URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [jump.c] - Rev 299
Go to most recent revision | Compare with Previous | Blame | View Log
/* Optimize jump instructions, for GNU compiler. Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* This is the pathetic reminder of old fame of the jump-optimization pass of the compiler. Now it contains basically a set of utility functions to operate with jumps. Each CODE_LABEL has a count of the times it is used stored in the LABEL_NUSES internal field, and each JUMP_INSN has one label that it refers to stored in the JUMP_LABEL internal field. With this we can detect labels that become unused because of the deletion of all the jumps that formerly used them. The JUMP_LABEL info is sometimes looked at by later passes. The subroutines redirect_jump and invert_jump are used from other passes as well. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tm_p.h" #include "flags.h" #include "hard-reg-set.h" #include "regs.h" #include "insn-config.h" #include "insn-attr.h" #include "recog.h" #include "function.h" #include "expr.h" #include "real.h" #include "except.h" #include "diagnostic.h" #include "toplev.h" #include "reload.h" #include "predict.h" #include "timevar.h" #include "tree-pass.h" #include "target.h" /* Optimize jump y; x: ... y: jumpif... x? Don't know if it is worth bothering with. */ /* Optimize two cases of conditional jump to conditional jump? This can never delete any instruction or make anything dead, or even change what is live at any point. So perhaps let combiner do it. */ static void init_label_info (rtx); static void mark_all_labels (rtx); static void delete_computation (rtx); static void redirect_exp_1 (rtx *, rtx, rtx, rtx); static int invert_exp_1 (rtx, rtx); static int returnjump_p_1 (rtx *, void *); static void delete_prior_computation (rtx, rtx); /* Alternate entry into the jump optimizer. This entry point only rebuilds the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping instructions. */ void rebuild_jump_labels (rtx f) { rtx insn; timevar_push (TV_REBUILD_JUMP); init_label_info (f); mark_all_labels (f); /* Keep track of labels used from static data; we don't track them closely enough to delete them here, so make sure their reference count doesn't drop to zero. */ for (insn = forced_labels; insn; insn = XEXP (insn, 1)) if (LABEL_P (XEXP (insn, 0))) LABEL_NUSES (XEXP (insn, 0))++; timevar_pop (TV_REBUILD_JUMP); } /* Some old code expects exactly one BARRIER as the NEXT_INSN of a non-fallthru insn. This is not generally true, as multiple barriers may have crept in, or the BARRIER may be separated from the last real insn by one or more NOTEs. This simple pass moves barriers and removes duplicates so that the old code is happy. */ unsigned int cleanup_barriers (void) { rtx insn, next, prev; for (insn = get_insns (); insn; insn = next) { next = NEXT_INSN (insn); if (BARRIER_P (insn)) { prev = prev_nonnote_insn (insn); if (BARRIER_P (prev)) delete_insn (insn); else if (prev != PREV_INSN (insn)) reorder_insns (insn, insn, prev); } } return 0; } struct tree_opt_pass pass_cleanup_barriers = { "barriers", /* name */ NULL, /* gate */ cleanup_barriers, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ 0, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func, /* todo_flags_finish */ 0 /* letter */ }; unsigned int purge_line_number_notes (void) { rtx last_note = 0; rtx insn; /* Delete extraneous line number notes. Note that two consecutive notes for different lines are not really extraneous. There should be some indication where that line belonged, even if it became empty. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (NOTE_P (insn)) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG) /* Any previous line note was for the prologue; gdb wants a new note after the prologue even if it is for the same line. */ last_note = NULL_RTX; else if (NOTE_LINE_NUMBER (insn) >= 0) { /* Delete this note if it is identical to previous note. */ if (last_note #ifdef USE_MAPPED_LOCATION && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last_note) #else && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note) && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note) #endif ) { delete_related_insns (insn); continue; } last_note = insn; } } return 0; } struct tree_opt_pass pass_purge_lineno_notes = { "elnotes", /* name */ NULL, /* gate */ purge_line_number_notes, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ 0, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func, /* todo_flags_finish */ 0 /* letter */ }; /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL notes whose labels don't occur in the insn any more. Returns the largest INSN_UID found. */ static void init_label_info (rtx f) { rtx insn; for (insn = f; insn; insn = NEXT_INSN (insn)) if (LABEL_P (insn)) LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0); else if (JUMP_P (insn)) JUMP_LABEL (insn) = 0; else if (NONJUMP_INSN_P (insn) || CALL_P (insn)) { rtx note, next; for (note = REG_NOTES (insn); note; note = next) { next = XEXP (note, 1); if (REG_NOTE_KIND (note) == REG_LABEL && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn))) remove_note (insn, note); } } } /* Mark the label each jump jumps to. Combine consecutive labels, and count uses of labels. */ static void mark_all_labels (rtx f) { rtx insn; for (insn = f; insn; insn = NEXT_INSN (insn)) if (INSN_P (insn)) { mark_jump_label (PATTERN (insn), insn, 0); if (! INSN_DELETED_P (insn) && JUMP_P (insn)) { /* When we know the LABEL_REF contained in a REG used in an indirect jump, we'll have a REG_LABEL note so that flow can tell where it's going. */ if (JUMP_LABEL (insn) == 0) { rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX); if (label_note) { /* But a LABEL_REF around the REG_LABEL note, so that we can canonicalize it. */ rtx label_ref = gen_rtx_LABEL_REF (Pmode, XEXP (label_note, 0)); mark_jump_label (label_ref, insn, 0); XEXP (label_note, 0) = XEXP (label_ref, 0); JUMP_LABEL (insn) = XEXP (label_note, 0); } } } } } /* Move all block-beg, block-end and loop-beg notes between START and END out before START. START and END may be such notes. Returns the values of the new starting and ending insns, which may be different if the original ones were such notes. Return true if there were only such notes and no real instructions. */ bool squeeze_notes (rtx* startp, rtx* endp) { rtx start = *startp; rtx end = *endp; rtx insn; rtx next; rtx last = NULL; rtx past_end = NEXT_INSN (end); for (insn = start; insn != past_end; insn = next) { next = NEXT_INSN (insn); if (NOTE_P (insn) && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)) { /* BLOCK_BEG or BLOCK_END notes only exist in the `final' pass. */ gcc_assert (NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_BEG && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_END); if (insn == start) start = next; else { rtx prev = PREV_INSN (insn); PREV_INSN (insn) = PREV_INSN (start); NEXT_INSN (insn) = start; NEXT_INSN (PREV_INSN (insn)) = insn; PREV_INSN (NEXT_INSN (insn)) = insn; NEXT_INSN (prev) = next; PREV_INSN (next) = prev; } } else last = insn; } /* There were no real instructions. */ if (start == past_end) return true; end = last; *startp = start; *endp = end; return false; } /* Return the label before INSN, or put a new label there. */ rtx get_label_before (rtx insn) { rtx label; /* Find an existing label at this point or make a new one if there is none. */ label = prev_nonnote_insn (insn); if (label == 0 || !LABEL_P (label)) { rtx prev = PREV_INSN (insn); label = gen_label_rtx (); emit_label_after (label, prev); LABEL_NUSES (label) = 0; } return label; } /* Return the label after INSN, or put a new label there. */ rtx get_label_after (rtx insn) { rtx label; /* Find an existing label at this point or make a new one if there is none. */ label = next_nonnote_insn (insn); if (label == 0 || !LABEL_P (label)) { label = gen_label_rtx (); emit_label_after (label, insn); LABEL_NUSES (label) = 0; } return label; } /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code of reversed comparison if it is possible to do so. Otherwise return UNKNOWN. UNKNOWN may be returned in case we are having CC_MODE compare and we don't know whether it's source is floating point or integer comparison. Machine description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros to help this function avoid overhead in these cases. */ enum rtx_code reversed_comparison_code_parts (enum rtx_code code, rtx arg0, rtx arg1, rtx insn) { enum machine_mode mode; /* If this is not actually a comparison, we can't reverse it. */ if (GET_RTX_CLASS (code) != RTX_COMPARE && GET_RTX_CLASS (code) != RTX_COMM_COMPARE) return UNKNOWN; mode = GET_MODE (arg0); if (mode == VOIDmode) mode = GET_MODE (arg1); /* First see if machine description supplies us way to reverse the comparison. Give it priority over everything else to allow machine description to do tricks. */ if (GET_MODE_CLASS (mode) == MODE_CC && REVERSIBLE_CC_MODE (mode)) { #ifdef REVERSE_CONDITION return REVERSE_CONDITION (code, mode); #endif return reverse_condition (code); } /* Try a few special cases based on the comparison code. */ switch (code) { case GEU: case GTU: case LEU: case LTU: case NE: case EQ: /* It is always safe to reverse EQ and NE, even for the floating point. Similarly the unsigned comparisons are never used for floating point so we can reverse them in the default way. */ return reverse_condition (code); case ORDERED: case UNORDERED: case LTGT: case UNEQ: /* In case we already see unordered comparison, we can be sure to be dealing with floating point so we don't need any more tests. */ return reverse_condition_maybe_unordered (code); case UNLT: case UNLE: case UNGT: case UNGE: /* We don't have safe way to reverse these yet. */ return UNKNOWN; default: break; } if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0)) { rtx prev; /* Try to search for the comparison to determine the real mode. This code is expensive, but with sane machine description it will be never used, since REVERSIBLE_CC_MODE will return true in all cases. */ if (! insn) return UNKNOWN; for (prev = prev_nonnote_insn (insn); prev != 0 && !LABEL_P (prev); prev = prev_nonnote_insn (prev)) { rtx set = set_of (arg0, prev); if (set && GET_CODE (set) == SET && rtx_equal_p (SET_DEST (set), arg0)) { rtx src = SET_SRC (set); if (GET_CODE (src) == COMPARE) { rtx comparison = src; arg0 = XEXP (src, 0); mode = GET_MODE (arg0); if (mode == VOIDmode) mode = GET_MODE (XEXP (comparison, 1)); break; } /* We can get past reg-reg moves. This may be useful for model of i387 comparisons that first move flag registers around. */ if (REG_P (src)) { arg0 = src; continue; } } /* If register is clobbered in some ununderstandable way, give up. */ if (set) return UNKNOWN; } } /* Test for an integer condition, or a floating-point comparison in which NaNs can be ignored. */ if (GET_CODE (arg0) == CONST_INT || (GET_MODE (arg0) != VOIDmode && GET_MODE_CLASS (mode) != MODE_CC && !HONOR_NANS (mode))) return reverse_condition (code); return UNKNOWN; } /* A wrapper around the previous function to take COMPARISON as rtx expression. This simplifies many callers. */ enum rtx_code reversed_comparison_code (rtx comparison, rtx insn) { if (!COMPARISON_P (comparison)) return UNKNOWN; return reversed_comparison_code_parts (GET_CODE (comparison), XEXP (comparison, 0), XEXP (comparison, 1), insn); } /* Return comparison with reversed code of EXP. Return NULL_RTX in case we fail to do the reversal. */ rtx reversed_comparison (rtx exp, enum machine_mode mode) { enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX); if (reversed_code == UNKNOWN) return NULL_RTX; else return simplify_gen_relational (reversed_code, mode, VOIDmode, XEXP (exp, 0), XEXP (exp, 1)); } /* Given an rtx-code for a comparison, return the code for the negated comparison. If no such code exists, return UNKNOWN. WATCH OUT! reverse_condition is not safe to use on a jump that might be acting on the results of an IEEE floating point comparison, because of the special treatment of non-signaling nans in comparisons. Use reversed_comparison_code instead. */ enum rtx_code reverse_condition (enum rtx_code code) { switch (code) { case EQ: return NE; case NE: return EQ; case GT: return LE; case GE: return LT; case LT: return GE; case LE: return GT; case GTU: return LEU; case GEU: return LTU; case LTU: return GEU; case LEU: return GTU; case UNORDERED: return ORDERED; case ORDERED: return UNORDERED; case UNLT: case UNLE: case UNGT: case UNGE: case UNEQ: case LTGT: return UNKNOWN; default: gcc_unreachable (); } } /* Similar, but we're allowed to generate unordered comparisons, which makes it safe for IEEE floating-point. Of course, we have to recognize that the target will support them too... */ enum rtx_code reverse_condition_maybe_unordered (enum rtx_code code) { switch (code) { case EQ: return NE; case NE: return EQ; case GT: return UNLE; case GE: return UNLT; case LT: return UNGE; case LE: return UNGT; case LTGT: return UNEQ; case UNORDERED: return ORDERED; case ORDERED: return UNORDERED; case UNLT: return GE; case UNLE: return GT; case UNGT: return LE; case UNGE: return LT; case UNEQ: return LTGT; default: gcc_unreachable (); } } /* Similar, but return the code when two operands of a comparison are swapped. This IS safe for IEEE floating-point. */ enum rtx_code swap_condition (enum rtx_code code) { switch (code) { case EQ: case NE: case UNORDERED: case ORDERED: case UNEQ: case LTGT: return code; case GT: return LT; case GE: return LE; case LT: return GT; case LE: return GE; case GTU: return LTU; case GEU: return LEU; case LTU: return GTU; case LEU: return GEU; case UNLT: return UNGT; case UNLE: return UNGE; case UNGT: return UNLT; case UNGE: return UNLE; default: gcc_unreachable (); } } /* Given a comparison CODE, return the corresponding unsigned comparison. If CODE is an equality comparison or already an unsigned comparison, CODE is returned. */ enum rtx_code unsigned_condition (enum rtx_code code) { switch (code) { case EQ: case NE: case GTU: case GEU: case LTU: case LEU: return code; case GT: return GTU; case GE: return GEU; case LT: return LTU; case LE: return LEU; default: gcc_unreachable (); } } /* Similarly, return the signed version of a comparison. */ enum rtx_code signed_condition (enum rtx_code code) { switch (code) { case EQ: case NE: case GT: case GE: case LT: case LE: return code; case GTU: return GT; case GEU: return GE; case LTU: return LT; case LEU: return LE; default: gcc_unreachable (); } } /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the truth of CODE1 implies the truth of CODE2. */ int comparison_dominates_p (enum rtx_code code1, enum rtx_code code2) { /* UNKNOWN comparison codes can happen as a result of trying to revert comparison codes. They can't match anything, so we have to reject them here. */ if (code1 == UNKNOWN || code2 == UNKNOWN) return 0; if (code1 == code2) return 1; switch (code1) { case UNEQ: if (code2 == UNLE || code2 == UNGE) return 1; break; case EQ: if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU || code2 == ORDERED) return 1; break; case UNLT: if (code2 == UNLE || code2 == NE) return 1; break; case LT: if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT) return 1; break; case UNGT: if (code2 == UNGE || code2 == NE) return 1; break; case GT: if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT) return 1; break; case GE: case LE: if (code2 == ORDERED) return 1; break; case LTGT: if (code2 == NE || code2 == ORDERED) return 1; break; case LTU: if (code2 == LEU || code2 == NE) return 1; break; case GTU: if (code2 == GEU || code2 == NE) return 1; break; case UNORDERED: if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT || code2 == UNGE || code2 == UNGT) return 1; break; default: break; } return 0; } /* Return 1 if INSN is an unconditional jump and nothing else. */ int simplejump_p (rtx insn) { return (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == SET && GET_CODE (SET_DEST (PATTERN (insn))) == PC && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF); } /* Return nonzero if INSN is a (possibly) conditional jump and nothing more. Use of this function is deprecated, since we need to support combined branch and compare insns. Use any_condjump_p instead whenever possible. */ int condjump_p (rtx insn) { rtx x = PATTERN (insn); if (GET_CODE (x) != SET || GET_CODE (SET_DEST (x)) != PC) return 0; x = SET_SRC (x); if (GET_CODE (x) == LABEL_REF) return 1; else return (GET_CODE (x) == IF_THEN_ELSE && ((GET_CODE (XEXP (x, 2)) == PC && (GET_CODE (XEXP (x, 1)) == LABEL_REF || GET_CODE (XEXP (x, 1)) == RETURN)) || (GET_CODE (XEXP (x, 1)) == PC && (GET_CODE (XEXP (x, 2)) == LABEL_REF || GET_CODE (XEXP (x, 2)) == RETURN)))); } /* Return nonzero if INSN is a (possibly) conditional jump inside a PARALLEL. Use this function is deprecated, since we need to support combined branch and compare insns. Use any_condjump_p instead whenever possible. */ int condjump_in_parallel_p (rtx insn) { rtx x = PATTERN (insn); if (GET_CODE (x) != PARALLEL) return 0; else x = XVECEXP (x, 0, 0); if (GET_CODE (x) != SET) return 0; if (GET_CODE (SET_DEST (x)) != PC) return 0; if (GET_CODE (SET_SRC (x)) == LABEL_REF) return 1; if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE) return 0; if (XEXP (SET_SRC (x), 2) == pc_rtx && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN)) return 1; if (XEXP (SET_SRC (x), 1) == pc_rtx && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN)) return 1; return 0; } /* Return set of PC, otherwise NULL. */ rtx pc_set (rtx insn) { rtx pat; if (!JUMP_P (insn)) return NULL_RTX; pat = PATTERN (insn); /* The set is allowed to appear either as the insn pattern or the first set in a PARALLEL. */ if (GET_CODE (pat) == PARALLEL) pat = XVECEXP (pat, 0, 0); if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC) return pat; return NULL_RTX; } /* Return true when insn is an unconditional direct jump, possibly bundled inside a PARALLEL. */ int any_uncondjump_p (rtx insn) { rtx x = pc_set (insn); if (!x) return 0; if (GET_CODE (SET_SRC (x)) != LABEL_REF) return 0; if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX)) return 0; return 1; } /* Return true when insn is a conditional jump. This function works for instructions containing PC sets in PARALLELs. The instruction may have various other effects so before removing the jump you must verify onlyjump_p. Note that unlike condjump_p it returns false for unconditional jumps. */ int any_condjump_p (rtx insn) { rtx x = pc_set (insn); enum rtx_code a, b; if (!x) return 0; if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE) return 0; a = GET_CODE (XEXP (SET_SRC (x), 1)); b = GET_CODE (XEXP (SET_SRC (x), 2)); return ((b == PC && (a == LABEL_REF || a == RETURN)) || (a == PC && (b == LABEL_REF || b == RETURN))); } /* Return the label of a conditional jump. */ rtx condjump_label (rtx insn) { rtx x = pc_set (insn); if (!x) return NULL_RTX; x = SET_SRC (x); if (GET_CODE (x) == LABEL_REF) return x; if (GET_CODE (x) != IF_THEN_ELSE) return NULL_RTX; if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF) return XEXP (x, 1); if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF) return XEXP (x, 2); return NULL_RTX; } /* Return true if INSN is a (possibly conditional) return insn. */ static int returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED) { rtx x = *loc; return x && (GET_CODE (x) == RETURN || (GET_CODE (x) == SET && SET_IS_RETURN_P (x))); } int returnjump_p (rtx insn) { if (!JUMP_P (insn)) return 0; return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL); } /* Return true if INSN is a jump that only transfers control and nothing more. */ int onlyjump_p (rtx insn) { rtx set; if (!JUMP_P (insn)) return 0; set = single_set (insn); if (set == NULL) return 0; if (GET_CODE (SET_DEST (set)) != PC) return 0; if (side_effects_p (SET_SRC (set))) return 0; return 1; } #ifdef HAVE_cc0 /* Return nonzero if X is an RTX that only sets the condition codes and has no side effects. */ int only_sets_cc0_p (rtx x) { if (! x) return 0; if (INSN_P (x)) x = PATTERN (x); return sets_cc0_p (x) == 1 && ! side_effects_p (x); } /* Return 1 if X is an RTX that does nothing but set the condition codes and CLOBBER or USE registers. Return -1 if X does explicitly set the condition codes, but also does other things. */ int sets_cc0_p (rtx x) { if (! x) return 0; if (INSN_P (x)) x = PATTERN (x); if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx) return 1; if (GET_CODE (x) == PARALLEL) { int i; int sets_cc0 = 0; int other_things = 0; for (i = XVECLEN (x, 0) - 1; i >= 0; i--) { if (GET_CODE (XVECEXP (x, 0, i)) == SET && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx) sets_cc0 = 1; else if (GET_CODE (XVECEXP (x, 0, i)) == SET) other_things = 1; } return ! sets_cc0 ? 0 : other_things ? -1 : 1; } return 0; } #endif /* Follow any unconditional jump at LABEL; return the ultimate label reached by any such chain of jumps. Return null if the chain ultimately leads to a return instruction. If LABEL is not followed by a jump, return LABEL. If the chain loops or we can't find end, return LABEL, since that tells caller to avoid changing the insn. If RELOAD_COMPLETED is 0, we do not chain across a USE or CLOBBER. */ rtx follow_jumps (rtx label) { rtx insn; rtx next; rtx value = label; int depth; for (depth = 0; (depth < 10 && (insn = next_active_insn (value)) != 0 && JUMP_P (insn) && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn) && onlyjump_p (insn)) || GET_CODE (PATTERN (insn)) == RETURN) && (next = NEXT_INSN (insn)) && BARRIER_P (next)); depth++) { rtx tem; if (!reload_completed && flag_test_coverage) { /* ??? Optional. Disables some optimizations, but makes gcov output more accurate with -O. */ for (tem = value; tem != insn; tem = NEXT_INSN (tem)) if (NOTE_P (tem) && NOTE_LINE_NUMBER (tem) > 0) return value; } /* If we have found a