URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [omp-low.c] - Rev 192
Go to most recent revision | Compare with Previous | Blame | View Log
/* Lowering pass for OpenMP directives. Converts OpenMP directives into explicit calls to the runtime library (libgomp) and data marshalling to implement data sharing and copying clauses. Contributed by Diego Novillo <dnovillo@redhat.com> Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "tree-gimple.h" #include "tree-inline.h" #include "langhooks.h" #include "diagnostic.h" #include "tree-flow.h" #include "timevar.h" #include "flags.h" #include "function.h" #include "expr.h" #include "toplev.h" #include "tree-pass.h" #include "ggc.h" #include "except.h" /* Lowering of OpenMP parallel and workshare constructs proceeds in two phases. The first phase scans the function looking for OMP statements and then for variables that must be replaced to satisfy data sharing clauses. The second phase expands code for the constructs, as well as re-gimplifying things when variables have been replaced with complex expressions. Final code generation is done by pass_expand_omp. The flowgraph is scanned for parallel regions which are then moved to a new function, to be invoked by the thread library. */ /* Context structure. Used to store information about each parallel directive in the code. */ typedef struct omp_context { /* This field must be at the beginning, as we do "inheritance": Some callback functions for tree-inline.c (e.g., omp_copy_decl) receive a copy_body_data pointer that is up-casted to an omp_context pointer. */ copy_body_data cb; /* The tree of contexts corresponding to the encountered constructs. */ struct omp_context *outer; tree stmt; /* Map variables to fields in a structure that allows communication between sending and receiving threads. */ splay_tree field_map; tree record_type; tree sender_decl; tree receiver_decl; /* A chain of variables to add to the top-level block surrounding the construct. In the case of a parallel, this is in the child function. */ tree block_vars; /* What to do with variables with implicitly determined sharing attributes. */ enum omp_clause_default_kind default_kind; /* Nesting depth of this context. Used to beautify error messages re invalid gotos. The outermost ctx is depth 1, with depth 0 being reserved for the main body of the function. */ int depth; /* True if this parallel directive is nested within another. */ bool is_nested; } omp_context; /* A structure describing the main elements of a parallel loop. */ struct omp_for_data { tree v, n1, n2, step, chunk_size, for_stmt; enum tree_code cond_code; tree pre; bool have_nowait, have_ordered; enum omp_clause_schedule_kind sched_kind; }; static splay_tree all_contexts; static int parallel_nesting_level; struct omp_region *root_omp_region; static void scan_omp (tree *, omp_context *); static void lower_omp (tree *, omp_context *); static tree lookup_decl_in_outer_ctx (tree, omp_context *); static tree maybe_lookup_decl_in_outer_ctx (tree, omp_context *); /* Find an OpenMP clause of type KIND within CLAUSES. */ static tree find_omp_clause (tree clauses, enum tree_code kind) { for (; clauses ; clauses = OMP_CLAUSE_CHAIN (clauses)) if (OMP_CLAUSE_CODE (clauses) == kind) return clauses; return NULL_TREE; } /* Return true if CTX is for an omp parallel. */ static inline bool is_parallel_ctx (omp_context *ctx) { return TREE_CODE (ctx->stmt) == OMP_PARALLEL; } /* Return true if REGION is a combined parallel+workshare region. */ static inline bool is_combined_parallel (struct omp_region *region) { return region->is_combined_parallel; } /* Extract the header elements of parallel loop FOR_STMT and store them into *FD. */ static void extract_omp_for_data (tree for_stmt, struct omp_for_data *fd) { tree t; fd->for_stmt = for_stmt; fd->pre = NULL; t = OMP_FOR_INIT (for_stmt); gcc_assert (TREE_CODE (t) == MODIFY_EXPR); fd->v = TREE_OPERAND (t, 0); gcc_assert (DECL_P (fd->v)); gcc_assert (TREE_CODE (TREE_TYPE (fd->v)) == INTEGER_TYPE); fd->n1 = TREE_OPERAND (t, 1); t = OMP_FOR_COND (for_stmt); fd->cond_code = TREE_CODE (t); gcc_assert (TREE_OPERAND (t, 0) == fd->v); fd->n2 = TREE_OPERAND (t, 1); switch (fd->cond_code) { case LT_EXPR: case GT_EXPR: break; case LE_EXPR: fd->n2 = fold_build2 (PLUS_EXPR, TREE_TYPE (fd->n2), fd->n2, build_int_cst (TREE_TYPE (fd->n2), 1)); fd->cond_code = LT_EXPR; break; case GE_EXPR: fd->n2 = fold_build2 (MINUS_EXPR, TREE_TYPE (fd->n2), fd->n2, build_int_cst (TREE_TYPE (fd->n2), 1)); fd->cond_code = GT_EXPR; break; default: gcc_unreachable (); } t = OMP_FOR_INCR (fd->for_stmt); gcc_assert (TREE_CODE (t) == MODIFY_EXPR); gcc_assert (TREE_OPERAND (t, 0) == fd->v); t = TREE_OPERAND (t, 1); gcc_assert (TREE_OPERAND (t, 0) == fd->v); switch (TREE_CODE (t)) { case PLUS_EXPR: fd->step = TREE_OPERAND (t, 1); break; case MINUS_EXPR: fd->step = TREE_OPERAND (t, 1); fd->step = fold_build1 (NEGATE_EXPR, TREE_TYPE (fd->step), fd->step); break; default: gcc_unreachable (); } fd->have_nowait = fd->have_ordered = false; fd->sched_kind = OMP_CLAUSE_SCHEDULE_STATIC; fd->chunk_size = NULL_TREE; for (t = OMP_FOR_CLAUSES (for_stmt); t ; t = OMP_CLAUSE_CHAIN (t)) switch (OMP_CLAUSE_CODE (t)) { case OMP_CLAUSE_NOWAIT: fd->have_nowait = true; break; case OMP_CLAUSE_ORDERED: fd->have_ordered = true; break; case OMP_CLAUSE_SCHEDULE: fd->sched_kind = OMP_CLAUSE_SCHEDULE_KIND (t); fd->chunk_size = OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t); break; default: break; } if (fd->sched_kind == OMP_CLAUSE_SCHEDULE_RUNTIME) gcc_assert (fd->chunk_size == NULL); else if (fd->chunk_size == NULL) { /* We only need to compute a default chunk size for ordered static loops and dynamic loops. */ if (fd->sched_kind != OMP_CLAUSE_SCHEDULE_STATIC || fd->have_ordered) fd->chunk_size = (fd->sched_kind == OMP_CLAUSE_SCHEDULE_STATIC) ? integer_zero_node : integer_one_node; } } /* Given two blocks PAR_ENTRY_BB and WS_ENTRY_BB such that WS_ENTRY_BB is the immediate dominator of PAR_ENTRY_BB, return true if there are no data dependencies that would prevent expanding the parallel directive at PAR_ENTRY_BB as a combined parallel+workshare region. When expanding a combined parallel+workshare region, the call to the child function may need additional arguments in the case of OMP_FOR regions. In some cases, these arguments are computed out of variables passed in from the parent to the child via 'struct .omp_data_s'. For instance: #pragma omp parallel for schedule (guided, i * 4) for (j ...) Is lowered into: # BLOCK 2 (PAR_ENTRY_BB) .omp_data_o.i = i; #pragma omp parallel [child fn: bar.omp_fn.0 ( ..., D.1598) # BLOCK 3 (WS_ENTRY_BB) .omp_data_i = &.omp_data_o; D.1667 = .omp_data_i->i; D.1598 = D.1667 * 4; #pragma omp for schedule (guided, D.1598) When we outline the parallel region, the call to the child function 'bar.omp_fn.0' will need the value D.1598 in its argument list, but that value is computed *after* the call site. So, in principle we cannot do the transformation. To see whether the code in WS_ENTRY_BB blocks the combined parallel+workshare call, we collect all the variables used in the OMP_FOR header check whether they appear on the LHS of any statement in WS_ENTRY_BB. If so, then we cannot emit the combined call. FIXME. If we had the SSA form built at this point, we could merely hoist the code in block 3 into block 2 and be done with it. But at this point we don't have dataflow information and though we could hack something up here, it is really not worth the aggravation. */ static bool workshare_safe_to_combine_p (basic_block par_entry_bb, basic_block ws_entry_bb) { struct omp_for_data fd; tree par_stmt, ws_stmt; par_stmt = last_stmt (par_entry_bb); ws_stmt = last_stmt (ws_entry_bb); if (TREE_CODE (ws_stmt) == OMP_SECTIONS) return true; gcc_assert (TREE_CODE (ws_stmt) == OMP_FOR); extract_omp_for_data (ws_stmt, &fd); /* FIXME. We give up too easily here. If any of these arguments are not constants, they will likely involve variables that have been mapped into fields of .omp_data_s for sharing with the child function. With appropriate data flow, it would be possible to see through this. */ if (!is_gimple_min_invariant (fd.n1) || !is_gimple_min_invariant (fd.n2) || !is_gimple_min_invariant (fd.step) || (fd.chunk_size && !is_gimple_min_invariant (fd.chunk_size))) return false; return true; } /* Collect additional arguments needed to emit a combined parallel+workshare call. WS_STMT is the workshare directive being expanded. */ static tree get_ws_args_for (tree ws_stmt) { tree t; if (TREE_CODE (ws_stmt) == OMP_FOR) { struct omp_for_data fd; tree ws_args; extract_omp_for_data (ws_stmt, &fd); ws_args = NULL_TREE; if (fd.chunk_size) { t = fold_convert (long_integer_type_node, fd.chunk_size); ws_args = tree_cons (NULL, t, ws_args); } t = fold_convert (long_integer_type_node, fd.step); ws_args = tree_cons (NULL, t, ws_args); t = fold_convert (long_integer_type_node, fd.n2); ws_args = tree_cons (NULL, t, ws_args); t = fold_convert (long_integer_type_node, fd.n1); ws_args = tree_cons (NULL, t, ws_args); return ws_args; } else if (TREE_CODE (ws_stmt) == OMP_SECTIONS) { basic_block bb = bb_for_stmt (ws_stmt); t = build_int_cst (unsigned_type_node, EDGE_COUNT (bb->succs)); t = tree_cons (NULL, t, NULL); return t; } gcc_unreachable (); } /* Discover whether REGION is a combined parallel+workshare region. */ static void determine_parallel_type (struct omp_region *region) { basic_block par_entry_bb, par_exit_bb; basic_block ws_entry_bb, ws_exit_bb; if (region == NULL || region->inner == NULL || region->exit == NULL || region->inner->exit == NULL) return; /* We only support parallel+for and parallel+sections. */ if (region->type != OMP_PARALLEL || (region->inner->type != OMP_FOR && region->inner->type != OMP_SECTIONS)) return; /* Check for perfect nesting PAR_ENTRY_BB -> WS_ENTRY_BB and WS_EXIT_BB -> PAR_EXIT_BB. */ par_entry_bb = region->entry; par_exit_bb = region->exit; ws_entry_bb = region->inner->entry; ws_exit_bb = region->inner->exit; if (single_succ (par_entry_bb) == ws_entry_bb && single_succ (ws_exit_bb) == par_exit_bb && workshare_safe_to_combine_p (par_entry_bb, ws_entry_bb) && (OMP_PARALLEL_COMBINED (last_stmt (par_entry_bb)) || (last_and_only_stmt (ws_entry_bb) && last_and_only_stmt (par_exit_bb)))) { tree ws_stmt = last_stmt (ws_entry_bb); if (region->inner->type == OMP_FOR) { /* If this is a combined parallel loop, we need to determine whether or not to use the combined library calls. There are two cases where we do not apply the transformation: static loops and any kind of ordered loop. In the first case, we already open code the loop so there is no need to do anything else. In the latter case, the combined parallel loop call would still need extra synchronization to implement ordered semantics, so there would not be any gain in using the combined call. */ tree clauses = OMP_FOR_CLAUSES (ws_stmt); tree c = find_omp_clause (clauses, OMP_CLAUSE_SCHEDULE); if (c == NULL || OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_STATIC || find_omp_clause (clauses, OMP_CLAUSE_ORDERED)) { region->is_combined_parallel = false; region->inner->is_combined_parallel = false; return; } } region->is_combined_parallel = true; region->inner->is_combined_parallel = true; region->ws_args = get_ws_args_for (ws_stmt); } } /* Return true if EXPR is variable sized. */ static inline bool is_variable_sized (tree expr) { return !TREE_CONSTANT (TYPE_SIZE_UNIT (TREE_TYPE (expr))); } /* Return true if DECL is a reference type. */ static inline bool is_reference (tree decl) { return lang_hooks.decls.omp_privatize_by_reference (decl); } /* Lookup variables in the decl or field splay trees. The "maybe" form allows for the variable form to not have been entered, otherwise we assert that the variable must have been entered. */ static inline tree lookup_decl (tree var, omp_context *ctx) { splay_tree_node n; n = splay_tree_lookup (ctx->cb.decl_map, (splay_tree_key) var); return (tree) n->value; } static inline tree maybe_lookup_decl (tree var, omp_context *ctx) { splay_tree_node n; n = splay_tree_lookup (ctx->cb.decl_map, (splay_tree_key) var); return n ? (tree) n->value : NULL_TREE; } static inline tree lookup_field (tree var, omp_context *ctx) { splay_tree_node n; n = splay_tree_lookup (ctx->field_map, (splay_tree_key) var); return (tree) n->value; } static inline tree maybe_lookup_field (tree var, omp_context *ctx) { splay_tree_node n; n = splay_tree_lookup (ctx->field_map, (splay_tree_key) var); return n ? (tree) n->value : NULL_TREE; } /* Return true if DECL should be copied by pointer. SHARED_P is true if DECL is to be shared. */ static bool use_pointer_for_field (tree decl, bool shared_p) { if (AGGREGATE_TYPE_P (TREE_TYPE (decl))) return true; /* We can only use copy-in/copy-out semantics for shared variables when we know the value is not accessible from an outer scope. */ if (shared_p) { /* ??? Trivially accessible from anywhere. But why would we even be passing an address in this case? Should we simply assert this to be false, or should we have a cleanup pass that removes these from the list of mappings? */ if (TREE_STATIC (decl) || DECL_EXTERNAL (decl)) return true; /* For variables with DECL_HAS_VALUE_EXPR_P set, we cannot tell without analyzing the expression whether or not its location is accessible to anyone else. In the case of nested parallel regions it certainly may be. */ if (TREE_CODE (decl) != RESULT_DECL && DECL_HAS_VALUE_EXPR_P (decl)) return true; /* Do not use copy-in/copy-out for variables that have their address taken. */ if (TREE_ADDRESSABLE (decl)) return true; } return false; } /* Construct a new automatic decl similar to VAR. */ static tree omp_copy_decl_2 (tree var, tree name, tree type, omp_context *ctx) { tree copy = build_decl (VAR_DECL, name, type); TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var); DECL_COMPLEX_GIMPLE_REG_P (copy) = DECL_COMPLEX_GIMPLE_REG_P (var); DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var); DECL_IGNORED_P (copy) = DECL_IGNORED_P (var); TREE_USED (copy) = 1; DECL_CONTEXT (copy) = current_function_decl; DECL_SEEN_IN_BIND_EXPR_P (copy) = 1; TREE_CHAIN (copy) = ctx->block_vars; ctx->block_vars = copy; return copy; } static tree omp_copy_decl_1 (tree var, omp_context *ctx) { return omp_copy_decl_2 (var, DECL_NAME (var), TREE_TYPE (var), ctx); } /* Build tree nodes to access the field for VAR on the receiver side. */ static tree build_receiver_ref (tree var, bool by_ref, omp_context *ctx) { tree