLOCK_NUMBER (block_vector[i]) = next_block_index++; free (block_vector); return; } /* If VAR is present in a subblock of BLOCK, return the subblock. */ tree debug_find_var_in_block_tree (tree var, tree block) { tree t; for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t)) if (t == var) return block; for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t)) { tree ret = debug_find_var_in_block_tree (var, t); if (ret) return ret; } return NULL_TREE; } /* Allocate a function structure for FNDECL and set its contents to the defaults. */ void allocate_struct_function (tree fndecl) { tree result; tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE; cfun = ggc_alloc_cleared (sizeof (struct function)); cfun->stack_alignment_needed = STACK_BOUNDARY; cfun->preferred_stack_boundary = STACK_BOUNDARY; current_function_funcdef_no = funcdef_no++; cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL; init_eh_for_function (); lang_hooks.function.init (cfun); if (init_machine_status) cfun->machine = (*init_machine_status) (); if (fndecl == NULL) return; DECL_STRUCT_FUNCTION (fndecl) = cfun; cfun->decl = fndecl; result = DECL_RESULT (fndecl); if (aggregate_value_p (result, fndecl)) { #ifdef PCC_STATIC_STRUCT_RETURN current_function_returns_pcc_struct = 1; #endif current_function_returns_struct = 1; } current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result)); current_function_stdarg = (fntype && TYPE_ARG_TYPES (fntype) != 0 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node)); /* Assume all registers in stdarg functions need to be saved. */ cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE; cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE; } /* Reset cfun, and other non-struct-function variables to defaults as appropriate for emitting rtl at the start of a function. */ static void prepare_function_start (tree fndecl) { if (fndecl && DECL_STRUCT_FUNCTION (fndecl)) cfun = DECL_STRUCT_FUNCTION (fndecl); else allocate_struct_function (fndecl); init_emit (); init_varasm_status (cfun); init_expr (); cse_not_expected = ! optimize; /* Caller save not needed yet. */ caller_save_needed = 0; /* We haven't done register allocation yet. */ reg_renumber = 0; /* Indicate that we have not instantiated virtual registers yet. */ virtuals_instantiated = 0; /* Indicate that we want CONCATs now. */ generating_concat_p = 1; /* Indicate we have no need of a frame pointer yet. */ frame_pointer_needed = 0; } /* Initialize the rtl expansion mechanism so that we can do simple things like generate sequences. This is used to provide a context during global initialization of some passes. */ void init_dummy_function_start (void) { prepare_function_start (NULL); } /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node) and initialize static variables for generating RTL for the statements of the function. */ void init_function_start (tree subr) { prepare_function_start (subr); /* Prevent ever trying to delete the first instruction of a function. Also tell final how to output a linenum before the function prologue. Note linenums could be missing, e.g. when compiling a Java .class file. */ if (! DECL_IS_BUILTIN (subr)) emit_line_note (DECL_SOURCE_LOCATION (subr)); /* Make sure first insn is a note even if we don't want linenums. This makes sure the first insn will never be deleted. Also, final expects a note to appear there. */ emit_note (NOTE_INSN_DELETED); /* Warn if this value is an aggregate type, regardless of which calling convention we are using for it. */ if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)))) warning (OPT_Waggregate_return, "function returns an aggregate"); } /* Make sure all values used by the optimization passes have sane defaults. */ unsigned int init_function_for_compilation (void) { reg_renumber = 0; /* No prologue/epilogue insns yet. Make sure that these vectors are empty. */ gcc_assert (VEC_length (int, prologue) == 0); gcc_assert (VEC_length (int, epilogue) == 0); gcc_assert (VEC_length (int, sibcall_epilogue) == 0); return 0; } struct tree_opt_pass pass_init_function = { NULL, /* name */ NULL, /* gate */ init_function_for_compilation, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ 0, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ 0 /* letter */ }; void expand_main_function (void) { #if (defined(INVOKE__main) \ || (!defined(HAS_INIT_SECTION) \ && !defined(INIT_SECTION_ASM_OP) \ && !defined(INIT_ARRAY_SECTION_ASM_OP))) emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0); #endif } /* Expand code to initialize the stack_protect_guard. This is invoked at the beginning of a function to be protected. */ #ifndef HAVE_stack_protect_set # define HAVE_stack_protect_set 0 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX) #endif void stack_protect_prologue (void) { tree guard_decl = targetm.stack_protect_guard (); rtx x, y; /* Avoid expand_expr here, because we don't want guard_decl pulled into registers unless absolutely necessary. And we know that cfun->stack_protect_guard is a local stack slot, so this skips all the fluff. */ x = validize_mem (DECL_RTL (cfun->stack_protect_guard)); y = validize_mem (DECL_RTL (guard_decl)); /* Allow the target to copy from Y to X without leaking Y into a register. */ if (HAVE_stack_protect_set) { rtx insn = gen_stack_protect_set (x, y); if (insn) { emit_insn (insn); return; } } /* Otherwise do a straight move. */ emit_move_insn (x, y); } /* Expand code to verify the stack_protect_guard. This is invoked at the end of a function to be protected. */ #ifndef HAVE_stack_protect_test # define HAVE_stack_protect_test 0 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX) #endif void stack_protect_epilogue (void) { tree guard_decl = targetm.stack_protect_guard (); rtx label = gen_label_rtx (); rtx x, y, tmp; /* Avoid expand_expr here, because we don't want guard_decl pulled into registers unless absolutely necessary. And we know that cfun->stack_protect_guard is a local stack slot, so this skips all the fluff. */ x = validize_mem (DECL_RTL (cfun->stack_protect_guard)); y = validize_mem (DECL_RTL (guard_decl)); /* Allow the target to compare Y with X without leaking either into a register. */ switch (HAVE_stack_protect_test != 0) { case 1: tmp = gen_stack_protect_test (x, y, label); if (tmp) { emit_insn (tmp); break; } /* FALLTHRU */ default: emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label); break; } /* The noreturn predictor has been moved to the tree level. The rtl-level predictors estimate this branch about 20%, which isn't enough to get things moved out of line. Since this is the only extant case of adding a noreturn function at the rtl level, it doesn't seem worth doing ought except adding the prediction by hand. */ tmp = get_last_insn (); if (JUMP_P (tmp)) predict_insn_def (tmp, PRED_NORETURN, TAKEN); expand_expr_stmt (targetm.stack_protect_fail ()); emit_label (label); } /* Start the RTL for a new function, and set variables used for emitting RTL. SUBR is the FUNCTION_DECL node. PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with the function's parameters, which must be run at any return statement. */ void expand_function_start (tree subr) { /* Make sure volatile mem refs aren't considered valid operands of arithmetic insns. */ init_recog_no_volatile (); current_function_profile = (profile_flag && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr)); current_function_limit_stack = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr)); /* Make the label for return statements to jump to. Do not special case machines with special return instructions -- they will be handled later during jump, ifcvt, or epilogue creation. */ return_label = gen_label_rtx (); /* Initialize rtx used to return the value. */ /* Do this before assign_parms so that we copy the struct value address before any library calls that assign parms might generate. */ /* Decide whether to return the value in memory or in a register. */ if (aggregate_value_p (DECL_RESULT (subr), subr)) { /* Returning something that won't go in a register. */ rtx value_address = 0; #ifdef PCC_STATIC_STRUCT_RETURN if (current_function_returns_pcc_struct) { int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr))); value_address = assemble_static_space (size); } else #endif { rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2); /* Expect to be passed the address of a place to store the value. If it is passed as an argument, assign_parms will take care of it. */ if (sv) { value_address = gen_reg_rtx (Pmode); emit_move_insn (value_address, sv); } } if (value_address) { rtx x = value_address; if (!DECL_BY_REFERENCE (DECL_RESULT (subr))) { x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x); set_mem_attributes (x, DECL_RESULT (subr), 1); } SET_DECL_RTL (DECL_RESULT (subr), x); } } else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode) /* If return mode is void, this decl rtl should not be used. */ SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX); else { /* Compute the return values into a pseudo reg, which we will copy into the true return register after the cleanups are done. */ tree return_type = TREE_TYPE (DECL_RESULT (subr)); if (TYPE_MODE (return_type) != BLKmode && targetm.calls.return_in_msb (return_type)) /* expand_function_end will insert the appropriate padding in this case. Use the return value's natural (unpadded) mode within the function proper. */ SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (TYPE_MODE (return_type))); else { /* In order to figure out what mode to use for the pseudo, we figure out what the mode of the eventual return register will actually be, and use that. */ rtx hard_reg = hard_function_value (return_type, subr, 0, 1); /* Structures that are returned in registers are not aggregate_value_p, so we may see a PARALLEL or a REG. */ if (REG_P (hard_reg)) SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg))); else { gcc_assert (GET_CODE (hard_reg) == PARALLEL); SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg)); } } /* Set DECL_REGISTER flag so that expand_function_end will copy the result to the real return register(s). */ DECL_REGISTER (DECL_RESULT (subr)) = 1; } /* Initialize rtx for parameters and local variables. In some cases this requires emitting insns. */ assign_parms (subr); /* If function gets a static chain arg, store it. */ if (cfun->static_chain_decl) { tree parm = cfun->static_chain_decl; rtx local = gen_reg_rtx (Pmode); set_decl_incoming_rtl (parm, static_chain_incoming_rtx); SET_DECL_RTL (parm, local); mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); emit_move_insn (local, static_chain_incoming_rtx); } /* If the function receives a non-local goto, then store the bits we need to restore the frame pointer. */ if (cfun->nonlocal_goto_save_area) { tree t_save; rtx r_save; /* ??? We need to do this save early. Unfortunately here is before the frame variable gets declared. Help out... */ expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0)); t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area, integer_zero_node, NULL_TREE, NULL_TREE); r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE); r_save = convert_memory_address (Pmode, r_save); emit_move_insn (r_save, virtual_stack_vars_rtx); update_nonlocal_goto_save_area (); } /* The following was moved from init_function_start. The move is supposed to make sdb output more accurate. */ /* Indicate the beginning of the function body, as opposed to parm setup. */ emit_note (NOTE_INSN_FUNCTION_BEG); gcc_assert (NOTE_P (get_last_insn ())); parm_birth_insn = get_last_insn (); if (current_function_profile) { #ifdef PROFILE_HOOK PROFILE_HOOK (current_function_funcdef_no); #endif } /* After the display initializations is where the stack checking probe should go. */ if(flag_stack_check) stack_check_probe_note = emit_note (NOTE_INSN_DELETED); /* Make sure there is a line number after the function entry setup code. */ force_next_line_note (); } /* Undo the effects of init_dummy_function_start. */ void expand_dummy_function_end (void) { /* End any sequences that failed to be closed due to syntax errors. */ while (in_sequence_p ()) end_sequence (); /* Outside function body, can't compute type's actual size until next function's body starts. */ free_after_parsing (cfun); free_after_compilation (cfun); cfun = 0; } /* Call DOIT for each hard register used as a return value from the current function. */ void diddle_return_value (void (*doit) (rtx, void *), void *arg) { rtx outgoing = current_function_return_rtx; if (! outgoing) return; if (REG_P (outgoing)) (*doit) (outgoing, arg); else if (GET_CODE (outgoing) == PARALLEL) { int i; for (i = 0; i < XVECLEN (outgoing, 0); i++) { rtx x = XEXP (XVECEXP (outgoing, 0, i), 0); if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) (*doit) (x, arg); } } } static void do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED) { emit_insn (gen_rtx_CLOBBER (VOIDmode, reg)); } void clobber_return_register (void) { diddle_return_value (do_clobber_return_reg, NULL); /* In case we do use pseudo to return value, clobber it too. */ if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl))) { tree decl_result = DECL_RESULT (current_function_decl); rtx decl_rtl = DECL_RTL (decl_result); if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER) { do_clobber_return_reg (decl_rtl, NULL); } } } static void do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED) { emit_insn (gen_rtx_USE (VOIDmode, reg)); } static void use_return_register (void) { diddle_return_value (do_use_return_reg, NULL); } /* Possibly warn about unused parameters. */ void do_warn_unused_parameter (tree fn) { tree decl; for (decl = DECL_ARGUMENTS (fn); decl; decl = TREE_CHAIN (decl)) if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)) warning (OPT_Wunused_parameter, "unused parameter %q+D", decl); } static GTY(()) rtx initial_trampoline; /* Generate RTL for the end of the current function. */ void expand_function_end (void) { rtx clobber_after; /* If arg_pointer_save_area was referenced only from a nested function, we will not have initialized it yet. Do that now. */ if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init) get_arg_pointer_save_area (cfun); /* If we are doing stack checking and this function makes calls, do a stack probe at the start of the function to ensure we have enough space for another stack frame. */ if (flag_stack_check && ! STACK_CHECK_BUILTIN) { rtx insn, seq; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (CALL_P (insn)) { start_sequence (); probe_stack_range (STACK_CHECK_PROTECT, GEN_INT (STACK_CHECK_MAX_FRAME_SIZE)); seq = get_insns (); end_sequence (); emit_insn_before (seq, stack_check_probe_note); break; } } /* Possibly warn about unused parameters. When frontend does unit-at-a-time, the warning is already issued at finalization time. */ if (warn_unused_parameter && !lang_hooks.callgraph.expand_function) do_warn_unused_parameter (current_function_decl); /* End any sequences that failed to be closed due to syntax errors. */ while (in_sequence_p ()) end_sequence (); clear_pending_stack_adjust (); do_pending_stack_adjust (); /* Mark the end of the function body. If control reaches this insn, the function can drop through without returning a value. */ emit_note (NOTE_INSN_FUNCTION_END); /* Must mark the last line number note in the function, so that the test coverage code can avoid counting the last line twice. This just tells the code to ignore the immediately following line note, since there already exists a copy of this note somewhere above. This line number note is still needed for debugging though, so we can't delete it. */ if (flag_test_coverage) emit_note (NOTE_INSN_REPEATED_LINE_NUMBER); /* Output a linenumber for the end of the function. SDB depends on this. */ force_next_line_note (); emit_line_note (input_location); /* Before the return label (if any), clobber the return registers so that they are not propagated live to the rest of the function. This can only happen with functions that drop through; if there had been a return statement, there would have either been a return rtx, or a jump to the return label. We delay actual code generation after the current_function_value_rtx is computed. */ clobber_after = get_last_insn (); /* Output the label for the actual return from the function. */ emit_label (return_label); if (USING_SJLJ_EXCEPTIONS) { /* Let except.c know where it should emit the call to unregister the function context for sjlj exceptions. */ if (flag_exceptions) sjlj_emit_function_exit_after (get_last_insn ()); } else { /* @@@ This is a kludge. We want to ensure that instructions that may trap are not moved into the epilogue by scheduling, because we don't always emit unwind information for the epilogue. However, not all machine descriptions define a blockage insn, so emit an ASM_INPUT to act as one. */ if (flag_non_call_exceptions) emit_insn (gen_rtx_ASM_INPUT (VOIDmode, "")); } /* If this is an implementation of throw, do what's necessary to communicate between __builtin_eh_return and the epilogue. */ expand_eh_return (); /* If scalar return value was computed in a pseudo-reg, or was a named return value that got dumped to the stack, copy that to the hard return register. */ if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl))) { tree decl_result = DECL_RESULT (current_function_decl); rtx decl_rtl = DECL_RTL (decl_result); if (REG_P (decl_rtl) ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER : DECL_REGISTER (decl_result)) { rtx real_decl_rtl = current_function_return_rtx; /* This should be set in assign_parms. */ gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl)); /* If this is a BLKmode structure being returned in registers, then use the mode computed in expand_return. Note that if decl_rtl is memory, then its mode may have been changed, but that current_function_return_rtx has not. */ if (GET_MODE (real_decl_rtl) == BLKmode) PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl)); /* If a non-BLKmode return value should be padded at the least significant end of the register, shift it left by the appropriate amount. BLKmode results are handled using the group load/store machinery. */ if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode && targetm.calls.return_in_msb (TREE_TYPE (decl_result))) { emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl), REGNO (real_decl_rtl)), decl_rtl); shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl); } /* If a named return value dumped decl_return to memory, then we may need to re-do the PROMOTE_MODE signed/unsigned extension. */ else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl)) { int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result)); if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl))) promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl), &unsignedp, 1); convert_move (real_decl_rtl, decl_rtl, unsignedp); } else if (GET_CODE (real_decl_rtl) == PARALLEL) { /* If expand_function_start has created a PARALLEL for decl_rtl, move the result to the real return registers. Otherwise, do a group load from decl_rtl for a named return. */ if (GET_CODE (decl_rtl) == PARALLEL) emit_group_move (real_decl_rtl, decl_rtl); else emit_group_load (real_decl_rtl, decl_rtl, TREE_TYPE (decl_result), int_size_in_bytes (TREE_TYPE (decl_result))); } /* In the case of complex integer modes smaller than a word, we'll need to generate some non-trivial bitfield insertions. Do that on a pseudo and not the hard register. */ else if (GET_CODE (decl_rtl) == CONCAT && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD) { int old_generating_concat_p; rtx tmp; old_generating_concat_p = generating_concat_p; generating_concat_p = 0; tmp = gen_reg_rtx (GET_MODE (decl_rtl)); generating_concat_p = old_generating_concat_p; emit_move_insn (tmp, decl_rtl); emit_move_insn (real_decl_rtl, tmp); } else emit_move_insn (real_decl_rtl, decl_rtl); } } /* If returning a structure, arrange to return the address of the value in a place where debuggers expect to find it. If returning a structure PCC style, the caller also depends on this value. And current_function_returns_pcc_struct is not necessarily set. */ if (current_function_returns_struct || current_function_returns_pcc_struct) { rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl)); tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); rtx outgoing; if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl))) type = TREE_TYPE (type); else value_address = XEXP (value_address, 0); outgoing = targetm.calls.function_value (build_pointer_type (type), current_function_decl, true); /* Mark this as a function return value so integrate will delete the assignment and USE below when inlining this function. */ REG_FUNCTION_VALUE_P (outgoing) = 1; /* The address may be ptr_mode and OUTGOING may be Pmode. */ value_address = convert_memory_address (GET_MODE (outgoing), value_address); emit_move_insn (outgoing, value_address); /* Show return register used to hold result (in this case the address of the result. */ current_function_return_rtx = outgoing; } /* Emit the actual code to clobber return register. */ { rtx seq; start_sequence (); clobber_return_register (); expand_naked_return (); seq = get_insns (); end_sequence (); emit_insn_after (seq, clobber_after); } /* Output the label for the naked return from the function. */ emit_label (naked_return_label); /* If stack protection is enabled for this function, check the guard. */ if (cfun->stack_protect_guard) stack_protect_epilogue (); /* If we had calls to alloca, and this machine needs an accurate stack pointer to exit the function, insert some code to save and restore the stack pointer. */ if (! EXIT_IGNORE_STACK && current_function_calls_alloca) { rtx tem = 0; emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn); emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX); } /* ??? This should no longer be necessary since stupid is no longer with us, but there are some parts of the compiler (eg reload_combine, and sh mach_dep_reorg) that still try and compute their own lifetime info instead of using the general framework. */ use_return_register (); } rtx get_arg_pointer_save_area (struct function *f) { rtx ret = f->x_arg_pointer_save_area; if (! ret) { ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f); f->x_arg_pointer_save_area = ret; } if (f == cfun && ! f->arg_pointer_save_area_init) { rtx seq; /* Save the arg pointer at the beginning of the function. The generated stack slot may not be a valid memory address, so we have to check it and fix it if necessary. */ start_sequence (); emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx); seq = get_insns (); end_sequence (); push_topmost_sequence (); emit_insn_after (seq, entry_of_function ()); pop_topmost_sequence (); } return ret; } /* Extend a vector that records the INSN_UIDs of INSNS (a list of one or more insns). */ static void record_insns (rtx insns, VEC(int,heap) **vecp) { rtx tmp; for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp)) VEC_safe_push (int, heap, *vecp, INSN_UID (tmp)); } /* Set the locator of the insn chain starting at INSN to LOC. */ static void set_insn_locators (rtx insn, int loc) { while (insn != NULL_RTX) { if (INSN_P (insn)) INSN_LOCATOR (insn) = loc; insn = NEXT_INSN (insn); } } /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can be running after reorg, SEQUENCE rtl is possible. */ static int contains (rtx insn, VEC(int,heap) **vec) { int i, j; if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) { int count = 0; for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) for (j = VEC_length (int, *vec) - 1; j >= 0; --j) if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VEC_index (int, *vec, j)) count++; return count; } else { for (j = VEC_length (int, *vec) - 1; j >= 0; --j) if (INSN_UID (insn) == VEC_index (int, *vec, j)) return 1; } return 0; } int prologue_epilogue_contains (rtx insn) { if (contains (insn, &prologue)) return 1; if (contains (insn, &epilogue)) return 1; return 0; } int sibcall_epilogue_contains (rtx insn) { if (sibcall_epilogue) return contains (insn, &sibcall_epilogue); return 0; } #ifdef HAVE_return /* Insert gen_return at the end of block BB. This also means updating block_for_insn appropriately. */ static void