cycle, make the insn jump to itself. */ if (JUMP_LABEL (insn) == label) return label; tem = next_active_insn (JUMP_LABEL (insn)); if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC)) break; value = JUMP_LABEL (insn); } if (depth == 10) return label; return value; } /* Find all CODE_LABELs referred to in X, and increment their use counts. If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced in INSN, then store one of them in JUMP_LABEL (INSN). If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL referenced in INSN, add a REG_LABEL note containing that label to INSN. Also, when there are consecutive labels, canonicalize on the last of them. Note that two labels separated by a loop-beginning note must be kept distinct if we have not yet done loop-optimization, because the gap between them is where loop-optimize will want to move invariant code to. CROSS_JUMP tells us that loop-optimization is done with. */ void mark_jump_label (rtx x, rtx insn, int in_mem) { RTX_CODE code = GET_CODE (x); int i; const char *fmt; switch (code) { case PC: case CC0: case REG: case CONST_INT: case CONST_DOUBLE: case CLOBBER: case CALL: return; case MEM: in_mem = 1; break; case SYMBOL_REF: if (!in_mem) return; /* If this is a constant-pool reference, see if it is a label. */ if (CONSTANT_POOL_ADDRESS_P (x)) mark_jump_label (get_pool_constant (x), insn, in_mem); break; case LABEL_REF: { rtx label = XEXP (x, 0); /* Ignore remaining references to unreachable labels that have been deleted. */ if (NOTE_P (label) && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL) break; gcc_assert (LABEL_P (label)); /* Ignore references to labels of containing functions. */ if (LABEL_REF_NONLOCAL_P (x)) break; XEXP (x, 0) = label; if (! insn || ! INSN_DELETED_P (insn)) ++LABEL_NUSES (label); if (insn) { if (JUMP_P (insn)) JUMP_LABEL (insn) = label; else { /* Add a REG_LABEL note for LABEL unless there already is one. All uses of a label, except for labels that are the targets of jumps, must have a REG_LABEL note. */ if (! find_reg_note (insn, REG_LABEL, label)) REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label, REG_NOTES (insn)); } } return; } /* Do walk the labels in a vector, but not the first operand of an ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */ case ADDR_VEC: case ADDR_DIFF_VEC: if (! INSN_DELETED_P (insn)) { int eltnum = code == ADDR_DIFF_VEC ? 1 : 0; for (i = 0; i < XVECLEN (x, eltnum); i++) mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, in_mem); } return; default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') mark_jump_label (XEXP (x, i), insn, in_mem); else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) mark_jump_label (XVECEXP (x, i, j), insn, in_mem); } } } /* If all INSN does is set the pc, delete it, and delete the insn that set the condition codes for it if that's what the previous thing was. */ void delete_jump (rtx insn) { rtx set = single_set (insn); if (set && GET_CODE (SET_DEST (set)) == PC) delete_computation (insn); } /* Recursively delete prior insns that compute the value (used only by INSN which the caller is deleting) stored in the register mentioned by NOTE which is a REG_DEAD note associated with INSN. */ static void delete_prior_computation (rtx note, rtx insn) { rtx our_prev; rtx reg = XEXP (note, 0); for (our_prev = prev_nonnote_insn (insn); our_prev && (NONJUMP_INSN_P (our_prev) || CALL_P (our_prev)); our_prev = prev_nonnote_insn (our_prev)) { rtx pat = PATTERN (our_prev); /* If we reach a CALL which is not calling a const function or the callee pops the arguments, then give up. */ if (CALL_P (our_prev) && (! CONST_OR_PURE_CALL_P (our_prev) || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL)) break; /* If we reach a SEQUENCE, it is too complex to try to do anything with it, so give up. We can be run during and after reorg, so SEQUENCE rtl can legitimately show up here. */ if (GET_CODE (pat) == SEQUENCE) break; if (GET_CODE (pat) == USE && NONJUMP_INSN_P (XEXP (pat, 0))) /* reorg creates USEs that look like this. We leave them alone because reorg needs them for its own purposes. */ break; if (reg_set_p (reg, pat)) { if (side_effects_p (pat) && !CALL_P (our_prev)) break; if (GET_CODE (pat) == PARALLEL) { /* If we find a SET of something else, we can't delete the insn. */ int i; for (i = 0; i < XVECLEN (pat, 0); i++) { rtx part = XVECEXP (pat, 0, i); if (GET_CODE (part) == SET && SET_DEST (part) != reg) break; } if (i == XVECLEN (pat, 0)) delete_computation (our_prev); } else if (GET_CODE (pat) == SET && REG_P (SET_DEST (pat))) { int dest_regno = REGNO (SET_DEST (pat)); int dest_endregno = (dest_regno + (dest_regno < FIRST_PSEUDO_REGISTER ? hard_regno_nregs[dest_regno] [GET_MODE (SET_DEST (pat))] : 1)); int regno = REGNO (reg); int endregno = (regno + (regno < FIRST_PSEUDO_REGISTER ? hard_regno_nregs[regno][GET_MODE (reg)] : 1)); if (dest_regno >= regno && dest_endregno <= endregno) delete_computation (our_prev); /* We may have a multi-word hard register and some, but not all, of the words of the register are needed in subsequent insns. Write REG_UNUSED notes for those parts that were not needed. */ else if (dest_regno <= regno && dest_endregno >= endregno) { int i; REG_NOTES (our_prev) = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (our_prev)); for (i = dest_regno; i < dest_endregno; i++) if (! find_regno_note (our_prev, REG_UNUSED, i)) break; if (i == dest_endregno) delete_computation (our_prev); } } break; } /* If PAT references