x, field = lookup_field (var, ctx); /* If the receiver record type was remapped in the child function, remap the field into the new record type. */ x = maybe_lookup_field (field, ctx); if (x != NULL) field = x; x = build_fold_indirect_ref (ctx->receiver_decl); x = build3 (COMPONENT_REF, TREE_TYPE (field), x, field, NULL); if (by_ref) x = build_fold_indirect_ref (x); return x; } /* Build tree nodes to access VAR in the scope outer to CTX. In the case of a parallel, this is a component reference; for workshare constructs this is some variable. */ static tree build_outer_var_ref (tree var, omp_context *ctx) { tree x; if (is_global_var (maybe_lookup_decl_in_outer_ctx (var, ctx))) x = var; else if (is_variable_sized (var)) { x = TREE_OPERAND (DECL_VALUE_EXPR (var), 0); x = build_outer_var_ref (x, ctx); x = build_fold_indirect_ref (x); } else if (is_parallel_ctx (ctx)) { bool by_ref = use_pointer_for_field (var, false); x = build_receiver_ref (var, by_ref, ctx); } else if (ctx->outer) x = lookup_decl (var, ctx->outer); else if (is_reference (var)) /* This can happen with orphaned constructs. If var is reference, it is possible it is shared and as such valid. */ x = var; else gcc_unreachable (); if (is_reference (var)) x = build_fold_indirect_ref (x); return x; } /* Build tree nodes to access the field for VAR on the sender side. */ static tree build_sender_ref (tree var, omp_context *ctx) { tree field = lookup_field (var, ctx); return build3 (COMPONENT_REF, TREE_TYPE (field), ctx->sender_decl, field, NULL); } /* Add a new field for VAR inside the structure CTX->SENDER_DECL. */ static void install_var_field (tree var, bool by_ref, omp_context *ctx) { tree field, type; gcc_assert (!splay_tree_lookup (ctx->field_map, (splay_tree_key) var)); type = TREE_TYPE (var); if (by_ref) type = build_pointer_type (type); field = build_decl (FIELD_DECL, DECL_NAME (var), type); /* Remember what variable this field was created for. This does have a side effect of making dwarf2out ignore this member, so for helpful debugging we clear it later in delete_omp_context. */ DECL_ABSTRACT_ORIGIN (field) = var; insert_field_into_struct (ctx->record_type, field); splay_tree_insert (ctx->field_map, (splay_tree_key) var, (splay_tree_value) field); } static tree install_var_local (tree var, omp_context *ctx) { tree new_var = omp_copy_decl_1 (var, ctx); insert_decl_map (&ctx->cb, var, new_var); return new_var; } /* Adjust the replacement for DECL in CTX for the new context. This means copying the DECL_VALUE_EXPR, and fixing up the type. */ static void fixup_remapped_decl (tree decl, omp_context *ctx, bool private_debug) { tree new_decl, size; new_decl = lookup_decl (decl, ctx); TREE_TYPE (new_decl) = remap_type (TREE_TYPE (decl), &ctx->cb); if ((!TREE_CONSTANT (DECL_SIZE (new_decl)) || private_debug) && DECL_HAS_VALUE_EXPR_P (decl)) { tree ve = DECL_VALUE_EXPR (decl); walk_tree (&ve, copy_body_r, &ctx->cb, NULL); SET_DECL_VALUE_EXPR (new_decl, ve); DECL_HAS_VALUE_EXPR_P (new_decl) = 1; } if (!TREE_CONSTANT (DECL_SIZE (new_decl))) { size = remap_decl (DECL_SIZE (decl), &ctx->cb); if (size == error_mark_node) size = TYPE_SIZE (TREE_TYPE (new_decl)); DECL_SIZE (new_decl) = size; size = remap_decl (DECL_SIZE_UNIT (decl), &ctx->cb); if (size == error_mark_node) size = TYPE_SIZE_UNIT (TREE_TYPE (new_decl)); DECL_SIZE_UNIT (new_decl) = size; } } /* The callback for remap_decl. Search all containing contexts for a mapping of the variable; this avoids having to duplicate the splay tree ahead of time. We know a mapping doesn't already exist in the given context. Create new mappings to implement default semantics. */ static tree omp_copy_decl (tree var, copy_body_data *cb) { omp_context *ctx = (omp_context *) cb; tree new_var; if (TREE_CODE (var) == LABEL_DECL) { new_var = create_artificial_label (); DECL_CONTEXT (new_var) = current_function_decl; insert_decl_map (&ctx->cb, var, new_var); return new_var; } while (!is_parallel_ctx (ctx)) { ctx = ctx->outer; if (ctx == NULL) return var; new_var = maybe_lookup_decl (var, ctx); if (new_var) return new_var; } if (is_global_var (var) || decl_function_context (var) != ctx->cb.src_fn) return var; return error_mark_node; } /* Return the parallel region associated with STMT. */ /* Debugging dumps for parallel regions. */ void dump_omp_region (FILE *, struct omp_region *, int); void debug_omp_region (struct omp_region *); void debug_all_omp_regions (void); /* Dump the parallel region tree rooted at REGION. */ void dump_omp_region (FILE *file, struct omp_region *region, int indent) { fprintf (file, "%*sbb %d: %s\n", indent, "", region->entry->index, tree_code_name[region->type]); if (region->inner) dump_omp_region (file, region->inner, indent + 4); if (region->cont) { fprintf (file, "%*sbb %d: OMP_CONTINUE\n", indent, "", region->cont->index); } if (region->exit) fprintf (file, "%*sbb %d: OMP_RETURN\n", indent, "", region->exit->index); else fprintf (file, "%*s[no exit marker]\n", indent, ""); if (region->next) dump_omp_region (file, region->next, indent); } void debug_omp_region (struct omp_region *region) { dump_omp_region (stderr, region, 0); } void debug_all_omp_regions (void) { dump_omp_region (stderr, root_omp_region, 0); } /* Create a new parallel region starting at STMT inside region PARENT. */ struct omp_region * new_omp_region (basic_block bb, enum tree_code type, struct omp_region *parent) { struct omp_region *region = xcalloc (1, sizeof (*region)); region->outer = parent; region->entry = bb; region->type = type; if (parent) { /* This is a nested region. Add it to the list of inner regions in PARENT. */ region->next = parent->inner; parent->inner = region; } else { /* This is a toplevel region. Add it to the list of toplevel regions in ROOT_OMP_REGION. */ region->next = root_omp_region; root_omp_region = region; } return region; } /* Release the memory associated with the region tree rooted at REGION. */ static void free_omp_region_1 (struct omp_region *region) { struct omp_region *i, *n; for (i = region->inner; i ; i = n) { n = i->next; free_omp_region_1 (i); } free (region); } /* Release the memory for the entire omp region tree. */ void free_omp_regions (void) { struct omp_region *r, *n; for (r = root_omp_region; r ; r = n) { n = r->next; free_omp_region_1 (r); } root_omp_region = NULL; } /* Create a new context, with OUTER_CTX being the surrounding context. */ static omp_context * new_omp_context (tree stmt, omp_context *outer_ctx) { omp_context *ctx = XCNEW (omp_context); splay_tree_insert (all_contexts, (splay_tree_key) stmt, (splay_tree_value) ctx); ctx->stmt = stmt; if (outer_ctx) { ctx->outer = outer_ctx; ctx->cb = outer_ctx->cb; ctx->cb.block = NULL; ctx->depth = outer_ctx->depth + 1; } else { ctx->cb.src_fn = current_function_decl; ctx->cb.dst_fn = current_function_decl; ctx->cb.src_node = cgraph_node (current_function_decl); ctx->cb.dst_node = ctx->cb.src_node; ctx->cb.src_cfun = cfun; ctx->cb.copy_decl = omp_copy_decl; ctx->cb.eh_region = -1; ctx->cb.transform_call_graph_edges = CB_CGE_MOVE; ctx->depth = 1; } ctx->cb.decl_map = splay_tree_new (splay_tree_compare_pointers, 0, 0); return ctx; } /* Destroy a omp_context data structures. Called through the splay tree value delete callback. */ static void delete_omp_context (splay_tree_value value) { omp_context *ctx = (omp_context *) value; splay_tree_delete (ctx->cb.decl_map); if (ctx->field_map) splay_tree_delete (ctx->field_map); /* We hijacked DECL_ABSTRACT_ORIGIN earlier. We need to clear it before it produces corrupt debug information. */ if (ctx->record_type) { tree t; for (t = TYPE_FIELDS (ctx->record_type); t ; t = TREE_CHAIN (t)) DECL_ABSTRACT_ORIGIN (t) = NULL; } XDELETE (ctx); } /* Fix up RECEIVER_DECL with a type that has been remapped to the child context. */ static void fixup_child_record_type (omp_context *ctx) { tree f, type = ctx->record_type; /* ??? It isn't sufficient to just call remap_type here, because variably_modified_type_p doesn't work the way we expect for record types. Testing each field for whether it needs remapping and creating a new record by hand works, however. */ for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f)) if (variably_modified_type_p (TREE_TYPE (f), ctx->cb.src_fn)) break; if (f) { tree name, new_fields = NULL; type = lang_hooks.types.make_type (RECORD_TYPE); name = DECL_NAME (TYPE_NAME (ctx->record_type)); name = build_decl (TYPE_DECL, name, type); TYPE_NAME (type) = name; for (f = TYPE_FIELDS (ctx->record_type); f ; f = TREE_CHAIN (f)) { tree new_f = copy_node (f); DECL_CONTEXT (new_f) = type; TREE_TYPE (new_f) = remap_type (TREE_TYPE (f), &ctx->cb); TREE_CHAIN (new_f) = new_fields; new_fields = new_f; /* Arrange to be able to look up the receiver field given the sender field. */ splay_tree_insert (ctx->field_map, (splay_tree_key) f, (splay_tree_value) new_f); } TYPE_FIELDS (type) = nreverse (new_fields); layout_type (type); } TREE_TYPE (ctx->receiver_decl) = build_pointer_type (type); } /* Instantiate decls as necessary in CTX to satisfy the data sharing specified by CLAUSES. */ static void scan_sharing_clauses (tree clauses, omp_context *ctx) { tree c, decl; bool scan_array_reductions = false; for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c)) { bool by_ref; switch (OMP_CLAUSE_CODE (c)) { case OMP_CLAUSE_PRIVATE: decl = OMP_CLAUSE_DECL (c); if (!is_variable_sized (decl)) install_var_local (decl, ctx); break; case OMP_CLAUSE_SHARED: gcc_assert (is_parallel_ctx (ctx)); decl = OMP_CLAUSE_DECL (c); gcc_assert (!is_variable_sized (decl)); by_ref = use_pointer_for_field (decl, true); /* Global variables don't need to be copied, the receiver side will use them directly. */ if (is_global_var (maybe_lookup_decl_in_outer_ctx (decl, ctx))) break; if (! TREE_READONLY (decl) || TREE_ADDRESSABLE (decl) || by_ref || is_reference (decl)) { install_var_field (decl, by_ref, ctx); install_var_local (decl, ctx); break; } /* We don't need to copy const scalar vars back. */ OMP_CLAUSE_SET_CODE (c, OMP_CLAUSE_FIRSTPRIVATE); goto do_private; case OMP_CLAUSE_LASTPRIVATE: /* Let the corresponding firstprivate clause create the variable. */ if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)) break; /* FALLTHRU */ case OMP_CLAUSE_FIRSTPRIVATE: case OMP_CLAUSE_REDUCTION: decl = OMP_CLAUSE_DECL (c); do_private: if (is_variable_sized (decl)) break; else if (is_parallel_ctx (ctx) && ! is_global_var (maybe_lookup_decl_in_outer_ctx (decl, ctx))) { by_ref = use_pointer_for_field (decl, false); install_var_field (decl, by_ref, ctx); } install_var_local (decl, ctx); break; case OMP_CLAUSE_COPYPRIVATE: if (ctx->outer) scan_omp (&OMP_CLAUSE_DECL (c), ctx->outer); /* FALLTHRU */ case OMP_CLAUSE_COPYIN: decl = OMP_CLAUSE_DECL (c); by_ref = use_pointer_for_field (decl, false); install_var_field (decl, by_ref, ctx); break; case OMP_CLAUSE_DEFAULT: ctx->default_kind = OMP_CLAUSE_DEFAULT_KIND (c); break; case OMP_CLAUSE_IF: case OMP_CLAUSE_NUM_THREADS: case OMP_CLAUSE_SCHEDULE: if (ctx->outer) scan_omp (&OMP_CLAUSE_OPERAND (c, 0), ctx->outer); break; case OMP_CLAUSE_NOWAIT: case OMP_CLAUSE_ORDERED: break; default: gcc_unreachable (); } } for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c)) { switch (OMP_CLAUSE_CODE (c)) { case OMP_CLAUSE_LASTPRIVATE: /* Let the corresponding firstprivate clause create the variable. */ if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)) break; /* FALLTHRU */ case OMP_CLAUSE_PRIVATE: case OMP_CLAUSE_FIRSTPRIVATE: case OMP_CLAUSE_REDUCTION: decl = OMP_CLAUSE_DECL (c); if (is_variable_sized (decl)) install_var_local (decl, ctx); fixup_remapped_decl (decl, ctx, OMP_CLAUSE_CODE (c) == OMP_CLAUSE_PRIVATE && OMP_CLAUSE_PRIVATE_DEBUG (c)); if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION && OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) scan_array_reductions = true; break; case OMP_CLAUSE_SHARED: decl = OMP_CLAUSE_DECL (c); if (! is_global_var (maybe_lookup_decl_in_outer_ctx (decl, ctx))) fixup_remapped_decl (decl, ctx, false); break; case OMP_CLAUSE_COPYPRIVATE: case OMP_CLAUSE_COPYIN: case OMP_CLAUSE_DEFAULT: case OMP_CLAUSE_IF: case OMP_CLAUSE_NUM_THREADS: case OMP_CLAUSE_SCHEDULE: case OMP_CLAUSE_NOWAIT: case OMP_CLAUSE_ORDERED: break; default: gcc_unreachable (); } } if (scan_array_reductions) for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c)) if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION && OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) { scan_omp (&OMP_CLAUSE_REDUCTION_INIT (c), ctx); scan_omp (&OMP_CLAUSE_REDUCTION_MERGE (c), ctx); } } /* Create a new name for omp child function. Returns an identifier. */ static GTY(()) unsigned int tmp_ompfn_id_num; static tree create_omp_child_function_name (void) { tree name = DECL_ASSEMBLER_NAME (current_function_decl); size_t len = IDENTIFIER_LENGTH (name); char *tmp_name, *prefix; prefix = alloca (len + sizeof ("_omp_fn")); memcpy (prefix, IDENTIFIER_POINTER (name), len); strcpy (prefix + len, "_omp_fn"); #ifndef NO_DOT_IN_LABEL prefix[len] = '.'; #elif !defined NO_DOLLAR_IN_LABEL prefix[len] = '$'; #endif ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix, tmp_ompfn_id_num++); return get_identifier (tmp_name); } /* Build a decl for the omp child function. It'll not contain a body yet, just the bare decl. */ static void create_omp_child_function (omp_context *ctx) { tree decl, type, name, t; name = create_omp_child_function_name (); type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); decl = build_decl (FUNCTION_DECL, name, type); decl = lang_hooks.decls.pushdecl (decl); ctx->cb.dst_fn = decl; TREE_STATIC (decl) = 1; TREE_USED (decl) = 1; DECL_ARTIFICIAL (decl) = 1; DECL_IGNORED_P (decl) = 0; TREE_PUBLIC (decl) = 0; DECL_UNINLINABLE (decl) = 1; DECL_EXTERNAL (decl) = 0; DECL_CONTEXT (decl) = NULL_TREE; DECL_INITIAL (decl) = make_node (BLOCK); t = build_decl (RESULT_DECL, NULL_TREE, void_type_node); DECL_ARTIFICIAL (t) = 1; DECL_IGNORED_P (t) = 1; DECL_RESULT (decl) = t; t = build_decl (PARM_DECL, get_identifier (".omp_data_i"), ptr_type_node); DECL_ARTIFICIAL (t) = 1; DECL_ARG_TYPE (t) = ptr_type_node; DECL_CONTEXT (t) = current_function_decl; TREE_USED (t) = 1; DECL_ARGUMENTS (decl) = t; ctx->receiver_decl = t; /* Allocate memory for the function structure. The call to allocate_struct_function clobbers CFUN, so we need to restore it afterward. */ allocate_struct_function (decl); DECL_SOURCE_LOCATION (decl) = EXPR_LOCATION (ctx->stmt); cfun->function_end_locus = EXPR_LOCATION (ctx->stmt); cfun = ctx->cb.src_cfun; } /* Scan an OpenMP parallel directive. */ static void scan_omp_parallel (tree *stmt_p, omp_context *outer_ctx) { omp_context *ctx; tree name; /* Ignore parallel directives with empty bodies, unless there are copyin clauses. */ if (optimize > 0 && empty_body_p (OMP_PARALLEL_BODY (*stmt_p)) && find_omp_clause (OMP_CLAUSES (*stmt_p), OMP_CLAUSE_COPYIN) == NULL) { *stmt_p = build_empty_stmt (); return; } ctx = new_omp_context (*stmt_p, outer_ctx); if (parallel_nesting_level > 1) ctx->is_nested = true; ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0); ctx->default_kind = OMP_CLAUSE_DEFAULT_SHARED; ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE); name = create_tmp_var_name (".omp_data_s"); name = build_decl (TYPE_DECL, name, ctx->record_type); TYPE_NAME (ctx->record_type) = name; create_omp_child_function (ctx); OMP_PARALLEL_FN (*stmt_p) = ctx->cb.dst_fn; scan_sharing_clauses (OMP_PARALLEL_CLAUSES (*stmt_p), ctx); scan_omp (&OMP_PARALLEL_BODY (*stmt_p), ctx); if (TYPE_FIELDS (ctx->record_type) == NULL) ctx->record_type = ctx->receiver_decl = NULL; else { layout_type (ctx->record_type); fixup_child_record_type (ctx); } } /* Scan an OpenMP loop directive. */ static void scan_omp_for (tree *stmt_p, omp_context *outer_ctx) { omp_context *ctx; tree stmt; stmt = *stmt_p; ctx = new_omp_context (stmt, outer_ctx); scan_sharing_clauses (OMP_FOR_CLAUSES (stmt), ctx); scan_omp (&OMP_FOR_PRE_BODY (stmt), ctx); scan_omp (&OMP_FOR_INIT (stmt), ctx); scan_omp (&OMP_FOR_COND (stmt), ctx); scan_omp (&OMP_FOR_INCR (stmt), ctx); scan_omp (&OMP_FOR_BODY (stmt), ctx); } /* Scan an OpenMP sections directive. */ static void scan_omp_sections (tree *stmt_p, omp_context *outer_ctx) { tree stmt; omp_context *ctx; stmt = *stmt_p; ctx = new_omp_context (stmt, outer_ctx); scan_sharing_clauses (OMP_SECTIONS_CLAUSES (stmt), ctx); scan_omp (&OMP_SECTIONS_BODY (stmt), ctx); } /* Scan an OpenMP single directive. */ static void scan_omp_single (tree *stmt_p, omp_context *outer_ctx) { tree stmt = *stmt_p; omp_context *ctx; tree name; ctx = new_omp_context (stmt, outer_ctx); ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0); ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE); name = create_tmp_var_name (".omp_copy_s"); name = build_decl (TYPE_DECL, name, ctx->record_type); TYPE_NAME (ctx->record_type) = name; scan_sharing_clauses (OMP_SINGLE_CLAUSES (stmt), ctx); scan_omp (&OMP_SINGLE_BODY (stmt), ctx); if (TYPE_FIELDS (ctx->record_type) == NULL) ctx->record_type = NULL; else layout_type (ctx->record_type); } /* Check OpenMP nesting restrictions. */ static void check_omp_nesting_restrictions (tree t, omp_context *ctx) { switch (TREE_CODE (t)) { case OMP_FOR: case OMP_SECTIONS: case OMP_SINGLE: for (; ctx != NULL; ctx = ctx->outer) switch (TREE_CODE (ctx->stmt)) { case OMP_FOR: case OMP_SECTIONS: case OMP_SINGLE: case OMP_ORDERED: case OMP_MASTER: warning (0, "work-sharing region may not be closely nested inside " "of work-sharing, critical, ordered or master region"); return; case OMP_PARALLEL: return; default: break; } break; case OMP_MASTER: for (; ctx != NULL; ctx = ctx->outer) switch (TREE_CODE (ctx->stmt)) { case OMP_FOR: case OMP_SECTIONS: case OMP_SINGLE: warning (0, "master region may not be closely nested inside " "of work-sharing region"); return; case OMP_PARALLEL: return; default: break; } break; case OMP_ORDERED: for (; ctx != NULL; ctx = ctx->outer) switch (TREE_CODE (ctx->stmt)) { case OMP_CRITICAL: warning (0, "ordered region may not be closely nested inside " "of critical region"); return; case OMP_FOR: if (find_omp_clause (OMP_CLAUSES (ctx->stmt), OMP_CLAUSE_ORDERED) == NULL) warning (0, "ordered region must be closely nested inside " "a loop region with an ordered clause"); return; case OMP_PARALLEL: return; default: break; } break; case OMP_CRITICAL: for (; ctx != NULL; ctx = ctx->outer) if (TREE_CODE (ctx->stmt) == OMP_CRITICAL && OMP_CRITICAL_NAME (t) == OMP_CRITICAL_NAME (ctx->stmt)) { warning (0, "critical region may not be nested inside a critical " "region with the same name"); return; } break; default: break; } } /* Callback for walk_stmts used to scan for OpenMP directives at TP. */ static tree scan_omp_1 (tree *tp, int *walk_subtrees, void *data) { struct walk_stmt_info *wi = data; omp_context *ctx = wi->info; tree t = *tp; if (EXPR_HAS_LOCATION (t)) input_location = EXPR_LOCATION (t); /* Check the OpenMP nesting restrictions. */ if (OMP_DIRECTIVE_P (t) && ctx != NULL) check_omp_nesting_restrictions (t, ctx); *walk_subtrees = 0; switch (TREE_CODE (t)) { case OMP_PARALLEL: parallel_nesting_level++; scan_omp_parallel (tp, ctx); parallel_nesting_level--; break; case OMP_FOR: scan_omp_for (tp, ctx); break; case OMP_SECTIONS: scan_omp_sections (tp, ctx); break; case OMP_SINGLE: scan_omp_single (tp, ctx); break; case OMP_SECTION: case OMP_MASTER: case OMP_ORDERED: case OMP_CRITICAL: ctx = new_omp_context (*tp, ctx); scan_omp (&OMP_BODY (*tp), ctx); break; case BIND_EXPR: { tree var; *walk_subtrees = 1; for (var = BIND_EXPR_VARS (t); var ; var = TREE_CHAIN (var)) insert_decl_map (&ctx->cb, var, var); } break; case VAR_DECL: case PARM_DECL: case LABEL_DECL: case RESULT_DECL: if (ctx) *tp = remap_decl (t, &ctx->cb); break; default: if (ctx && TYPE_P (t)) *tp = remap_type (t, &ctx->cb); else if (!DECL_P (t)) *walk_subtrees = 1; break; } return NULL_TREE; } /* Scan all the statements starting at STMT_P. CTX contains context information about the OpenMP directives and clauses found during the scan. */ static void scan_omp (tree *stmt_p, omp_context *ctx) { location_t saved_location; struct walk_stmt_info wi; memset (&wi, 0, sizeof (wi)); wi.callback = scan_omp_1; wi.info = ctx; wi.want_bind_expr = (ctx != NULL); wi.want_locations = true; saved_location = input_location; walk_stmts (&wi, stmt_p); input_location = saved_location; } /* Re-gimplification and code generation routines. */ /* Build a call to GOMP_barrier. */ static void build_omp_barrier (tree *stmt_list) { tree t; t = built_in_decls[BUILT_IN_GOMP_BARRIER]; t = build_function_call_expr (t, NULL); gimplify_and_add (t, stmt_list); } /* If a context was created for STMT when it was scanned, return it. */ static omp_context * maybe_lookup_ctx (tree stmt) { splay_tree_node n; n = splay_tree_lookup (all_contexts, (splay_tree_key) stmt); return n ? (omp_context *) n->value : NULL; } /* Find the mapping for DECL in CTX or the immediately enclosing context that has a mapping for DECL. If CTX is a nested parallel directive, we may have to use the decl mappings created in CTX's parent context. Suppose that we have the following parallel nesting (variable UIDs showed for clarity): iD.1562 = 0; #omp parallel shared(iD.1562) -> outer parallel iD.1562 = iD.1562 + 1; #omp parallel shared (iD.1562) -> inner parallel iD.1562 = iD.1562 - 1; Each parallel structure will create a distinct .omp_data_s structure for copying iD.1562 in/out of the directive: outer parallel .omp_data_s.1.i -> iD.1562 inner parallel .omp_data_s.2.i -> iD.1562 A shared variable mapping will produce a copy-out operation before the parallel directive and a copy-in operation after it. So, in this case we would have: iD.1562 = 0; .omp_data_o.1.i = iD.1562; #omp parallel shared(iD.1562) -> outer parallel .omp_data_i.1 = &.omp_data_o.1 .omp_data_i.1->i = .omp_data_i.1->i + 1; .omp_data_o.2.i = iD.1562; -> ** #omp parallel shared(iD.1562) -> inner parallel .omp_data_i.2 = &.omp_data_o.2 .omp_data_i.2->i = .omp_data_i.2->i - 1; ** This is a problem. The symbol iD.1562 cannot be referenced inside the body of the outer parallel region. But since we are emitting this copy operation while expanding the inner parallel directive, we need to access the CTX structure of the outer parallel directive to get the correct mapping: .omp_data_o.2.i = .omp_data_i.1->i Since there may be other workshare or parallel directives enclosing the parallel directive, it may be necessary to walk up the context parent chain. This is not a problem in general because nested parallelism happens only rarely. */ static tree lookup_decl_in_outer_ctx (tree decl, omp_context *ctx) { tree t; omp_context *up; gcc_assert (ctx->is_nested); for (up = ctx->outer, t = NULL; up && t == NULL; up = up->outer) t = maybe_lookup_decl (decl, up); gcc_assert (t || is_global_var (decl)); return t ? t : decl; } /* Similar to lookup_decl_in_outer_ctx, but return DECL if not found in outer contexts. */ static tree maybe_lookup_decl_in_outer_ctx (tree decl, omp_context *ctx) { tree t = NULL; omp_context *up; if (ctx->is_nested) for (up = ctx->outer, t = NULL; up && t == NULL; up = up->outer) t = maybe_lookup_decl (decl, up); return t ? t : decl; } /* Construct the initialization value for reduction CLAUSE. */ tree omp_reduction_init (tree clause, tree type) { switch (OMP_CLAUSE_REDUCTION_CODE (clause)) { case PLUS_EXPR: case MINUS_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR: case TRUTH_XOR_EXPR: case NE_EXPR: return fold_convert (type, integer_zero_node); case MULT_EXPR: case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR: case EQ_EXPR: return fold_convert (type, integer_one_node); case BIT_AND_EXPR: return fold_convert (type, integer_minus_one_node); case MAX_EXPR: if (SCALAR_FLOAT_TYPE_P (type)) { REAL_VALUE_TYPE max, min; if (HONOR_INFINITIES (TYPE_MODE (type))) { real_inf (&max); real_arithmetic (&min, NEGATE_EXPR, &max, NULL); } else real_maxval (&min, 1, TYPE_MODE (type)); return build_real (type, min); } else { gcc_assert (INTEGRAL_TYPE_P (type)); return TYPE_MIN_VALUE (type); } case MIN_EXPR: if (SCALAR_FLOAT_TYPE_P (type)) { REAL_VALUE_TYPE max; if (HONOR_INFINITIES (TYPE_MODE (type))) real_inf (&max); else real_maxval (&max, 0, TYPE_MODE (type)); return build_real (type, max); } else { gcc_assert (INTEGRAL_TYPE_P (type)); return TYPE_MAX_VALUE (type); } default: gcc_unreachable (); } } /* Generate code to implement the input clauses, FIRSTPRIVATE and COPYIN, from the receiver (aka child) side and initializers for REFERENCE_TYPE private variables. Initialization statements go in ILIST, while calls to destructors go in DLIST. */ static void lower_rec_input_clauses (tree clauses, tree *ilist, tree *dlist, omp_context *ctx) { tree_stmt_iterator diter; tree c, dtor, copyin_seq, x, args, ptr; bool copyin_by_ref = false; bool lastprivate_firstprivate = false; int pass; *dlist = alloc_stmt_list (); diter = tsi_start (*dlist); copyin_seq = NULL; /* Do all the fixed sized types in the first pass, and the variable sized types in the second pass. This makes sure that the scalar arguments to the variable sized types are processed before we use them in the variable sized operations. */ for (pass = 0; pass < 2; ++pass) { for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) { enum omp_clause_code c_kind = OMP_CLAUSE_CODE (c); tree var, new_var; bool by_ref; switch (c_kind) { case OMP_CLAUSE_PRIVATE: if (OMP_CLAUSE_PRIVATE_DEBUG (c)) continue; break; case OMP_CLAUSE_SHARED: if (maybe_lookup_decl (OMP_CLAUSE_DECL (c), ctx) == NULL) { gcc_assert (is_global_var (OMP_CLAUSE_DECL (c))); continue; } case OMP_CLAUSE_FIRSTPRIVATE: case OMP_CLAUSE_COPYIN: case OMP_CLAUSE_REDUCTION: break; case OMP_CLAUSE_LASTPRIVATE: if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)) { lastprivate_firstprivate = true; if (pass != 0) continue; } break; default: continue; } new_var = var = OMP_CLAUSE_DECL (c); if (c_kind != OMP_CLAUSE_COPYIN) new_var = lookup_decl (var, ctx); if (c_kind == OMP_CLAUSE_SHARED || c_kind == OMP_CLAUSE_COPYIN) { if (pass != 0) continue; } else if (is_variable_sized (var)) { /* For variable sized types, we need to allocate the actual storage here. Call alloca and store the result in the pointer decl that we created elsewhere. */ if (pass == 0) continue; ptr = DECL_VALUE_EXPR (new_var); gcc_assert (TREE_CODE (ptr) == INDIRECT_REF); ptr = TREE_OPERAND (ptr, 0); gcc_assert (DECL_P (ptr)); x = TYPE_SIZE_UNIT (TREE_TYPE (new_var)); args = tree_cons (NULL, x, NULL); x = built_in_decls[BUILT_IN_ALLOCA]; x = build_function_call_expr (x, args); x = fold_convert (TREE_TYPE (ptr), x); x = build2 (MODIFY_EXPR, void_type_node, ptr, x); gimplify_and_add (x, ilist); } else if (is_reference (var)) { /* For references that are being privatized for Fortran, allocate new backing storage for the new pointer variable. This allows us to avoid changing all the code that expects a pointer to something that expects a direct variable. Note that this doesn't apply to C++, since reference types are disallowed in data sharing clauses there, except for NRV optimized return values. */ if (pass == 0) continue; x = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (new_var))); if (TREE_CONSTANT (x)) { const char *name = NULL; if (DECL_NAME (var)) name = IDENTIFIER_POINTER (DECL_NAME (new_var)); x = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (new_var)), name); gimple_add_tmp_var (x); x = build_fold_addr_expr_with_type (x, TREE_TYPE (new_var)); } else { args = tree_cons (NULL, x, NULL); x = built_in_decls[BUILT_IN_ALLOCA]; x = build_function_call_expr (x, args); x = fold_convert (TREE_TYPE (new_var), x); } x = build2 (MODIFY_EXPR, void_type_node, new_var, x); gimplify_and_add (x, ilist); new_var = build_fold_indirect_ref (new_var); } else if (c_kind == OMP_CLAUSE_REDUCTION && OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) { if (pass == 0) continue; } else if (pass != 0) continue; switch (OMP_CLAUSE_CODE (c)) { case OMP_CLAUSE_SHARED: /* Shared global vars are just accessed directly. */ if (is_global_var (new_var)) break; /* Set up the DECL_VALUE_EXPR for shared variables now. This needs to be delayed until after fixup_child_record_type so that we get the correct type during the dereference. */ by_ref = use_pointer_for_field (var, true); x = build_receiver_ref (var, by_ref, ctx); SET_DECL_VALUE_EXPR (new_var, x); DECL_HAS_VALUE_EXPR_P (new_var) = 1; /* ??? If VAR is not passed by reference, and the variable hasn't been initialized yet, then we'll get a warning for the store into the omp_data_s structure. Ideally, we'd be able to notice this and not store anything at all, but we're generating code too early. Suppress the warning. */ if (!by_ref) TREE_NO_WARNING (var) = 1; break; case OMP_CLAUSE_LASTPRIVATE: if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)) break; /* FALLTHRU */ case OMP_CLAUSE_PRIVATE: x = lang_hooks.decls.omp_clause_default_ctor (c, new_var); if (x) gimplify_and_add (x, ilist); /* FALLTHRU */ do_dtor: x = lang_hooks.decls.omp_clause_dtor (c, new_var); if (x) { dtor = x; gimplify_stmt (&dtor); tsi_link_before (&diter, dtor, TSI_SAME_STMT); } break; case OMP_CLAUSE_FIRSTPRIVATE: x = build_outer_var_ref (var, ctx); x = lang_hooks.decls.omp_clause_copy_ctor (c, new_var, x); gimplify_and_add (x, ilist); goto do_dtor; break; case OMP_CLAUSE_COPYIN: by_ref = use_pointer_for_field (var, false); x = build_receiver_ref (var, by_ref, ctx); x = lang_hooks.decls.omp_clause_assign_op (c, new_var, x); append_to_statement_list (x, ©in_seq); copyin_by_ref |= by_ref; break; case OMP_CLAUSE_REDUCTION: if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) { gimplify_and_add (OMP_CLAUSE_REDUCTION_INIT (c), ilist); OMP_CLAUSE_REDUCTION_INIT (c) = NULL; } else { x = omp_reduction_init (c, TREE_TYPE (new_var)); gcc_assert (TREE_CODE (TREE_TYPE (new_var)) != ARRAY_TYPE); x = build2 (MODIFY_EXPR, void_type_node, new_var, x); gimplify_and_add (x, ilist); } break; default: gcc_unreachable (); } } } /* The copyin sequence is not to be executed by the main thread, since that would result in self-copies. Perhaps not visible to scalars, but it certainly is to C++ operator=. */ if (copyin_seq) { x = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM]; x = build_function_call_expr (x, NULL); x = build2 (NE_EXPR, boolean_type_node, x, build_int_cst (TREE_TYPE (x), 0)); x = build3 (COND_EXPR, void_type_node, x, copyin_seq, NULL); gimplify_and_add (x, ilist); } /* If any copyin variable is passed by reference, we must ensure the master thread doesn't modify it before it is copied over in all threads. Similarly for variables in both firstprivate and lastprivate clauses we need to ensure the lastprivate copying happens after firstprivate copying in all threads. */ if (copyin_by_ref || lastprivate_firstprivate) build_omp_barrier (ilist); } /* Generate code to implement the LASTPRIVATE clauses. This is used for both parallel and workshare constructs. PREDICATE may be NULL if it's always true. */ static void lower_lastprivate_clauses (tree clauses, tree predicate, tree *stmt_list, omp_context *ctx) { tree sub_list, x, c; /* Early exit if there are no lastprivate clauses. */ clauses = find_omp_clause (clauses, OMP_CLAUSE_LASTPRIVATE); if (clauses == NULL) { /* If this was a workshare clause, see if it had been combined with its parallel. In that case, look for the clauses on the parallel statement itself. */ if (is_parallel_ctx (ctx)) return; ctx = ctx->outer; if (ctx == NULL || !is_parallel_ctx (ctx)) return; clauses = find_omp_clause (OMP_PARALLEL_CLAUSES (ctx->stmt), OMP_CLAUSE_LASTPRIVATE); if (clauses == NULL) return; } sub_list = alloc_stmt_list (); for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) { tree var, new_var; if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_LASTPRIVATE) continue; var = OMP_CLAUSE_DECL (c); new_var = lookup_decl (var, ctx); x = build_outer_var_ref (var, ctx); if (is_reference (var)) new_var = build_fold_indirect_ref (new_var); x = lang_hooks.decls.omp_clause_assign_op (c, x, new_var); append_to_statement_list (x, &sub_list); } if (predicate) x = build3 (COND_EXPR, void_type_node, predicate, sub_list, NULL); else x = sub_list; gimplify_and_add (x, stmt_list); } /* Generate code to implement the REDUCTION clauses. */ static void lower_reduction_clauses (tree clauses, tree *stmt_list, omp_context *ctx) { tree sub_list = NULL, x, c; int count = 0; /* First see if there is exactly one reduction clause. Use OMP_ATOMIC update in that case, otherwise use a lock. */ for (c = clauses; c && count < 2; c = OMP_CLAUSE_CHAIN (c)) if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION) { if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) { /* Never use OMP_ATOMIC for array reductions. */ count = -1; break; } count++; } if (count == 0) return; for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) { tree var, ref, new_var; enum tree_code code; if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_REDUCTION) continue; var = OMP_CLAUSE_DECL (c); new_var = lookup_decl (var, ctx); if (is_reference (var)) new_var = build_fold_indirect_ref (new_var); ref = build_outer_var_ref (var, ctx); code = OMP_CLAUSE_REDUCTION_CODE (c); /* reduction(-:var) sums up the partial results, so it acts identically to reduction(+:var). */ if (code == MINUS_EXPR) code = PLUS_EXPR; if (count == 1) { tree addr = build_fold_addr_expr (ref); addr = save_expr (addr); ref = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (addr)), addr); x = fold_build2 (code, TREE_TYPE (ref), ref, new_var); x = build2 (OMP_ATOMIC, void_type_node, addr, x); gimplify_and_add (x, stmt_list); return; } if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) { tree placeholder = OMP_CLAUSE_REDUCTION_PLACEHOLDER (c); if (is_reference (var)) ref = build_fold_addr_expr (ref); SET_DECL_VALUE_EXPR (placeholder, ref); DECL_HAS_VALUE_EXPR_P (placeholder) = 1; gimplify_and_add (OMP_CLAUSE_REDUCTION_MERGE (c), &sub_list); OMP_CLAUSE_REDUCTION_MERGE (c) = NULL; OMP_CLAUSE_REDUCTION_PLACEHOLDER (c) = NULL; } else { x = build2 (code, TREE_TYPE (ref), ref, new_var); ref = build_outer_var_ref (var, ctx); x = build2 (MODIFY_EXPR, void_type_node, ref, x); append_to_statement_list (x, &sub_list); } } x = built_in_decls[BUILT_IN_GOMP_ATOMIC_START]; x = build_function_call_expr (x, NULL); gimplify_and_add (x, stmt_list); gimplify_and_add (sub_list, stmt_list); x = built_in_decls[BUILT_IN_GOMP_ATOMIC_END]; x = build_function_call_expr (x, NULL); gimplify_and_add (x, stmt_list); } /* Generate code to implement the COPYPRIVATE clauses. */ static void lower_copyprivate_clauses (tree clauses, tree *slist, tree *rlist, omp_context *ctx) { tree c; for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) { tree var, ref, x; bool by_ref; if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_COPYPRIVATE) continue; var = OMP_CLAUSE_DECL (c); by_ref = use_pointer_for_field (var, false); ref = build_sender_ref (var, ctx); x = (ctx->is_nested) ? lookup_decl_in_outer_ctx (var, ctx) : var; x = by_ref ? build_fold_addr_expr (x) : x; x = build2 (MODIFY_EXPR, void_type_node, ref, x); gimplify_and_add (x, slist); ref = build_receiver_ref (var, by_ref, ctx); if (is_reference (var)) { ref = build_fold_indirect_ref (ref); var = build_fold_indirect_ref (var); } x = lang_hooks.decls.omp_clause_assign_op (c, var, ref); gimplify_and_add (x, rlist); } } /* Generate code to implement the clauses, FIRSTPRIVATE, COPYIN, LASTPRIVATE, and REDUCTION from the sender (aka parent) side. */ static void lower_send_clauses (tree clauses, tree *ilist, tree *olist, omp_context *ctx) { tree c; for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) { tree val, ref, x, var; bool by_ref, do_in = false, do_out = false; switch (OMP_CLAUSE_CODE (c)) { case OMP_CLAUSE_FIRSTPRIVATE: case OMP_CLAUSE_COPYIN: case OMP_CLAUSE_LASTPRIVATE: case OMP_CLAUSE_REDUCTION: break; default: continue; } var = val = OMP_CLAUSE_DECL (c); if (ctx->is_nested) var = lookup_decl_in_outer_ctx (val, ctx); if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_COPYIN && is_global_var (var)) continue; if (is_variable_sized (val)) continue; by_ref = use_pointer_for_field (val, false); switch (OMP_CLAUSE_CODE (c)) { case OMP_CLAUSE_FIRSTPRIVATE: case OMP_CLAUSE_COPYIN: do_in = true; break; case OMP_CLAUSE_LASTPRIVATE: if (by_ref || is_reference (val)) { if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)) continue; do_in = true; } else do_out = true; break; case OMP_CLAUSE_REDUCTION: do_in = true; do_out = !(by_ref || is_reference (val)); break; default: gcc_unreachable (); } if (do_in) { ref = build_sender_ref (val, ctx); x = by_ref ? build_fold_addr_expr (var) : var; x = build2 (MODIFY_EXPR, void_type_node, ref, x); gimplify_and_add (x, ilist); } if (do_out) { ref = build_sender_ref (val, ctx); x = build2 (MODIFY_EXPR, void_type_node, var, ref); gimplify_and_add (x, olist); } } } /* Generate code to implement SHARED from the sender (aka parent) side. This is trickier, since OMP_PARALLEL_CLAUSES doesn't list things that got automatically shared. */ static void lower_send_shared_vars (tree *ilist, tree *olist, omp_context *ctx) { tree var, ovar, nvar, f, x; if (ctx->record_type == NULL) return; for (f = TYPE_FIELDS (ctx->record_type); f ; f = TREE_CHAIN (f)) { ovar = DECL_ABSTRACT_ORIGIN (f); nvar = maybe_lookup_decl (ovar, ctx); if (!nvar || !DECL_HAS_VALUE_EXPR_P (nvar)) continue; var = ovar; /* If CTX is a nested parallel directive. Find the immediately enclosing parallel or workshare construct that contains a mapping for OVAR. */ if (ctx->is_nested) var = lookup_decl_in_outer_ctx (ovar, ctx); if (use_pointer_for_field (ovar, true)) { x = build_sender_ref (ovar, ctx); var = build_fold_addr_expr (var); x = build2 (MODIFY_EXPR, void_type_node, x, var); gimplify_and_add (x, ilist); } else { x = build_sender_ref (ovar, ctx); x = build2 (MODIFY_EXPR, void_type_node, x, var); gimplify_and_add (x, ilist); x = build_sender_ref (ovar, ctx); x = build2 (MODIFY_EXPR, void_type_node, var, x); gimplify_and_add (x, olist); } } } /* Build the function calls to GOMP_parallel_start etc to actually generate the parallel operation. REGION is the parallel region being expanded. BB is the block where to insert the code. WS_ARGS will be set if this is a call to a combined parallel+workshare construct, it contains the list of additional arguments needed by the workshare construct. */ static void expand_parallel_call (struct omp_region *region, basic_block bb, tree entry_stmt, tree ws_args) { tree t, args, val, cond, c, list, clauses; block_stmt_iterator si; int start_ix; clauses = OMP_PARALLEL_CLAUSES (entry_stmt); push_gimplify_context (); /* Determine what flavor of GOMP_parallel_start we will be emitting. */ start_ix = BUILT_IN_GOMP_PARALLEL_START; if (is_combined_parallel (region)) { switch (region->inner->type) { case OMP_FOR: start_ix = BUILT_IN_GOMP_PARALLEL_LOOP_STATIC_START + region->inner->sched_kind; break; case OMP_SECTIONS: start_ix = BUILT_IN_GOMP_PARALLEL_SECTIONS_START; break; default: gcc_unreachable (); } } /* By default, the value of NUM_THREADS is zero (selected at run time) and there is no conditional. */ cond = NULL_TREE; val = build_int_cst (unsigned_type_node, 0); c = find_omp_clause (clauses, OMP_CLAUSE_IF); if (c) cond = OMP_CLAUSE_IF_EXPR (c); c = find_omp_clause (clauses, OMP_CLAUSE_NUM_THREADS); if (c) val = OMP_CLAUSE_NUM_THREADS_EXPR (c); /* Ensure 'val' is of the correct type. */ val = fold_convert (unsigned_type_node, val); /* If we found the clause 'if (cond)', build either (cond != 0) or (cond ? val : 1u). */ if (cond) { block_stmt_iterator si; cond = gimple_boolify (cond); if (integer_zerop (val)) val = build2 (EQ_EXPR, unsigned_type_node, cond, build_int_cst (TREE_TYPE (cond), 0)); else { basic_block cond_bb, then_bb, else_bb; edge e; tree t, then_lab, else_lab, tmp; tmp = create_tmp_var (TREE_TYPE (val), NULL); e = split_block (bb, NULL); cond_bb = e->src; bb = e->dest; remove_edge (e); then_bb = create_empty_bb (cond_bb); else_bb = create_empty_bb (then_bb); then_lab = create_artificial_label (); else_lab = create_artificial_label (); t = build3 (COND_EXPR, void_type_node, cond, build_and_jump (&then_lab), build_and_jump (&else_lab)); si = bsi_start (cond_bb); bsi_insert_after (&si, t, BSI_CONTINUE_LINKING); si = bsi_start (then_bb); t = build1 (LABEL_EXPR, void_type_node, then_lab); bsi_insert_after (&si, t, BSI_CONTINUE_LINKING); t = build2 (MODIFY_EXPR, void_type_node, tmp, val); bsi_insert_after (&si, t, BSI_CONTINUE_LINKING); si = bsi_start (else_bb); t = build1 (LABEL_EXPR, void_type_node, else_lab); bsi_insert_after (&si, t, BSI_CONTINUE_LINKING); t = build2 (MODIFY_EXPR, void_type_node, tmp, build_int_cst (unsigned_type_node, 1)); bsi_insert_after (&si, t, BSI_CONTINUE_LINKING); make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE); make_edge (cond_bb, else_bb, EDGE_FALSE_VALUE); make_edge (then_bb, bb, EDGE_FALLTHRU); make_edge (else_bb, bb, EDGE_FALLTHRU); val = tmp; } list = NULL_TREE; val = get_formal_tmp_var (val, &list); si = bsi_start (bb); bsi_insert_after (&si, list, BSI_CONTINUE_LINKING); } list = NULL_TREE; args = tree_cons (NULL, val, NULL); t = OMP_PARALLEL_DATA_ARG (entry_stmt); if (t == NULL) t = null_pointer_node; else t = build_fold_addr_expr (t); args = tree_cons (NULL, t, args); t = build_fold_addr_expr (OMP_PARALLEL_FN (entry_stmt)); args = tree_cons (NULL, t, args); if (ws_args) args = chainon (args, ws_args); t = built_in_decls[start_ix]; t = build_function_call_expr (t, args); gimplify_and_add (t, &list); t = OMP_PARALLEL_DATA_ARG (entry_stmt); if (t == NULL) t = null_pointer_node; else t = build_fold_addr_expr (t); args = tree_cons (NULL, t, NULL); t = build_function_call_expr (OMP_PARALLEL_FN (entry_stmt), args); gimplify_and_add (t, &list); t = built_in_decls[BUILT_IN_GOMP_PARALLEL_END]; t = build_function_call_expr (t, NULL); gimplify_and_add (t, &list); si = bsi_last (bb); bsi_insert_after (&si, list, BSI_CONTINUE_LINKING); pop_gimplify_context (NULL_TREE); } /* If exceptions are enabled, wrap *STMT_P in a MUST_NOT_THROW catch handler. This prevents programs from violating the structured block semantics with throws. */ static void maybe_catch_exception (tree *stmt_p) { tree f, t; if (!flag_exceptions) return; if (lang_protect_cleanup_actions) t = lang_protect_cleanup_actions (); else { t = built_in_decls[BUILT_IN_TRAP]; t = build_function_call_expr (t, NULL); } f = build2 (EH_FILTER_EXPR, void_type_node, NULL, NULL); EH_FILTER_MUST_NOT_THROW (f) = 1; gimplify_and_add (t, &EH_FILTER_FAILURE (f)); t = build2 (TRY_CATCH_EXPR, void_type_node, *stmt_p, NULL); append_to_statement_list (f, &TREE_OPERAND (t, 1)); *stmt_p = NULL; append_to_statement_list (t, stmt_p); } /* Chain all the DECLs in LIST by their TREE_CHAIN fields. */ static tree list2chain (tree list) { tree t; for (t = list; t; t = TREE_CHAIN (t)) { tree var = TREE_VALUE (t); if (TREE_CHAIN (t)) TREE_CHAIN (var) = TREE_VALUE (TREE_CHAIN (t)); else TREE_CHAIN (var) = NULL_TREE; } return list ? TREE_VALUE (list) : NULL_TREE; } /* Remove barriers in REGION->EXIT's block. Note that this is only valid for OMP_PARALLEL regions. Since the end of a parallel region is an implicit barrier, any workshare inside the OMP_PARALLEL that left a barrier at the end of the OMP_PARALLEL region can now be removed. */ static void remove_exit_barrier (struct omp_region *region) { block_stmt_iterator si; basic_block exit_bb; edge_iterator ei; edge e; tree t; exit_bb = region->exit; /* If the parallel