emit_return_into_block (basic_block bb, rtx line_note) { emit_jump_insn_after (gen_return (), BB_END (bb)); if (line_note) emit_note_copy_after (line_note, PREV_INSN (BB_END (bb))); } #endif /* HAVE_return */ #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX) /* These functions convert the epilogue into a variant that does not modify the stack pointer. This is used in cases where a function returns an object whose size is not known until it is computed. The called function leaves the object on the stack, leaves the stack depressed, and returns a pointer to the object. What we need to do is track all modifications and references to the stack pointer, deleting the modifications and changing the references to point to the location the stack pointer would have pointed to had the modifications taken place. These functions need to be portable so we need to make as few assumptions about the epilogue as we can. However, the epilogue basically contains three things: instructions to reset the stack pointer, instructions to reload registers, possibly including the frame pointer, and an instruction to return to the caller. We must be sure of what a relevant epilogue insn is doing. We also make no attempt to validate the insns we make since if they are invalid, we probably can't do anything valid. The intent is that these routines get "smarter" as more and more machines start to use them and they try operating on different epilogues. We use the following structure to track what the part of the epilogue that we've already processed has done. We keep two copies of the SP equivalence, one for use during the insn we are processing and one for use in the next insn. The difference is because one part of a PARALLEL may adjust SP and the other may use it. */ struct epi_info { rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */ HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */ rtx new_sp_equiv_reg; /* REG to be used at end of insn. */ HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */ rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG should be set to once we no longer need its value. */ rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences for registers. */ }; static void handle_epilogue_set (rtx, struct epi_info *); static void update_epilogue_consts (rtx, rtx, void *); static void emit_equiv_load (struct epi_info *); /* Modify INSN, a list of one or more insns that is part of the epilogue, to no modifications to the stack pointer. Return the new list of insns. */ static rtx keep_stack_depressed (rtx insns) { int j; struct epi_info info; rtx insn, next; /* If the epilogue is just a single instruction, it must be OK as is. */ if (NEXT_INSN (insns) == NULL_RTX) return insns; /* Otherwise, start a sequence, initialize the information we have, and process all the insns we were given. */ start_sequence (); info.sp_equiv_reg = stack_pointer_rtx; info.sp_offset = 0; info.equiv_reg_src = 0; for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) info.const_equiv[j] = 0; insn = insns; next = NULL_RTX; while (insn != NULL_RTX) { next = NEXT_INSN (insn); if (!INSN_P (insn)) { add_insn (insn); insn = next; continue; } /* If this insn references the register that SP is equivalent to and we have a pending load to that register, we must force out the load first and then indicate we no longer know what SP's equivalent is. */ if (info.equiv_reg_src != 0 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn))) { emit_equiv_load (&info); info.sp_equiv_reg = 0; } info.new_sp_equiv_reg = info.sp_equiv_reg; info.new_sp_offset = info.sp_offset; /* If this is a (RETURN) and the return address is on the stack, update the address and change to an indirect jump. */ if (GET_CODE (PATTERN (insn)) == RETURN || (GET_CODE (PATTERN (insn)) == PARALLEL && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN)) { rtx retaddr = INCOMING_RETURN_ADDR_RTX; rtx base = 0; HOST_WIDE_INT offset = 0; rtx jump_insn, jump_set; /* If the return address is in a register, we can emit the insn unchanged. Otherwise, it must be a MEM and we see what the base register and offset are. In any case, we have to emit any pending load to the equivalent reg of SP, if any. */ if (REG_P (retaddr)) { emit_equiv_load (&info); add_insn (insn); insn = next; continue; } else { rtx ret_ptr; gcc_assert (MEM_P (retaddr)); ret_ptr = XEXP (retaddr, 0); if (REG_P (ret_ptr)) { base = gen_rtx_REG (Pmode, REGNO (ret_ptr)); offset = 0; } else { gcc_assert (GET_CODE (ret_ptr) == PLUS && REG_P (XEXP (ret_ptr, 0)) && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT); base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0))); offset = INTVAL (XEXP (ret_ptr, 1)); } } /* If the base of the location containing the return pointer is SP, we must update it with the replacement address. Otherwise, just build the necessary MEM. */ retaddr = plus_constant (base, offset); if (base == stack_pointer_rtx) retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx, plus_constant (info.sp_equiv_reg, info.sp_offset)); retaddr = gen_rtx_MEM (Pmode, retaddr); MEM_NOTRAP_P (retaddr) = 1; /* If there is a pending load to the equivalent register for SP and we reference that register, we must load our address into a scratch register and then do that load. */ if (info.equiv_reg_src && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr)) { unsigned int regno; rtx reg; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (HARD_REGNO_MODE_OK (regno, Pmode) && !fixed_regs[regno] && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno) && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno) && !refers_to_regno_p (regno, regno + hard_regno_nregs[regno] [Pmode], info.equiv_reg_src, NULL) && info.const_equiv[regno] == 0) break; gcc_assert (regno < FIRST_PSEUDO_REGISTER); reg = gen_rtx_REG (Pmode, regno); emit_move_insn (reg, retaddr); retaddr = reg; } emit_equiv_load (&info); jump_insn = emit_jump_insn (gen_indirect_jump (retaddr)); /* Show the SET in the above insn is a RETURN. */ jump_set = single_set (jump_insn); gcc_assert (jump_set); SET_IS_RETURN_P (jump_set) = 1; } /* If SP is not mentioned in the pattern and its equivalent register, if any, is not modified, just emit it. Otherwise, if neither is set, replace the reference to SP and emit the insn. If none of those are true, handle each SET individually. */ else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn)) && (info.sp_equiv_reg == stack_pointer_rtx || !reg_set_p (info.sp_equiv_reg, insn))) add_insn (insn); else if (! reg_set_p (stack_pointer_rtx, insn) && (info.sp_equiv_reg == stack_pointer_rtx || !reg_set_p (info.sp_equiv_reg, insn))) { int changed; changed = validate_replace_rtx (stack_pointer_rtx, plus_constant (info.sp_equiv_reg, info.sp_offset), insn); gcc_assert (changed); add_insn (insn); } else if (GET_CODE (PATTERN (insn)) == SET) handle_epilogue_set (PATTERN (insn), &info); else if (GET_CODE (PATTERN (insn)) == PARALLEL) { for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++) if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET) handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info); } else add_insn (insn); info.sp_equiv_reg = info.new_sp_equiv_reg; info.sp_offset = info.new_sp_offset; /* Now update any constants this insn sets. */ note_stores (PATTERN (insn), update_epilogue_consts, &info); insn = next; } insns = get_insns (); end_sequence (); return insns; } /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info structure that contains information about what we've seen so far. We process this SET by either updating that data or by emitting one or more insns. */ static void handle_epilogue_set (rtx set, struct epi_info *p) { /* First handle the case where we are setting SP. Record what it is being set from, which we must be able to determine */ if (reg_set_p (stack_pointer_rtx, set)) { gcc_assert (SET_DEST (set) == stack_pointer_rtx); if (GET_CODE (SET_SRC (set)) == PLUS) { p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0); if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT) p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1)); else { gcc_assert (REG_P (XEXP (SET_SRC (set), 1)) && (REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER) && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]); p->new_sp_offset = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]); } } else p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0; /* If we are adjusting SP, we adjust from the old data. */ if (p->new_sp_equiv_reg == stack_pointer_rtx) { p->new_sp_equiv_reg = p->sp_equiv_reg; p->new_sp_offset += p->sp_offset; } gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg)); return; } /* Next handle the case where we are setting SP's equivalent register. We must not already have a value to set it to. We could update, but there seems little point in handling that case. Note that we have to allow for the case where we are setting the register set in the previous part of a PARALLEL inside a single insn. But use the old offset for any updates within this insn. We must allow for the case where the register is being set in a different (usually wider) mode than Pmode). */ else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set)) { gcc_assert (!p->equiv_reg_src && REG_P (p->new_sp_equiv_reg) && REG_P (SET_DEST (set)) && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) <= BITS_PER_WORD) && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set))); p->equiv_reg_src = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx, plus_constant (p->sp_equiv_reg, p->sp_offset)); } /* Otherwise, replace any references to SP in the insn to its new value and emit the insn. */ else { SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx, plus_constant (p->sp_equiv_reg, p->sp_offset)); SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx, plus_constant (p->sp_equiv_reg, p->sp_offset)); emit_insn (set); } } /* Update the tracking information for registers set to constants. */ static void update_epilogue_consts (rtx dest, rtx x, void *data) { struct epi_info *p = (struct epi_info *) data; rtx new; if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER) return; /* If we are either clobbering a register or doing a partial set, show we don't know the value. */ else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x))) p->const_equiv[REGNO (dest)] = 0; /* If we are setting it to a constant, record that constant. */ else if (GET_CODE (SET_SRC (x)) == CONST_INT) p->const_equiv[REGNO (dest)] = SET_SRC (x); /* If this is a binary operation between a register we have been tracking and a constant, see if we can compute a new constant value. */ else if (ARITHMETIC_P (SET_SRC (x)) && REG_P (XEXP (SET_SRC (x), 0)) && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT && 0 != (new = simplify_binary_operation (GET_CODE (SET_SRC (x)), GET_MODE (dest), p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))], XEXP (SET_SRC (x), 1))) && GET_CODE (new) == CONST_INT) p->const_equiv[REGNO (dest)] = new; /* Otherwise, we can't do anything with this value. */ else p->const_equiv[REGNO (dest)] = 0; } /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */ static void emit_equiv_load (struct epi_info *p) { if (p->equiv_reg_src != 0) { rtx dest = p->sp_equiv_reg; if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest)) dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src), REGNO (p->sp_equiv_reg)); emit_move_insn (dest, p->equiv_reg_src); p->equiv_reg_src = 0; } } #endif /* Generate the prologue and epilogue RTL if the machine supports it. Thread this into place with notes indicating where the prologue ends and where the epilogue begins. Update the basic block information when possible. */ void thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED) { int inserted = 0; edge e; #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue) rtx seq; #endif #ifdef HAVE_prologue rtx prologue_end = NULL_RTX; #endif #if defined (HAVE_epilogue) || defined(HAVE_return) rtx epilogue_end = NULL_RTX; #endif edge_iterator ei; #ifdef HAVE_prologue if (HAVE_prologue) { start_sequence (); seq = gen_prologue (); emit_insn (seq); /* Retain a map of the prologue insns. */ record_insns (seq, &prologue); prologue_end = emit_note (NOTE_INSN_PROLOGUE_END); #ifndef PROFILE_BEFORE_PROLOGUE /* Ensure that instructions are not moved into the prologue when profiling is on. The call to the profiling routine can be emitted within the live range of a call-clobbered register. */ if (current_function_profile) emit_insn (gen_rtx_ASM_INPUT (VOIDmode, "")); #endif seq = get_insns (); end_sequence (); set_insn_locators (seq, prologue_locator); /* Can't deal with multiple successors of the entry block at the moment. Function should always have at least one entry point. */ gcc_assert (single_succ_p (ENTRY_BLOCK_PTR)); insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR)); inserted = 1; } #endif /* If the exit block has no non-fake predecessors, we don't need an epilogue. */ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) if ((e->flags & EDGE_FAKE) == 0) break; if (e == NULL) goto epilogue_done; #ifdef HAVE_return if (optimize && HAVE_return) { /* If we're allowed to generate a simple return instruction, then by definition we don't need a full epilogue. Examine the block that falls through to EXIT. If it does not contain any code, examine its predecessors and try to emit (conditional) return instructions. */ basic_block last; rtx label; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) if (e->flags & EDGE_FALLTHRU) break; if (e == NULL) goto epilogue_done; last = e->src; /* Verify that there are no active instructions in the last block. */ label = BB_END (last); while (label && !LABEL_P (label)) { if (active_insn_p (label)) break; label = PREV_INSN (label); } if (BB_HEAD (last) == label && LABEL_P (label)) { edge_iterator ei2; rtx epilogue_line_note = NULL_RTX; /* Locate the line number associated with the closing brace, if we can find one. */ for (seq = get_last_insn (); seq && ! active_insn_p (seq); seq = PREV_INSN (seq)) if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0) { epilogue_line_note = seq; break; } for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); ) { basic_block bb = e->src; rtx jump; if (bb == ENTRY_BLOCK_PTR) { ei_next (&ei2); continue; } jump = BB_END (bb); if (!JUMP_P (jump) || JUMP_LABEL (jump) != label) { ei_next (&ei2); continue; } /* If we have an unconditional jump, we can replace that with a simple return instruction. */ if (simplejump_p (jump)) { emit_return_into_block (bb, epilogue_line_note); delete_insn (jump); } /* If we have a conditional jump, we can try to replace that with a conditional return instruction. */ else if (condjump_p (jump)) { if (! redirect_jump (jump, 0, 0)) { ei_next (&ei2); continue; } /* If this block has only one successor, it both jumps and falls through to the fallthru block, so we can't delete the edge. */ if (single_succ_p (bb)) { ei_next (&ei2); continue; } } else { ei_next (&ei2); continue; } /* Fix up the CFG for the successful change we just made. */ redirect_edge_succ (e, EXIT_BLOCK_PTR); } /* Emit a return insn for the exit fallthru block. Whether this is still reachable will be determined later. */ emit_barrier_after (BB_END (last)); emit_return_into_block (last, epilogue_line_note); epilogue_end = BB_END (last); single_succ_edge (last)->flags &= ~EDGE_FALLTHRU; goto epilogue_done; } } #endif /* Find the edge that falls through to EXIT. Other edges may exist due to RETURN instructions, but those don't need epilogues. There really shouldn't be a mixture -- either all should have been converted or none, however... */ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) if (e->flags & EDGE_FALLTHRU) break; if (e == NULL) goto epilogue_done; #ifdef HAVE_epilogue if (HAVE_epilogue) { start_sequence (); epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG); seq = gen_epilogue (); #ifdef INCOMING_RETURN_ADDR_RTX /* If this function returns with the stack depressed and we can support it, massage the epilogue to actually do that. */ if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl))) seq = keep_stack_depressed (seq); #endif emit_jump_insn (seq); /* Retain a map of the epilogue insns. */ record_insns (seq, &epilogue); set_insn_locators (seq, epilogue_locator); seq = get_insns (); end_sequence (); insert_insn_on_edge (seq, e); inserted = 1; } else #endif { basic_block cur_bb; if (! next_active_insn (BB_END (e->src))) goto epilogue_done; /* We have a fall-through edge to the exit block, the source is not at the end of the function, and there will be an assembler epilogue at the end of the function. We can't use force_nonfallthru here, because that would try to use return. Inserting a jump 'by hand' is extremely messy, so we take advantage of cfg_layout_finalize using fixup_fallthru_exit_predecessor. */ cfg_layout_initialize (0); FOR_EACH_BB (cur_bb) if (cur_bb->index >= NUM_FIXED_BLOCKS && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS) cur_bb->aux = cur_bb->next_bb; cfg_layout_finalize (); } epilogue_done: if (inserted) commit_edge_insertions (); #ifdef HAVE_sibcall_epilogue /* Emit sibling epilogues before any sibling call sites. */ for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); ) { basic_block bb = e->src; rtx insn = BB_END (bb); if (!CALL_P (insn) || ! SIBLING_CALL_P (insn)) { ei_next (&ei); continue; } start_sequence (); emit_insn (gen_sibcall_epilogue ()); seq = get_insns (); end_sequence (); /* Retain a map of the epilogue insns. Used in life analysis to avoid getting rid of sibcall epilogue insns. Do this before we actually emit the sequence. */ record_insns (seq, &sibcall_epilogue); set_insn_locators (seq, epilogue_locator); emit_insn_before (seq, insn); ei_next (&ei); } #endif #ifdef HAVE_prologue /* This is probably all useless now that we use locators. */ if (prologue_end) { rtx insn, prev; /* GDB handles `break f' by setting a breakpoint on the first line note after the prologue. Which means (1) that if there are line number notes before where we inserted the prologue we should move them, and (2) we should generate a note before the end of the first basic block, if there isn't one