the register that dies here, it is an additional use. Hence any prior SET isn't dead. However, this insn becomes the new place for the REG_DEAD note. */ if (reg_overlap_mentioned_p (reg, pat)) { XEXP (note, 1) = REG_NOTES (our_prev); REG_NOTES (our_prev) = note; break; } } } /* Delete INSN and recursively delete insns that compute values used only by INSN. This uses the REG_DEAD notes computed during flow analysis. If we are running before flow.c, we need do nothing since flow.c will delete dead code. We also can't know if the registers being used are dead or not at this point. Otherwise, look at all our REG_DEAD notes. If a previous insn does nothing other than set a register that dies in this insn, we can delete that insn as well. On machines with CC0, if CC0 is used in this insn, we may be able to delete the insn that set it. */ static void delete_computation (rtx insn) { rtx note, next; #ifdef HAVE_cc0 if (reg_referenced_p (cc0_rtx, PATTERN (insn))) { rtx prev = prev_nonnote_insn (insn); /* We assume that at this stage CC's are always set explicitly and always immediately before the jump that will use them. So if the previous insn exists to set the CC's, delete it (unless it performs auto-increments, etc.). */ if (prev && NONJUMP_INSN_P (prev) && sets_cc0_p (PATTERN (prev))) { if (sets_cc0_p (PATTERN (prev)) > 0 && ! side_effects_p (PATTERN (prev))) delete_computation (prev); else /* Otherwise, show that cc0 won't be used. */ REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED, cc0_rtx, REG_NOTES (prev)); } } #endif for (note = REG_NOTES (insn); note; note = next) { next = XEXP (note, 1); if (REG_NOTE_KIND (note) != REG_DEAD /* Verify that the REG_NOTE is legitimate. */ || !REG_P (XEXP (note, 0))) continue; delete_prior_computation (note, insn); } delete_related_insns (insn); } /* Delete insn INSN from the chain of insns and update label ref counts and delete insns now unreachable. Returns the first insn after INSN that was not deleted. Usage of this instruction is deprecated. Use delete_insn instead and subsequent cfg_cleanup pass to delete unreachable code if needed. */ rtx delete_related_insns (rtx insn) { int was_code_label = (LABEL_P (insn)); rtx note; rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn); while (next && INSN_DELETED_P (next)) next = NEXT_INSN (next); /* This insn is already deleted => return first following nondeleted. */ if (INSN_DELETED_P (insn)) return next; delete_insn (insn); /* If instruction is followed by a barrier, delete the barrier too. */ if (next != 0 && BARRIER_P (next)) delete_insn (next); /* If deleting a jump, decrement the count of the label, and delete the label if it is now unused. */ if (JUMP_P (insn) && JUMP_LABEL (insn)) { rtx lab = JUMP_LABEL (insn), lab_next; if (LABEL_NUSES (lab) == 0) { /* This can delete NEXT or PREV, either directly if NEXT is JUMP_LABEL (INSN), or indirectly through more levels of jumps. */ delete_related_insns (lab); /* I feel a little doubtful about this loop, but I see no clean and sure alternative way to find the first insn after INSN that is not now deleted. I hope this works. */ while (next && INSN_DELETED_P (next)) next = NEXT_INSN (next); return next; } else if (tablejump_p (insn, NULL, &lab_next)) { /* If we're deleting the tablejump, delete the dispatch table. We may not be able to kill the label immediately preceding just yet, as it might be referenced in code leading up to the tablejump. */ delete_related_insns (lab_next); } } /* Likewise if we're deleting a dispatch table. */ if (JUMP_P (insn) && (GET_CODE (PATTERN (insn)) == ADDR_VEC || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)) { rtx pat = PATTERN (insn); int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC; int len = XVECLEN (pat, diff_vec_p); for (i = 0; i < len; i++) if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0) delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0)); while (next && INSN_DELETED_P (next)) next = NEXT_INSN (next); return next; } /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */ if (NONJUMP_INSN_P (insn) || CALL_P (insn)) for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_LABEL /* This could also be a NOTE_INSN_DELETED_LABEL note. */ && LABEL_P (XEXP (note, 0))) if (LABEL_NUSES (XEXP (note, 0)) == 0) delete_related_insns (XEXP (note, 0)); while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev))) prev = PREV_INSN (prev); /* If INSN was a label and a dispatch table follows it, delete the dispatch table. The tablejump must have gone already. It isn't useful to fall through into a table. */ if (was_code_label && NEXT_INSN (insn) != 0 && JUMP_P (NEXT_INSN (insn)) && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC)) next = delete_related_insns (NEXT_INSN (insn)); /* If INSN was a label, delete insns following it if now unreachable. */ if (was_code_label && prev && BARRIER_P (prev)) { enum rtx_code code; while (next) { code = GET_CODE (next); if (code == NOTE && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END) next = NEXT_INSN (next); /* Keep going past other deleted labels to delete what follows. */ else if (code == CODE_LABEL && INSN_DELETED_P (next)) next = NEXT_INSN (next); else if (code == BARRIER || INSN_P (next)) /* Note: if this deletes a jump, it can cause more deletion of unreachable code, after a different label. As long as the value from this recursive call is correct, this invocation functions correctly. */ next = delete_related_insns (next); else