region doesn't return, we don't have REGION->EXIT block at all. */ if (! exit_bb) return; /* The last insn in the block will be the parallel's OMP_RETURN. The workshare's OMP_RETURN will be in a preceding block. The kinds of statements that can appear in between are extremely limited -- no memory operations at all. Here, we allow nothing at all, so the only thing we allow to precede this OMP_RETURN is a label. */ si = bsi_last (exit_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_RETURN); bsi_prev (&si); if (!bsi_end_p (si) && TREE_CODE (bsi_stmt (si)) != LABEL_EXPR) return; FOR_EACH_EDGE (e, ei, exit_bb->preds) { si = bsi_last (e->src); if (bsi_end_p (si)) continue; t = bsi_stmt (si); if (TREE_CODE (t) == OMP_RETURN) OMP_RETURN_NOWAIT (t) = 1; } } static void remove_exit_barriers (struct omp_region *region) { if (region->type == OMP_PARALLEL) remove_exit_barrier (region); if (region->inner) { region = region->inner; remove_exit_barriers (region); while (region->next) { region = region->next; remove_exit_barriers (region); } } } /* Expand the OpenMP parallel directive starting at REGION. */ static void expand_omp_parallel (struct omp_region *region) { basic_block entry_bb, exit_bb, new_bb; struct function *child_cfun, *saved_cfun; tree child_fn, block, t, ws_args; block_stmt_iterator si; tree entry_stmt; edge e; bool do_cleanup_cfg = false; entry_stmt = last_stmt (region->entry); child_fn = OMP_PARALLEL_FN (entry_stmt); child_cfun = DECL_STRUCT_FUNCTION (child_fn); saved_cfun = cfun; entry_bb = region->entry; exit_bb = region->exit; if (is_combined_parallel (region)) ws_args = region->ws_args; else ws_args = NULL_TREE; if (child_cfun->cfg) { /* Due to inlining, it may happen that we have already outlined the region, in which case all we need to do is make the sub-graph unreachable and emit the parallel call. */ edge entry_succ_e, exit_succ_e; block_stmt_iterator si; entry_succ_e = single_succ_edge (entry_bb); si = bsi_last (entry_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_PARALLEL); bsi_remove (&si, true); new_bb = entry_bb; remove_edge (entry_succ_e); if (exit_bb) { exit_succ_e = single_succ_edge (exit_bb); make_edge (new_bb, exit_succ_e->dest, EDGE_FALLTHRU); } do_cleanup_cfg = true; } else { /* If the parallel region needs data sent from the parent function, then the very first statement (except possible tree profile counter updates) of the parallel body is a copy assignment .OMP_DATA_I = &.OMP_DATA_O. Since &.OMP_DATA_O is passed as an argument to the child function, we need to replace it with the argument as seen by the child function. In most cases, this will end up being the identity assignment .OMP_DATA_I = .OMP_DATA_I. However, if the parallel body had a function call that has been inlined, the original PARM_DECL .OMP_DATA_I may have been converted into a different local variable. In which case, we need to keep the assignment. */ if (OMP_PARALLEL_DATA_ARG (entry_stmt)) { basic_block entry_succ_bb = single_succ (entry_bb); block_stmt_iterator si; for (si = bsi_start (entry_succ_bb); ; bsi_next (&si)) { tree stmt, arg; gcc_assert (!bsi_end_p (si)); stmt = bsi_stmt (si); if (TREE_CODE (stmt) != MODIFY_EXPR) continue; arg = TREE_OPERAND (stmt, 1); STRIP_NOPS (arg); if (TREE_CODE (arg) == ADDR_EXPR && TREE_OPERAND (arg, 0) == OMP_PARALLEL_DATA_ARG (entry_stmt)) { if (TREE_OPERAND (stmt, 0) == DECL_ARGUMENTS (child_fn)) bsi_remove (&si, true); else TREE_OPERAND (stmt, 1) = DECL_ARGUMENTS (child_fn); break; } } } /* Declare local variables needed in CHILD_CFUN. */ block = DECL_INITIAL (child_fn); BLOCK_VARS (block) = list2chain (child_cfun->unexpanded_var_list); DECL_SAVED_TREE (child_fn) = single_succ (entry_bb)->stmt_list; /* Reset DECL_CONTEXT on locals and function arguments. */ for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t)) DECL_CONTEXT (t) = child_fn; for (t = DECL_ARGUMENTS (child_fn); t; t = TREE_CHAIN (t)) DECL_CONTEXT (t) = child_fn; /* Split ENTRY_BB at OMP_PARALLEL so that it can be moved to the child function. */ si = bsi_last (entry_bb); t = bsi_stmt (si); gcc_assert (t && TREE_CODE (t) == OMP_PARALLEL); bsi_remove (&si, true); e = split_block (entry_bb, t); entry_bb = e->dest; single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU; /* Move the parallel region into CHILD_CFUN. We need to reset dominance information because the expansion of the inner regions has invalidated it. */ free_dominance_info (CDI_DOMINATORS); new_bb = move_sese_region_to_fn (child_cfun, entry_bb, exit_bb); if (exit_bb) single_succ_edge (new_bb)->flags = EDGE_FALLTHRU; cgraph_add_new_function (child_fn); /* Convert OMP_RETURN into a RETURN_EXPR. */ if (exit_bb) { si = bsi_last (exit_bb); gcc_assert (!bsi_end_p (si) && TREE_CODE (bsi_stmt (si)) == OMP_RETURN); t = build1 (RETURN_EXPR, void_type_node, NULL); bsi_insert_after (&si, t, BSI_SAME_STMT); bsi_remove (&si, true); } } /* Emit a library call to launch the children threads. */ expand_parallel_call (region, new_bb, entry_stmt, ws_args); if (do_cleanup_cfg) { /* Clean up the unreachable sub-graph we created above. */ free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); cleanup_tree_cfg (); } } /* A subroutine of expand_omp_for. Generate code for a parallel loop with any schedule. Given parameters: for (V = N1; V cond N2; V += STEP) BODY; where COND is "<" or ">", we generate pseudocode more = GOMP_loop_foo_start (N1, N2, STEP, CHUNK, &istart0, &iend0); if (more) goto L0; else goto L3; L0: V = istart0; iend = iend0; L1: BODY; V += STEP; if (V cond iend) goto L1; else goto L2; L2: if (GOMP_loop_foo_next (&istart0, &iend0)) goto L0; else goto L3; L3: If this is a combined omp parallel loop, instead of the call to GOMP_loop_foo_start, we emit 'goto L3'. */ static void expand_omp_for_generic (struct omp_region *region, struct omp_for_data *fd, enum built_in_function start_fn, enum built_in_function next_fn) { tree l0, l1, l2 = NULL, l3 = NULL; tree type, istart0, iend0, iend; tree t, args, list; basic_block entry_bb, cont_bb, exit_bb, l0_bb, l1_bb; basic_block l2_bb = NULL, l3_bb = NULL; block_stmt_iterator si; bool in_combined_parallel = is_combined_parallel (region); type = TREE_TYPE (fd->v); istart0 = create_tmp_var (long_integer_type_node, ".istart0"); iend0 = create_tmp_var (long_integer_type_node, ".iend0"); iend = create_tmp_var (type, NULL); TREE_ADDRESSABLE (istart0) = 1; TREE_ADDRESSABLE (iend0) = 1; gcc_assert ((region->cont != NULL) ^ (region->exit == NULL)); entry_bb = region->entry; l0_bb = create_empty_bb (entry_bb); l1_bb = single_succ (entry_bb); l0 = tree_block_label (l0_bb); l1 = tree_block_label (l1_bb); cont_bb = region->cont; exit_bb = region->exit; if (cont_bb) { l2_bb = create_empty_bb (cont_bb); l3_bb = single_succ (cont_bb); l2 = tree_block_label (l2_bb); l3 = tree_block_label (l3_bb); } si = bsi_last (entry_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_FOR); if (!in_combined_parallel) { /* If this is not a combined parallel loop, emit a call to GOMP_loop_foo_start in ENTRY_BB. */ list = alloc_stmt_list (); t = build_fold_addr_expr (iend0); args = tree_cons (NULL, t, NULL); t = build_fold_addr_expr (istart0); args = tree_cons (NULL, t, args); if (fd->chunk_size) { t = fold_convert (long_integer_type_node, fd->chunk_size); args = tree_cons (NULL, t, args); } t = fold_convert (long_integer_type_node, fd->step); args = tree_cons (NULL, t, args); t = fold_convert (long_integer_type_node, fd->n2); args = tree_cons (NULL, t, args); t = fold_convert (long_integer_type_node, fd->n1); args = tree_cons (NULL, t, args); t = build_function_call_expr (built_in_decls[start_fn], args); t = get_formal_tmp_var (t, &list); if (cont_bb) { t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l0), build_and_jump (&l3)); append_to_statement_list (t, &list); } bsi_insert_after (&si, list, BSI_SAME_STMT); } bsi_remove (&si, true); /* Iteration setup for sequential loop goes in L0_BB. */ list = alloc_stmt_list (); t = fold_convert (type, istart0); t = build2 (MODIFY_EXPR, void_type_node, fd->v, t); gimplify_and_add (t, &list); t = fold_convert (type, iend0); t = build2 (MODIFY_EXPR, void_type_node, iend, t); gimplify_and_add (t, &list); si = bsi_start (l0_bb); bsi_insert_after (&si, list, BSI_CONTINUE_LINKING); /* Handle the rare case where BODY doesn't ever return. */ if (cont_bb == NULL) { remove_edge (single_succ_edge (entry_bb)); make_edge (entry_bb, l0_bb, EDGE_FALLTHRU); make_edge (l0_bb, l1_bb, EDGE_FALLTHRU); return; } /* Code to control the increment and predicate for the sequential loop goes in the first half of EXIT_BB (we split EXIT_BB so that we can inherit all the edges going out of the loop body). */ list = alloc_stmt_list (); t = build2 (PLUS_EXPR, type, fd->v, fd->step); t = build2 (MODIFY_EXPR, void_type_node, fd->v, t); gimplify_and_add (t, &list); t = build2 (fd->cond_code, boolean_type_node, fd->v, iend); t = get_formal_tmp_var (t, &list); t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l1), build_and_jump (&l2)); append_to_statement_list (t, &list); si = bsi_last (cont_bb); bsi_insert_after (&si, list, BSI_SAME_STMT); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_CONTINUE); bsi_remove (&si, true); /* Emit code to get the next parallel iteration in L2_BB. */ list = alloc_stmt_list (); t = build_fold_addr_expr (iend0); args = tree_cons (NULL, t, NULL); t = build_fold_addr_expr (istart0); args = tree_cons (NULL, t, args); t = build_function_call_expr (built_in_decls[next_fn], args); t = get_formal_tmp_var (t, &list); t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l0), build_and_jump (&l3)); append_to_statement_list (t, &list); si = bsi_start (l2_bb); bsi_insert_after (&si, list, BSI_CONTINUE_LINKING); /* Add the loop cleanup function. */ si = bsi_last (exit_bb); if (OMP_RETURN_NOWAIT (bsi_stmt (si))) t = built_in_decls[BUILT_IN_GOMP_LOOP_END_NOWAIT]; else t = built_in_decls[BUILT_IN_GOMP_LOOP_END]; t = build_function_call_expr (t, NULL); bsi_insert_after (&si, t, BSI_SAME_STMT); bsi_remove (&si, true); /* Connect the new blocks. */ remove_edge (single_succ_edge (entry_bb)); if (in_combined_parallel) make_edge (entry_bb, l2_bb, EDGE_FALLTHRU); else { make_edge (entry_bb, l0_bb, EDGE_TRUE_VALUE); make_edge (entry_bb, l3_bb, EDGE_FALSE_VALUE); } make_edge (l0_bb, l1_bb, EDGE_FALLTHRU); remove_edge (single_succ_edge (cont_bb)); make_edge (cont_bb, l1_bb, EDGE_TRUE_VALUE); make_edge (cont_bb, l2_bb, EDGE_FALSE_VALUE); make_edge (l2_bb, l0_bb, EDGE_TRUE_VALUE); make_edge (l2_bb, l3_bb, EDGE_FALSE_VALUE); } /* A subroutine of expand_omp_for. Generate code for a parallel loop with static schedule and no specified chunk size. Given parameters: for (V = N1; V cond N2; V += STEP) BODY; where COND is "<" or ">", we generate pseudocode if (cond is <) adj = STEP - 1; else adj = STEP + 1; n = (adj + N2 - N1) / STEP; q = n / nthreads; q += (q * nthreads != n); s0 = q * threadid; e0 = min(s0 + q, n); if (s0 >= e0) goto L2; else goto L0; L0: V = s0 * STEP + N1; e = e0 * STEP + N1; L1: BODY; V += STEP; if (V cond e) goto L1; L2: */ static void expand_omp_for_static_nochunk (struct omp_region *region, struct omp_for_data *fd) { tree l0, l1, l2, n, q, s0, e0, e, t, nthreads, threadid; tree type, list; basic_block entry_bb, exit_bb, seq_start_bb, body_bb, cont_bb; basic_block fin_bb; block_stmt_iterator si; type = TREE_TYPE (fd->v); entry_bb = region->entry; seq_start_bb = create_empty_bb (entry_bb); body_bb = single_succ (entry_bb); cont_bb = region->cont; fin_bb = single_succ (cont_bb); exit_bb = region->exit; l0 = tree_block_label (seq_start_bb); l1 = tree_block_label (body_bb); l2 = tree_block_label (fin_bb); /* Iteration space partitioning goes in ENTRY_BB. */ list = alloc_stmt_list (); t = built_in_decls[BUILT_IN_OMP_GET_NUM_THREADS]; t = build_function_call_expr (t, NULL); t = fold_convert (type, t); nthreads = get_formal_tmp_var (t, &list); t = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM]; t = build_function_call_expr (t, NULL); t = fold_convert (type, t); threadid = get_formal_tmp_var (t, &list); fd->n1 = fold_convert (type, fd->n1); if (!is_gimple_val (fd->n1)) fd->n1 = get_formal_tmp_var (fd->n1, &list); fd->n2 = fold_convert (type, fd->n2); if (!is_gimple_val (fd->n2)) fd->n2 = get_formal_tmp_var (fd->n2, &list); fd->step = fold_convert (type, fd->step); if (!is_gimple_val (fd->step)) fd->step = get_formal_tmp_var (fd->step, &list); t = build_int_cst (type, (fd->cond_code == LT_EXPR ? -1 : 1)); t = fold_build2 (PLUS_EXPR, type, fd->step, t); t = fold_build2 (PLUS_EXPR, type, t, fd->n2); t = fold_build2 (MINUS_EXPR, type, t, fd->n1); t = fold_build2 (TRUNC_DIV_EXPR, type, t, fd->step); t = fold_convert (type, t); if (is_gimple_val (t)) n = t; else n = get_formal_tmp_var (t, &list); t = build2 (TRUNC_DIV_EXPR, type, n, nthreads); q = get_formal_tmp_var (t, &list); t = build2 (MULT_EXPR, type, q, nthreads); t = build2 (NE_EXPR, type, t, n); t = build2 (PLUS_EXPR, type, q, t); q = get_formal_tmp_var (t, &list); t = build2 (MULT_EXPR, type, q, threadid); s0 = get_formal_tmp_var (t, &list); t = build2 (PLUS_EXPR, type, s0, q); t = build2 (MIN_EXPR, type, t, n); e0 = get_formal_tmp_var (t, &list); t = build2 (GE_EXPR, boolean_type_node, s0, e0); t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l2), build_and_jump (&l0)); append_to_statement_list (t, &list); si = bsi_last (entry_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_FOR); bsi_insert_after (&si, list, BSI_SAME_STMT); bsi_remove (&si, true); /* Setup code for sequential iteration goes in SEQ_START_BB. */ list = alloc_stmt_list (); t = fold_convert (type, s0); t = build2 (MULT_EXPR, type, t, fd->step); t = build2 (PLUS_EXPR, type, t, fd->n1); t = build2 (MODIFY_EXPR, void_type_node, fd->v, t); gimplify_and_add (t, &list); t = fold_convert (type, e0); t = build2 (MULT_EXPR, type, t, fd->step); t = build2 (PLUS_EXPR, type, t, fd->n1); e = get_formal_tmp_var (t, &list); si = bsi_start (seq_start_bb); bsi_insert_after (&si, list, BSI_CONTINUE_LINKING); /* The code controlling the sequential loop replaces the OMP_CONTINUE. */ list = alloc_stmt_list (); t = build2 (PLUS_EXPR, type, fd->v, fd->step); t = build2 (MODIFY_EXPR, void_type_node, fd->v, t); gimplify_and_add (t, &list); t = build2 (fd->cond_code, boolean_type_node, fd->v, e); t = get_formal_tmp_var (t, &list); t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l1), build_and_jump (&l2)); append_to_statement_list (t, &list); si = bsi_last (cont_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_CONTINUE); bsi_insert_after (&si, list, BSI_SAME_STMT); bsi_remove (&si, true); /* Replace the OMP_RETURN with a barrier, or nothing. */ si = bsi_last (exit_bb); if (!OMP_RETURN_NOWAIT (bsi_stmt (si))) { list = alloc_stmt_list (); build_omp_barrier (&list); bsi_insert_after (&si, list, BSI_SAME_STMT); } bsi_remove (&si, true); /* Connect all the blocks. */ make_edge (seq_start_bb, body_bb, EDGE_FALLTHRU); remove_edge (single_succ_edge (entry_bb)); make_edge (entry_bb, fin_bb, EDGE_TRUE_VALUE); make_edge (entry_bb, seq_start_bb, EDGE_FALSE_VALUE); make_edge (cont_bb, body_bb, EDGE_TRUE_VALUE); find_edge (cont_bb, fin_bb)->flags = EDGE_FALSE_VALUE; } /* A subroutine of expand_omp_for. Generate code for a parallel loop with static schedule and a specified chunk size. Given parameters: for (V = N1; V cond N2; V += STEP) BODY; where COND is "<" or ">", we generate pseudocode if (cond is <) adj = STEP - 1; else adj = STEP + 1; n = (adj + N2 - N1) / STEP; trip = 0; L0: s0 = (trip * nthreads + threadid) * CHUNK; e0 = min(s0 + CHUNK, n); if (s0 < n) goto L1; else goto L4; L1: V = s0 * STEP + N1; e = e0 * STEP + N1; L2: BODY; V += STEP; if (V cond e) goto L2; else goto L3; L3: trip += 1; goto L0; L4: */ static void expand_omp_for_static_chunk (struct omp_region *region, struct omp_for_data *fd) { tree l0, l1, l2, l3, l4, n, s0, e0, e, t; tree trip, nthreads, threadid; tree type; basic_block entry_bb, exit_bb, body_bb, seq_start_bb, iter_part_bb; basic_block trip_update_bb, cont_bb, fin_bb; tree list; block_stmt_iterator si; type = TREE_TYPE (fd->v); entry_bb = region->entry; iter_part_bb = create_empty_bb (entry_bb); seq_start_bb = create_empty_bb (iter_part_bb); body_bb = single_succ (entry_bb); cont_bb = region->cont; trip_update_bb = create_empty_bb (cont_bb); fin_bb = single_succ (cont_bb); exit_bb = region->exit; l0 = tree_block_label (iter_part_bb); l1 = tree_block_label (seq_start_bb); l2 = tree_block_label (body_bb); l3 = tree_block_label (trip_update_bb); l4 = tree_block_label (fin_bb); /* Trip and adjustment setup goes in ENTRY_BB. */ list = alloc_stmt_list (); t = built_in_decls[BUILT_IN_OMP_GET_NUM_THREADS]; t = build_function_call_expr (t, NULL); t = fold_convert (type, t); nthreads = get_formal_tmp_var (t, &list); t = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM]; t = build_function_call_expr (t, NULL); t = fold_convert (type, t); threadid = get_formal_tmp_var (t, &list); fd->n1 = fold_convert (type, fd->n1); if (!is_gimple_val (fd->n1)) fd->n1 = get_formal_tmp_var (fd->n1, &list); fd->n2 = fold_convert (type, fd->n2); if (!is_gimple_val (fd->n2)) fd->n2 = get_formal_tmp_var (fd->n2, &list); fd->step = fold_convert (type, fd->step); if (!is_gimple_val (fd->step)) fd->step = get_formal_tmp_var (fd->step, &list); fd->chunk_size = fold_convert (type, fd->chunk_size); if (!is_gimple_val (fd->chunk_size)) fd->chunk_size = get_formal_tmp_var (fd->chunk_size, &list); t = build_int_cst (type, (fd->cond_code == LT_EXPR ? -1 : 1)); t = fold_build2 (PLUS_EXPR, type, fd->step, t); t = fold_build2 (PLUS_EXPR, type, t, fd->n2); t = fold_build2 (MINUS_EXPR, type, t, fd->n1); t = fold_build2 (TRUNC_DIV_EXPR, type, t, fd->step); t = fold_convert (type, t); if (is_gimple_val (t)) n = t; else n = get_formal_tmp_var (t, &list); t = build_int_cst (type, 0); trip = get_initialized_tmp_var (t, &list, NULL); si = bsi_last (entry_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_FOR); bsi_insert_after (&si, list, BSI_SAME_STMT); bsi_remove (&si, true); /* Iteration space partitioning goes in ITER_PART_BB. */ list = alloc_stmt_list (); t = build2 (MULT_EXPR, type, trip, nthreads); t = build2 (PLUS_EXPR, type, t, threadid); t = build2 (MULT_EXPR, type, t, fd->chunk_size); s0 = get_formal_tmp_var (t, &list); t = build2 (PLUS_EXPR, type, s0, fd->chunk_size); t = build2 (MIN_EXPR, type, t, n); e0 = get_formal_tmp_var (t, &list); t = build2 (LT_EXPR, boolean_type_node, s0, n); t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l1), build_and_jump (&l4)); append_to_statement_list (t, &list); si = bsi_start (iter_part_bb); bsi_insert_after (&si, list, BSI_CONTINUE_LINKING); /* Setup code for sequential iteration goes in SEQ_START_BB. */ list = alloc_stmt_list (); t = fold_convert (type, s0); t = build2 (MULT_EXPR, type, t, fd->step); t = build2 (PLUS_EXPR, type, t, fd->n1); t = build2 (MODIFY_EXPR, void_type_node, fd->v, t); gimplify_and_add (t, &list); t = fold_convert (type, e0); t = build2 (MULT_EXPR, type, t, fd->step); t = build2 (PLUS_EXPR, type, t, fd->n1); e = get_formal_tmp_var (t, &list); si = bsi_start (seq_start_bb); bsi_insert_after (&si, list, BSI_CONTINUE_LINKING); /* The code controlling the sequential loop goes in CONT_BB, replacing the OMP_CONTINUE. */ list = alloc_stmt_list (); t = build2 (PLUS_EXPR, type, fd->v, fd->step); t = build2 (MODIFY_EXPR, void_type_node, fd->v, t); gimplify_and_add (t, &list); t = build2 (fd->cond_code, boolean_type_node, fd->v, e); t = get_formal_tmp_var (t, &list); t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l2), build_and_jump (&l3)); append_to_statement_list (t, &list); si = bsi_last (cont_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_CONTINUE); bsi_insert_after (&si, list, BSI_SAME_STMT); bsi_remove (&si, true); /* Trip update code goes into TRIP_UPDATE_BB. */ list = alloc_stmt_list (); t = build_int_cst (type, 1); t = build2 (PLUS_EXPR, type, trip, t); t = build2 (MODIFY_EXPR, void_type_node, trip, t); gimplify_and_add (t, &list); si = bsi_start (trip_update_bb); bsi_insert_after (&si, list, BSI_CONTINUE_LINKING); /* Replace the OMP_RETURN with a barrier, or nothing. */ si = bsi_last (exit_bb); if (!OMP_RETURN_NOWAIT (bsi_stmt (si))) { list = alloc_stmt_list (); build_omp_barrier (&list); bsi_insert_after (&si, list, BSI_SAME_STMT); } bsi_remove (&si, true); /* Connect the new blocks. */ remove_edge (single_succ_edge (entry_bb)); make_edge (entry_bb, iter_part_bb, EDGE_FALLTHRU); make_edge (iter_part_bb, seq_start_bb, EDGE_TRUE_VALUE); make_edge (iter_part_bb, fin_bb, EDGE_FALSE_VALUE); make_edge (seq_start_bb, body_bb, EDGE_FALLTHRU); remove_edge (single_succ_edge (cont_bb)); make_edge (cont_bb, body_bb, EDGE_TRUE_VALUE); make_edge (cont_bb, trip_update_bb, EDGE_FALSE_VALUE); make_edge (trip_update_bb, iter_part_bb, EDGE_FALLTHRU); } /* Expand the OpenMP loop defined by REGION. */ static void expand_omp_for (struct omp_region *region) { struct omp_for_data fd; push_gimplify_context (); extract_omp_for_data (last_stmt (region->entry), &fd); region->sched_kind = fd.sched_kind; if (fd.sched_kind == OMP_CLAUSE_SCHEDULE_STATIC && !fd.have_ordered && region->cont && region->exit) { if (fd.chunk_size == NULL) expand_omp_for_static_nochunk (region, &fd); else expand_omp_for_static_chunk (region, &fd); } else { int fn_index = fd.sched_kind + fd.have_ordered * 4; int start_ix = BUILT_IN_GOMP_LOOP_STATIC_START + fn_index; int next_ix = BUILT_IN_GOMP_LOOP_STATIC_NEXT + fn_index; expand_omp_for_generic (region, &fd, start_ix, next_ix); } pop_gimplify_context (NULL); } /* Expand code for an OpenMP sections directive. In pseudo code, we generate v = GOMP_sections_start (n); L0: switch (v) { case 0: goto L2; case 1: section 1; goto L1; case 2: ... case n: ... default: abort (); } L1: v = GOMP_sections_next (); goto L0; L2: reduction; If this is a combined parallel sections, replace the call to GOMP_sections_start with 'goto L1'. */ static void expand_omp_sections (struct omp_region *region) { tree label_vec, l0, l1, l2, t, u, v, sections_stmt; unsigned i, len; basic_block entry_bb, exit_bb, l0_bb, l1_bb, l2_bb, default_bb; block_stmt_iterator si; struct omp_region *inner; edge e; entry_bb = region->entry; l0_bb = create_empty_bb (entry_bb); l0 = tree_block_label (l0_bb); gcc_assert ((region->cont != NULL) ^ (region->exit == NULL)); l1_bb = region->cont; if (l1_bb) { l2_bb = single_succ (l1_bb); default_bb = create_empty_bb (l1_bb->prev_bb); l1 = tree_block_label (l1_bb); } else { l2_bb = create_empty_bb (l0_bb); default_bb = l2_bb; l1 = NULL; } l2 = tree_block_label (l2_bb); exit_bb = region->exit; v = create_tmp_var (unsigned_type_node, ".section"); /* We will build a switch() with enough cases for all the OMP_SECTION regions, a '0' case to handle the end of more work and a default case to abort if something goes wrong. */ len = EDGE_COUNT (entry_bb->succs); label_vec = make_tree_vec (len + 2); /* The call to GOMP_sections_start goes in ENTRY_BB, replacing the OMP_SECTIONS statement. */ si = bsi_last (entry_bb); sections_stmt = bsi_stmt (si); gcc_assert (TREE_CODE (sections_stmt) == OMP_SECTIONS); if (!is_combined_parallel (region)) { /* If we are not inside a combined parallel+sections region, call GOMP_sections_start. */ t = build_int_cst (unsigned_type_node, len); t = tree_cons (NULL, t, NULL); u = built_in_decls[BUILT_IN_GOMP_SECTIONS_START]; t = build_function_call_expr (u, t); t = build2 (MODIFY_EXPR, void_type_node, v, t); bsi_insert_after (&si, t, BSI_SAME_STMT); } bsi_remove (&si, true); /* The switch() statement replacing OMP_SECTIONS goes in L0_BB. */ si = bsi_start (l0_bb); t = build3 (SWITCH_EXPR, void_type_node, v, NULL, label_vec); bsi_insert_after (&si, t, BSI_CONTINUE_LINKING); t = build3 (CASE_LABEL_EXPR, void_type_node, build_int_cst (unsigned_type_node, 0), NULL, l2); TREE_VEC_ELT (label_vec, 0) = t; make_edge (l0_bb, l2_bb, 0); /* Convert each OMP_SECTION into a CASE_LABEL_EXPR. */ for (inner = region->inner, i = 1; inner; inner = inner->next, ++i) { basic_block s_entry_bb, s_exit_bb; s_entry_bb = inner->entry; s_exit_bb = inner->exit; t = tree_block_label (s_entry_bb); u = build_int_cst (unsigned_type_node, i); u = build3 (CASE_LABEL_EXPR, void_type_node, u, NULL, t); TREE_VEC_ELT (label_vec, i) = u; si = bsi_last (s_entry_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_SECTION); gcc_assert (i < len || OMP_SECTION_LAST (bsi_stmt (si))); bsi_remove (&si, true); e = single_pred_edge (s_entry_bb); e->flags = 0; redirect_edge_pred (e, l0_bb); single_succ_edge (s_entry_bb)->flags = EDGE_FALLTHRU; if (s_exit_bb == NULL) continue; si = bsi_last (s_exit_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_RETURN); bsi_remove (&si, true); single_succ_edge (s_exit_bb)->flags = EDGE_FALLTHRU; } /* Error handling code goes in DEFAULT_BB. */ t = tree_block_label (default_bb); u = build3 (CASE_LABEL_EXPR, void_type_node, NULL, NULL, t); TREE_VEC_ELT (label_vec, len + 1) = u; make_edge (l0_bb, default_bb, 0); si = bsi_start (default_bb); t = built_in_decls[BUILT_IN_TRAP]; t = build_function_call_expr (t, NULL); bsi_insert_after (&si, t, BSI_CONTINUE_LINKING); /* Code to get the next section goes in L1_BB. */ if (l1_bb) { si = bsi_last (l1_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_CONTINUE); t = built_in_decls[BUILT_IN_GOMP_SECTIONS_NEXT]; t = build_function_call_expr (t, NULL); t = build2 (MODIFY_EXPR, void_type_node, v, t); bsi_insert_after (&si, t, BSI_SAME_STMT); bsi_remove (&si, true); } /* Cleanup function replaces OMP_RETURN in EXIT_BB. */ if (exit_bb) { si = bsi_last (exit_bb); if (OMP_RETURN_NOWAIT (bsi_stmt (si))) t = built_in_decls[BUILT_IN_GOMP_SECTIONS_END_NOWAIT]; else t = built_in_decls[BUILT_IN_GOMP_SECTIONS_END]; t = build_function_call_expr (t, NULL); bsi_insert_after (&si, t, BSI_SAME_STMT); bsi_remove (&si, true); } /* Connect the new blocks. */ if (is_combined_parallel (region)) { /* If this was a combined parallel+sections region, we did not emit a GOMP_sections_start in the entry block, so we just need to jump to L1_BB to get the next section. */ make_edge (entry_bb, l1_bb, EDGE_FALLTHRU); } else make_edge (entry_bb, l0_bb, EDGE_FALLTHRU); if (l1_bb) { e = single_succ_edge (l1_bb); redirect_edge_succ (e, l0_bb); e->flags = EDGE_FALLTHRU; } } /* Expand code for an OpenMP single directive. We've already expanded much of the code, here we simply place the GOMP_barrier call. */ static void expand_omp_single (struct omp_region *region) { basic_block entry_bb, exit_bb; block_stmt_iterator si; bool need_barrier = false; entry_bb = region->entry; exit_bb = region->exit; si = bsi_last (entry_bb); /* The terminal barrier at the end of a GOMP_single_copy sequence cannot be removed. We need to ensure that the thread that entered the single does not exit before the data is copied out by the other threads. */ if (find_omp_clause (OMP_SINGLE_CLAUSES (bsi_stmt (si)), OMP_CLAUSE_COPYPRIVATE)) need_barrier = true; gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_SINGLE); bsi_remove (&si, true); single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU; si = bsi_last (exit_bb); if (!OMP_RETURN_NOWAIT (bsi_stmt (si)) || need_barrier) { tree t = alloc_stmt_list (); build_omp_barrier (&t); bsi_insert_after (&si, t, BSI_SAME_STMT); } bsi_remove (&si, true); single_succ_edge (exit_bb)->flags = EDGE_FALLTHRU; } /* Generic expansion for OpenMP synchronization directives: master, ordered and critical. All we need to do here is remove the entry and exit markers for REGION. */ static void expand_omp_synch (struct omp_region *region) { basic_block entry_bb, exit_bb; block_stmt_iterator si; entry_bb = region->entry; exit_bb = region->exit; si = bsi_last (entry_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_SINGLE || TREE_CODE (bsi_stmt (si)) == OMP_MASTER || TREE_CODE (bsi_stmt (si)) == OMP_ORDERED || TREE_CODE (bsi_stmt (si)) == OMP_CRITICAL); bsi_remove (&si, true); single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU; if (exit_bb) { si = bsi_last (exit_bb); gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_RETURN); bsi_remove (&si, true); single_succ_edge (exit_bb)->flags = EDGE_FALLTHRU; } } /* Expand the parallel region tree rooted at REGION. Expansion proceeds in depth-first order. Innermost regions are expanded first. This way, parallel regions that require a new function to be created (e.g., OMP_PARALLEL) can be expanded without having any internal dependencies in their body. */ static void expand_omp (struct omp_region *region) { while (region) { if (region->inner) expand_omp (region->inner); switch (region->type) { case OMP_PARALLEL: expand_omp_parallel (region); break; case OMP_FOR: expand_omp_for (region); break; case OMP_SECTIONS: expand_omp_sections (region); break; case OMP_SECTION: /* Individual omp sections are handled together with their parent OMP_SECTIONS region. */ break; case OMP_SINGLE: expand_omp_single (region); break; case OMP_MASTER: case OMP_ORDERED: case OMP_CRITICAL: expand_omp_synch (region); break; default: gcc_unreachable (); } region = region->next; } } /* Helper for build_omp_regions. Scan the dominator tree starting at block BB. PARENT is the region that contains BB. */ static void build_omp_regions_1 (basic_block bb, struct omp_region *parent) { block_stmt_iterator si; tree stmt; basic_block son; si = bsi_last (bb); if (!bsi_end_p (si) && OMP_DIRECTIVE_P (bsi_stmt (si))) { struct omp_region *region; enum tree_code code; stmt = bsi_stmt (si); code = TREE_CODE (stmt); if (code == OMP_RETURN) { /* STMT is the return point out of region PARENT. Mark it as the exit point and make PARENT the immediately enclosing region. */ gcc_assert (parent); region = parent; region->exit = bb; parent = parent->outer; /* If REGION is a parallel region, determine whether it is a combined parallel+workshare region. */ if (region->type == OMP_PARALLEL) determine_parallel_type (region); } else if (code == OMP_CONTINUE) { gcc_assert (parent); parent->cont = bb; } else { /* Otherwise, this directive becomes the parent for a new region. */ region = new_omp_region (bb, code, parent); parent = region; } } for (son = first_dom_son (CDI_DOMINATORS, bb); son; son = next_dom_son (CDI_DOMINATORS, son)) build_omp_regions_1 (son, parent); } /* Scan the CFG and build a tree of OMP regions. Return the root of the OMP region tree. */ static void build_omp_regions (void) { gcc_assert (root_omp_region == NULL); calculate_dominance_info (CDI_DOMINATORS); build_omp_regions_1 (ENTRY_BLOCK_PTR, NULL); } /* Main entry point for expanding OMP-GIMPLE into runtime calls. */ static unsigned int execute_expand_omp (void) { build_omp_regions (); if (!root_omp_region) return 0; if (dump_file) { fprintf (dump_file, "\nOMP region tree\n\n"); dump_omp_region (dump_file, root_omp_region, 0); fprintf (dump_file, "\n"); } remove_exit_barriers (root_omp_region); expand_omp (root_omp_region); free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); cleanup_tree_cfg (); free_omp_regions (); return 0; } static bool gate_expand_omp (void) { return flag_openmp != 0 && errorcount == 0; } struct tree_opt_pass pass_expand_omp = { "ompexp", /* name */ gate_expand_omp, /* gate */ execute_expand_omp, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ 0, /* tv_id */ PROP_gimple_any, /* properties_required */ PROP_gimple_lomp, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func, /* todo_flags_finish */ 0 /* letter */ }; /* Routines to lower OpenMP directives into OMP-GIMPLE. */ /* Lower the OpenMP sections directive in *STMT_P. */ static void lower_omp_sections (tree *stmt_p, omp_context *ctx) { tree new_stmt, stmt, body, bind, block, ilist, olist, new_body; tree t, dlist; tree_stmt_iterator tsi; unsigned i, len; stmt = *stmt_p; push_gimplify_context (); dlist = NULL; ilist = NULL; lower_rec_input_clauses (OMP_SECTIONS_CLAUSES (stmt), &ilist, &dlist, ctx); tsi = tsi_start (OMP_SECTIONS_BODY (stmt)); for (len = 0; !tsi_end_p (tsi); len++, tsi_next (&tsi)) continue; tsi = tsi_start (OMP_SECTIONS_BODY (stmt)); body = alloc_stmt_list (); for (i = 0; i < len; i++, tsi_next (&tsi)) { omp_context *sctx; tree sec_start, sec_end; sec_start = tsi_stmt (tsi); sctx = maybe_lookup_ctx (sec_start); gcc_assert (sctx); append_to_statement_list (sec_start, &body); lower_omp (&OMP_SECTION_BODY (sec_start), sctx); append_to_statement_list (OMP_SECTION_BODY (sec_start), &body); OMP_SECTION_BODY (sec_start) = NULL; if (i == len - 1) { tree l = alloc_stmt_list (); lower_lastprivate_clauses (OMP_SECTIONS_CLAUSES (stmt), NULL, &l, ctx); append_to_statement_list (l, &body); OMP_SECTION_LAST (sec_start) = 1; } sec_end = make_node (OMP_RETURN); append_to_statement_list (sec_end, &body); } block = make_node (BLOCK); bind = build3 (BIND_EXPR, void_type_node, NULL, body, block); olist = NULL_TREE; lower_reduction_clauses (OMP_SECTIONS_CLAUSES (stmt), &olist, ctx); pop_gimplify_context (NULL_TREE); record_vars_into (ctx->block_vars, ctx->cb.dst_fn); new_stmt = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL); TREE_SIDE_EFFECTS (new_stmt) = 1; new_body = alloc_stmt_list (); append_to_statement_list (ilist, &new_body); append_to_statement_list (stmt, &new_body); append_to_statement_list (bind, &new_body); t = make_node (OMP_CONTINUE); append_to_statement_list (t, &new_body); append_to_statement_list (olist, &new_body); append_to_statement_list (dlist, &new_body); maybe_catch_exception (&new_body); t = make_node (OMP_RETURN); OMP_RETURN_NOWAIT (t) = !!find_omp_clause (OMP_SECTIONS_CLAUSES (stmt), OMP_CLAUSE_NOWAIT); append_to_statement_list (t, &new_body); BIND_EXPR_BODY (new_stmt) = new_body; OMP_SECTIONS_BODY (stmt) = NULL; *stmt_p = new_stmt; } /* A subroutine of lower_omp_single. Expand the simple form of an OMP_SINGLE, without a copyprivate clause: if (GOMP_single_start ()) BODY; [ GOMP_barrier (); ] -> unless 'nowait' is present. FIXME. It may be better to delay expanding the logic of this until pass_expand_omp. The expanded logic may make the job more difficult to a synchronization analysis pass. */ static void lower_omp_single_simple (tree single_stmt, tree *pre_p) { tree t; t = built_in_decls[BUILT_IN_GOMP_SINGLE_START]; t = build_function_call_expr (t, NULL); t = build3 (COND_EXPR, void_type_node, t, OMP_SINGLE_BODY (single_stmt), NULL); gimplify_and_add (t, pre_p); } /* A subroutine of lower_omp_single. Expand the simple form of an OMP_SINGLE, with a copyprivate clause: #pragma omp single copyprivate (a, b, c) Create a new structure to hold copies of 'a', 'b' and 'c' and emit: { if ((copyout_p = GOMP_single_copy_start ()) == NULL) { BODY; copyout.a = a; copyout.b = b; copyout.c = c; GOMP_single_copy_end (©out); } else { a = copyout_p->a; b = copyout_p->b; c = copyout_p->c; } GOMP_barrier (); } FIXME. It may be better to delay expanding the logic of this until pass_expand_omp. The expanded logic may make the job more difficult to a synchronization analysis pass. */ static void lower_omp_single_copy (tree single_stmt, tree *pre_p, omp_context *ctx) { tree ptr_type, t, args, l0, l1, l2, copyin_seq; ctx->sender_decl = create_tmp_var (ctx->record_type, ".omp_copy_o"); ptr_type = build_pointer_type (ctx->record_type); ctx->receiver_decl = create_tmp_var (ptr_type, ".omp_copy_i"); l0 = create_artificial_label (); l1 = create_artificial_label (); l2 = create_artificial_label (); t = built_in_decls[BUILT_IN_GOMP_SINGLE_COPY_START]; t = build_function_call_expr (t, NULL); t = fold_convert (ptr_type, t); t = build2 (MODIFY_EXPR, void_type_node, ctx->receiver_decl, t); gimplify_and_add (t, pre_p); t = build2 (EQ_EXPR, boolean_type_node, ctx->receiver_decl, build_int_cst (ptr_type, 0)); t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l0), build_and_jump (&l1)); gimplify_and_add (t, pre_p); t = build1 (LABEL_EXPR, void_type_node, l0); gimplify_and_add (t, pre_p); append_to_statement_list (OMP_SINGLE_BODY (single_stmt), pre_p); copyin_seq = NULL; lower_copyprivate_clauses (OMP_SINGLE_CLAUSES (single_stmt), pre_p, ©in_seq, ctx); t = build_fold_addr_expr (ctx->sender_decl); args = tree_cons (NULL, t, NULL); t = built_in_decls[BUILT_IN_GOMP_SINGLE_COPY_END]; t = build_function_call_expr (t, args); gimplify_and_add (t, pre_p); t = build_and_jump (&l2); gimplify_and_add (t, pre_p); t = build1 (LABEL_EXPR, void_type_node, l1); gimplify_and_add (t, pre_p); append_to_statement_list (copyin_seq, pre_p); t = build1 (LABEL_EXPR, void_type_node, l2); gimplify_and_add (t, pre_p); } /* Expand code for an OpenMP single directive. */ static void lower_omp_single (tree *stmt_p, omp_context *ctx) { tree t, bind, block, single_stmt = *stmt_p, dlist; push_gimplify_context (); block = make_node (BLOCK); *stmt_p = bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block); TREE_SIDE_EFFECTS (bind) = 1; lower_rec_input_clauses (OMP_SINGLE_CLAUSES (single_stmt), &BIND_EXPR_BODY (bind), &dlist, ctx); lower_omp (&OMP_SINGLE_BODY (single_stmt), ctx); append_to_statement_list (single_stmt, &BIND_EXPR_BODY (bind)); if (ctx->record_type) lower_omp_single_copy (single_stmt, &BIND_EXPR_BODY (bind), ctx); else lower_omp_single_simple (single_stmt, &BIND_EXPR_BODY (bind)); OMP_SINGLE_BODY (single_stmt) = NULL; append_to_statement_list (dlist, &BIND_EXPR_BODY (bind)); maybe_catch_exception (&BIND_EXPR_BODY (bind)); t = make_node (OMP_RETURN); OMP_RETURN_NOWAIT (t) = !!find_omp_clause (OMP_SINGLE_CLAUSES (single_stmt), OMP_CLAUSE_NOWAIT); append_to_statement_list (t, &BIND_EXPR_BODY (bind)); pop_gimplify_context (bind); BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars); BLOCK_VARS (block) = BIND_EXPR_VARS (bind); } /* Expand code for an OpenMP master directive. */ static void lower_omp_master (tree *stmt_p, omp_context *ctx) { tree bind, block, stmt = *stmt_p, lab = NULL, x; push_gimplify_context (); block = make_node (BLOCK); *stmt_p = bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block); TREE_SIDE_EFFECTS (bind) = 1; append_to_statement_list (stmt, &BIND_EXPR_BODY (bind)); x = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM]; x = build_function_call_expr (x, NULL); x = build2 (EQ_EXPR, boolean_type_node, x, integer_zero_node); x = build3 (COND_EXPR, void_type_node, x, NULL, build_and_jump (&lab)); gimplify_and_add (x, &BIND_EXPR_BODY (bind)); lower_omp (&OMP_MASTER_BODY (stmt), ctx); maybe_catch_exception (&OMP_MASTER_BODY (stmt)); append_to_statement_list (OMP_MASTER_BODY (stmt), &BIND_EXPR_BODY (bind)); OMP_MASTER_BODY (stmt) = NULL; x = build1 (LABEL_EXPR, void_type_node, lab); gimplify_and_add (x, &BIND_EXPR_BODY (bind)); x = make_node (OMP_RETURN); OMP_RETURN_NOWAIT (x) = 1; append_to_statement_list (x, &BIND_EXPR_BODY (bind)); pop_gimplify_context (bind); BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars); BLOCK_VARS (block) = BIND_EXPR_VARS (bind); } /* Expand code for an OpenMP ordered directive. */ static void lower_omp_ordered (tree *stmt_p, omp_context *ctx) { tree bind, block, stmt = *stmt_p, x; push_gimplify_context (); block = make_node (BLOCK); *stmt_p = bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block); TREE_SIDE_EFFECTS (bind) = 1; append_to_statement_list (stmt, &BIND_EXPR_BODY (bind)); x = built_in_decls[BUILT_IN_GOMP_ORDERED_START]; x = build_function_call_expr (x, NULL); gimplify_and_add (x, &BIND_EXPR_BODY (bind)); lower_omp (&OMP_ORDERED_BODY (stmt), ctx); maybe_catch_exception (&OMP_ORDERED_BODY (stmt)); append_to_statement_list (OMP_ORDERED_BODY (stmt), &BIND_EXPR_BODY (bind)); OMP_ORDERED_BODY (stmt) = NULL; x = built_in_decls[BUILT_IN_GOMP_ORDERED_END]; x = build_function_call_expr (x, NULL); gimplify_and_add (x, &BIND_EXPR_BODY (bind)); x = make_node (OMP_RETURN); OMP_RETURN_NOWAIT (x) = 1; append_to_statement_list (x, &BIND_EXPR_BODY (bind)); pop_gimplify_context (bind); BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars); BLOCK_VARS (block) = BIND_EXPR_VARS (bind); } /* Gimplify an OMP_CRITICAL statement. This is a relatively simple substitution of a couple of function calls. But in the NAMED case, requires that languages coordinate a symbol name. It is therefore best put here in common code. */ static GTY((param1_is (tree), param2_is (tree))) splay_tree critical_name_mutexes; static void lower_omp_critical (tree *stmt_p, omp_context *ctx) { tree bind, block, stmt = *stmt_p; tree t, lock, unlock, name; name = OMP_CRITICAL_NAME (stmt); if (name) { tree decl, args; splay_tree_node n; if (!critical_name_mutexes) critical_name_mutexes = splay_tree_new_ggc (splay_tree_compare_pointers); n = splay_tree_lookup (critical_name_mutexes, (splay_tree_key) name); if (n == NULL) { char *new_str; decl = create_tmp_var_raw (ptr_type_node, NULL); new_str = ACONCAT ((".gomp_critical_user_", IDENTIFIER_POINTER (name), NULL)); DECL_NAME (decl) = get_identifier (new_str); TREE_PUBLIC (decl) = 1; TREE_STATIC (decl) = 1; DECL_COMMON (decl) = 1; DECL_ARTIFICIAL (decl) = 1; DECL_IGNORED_P (decl) = 1; cgraph_varpool_finalize_decl (decl); splay_tree_insert (critical_name_mutexes, (splay_tree_key) name, (splay_tree_value) decl); } else decl = (tree) n->value; args = tree_cons (NULL, build_fold_addr_expr (decl), NULL); lock = built_in_decls[BUILT_IN_GOMP_CRITICAL_NAME_START]; lock = build_function_call_expr (lock, args); args = tree_cons (NULL, build_fold_addr_expr (decl), NULL); unlock = built_in_decls[BUILT_IN_GOMP_CRITICAL_NAME_END]; unlock = build_function_call_expr (unlock, args); } else { lock = built_in_decls[BUILT_IN_GOMP_CRITICAL_START]; lock = build_function_call_expr (lock, NULL); unlock = built_in_decls[BUILT_IN_GOMP_CRITICAL_END]; unlock = build_function_call_expr (unlock, NULL); } push_gimplify_context (); block = make_node (BLOCK); *stmt_p = bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block); TREE_SIDE_EFFECTS (bind) = 1; append_to_statement_list (stmt, &BIND_EXPR_BODY (bind)); gimplify_and_add (lock, &BIND_EXPR_BODY (bind)); lower_omp (&OMP_CRITICAL_BODY (stmt), ctx); maybe_catch_exception (&OMP_CRITICAL_BODY (stmt)); append_to_statement_list (OMP_CRITICAL_BODY (stmt), &BIND_EXPR_BODY (bind)); OMP_CRITICAL_BODY (stmt) = NULL; gimplify_and_add (unlock, &BIND_EXPR_BODY (bind)); t = make_node (OMP_RETURN); OMP_RETURN_NOWAIT (t) = 1; append_to_statement_list (t, &BIND_EXPR_BODY (bind)); pop_gimplify_context (bind); BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars); BLOCK_VARS (block) = BIND_EXPR_VARS (bind); } /* A subroutine of lower_omp_for. Generate code to emit the predicate for a lastprivate clause. Given a loop control predicate of (V cond N2), we gate the clause on (!