already there. ??? This behavior is completely broken when dealing with multiple entry functions. We simply place the note always into first basic block and let alternate entry points to be missed. */ for (insn = prologue_end; insn; insn = prev) { prev = PREV_INSN (insn); if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0) { /* Note that we cannot reorder the first insn in the chain, since rest_of_compilation relies on that remaining constant. */ if (prev == NULL) break; reorder_insns (insn, insn, prologue_end); } } /* Find the last line number note in the first block. */ for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb); insn != prologue_end && insn; insn = PREV_INSN (insn)) if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0) break; /* If we didn't find one, make a copy of the first line number we run across. */ if (! insn) { for (insn = next_active_insn (prologue_end); insn; insn = PREV_INSN (insn)) if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0) { emit_note_copy_after (insn, prologue_end); break; } } } #endif #ifdef HAVE_epilogue if (epilogue_end) { rtx insn, next; /* Similarly, move any line notes that appear after the epilogue. There is no need, however, to be quite so anal about the existence of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly) NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug info generation. */ for (insn = epilogue_end; insn; insn = next) { next = NEXT_INSN (insn); if (NOTE_P (insn) && (NOTE_LINE_NUMBER (insn) > 0 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END)) reorder_insns (insn, insn, PREV_INSN (epilogue_end)); } } #endif } /* Reposition the prologue-end and epilogue-begin notes after instruction scheduling and delayed branch scheduling. */ void reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED) { #if defined (HAVE_prologue) || defined (HAVE_epilogue) rtx insn, last, note; int len; if ((len = VEC_length (int, prologue)) > 0) { last = 0, note = 0; /* Scan from the beginning until we reach the last prologue insn. We apparently can't depend on basic_block_{head,end} after reorg has run. */ for (insn = f; insn; insn = NEXT_INSN (insn)) { if (NOTE_P (insn)) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END) note = insn; } else if (contains (insn, &prologue)) { last = insn; if (--len == 0) break; } } if (last) { /* Find the prologue-end note if we haven't already, and move it to just after the last prologue insn. */ if (note == 0) { for (note = last; (note = NEXT_INSN (note));) if (NOTE_P (note) && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END) break; } /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */ if (LABEL_P (last)) last = NEXT_INSN (last); reorder_insns (note, note, last); } } if ((len = VEC_length (int, epilogue)) > 0) { last = 0, note = 0; /* Scan from the end until we reach the first epilogue insn. We apparently can't depend on basic_block_{head,end} after reorg has run. */ for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) { if (NOTE_P (insn)) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG) note = insn; } else if (contains (insn, &epilogue)) { last = insn; if (--len == 0) break; } } if (last) { /* Find the epilogue-begin note if we haven't already, and move it to just before the first epilogue insn. */ if (note == 0) { for (note = insn; (note = PREV_INSN (note));) if (NOTE_P (note) && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG) break; } if (PREV_INSN (last) != note) reorder_insns (note, note, PREV_INSN (last)); } } #endif /* HAVE_prologue or HAVE_epilogue */ } /* Resets insn_block_boundaries array. */ void reset_block_changes (void) { cfun->ib_boundaries_block = VEC_alloc (tree, gc, 100); VEC_quick_push (tree, cfun->ib_boundaries_block, NULL_TREE); } /* Record the boundary for BLOCK. */ void record_block_change (tree block) { int i, n; tree last_block; if (!block) return; if(!cfun->ib_boundaries_block) return; last_block = VEC_pop (tree, cfun->ib_boundaries_block); n = get_max_uid (); for (i = VEC_length (tree, cfun->ib_boundaries_block); i < n; i++) VEC_safe_push (tree, gc, cfun->ib_boundaries_block, last_block); VEC_safe_push (tree, gc, cfun->ib_boundaries_block, block); } /* Finishes record of boundaries. */ void finalize_block_changes (void) { record_block_change (DECL_INITIAL (current_function_decl)); } /* For INSN return the BLOCK it belongs to. */ void check_block_change (rtx insn, tree *block) { unsigned uid = INSN_UID (insn); if (uid >= VEC_length (tree, cfun->ib_boundaries_block)) return; *block = VEC_index (tree, cfun->ib_boundaries_block, uid); } /* Releases the ib_boundaries_block records. */ void free_block_changes (void) { VEC_free (tree, gc, cfun->ib_boundaries_block); } /* Returns the name of the current function. */ const char * current_function_name (void) { return lang_hooks.decl_printable_name (cfun->decl, 2); } static unsigned int rest_of_handle_check_leaf_regs (void) { #ifdef LEAF_REGISTERS current_function_uses_only_leaf_regs = optimize > 0 && only_leaf_regs_used () && leaf_function_p (); #endif return 0; } /* Insert a TYPE into the used types hash table of CFUN. */ static void used_types_insert_helper (tree type, struct function *func) { if (type != NULL && func != NULL) { void **slot; if (func->used_types_hash == NULL) func->used_types_hash = htab_create_ggc (37, htab_hash_pointer, htab_eq_pointer, NULL); slot = htab_find_slot (func->used_types_hash, type, INSERT); if (*slot == NULL) *slot = type; } } /* Given a type, insert it into the used hash table in cfun. */ void used_types_insert (tree t) { while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE) t = TREE_TYPE (t); t = TYPE_MAIN_VARIANT (t); if (debug_info_level > DINFO_LEVEL_NONE) used_types_insert_helper (t, cfun); } struct tree_opt_pass pass_leaf_regs = { NULL, /* name */ NULL, /* gate */ rest_of_handle_check_leaf_regs, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ 0, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ 0 /* letter */ }; #include "gt-function.h"
Go to most recent revision | Compare with Previous | Blame | View Log