break; } } return next; } /* Delete a range of insns from FROM to TO, inclusive. This is for the sake of peephole optimization, so assume that whatever these insns do will still be done by a new peephole insn that will replace them. */ void delete_for_peephole (rtx from, rtx to) { rtx insn = from; while (1) { rtx next = NEXT_INSN (insn); rtx prev = PREV_INSN (insn); if (!NOTE_P (insn)) { INSN_DELETED_P (insn) = 1; /* Patch this insn out of the chain. */ /* We don't do this all at once, because we must preserve all NOTEs. */ if (prev) NEXT_INSN (prev) = next; if (next) PREV_INSN (next) = prev; } if (insn == to) break; insn = next; } /* Note that if TO is an unconditional jump we *do not* delete the BARRIER that follows, since the peephole that replaces this sequence is also an unconditional jump in that case. */ } /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or NLABEL as a return. Accrue modifications into the change group. */ static void redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn) { rtx x = *loc; RTX_CODE code = GET_CODE (x); int i; const char *fmt; if (code == LABEL_REF) { if (XEXP (x, 0) == olabel) { rtx n; if (nlabel) n = gen_rtx_LABEL_REF (Pmode, nlabel); else n = gen_rtx_RETURN (VOIDmode); validate_change (insn, loc, n, 1); return; } } else if (code == RETURN && olabel == 0) { if (nlabel) x = gen_rtx_LABEL_REF (Pmode, nlabel); else x = gen_rtx_RETURN (VOIDmode); if (loc == &PATTERN (insn)) x = gen_rtx_SET (VOIDmode, pc_rtx, x); validate_change (insn, loc, x, 1); return; } if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx && GET_CODE (SET_SRC (x)) == LABEL_REF && XEXP (SET_SRC (x), 0) == olabel) { validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1); return; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn); else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn); } } } /* Make JUMP go to NLABEL instead of where it jumps now. Accrue the modifications into the change group. Return false if we did not see how to do that. */ int redirect_jump_1 (rtx jump, rtx nlabel) { int ochanges = num_validated_changes (); rtx *loc; if (GET_CODE (PATTERN (jump)) == PARALLEL) loc = &XVECEXP (PATTERN (jump), 0, 0); else loc = &PATTERN (jump); redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump); return num_validated_changes () > ochanges; } /* Make JUMP go to NLABEL instead of where it jumps now. If the old jump target label is unused as a result, it and the code following it may be deleted. If NLABEL is zero, we are to turn the jump into a (possibly conditional) RETURN insn. The return value will be 1 if the change was made, 0 if it wasn't (this can only occur for NLABEL == 0). */ int redirect_jump (rtx jump, rtx nlabel, int delete_unused) { rtx olabel = JUMP_LABEL (jump); if (nlabel == olabel) return 1; if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ()) return 0; redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0); return 1; } /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with NLABEL in JUMP. If DELETE_UNUSED is non-negative, copy a NOTE_INSN_FUNCTION_END found after OLABEL to the place after NLABEL. If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref count has dropped to zero. */ void redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused, int invert) { rtx note; JUMP_LABEL (jump) = nlabel; if (nlabel) ++LABEL_NUSES (nlabel); /* Update labels in any REG_EQUAL note. */ if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX) { if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump))) remove_note (jump, note); else { redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump); confirm_change_group (); } } /* If we're eliding the jump over exception cleanups at the end of a function, move the function end note so that -Wreturn-type works. */ if (olabel && nlabel && NEXT_INSN (olabel) && NOTE_P (NEXT_INSN (olabel)) && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END && delete_unused >= 0) emit_note_after (NOTE_INSN_FUNCTION_END, nlabel); if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0 /* Undefined labels will remain outside the insn stream. */ && INSN_UID (olabel)) delete_related_insns (olabel); if (invert) invert_br_probabilities (jump); } /* Invert the jump condition X contained in jump insn INSN. Accrue the modifications into the change group. Return nonzero for success. */ static int invert_exp_1 (rtx x, rtx insn) { RTX_CODE code = GET_CODE (x); if (code == IF_THEN_ELSE) { rtx comp = XEXP (x, 0); rtx tem; enum rtx_code reversed_code; /* We can do this in two ways: The preferable way, which can only be done if this is not an integer comparison, is to reverse the comparison code. Otherwise, swap the THEN-part and ELSE-part of the IF_THEN_ELSE. If we can't do either, fail. */ reversed_code = reversed_comparison_code (comp, insn); if (reversed_code != UNKNOWN) { validate_change (insn, &XEXP (x, 0), gen_rtx_fmt_ee (reversed_code, GET_MODE (comp), XEXP (comp, 0), XEXP (comp, 1)), 1); return 1; } tem = XEXP (x, 1); validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1); validate_change (insn, &XEXP (x, 2), tem, 1); return 1; } else return 0; } /* Invert the condition of the jump JUMP, and make it jump to label NLABEL instead of where it jumps now. Accrue changes into the change group. Return false if we didn't see how to perform the inversion and redirection. */ int invert_jump_1 (rtx jump, rtx nlabel) { rtx x = pc_set (jump); int ochanges; int ok; ochanges = num_validated_changes (); gcc_assert (x); ok = invert_exp_1 (SET_SRC (x), jump); gcc_assert (ok); if (num_validated_changes () == ochanges) return 0; /* redirect_jump_1 will fail of nlabel == olabel, and the current use is in Pmode, so checking this is not merely an optimization. */ return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel); } /* Invert the condition of the jump JUMP, and make it jump to label NLABEL instead of where it jumps now. Return true if successful. */ int invert_jump (rtx jump, rtx nlabel, int delete_unused) { rtx olabel = JUMP_LABEL (jump); if (invert_jump_1 (jump, nlabel) && apply_change_group ()) { redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1); return 1; } cancel_changes (0); return 0; } /* Like rtx_equal_p except that it considers two REGs as equal if they renumber to the same value and considers two commutative operations to be the same if the order of the operands has been reversed. */ int rtx_renumbered_equal_p (rtx x, rtx y) { int i; enum rtx_code code = GET_CODE (x); const char *fmt; if (x == y) return 1; if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x)))) && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))))) { int reg_x = -1, reg_y = -1; int byte_x = 0, byte_y = 0; if (GET_MODE (x) != GET_MODE (y)) return 0; /* If we haven't done any renumbering, don't make any assumptions. */ if (reg_renumber == 0) return rtx_equal_p (x, y); if (code == SUBREG) { reg_x = REGNO (SUBREG_REG (x)); byte_x = SUBREG_BYTE (x); if (reg_renumber[reg_x] >= 0) { reg_x = subreg_regno_offset (reg_renumber[reg_x], GET_MODE (SUBREG_REG (x)), byte_x, GET_MODE (x)); byte_x = 0; } } else { reg_x = REGNO (x); if (reg_renumber[reg_x] >= 0) reg_x = reg_renumber[reg_x]; } if (GET_CODE (y) == SUBREG) { reg_y = REGNO (SUBREG_REG (y)); byte_y = SUBREG_BYTE (y); if (reg_renumber[reg_y] >= 0) { reg_y = subreg_regno_offset (reg_renumber[reg_y], GET_MODE (SUBREG_REG (y)), byte_y, GET_MODE (y)); byte_y = 0; } } else { reg_y = REGNO (y); if (reg_renumber[reg_y] >= 0) reg_y = reg_renumber[reg_y]; } return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y; } /* Now we have disposed of all the cases in which different rtx codes can match. */ if (code != GET_CODE (y)) return 0; switch (code) { case PC: case CC0: case ADDR_VEC: case ADDR_DIFF_VEC: case CONST_INT: case CONST_DOUBLE: return 0; case LABEL_REF: /* We can't assume nonlocal labels have their following insns yet. */ if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y)) return XEXP (x, 0) == XEXP (y, 0); /* Two label-refs are equivalent if they point at labels in the same position in the instruction stream. */ return (next_real_insn (XEXP (x, 0)) == next_real_insn (XEXP (y, 0))); case SYMBOL_REF: return XSTR (x, 0) == XSTR (y, 0); case CODE_LABEL: /* If we didn't match EQ equality above, they aren't the same. */ return 0; default: break; } /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */ if (GET_MODE (x) != GET_MODE (y)) return 0; /* For commutative operations, the RTX match if the operand match in any order. Also handle the simple binary and unary cases without a loop. */ if (targetm.commutative_p (x, UNKNOWN)) return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0)) && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1))) || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1)) && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0)))); else if (NON_COMMUTATIVE_P (x)) return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0)) && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1))); else if (UNARY_P (x)) return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0)); /* Compare the elements. If any pair of corresponding elements fail to match, return 0 for the whole things. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { int j; switch (fmt[i]) { case 'w': if (XWINT (x, i) != XWINT (y, i)) return 0; break; case 'i': if (XINT (x, i) != XINT (y, i)) return 0; break; case 't': if (XTREE (x, i) != XTREE (y, i)) return 0; break; case 's': if (strcmp (XSTR (x, i), XSTR (y, i))) return 0; break; case 'e': if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i))) return 0; break; case 'u': if (XEXP (x, i) != XEXP (y, i)) return 0; /* Fall through. */ case '0': break; case 'E': if (XVECLEN (x, i) != XVECLEN (y, i)) return 0; for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j))) return 0; break; default: gcc_unreachable (); } } return 1; } /* If X is a hard register or equivalent to one or a subregister of one, return the hard register number. If X is a pseudo register that was not assigned a hard register, return the pseudo register number. Otherwise, return -1. Any rtx is valid for X. */ int true_regnum (rtx x) { if (REG_P (x)) { if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0) return reg_renumber[REGNO (x)]; return REGNO (x); } if (GET_CODE (x) == SUBREG) { int base = true_regnum (SUBREG_REG (x)); if (base >= 0 && base < FIRST_PSEUDO_REGISTER && subreg_offset_representable_p (REGNO (SUBREG_REG (x)), GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x), GET_MODE (x))) return base + subreg_regno_offset (REGNO (SUBREG_REG (x)), GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x), GET_MODE (x)); } return -1; } /* Return regno of the register REG and handle subregs too. */ unsigned int reg_or_subregno (rtx reg) { if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); gcc_assert (REG_P (reg)); return REGNO (reg); }
Go to most recent revision | Compare with Previous | Blame | View Log