(V cond N2)). The lowered form is appended to *DLIST, iterator initialization is appended to *BODY_P. */ static void lower_omp_for_lastprivate (struct omp_for_data *fd, tree *body_p, tree *dlist, struct omp_context *ctx) { tree clauses, cond, stmts, vinit, t; enum tree_code cond_code; cond_code = fd->cond_code; cond_code = cond_code == LT_EXPR ? GE_EXPR : LE_EXPR; /* When possible, use a strict equality expression. This can let VRP type optimizations deduce the value and remove a copy. */ if (host_integerp (fd->step, 0)) { HOST_WIDE_INT step = TREE_INT_CST_LOW (fd->step); if (step == 1 || step == -1) cond_code = EQ_EXPR; } cond = build2 (cond_code, boolean_type_node, fd->v, fd->n2); clauses = OMP_FOR_CLAUSES (fd->for_stmt); stmts = NULL; lower_lastprivate_clauses (clauses, cond, &stmts, ctx); if (stmts != NULL) { append_to_statement_list (stmts, dlist); /* Optimize: v = 0; is usually cheaper than v = some_other_constant. */ vinit = fd->n1; if (cond_code == EQ_EXPR && host_integerp (fd->n2, 0) && ! integer_zerop (fd->n2)) vinit = build_int_cst (TREE_TYPE (fd->v), 0); /* Initialize the iterator variable, so that threads that don't execute any iterations don't execute the lastprivate clauses by accident. */ t = build2 (MODIFY_EXPR, void_type_node, fd->v, vinit); gimplify_and_add (t, body_p); } } /* Lower code for an OpenMP loop directive. */ static void lower_omp_for (tree *stmt_p, omp_context *ctx) { tree t, stmt, ilist, dlist, new_stmt, *body_p, *rhs_p; struct omp_for_data fd; stmt = *stmt_p; push_gimplify_context (); lower_omp (&OMP_FOR_PRE_BODY (stmt), ctx); lower_omp (&OMP_FOR_BODY (stmt), ctx); /* Move declaration of temporaries in the loop body before we make it go away. */ if (TREE_CODE (OMP_FOR_BODY (stmt)) == BIND_EXPR) record_vars_into (BIND_EXPR_VARS (OMP_FOR_BODY (stmt)), ctx->cb.dst_fn); new_stmt = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL); TREE_SIDE_EFFECTS (new_stmt) = 1; body_p = &BIND_EXPR_BODY (new_stmt); /* The pre-body and input clauses go before the lowered OMP_FOR. */ ilist = NULL; dlist = NULL; append_to_statement_list (OMP_FOR_PRE_BODY (stmt), body_p); lower_rec_input_clauses (OMP_FOR_CLAUSES (stmt), body_p, &dlist, ctx); /* Lower the header expressions. At this point, we can assume that the header is of the form: #pragma omp for (V = VAL1; V {<|>|<=|>=} VAL2; V = V [+-] VAL3) We just need to make sure that VAL1, VAL2 and VAL3 are lowered using the .omp_data_s mapping, if needed. */ rhs_p = &TREE_OPERAND (OMP_FOR_INIT (stmt), 1); if (!is_gimple_min_invariant (*rhs_p)) *rhs_p = get_formal_tmp_var (*rhs_p, body_p); rhs_p = &TREE_OPERAND (OMP_FOR_COND (stmt), 1); if (!is_gimple_min_invariant (*rhs_p)) *rhs_p = get_formal_tmp_var (*rhs_p, body_p); rhs_p = &TREE_OPERAND (TREE_OPERAND (OMP_FOR_INCR (stmt), 1), 1); if (!is_gimple_min_invariant (*rhs_p)) *rhs_p = get_formal_tmp_var (*rhs_p, body_p); /* Once lowered, extract the bounds and clauses. */ extract_omp_for_data (stmt, &fd); lower_omp_for_lastprivate (&fd, body_p, &dlist, ctx); append_to_statement_list (stmt, body_p); append_to_statement_list (OMP_FOR_BODY (stmt), body_p); t = make_node (OMP_CONTINUE); append_to_statement_list (t, body_p); /* After the loop, add exit clauses. */ lower_reduction_clauses (OMP_FOR_CLAUSES (stmt), body_p, ctx); append_to_statement_list (dlist, body_p); maybe_catch_exception (body_p); /* Region exit marker goes at the end of the loop body. */ t = make_node (OMP_RETURN); OMP_RETURN_NOWAIT (t) = fd.have_nowait; append_to_statement_list (t, body_p); pop_gimplify_context (NULL_TREE); record_vars_into (ctx->block_vars, ctx->cb.dst_fn); OMP_FOR_BODY (stmt) = NULL_TREE; OMP_FOR_PRE_BODY (stmt) = NULL_TREE; *stmt_p = new_stmt; } /* Callback for walk_stmts. Check if *TP only contains OMP_FOR or OMP_PARALLEL. */ static tree check_combined_parallel (tree *tp, int *walk_subtrees, void *data) { struct walk_stmt_info *wi = data; int *info = wi->info; *walk_subtrees = 0; switch (TREE_CODE (*tp)) { case OMP_FOR: case OMP_SECTIONS: *info = *info == 0 ? 1 : -1; break; default: *info = -1; break; } return NULL; } /* Lower the OpenMP parallel directive in *STMT_P. CTX holds context information for the directive. */ static void lower_omp_parallel (tree *stmt_p, omp_context *ctx) { tree clauses, par_bind, par_body, new_body, bind; tree olist, ilist, par_olist, par_ilist; tree stmt, child_fn, t; stmt = *stmt_p; clauses = OMP_PARALLEL_CLAUSES (stmt); par_bind = OMP_PARALLEL_BODY (stmt); par_body = BIND_EXPR_BODY (par_bind); child_fn = ctx->cb.dst_fn; if (!OMP_PARALLEL_COMBINED (stmt)) { struct walk_stmt_info wi; int ws_num = 0; memset (&wi, 0, sizeof (wi)); wi.callback = check_combined_parallel; wi.info = &ws_num; wi.val_only = true; walk_stmts (&wi, &par_bind); if (ws_num == 1) OMP_PARALLEL_COMBINED (stmt) = 1; } push_gimplify_context (); par_olist = NULL_TREE; par_ilist = NULL_TREE; lower_rec_input_clauses (clauses, &par_ilist, &par_olist, ctx); lower_omp (&par_body, ctx); lower_reduction_clauses (clauses, &par_olist, ctx); /* Declare all the variables created by mapping and the variables declared in the scope of the parallel body. */ record_vars_into (ctx->block_vars, child_fn); record_vars_into (BIND_EXPR_VARS (par_bind), child_fn); if (ctx->record_type) { ctx->sender_decl = create_tmp_var (ctx->record_type, ".omp_data_o"); OMP_PARALLEL_DATA_ARG (stmt) = ctx->sender_decl; } olist = NULL_TREE; ilist = NULL_TREE; lower_send_clauses (clauses, &ilist, &olist, ctx); lower_send_shared_vars (&ilist, &olist, ctx); /* Once all the expansions are done, sequence all the different fragments inside OMP_PARALLEL_BODY. */ bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL); append_to_statement_list (ilist, &BIND_EXPR_BODY (bind)); new_body = alloc_stmt_list (); if (ctx->record_type) { t = build_fold_addr_expr (ctx->sender_decl); /* fixup_child_record_type might have changed receiver_decl's type. */ t = fold_convert (TREE_TYPE (ctx->receiver_decl), t); t = build2 (MODIFY_EXPR, void_type_node, ctx->receiver_decl, t); append_to_statement_list (t, &new_body); } append_to_statement_list (par_ilist, &new_body); append_to_statement_list (par_body, &new_body); append_to_statement_list (par_olist, &new_body); maybe_catch_exception (&new_body); t = make_node (OMP_RETURN); append_to_statement_list (t, &new_body); OMP_PARALLEL_BODY (stmt) = new_body; append_to_statement_list (stmt, &BIND_EXPR_BODY (bind)); append_to_statement_list (olist, &BIND_EXPR_BODY (bind)); *stmt_p = bind; pop_gimplify_context (NULL_TREE); } /* Pass *TP back through the gimplifier within the context determined by WI. This handles replacement of DECL_VALUE_EXPR, as well as adjusting the flags on ADDR_EXPR. */ static void lower_regimplify (tree *tp, struct walk_stmt_info *wi) { enum gimplify_status gs; tree pre = NULL; if (wi->is_lhs) gs = gimplify_expr (tp, &pre, NULL, is_gimple_lvalue, fb_lvalue); else if (wi->val_only) gs = gimplify_expr (tp, &pre, NULL, is_gimple_val, fb_rvalue); else gs = gimplify_expr (tp, &pre, NULL, is_gimple_formal_tmp_var, fb_rvalue); gcc_assert (gs == GS_ALL_DONE); if (pre) tsi_link_before (&wi->tsi, pre, TSI_SAME_STMT); } /* Copy EXP into a temporary. Insert the initialization statement before TSI. */ static tree init_tmp_var (tree exp, tree_stmt_iterator *tsi) { tree t, stmt; t = create_tmp_var (TREE_TYPE (exp), NULL); if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE) DECL_COMPLEX_GIMPLE_REG_P (t) = 1; stmt = build2 (MODIFY_EXPR, TREE_TYPE (t), t, exp); SET_EXPR_LOCUS (stmt, EXPR_LOCUS (tsi_stmt (*tsi))); tsi_link_before (tsi, stmt, TSI_SAME_STMT); return t; } /* Similarly, but copy from the temporary and insert the statement after the iterator. */ static tree save_tmp_var (tree exp, tree_stmt_iterator *tsi) { tree t, stmt; t = create_tmp_var (TREE_TYPE (exp), NULL); if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE) DECL_COMPLEX_GIMPLE_REG_P (t) = 1; stmt = build2 (MODIFY_EXPR, TREE_TYPE (t), exp, t); SET_EXPR_LOCUS (stmt, EXPR_LOCUS (tsi_stmt (*tsi))); tsi_link_after (tsi, stmt, TSI_SAME_STMT); return t; } /* Callback for walk_stmts. Lower the OpenMP directive pointed by TP. */ static tree lower_omp_1 (tree *tp, int *walk_subtrees, void *data) { struct walk_stmt_info *wi = data; omp_context *ctx = wi->info; tree t = *tp; /* If we have issued syntax errors, avoid doing any heavy lifting. Just replace the OpenMP directives with a NOP to avoid confusing RTL expansion. */ if (errorcount && OMP_DIRECTIVE_P (*tp)) { *tp = build_empty_stmt (); return NULL_TREE; } *walk_subtrees = 0; switch (TREE_CODE (*tp)) { case OMP_PARALLEL: ctx = maybe_lookup_ctx (t); lower_omp_parallel (tp, ctx); break; case OMP_FOR: ctx = maybe_lookup_ctx (t); gcc_assert (ctx); lower_omp_for (tp, ctx); break; case OMP_SECTIONS: ctx = maybe_lookup_ctx (t); gcc_assert (ctx); lower_omp_sections (tp, ctx); break; case OMP_SINGLE: ctx = maybe_lookup_ctx (t); gcc_assert (ctx); lower_omp_single (tp, ctx); break; case OMP_MASTER: ctx = maybe_lookup_ctx (t); gcc_assert (ctx); lower_omp_master (tp, ctx); break; case OMP_ORDERED: ctx = maybe_lookup_ctx (t); gcc_assert (ctx); lower_omp_ordered (tp, ctx); break; case OMP_CRITICAL: ctx = maybe_lookup_ctx (t); gcc_assert (ctx); lower_omp_critical (tp, ctx); break; case VAR_DECL: if (ctx && DECL_HAS_VALUE_EXPR_P (t)) { lower_regimplify (&t, wi); if (wi->val_only) { if (wi->is_lhs) t = save_tmp_var (t, &wi->tsi); else t = init_tmp_var (t, &wi->tsi); } *tp = t; } break; case ADDR_EXPR: if (ctx) lower_regimplify (tp, wi); break; case ARRAY_REF: case ARRAY_RANGE_REF: case REALPART_EXPR: case IMAGPART_EXPR: case COMPONENT_REF: case VIEW_CONVERT_EXPR: if (ctx) lower_regimplify (tp, wi); break; case INDIRECT_REF: if (ctx) { wi->is_lhs = false; wi->val_only = true; lower_regimplify (&TREE_OPERAND (t, 0), wi); } break; default: if (!TYPE_P (t) && !DECL_P (t)) *walk_subtrees = 1; break; } return NULL_TREE; } static void lower_omp (tree *stmt_p, omp_context *ctx) { struct walk_stmt_info wi; memset (&wi, 0, sizeof (wi)); wi.callback = lower_omp_1; wi.info = ctx; wi.val_only = true; wi.want_locations = true; walk_stmts (&wi, stmt_p); } /* Main entry point. */ static unsigned int execute_lower_omp (void) { all_contexts = splay_tree_new (splay_tree_compare_pointers, 0, delete_omp_context); scan_omp (&DECL_SAVED_TREE (current_function_decl), NULL); gcc_assert (parallel_nesting_level == 0); if (all_contexts->root) lower_omp (&DECL_SAVED_TREE (current_function_decl), NULL); if (all_contexts) { splay_tree_delete (all_contexts); all_contexts = NULL; } return 0; } static bool gate_lower_omp (void) { return flag_openmp != 0; } struct tree_opt_pass pass_lower_omp = { "omplower", /* name */ gate_lower_omp, /* gate */ execute_lower_omp, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ 0, /* tv_id */ PROP_gimple_any, /* properties_required */ PROP_gimple_lomp, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func, /* todo_flags_finish */ 0 /* letter */ }; /* The following is a utility to diagnose OpenMP structured block violations. It is not part of the "omplower" pass, as that's invoked too late. It should be invoked by the respective front ends after gimplification. */ static splay_tree all_labels; /* Check for mismatched contexts and generate an error if needed. Return true if an error is detected. */ static bool diagnose_sb_0 (tree *stmt_p, tree branch_ctx, tree label_ctx) { bool exit_p = true; if ((label_ctx ? TREE_VALUE (label_ctx) : NULL) == branch_ctx) return false; /* Try to avoid confusing the user by producing and error message with correct "exit" or "enter" verbage. We prefer "exit" unless we can show that LABEL_CTX is nested within BRANCH_CTX. */ if (branch_ctx == NULL) exit_p = false; else { while (label_ctx) { if (TREE_VALUE (label_ctx) == branch_ctx) { exit_p = false; break; } label_ctx = TREE_CHAIN (label_ctx); } } if (exit_p) error ("invalid exit from OpenMP structured block"); else error ("invalid entry to OpenMP structured block"); *stmt_p = build_empty_stmt (); return true; } /* Pass 1: Create a minimal tree of OpenMP structured blocks, and record where in the tree each label is found. */ static tree diagnose_sb_1 (tree *tp, int *walk_subtrees, void *data) { struct walk_stmt_info *wi = data; tree context = (tree) wi->info; tree inner_context; tree t = *tp; *walk_subtrees = 0; switch (TREE_CODE (t)) { case OMP_PARALLEL: case OMP_SECTIONS: case OMP_SINGLE: walk_tree (&OMP_CLAUSES (t), diagnose_sb_1, wi, NULL); /* FALLTHRU */ case OMP_SECTION: case OMP_MASTER: case OMP_ORDERED: case OMP_CRITICAL: /* The minimal context here is just a tree of statements. */ inner_context = tree_cons (NULL, t, context); wi->info = inner_context; walk_stmts (wi, &OMP_BODY (t)); wi->info = context; break; case OMP_FOR: walk_tree (&OMP_FOR_CLAUSES (t), diagnose_sb_1, wi, NULL); inner_context = tree_cons (NULL, t, context); wi->info = inner_context; walk_tree (&OMP_FOR_INIT (t), diagnose_sb_1, wi, NULL); walk_tree (&OMP_FOR_COND (t), diagnose_sb_1, wi, NULL); walk_tree (&OMP_FOR_INCR (t), diagnose_sb_1, wi, NULL); walk_stmts (wi, &OMP_FOR_PRE_BODY (t)); walk_stmts (wi, &OMP_FOR_BODY (t)); wi->info = context; break; case LABEL_EXPR: splay_tree_insert (all_labels, (splay_tree_key) LABEL_EXPR_LABEL (t), (splay_tree_value) context); break; default: break; } return NULL_TREE; } /* Pass 2: Check each branch and see if its context differs from that of the destination label's context. */ static tree diagnose_sb_2 (tree *tp, int *walk_subtrees, void *data) { struct walk_stmt_info *wi = data; tree context = (tree) wi->info; splay_tree_node n; tree t = *tp; *walk_subtrees = 0; switch (TREE_CODE (t)) { case OMP_PARALLEL: case OMP_SECTIONS: case OMP_SINGLE: walk_tree (&OMP_CLAUSES (t), diagnose_sb_2, wi, NULL); /* FALLTHRU */ case OMP_SECTION: case OMP_MASTER: case OMP_ORDERED: case OMP_CRITICAL: wi->info = t; walk_stmts (wi, &OMP_BODY (t)); wi->info = context; break; case OMP_FOR: walk_tree (&OMP_FOR_CLAUSES (t), diagnose_sb_2, wi, NULL); wi->info = t; walk_tree (&OMP_FOR_INIT (t), diagnose_sb_2, wi, NULL); walk_tree (&OMP_FOR_COND (t), diagnose_sb_2, wi, NULL); walk_tree (&OMP_FOR_INCR (t), diagnose_sb_2, wi, NULL); walk_stmts (wi, &OMP_FOR_PRE_BODY (t)); walk_stmts (wi, &OMP_FOR_BODY (t)); wi->info = context; break; case GOTO_EXPR: { tree lab = GOTO_DESTINATION (t); if (TREE_CODE (lab) != LABEL_DECL) break; n = splay_tree_lookup (all_labels, (splay_tree_key) lab); diagnose_sb_0 (tp, context, n ? (tree) n->value : NULL_TREE); } break; case SWITCH_EXPR: { tree vec = SWITCH_LABELS (t); int i, len = TREE_VEC_LENGTH (vec); for (i = 0; i < len; ++i) { tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i)); n = splay_tree_lookup (all_labels, (splay_tree_key) lab); if (diagnose_sb_0 (tp, context, (tree) n->value)) break; } } break; case RETURN_EXPR: diagnose_sb_0 (tp, context, NULL_TREE); break; default: break; } return NULL_TREE; } void diagnose_omp_structured_block_errors (tree fndecl) { tree save_current = current_function_decl; struct walk_stmt_info wi; current_function_decl = fndecl; all_labels = splay_tree_new (splay_tree_compare_pointers, 0, 0); memset (&wi, 0, sizeof (wi)); wi.callback = diagnose_sb_1; walk_stmts (&wi, &DECL_SAVED_TREE (fndecl)); memset (&wi, 0, sizeof (wi)); wi.callback = diagnose_sb_2; wi.want_locations = true; wi.want_return_expr = true; walk_stmts (&wi, &DECL_SAVED_TREE (fndecl)); splay_tree_delete (all_labels); all_labels = NULL; current_function_decl = save_current; } #include "gt-omp-low.h"
Go to most recent revision | Compare with Previous | Blame | View Log