URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [testsuite/] [gfortran.dg/] [g77/] [980310-4.f] - Rev 154
Compare with Previous | Blame | View Log
c { dg-do compile } C To: egcs-bugs@cygnus.com C Subject: -fPIC problem showing up with fortran on x86 C From: Dave Love <d.love@dl.ac.uk> C Date: 19 Dec 1997 19:31:41 +0000 C C C This illustrates a long-standing problem noted at the end of the g77 C `Actual Bugs' info node and thought to be in the back end. Although C the report is against gcc 2.7 I can reproduce it (specifically on C redhat 4.2) with the 971216 egcs snapshot. C C g77 version 0.5.21 C gcc -v -fnull-version -o /tmp/gfa00415 -xf77-cpp-input /tmp/gfa00415.f -xnone C -lf2c -lm C C ------------ subroutine dqage(f,a,b,epsabs,epsrel,limit,result,abserr, * neval,ier,alist,blist,rlist,elist,iord,last) C -------------------------------------------------- C C Modified Feb 1989 by Barry W. Brown to eliminate key C as argument (use key=1) and to eliminate all Fortran C output. C C Purpose: to make this routine usable from within S. C C -------------------------------------------------- c***begin prologue dqage c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a1 c***keywords automatic integrator, general-purpose, c integrand examinator, globally adaptive, c gauss-kronrod c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the routine calculates an approximation result to a given c definite integral i = integral of f over (a,b), c hopefully satisfying following claim for accuracy c abs(i-reslt).le.max(epsabs,epsrel*abs(i)). c***description c c computation of a definite integral c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c function subprogram defining the integrand c function f(x). the actual name for f needs to be c declared e x t e r n a l in the driver program. c c a - double precision c lower limit of integration c c b - double precision c upper limit of integration c c epsabs - double precision c absolute accuracy requested c epsrel - double precision c relative accuracy requested c if epsabs.le.0 c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c the routine will end with ier = 6. c c key - integer c key for choice of local integration rule c a gauss-kronrod pair is used with c 7 - 15 points if key.lt.2, c 10 - 21 points if key = 2, c 15 - 31 points if key = 3, c 20 - 41 points if key = 4, c 25 - 51 points if key = 5, c 30 - 61 points if key.gt.5. c c limit - integer c gives an upperbound on the number of subintervals c in the partition of (a,b), limit.ge.1. c c on return c result - double precision c approximation to the integral c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c ier - integer c ier = 0 normal and reliable termination of the c routine. it is assumed that the requested c accuracy has been achieved. c ier.gt.0 abnormal termination of the routine c the estimates for result and error are c less reliable. it is assumed that the c requested accuracy has not been achieved. c error messages c ier = 1 maximum number of subdivisions allowed c has been achieved. one can allow more c subdivisions by increasing the value c of limit. c however, if this yields no improvement it c is rather advised to analyze the integrand c in order to determine the integration c difficulties. if the position of a local c difficulty can be determined(e.g. c singularity, discontinuity within the c interval) one will probably gain from c splitting up the interval at this point c and calling the integrator on the c subranges. if possible, an appropriate c special-purpose integrator should be used c which is designed for handling the type of c difficulty involved. c = 2 the occurrence of roundoff error is c detected, which prevents the requested c tolerance from being achieved. c = 3 extremely bad integrand behavior occurs c at some points of the integration c interval. c = 6 the input is invalid, because c (epsabs.le.0 and c epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c result, abserr, neval, last, rlist(1) , c elist(1) and iord(1) are set to zero. c alist(1) and blist(1) are set to a and b c respectively. c c alist - double precision c vector of dimension at least limit, the first c last elements of which are the left c end points of the subintervals in the partition c of the given integration range (a,b) c c blist - double precision c vector of dimension at least limit, the first c last elements of which are the right c end points of the subintervals in the partition c of the given integration range (a,b) c c rlist - double precision c vector of dimension at least limit, the first c last elements of which are the c integral approximations on the subintervals c c elist - double precision c vector of dimension at least limit, the first c last elements of which are the moduli of the c absolute error estimates on the subintervals c c iord - integer c vector of dimension at least limit, the first k c elements of which are pointers to the c error estimates over the subintervals, c such that elist(iord(1)), ..., c elist(iord(k)) form a decreasing sequence, c with k = last if last.le.(limit/2+2), and c k = limit+1-last otherwise c c last - integer c number of subintervals actually produced in the c subdivision process c c***references (none) c***routines called d1mach,dqk15,dqk21,dqk31, c dqk41,dqk51,dqk61,dqpsrt c***end prologue dqage c double precision a,abserr,alist,area,area1,area12,area2,a1,a2,b, * blist,b1,b2,dabs,defabs,defab1,defab2,dmax1,d1mach,elist,epmach, * epsabs,epsrel,errbnd,errmax,error1,error2,erro12,errsum,f, * resabs,result,rlist,uflow integer ier,iord,iroff1,iroff2,k,last,limit,maxerr,neval, * nrmax c dimension alist(limit),blist(limit),elist(limit),iord(limit), * rlist(limit) c external f c c list of major variables c ----------------------- c c alist - list of left end points of all subintervals c considered up to now c blist - list of right end points of all subintervals c considered up to now c rlist(i) - approximation to the integral over c (alist(i),blist(i)) c elist(i) - error estimate applying to rlist(i) c maxerr - pointer to the interval with largest c error estimate c errmax - elist(maxerr) c area - sum of the integrals over the subintervals c errsum - sum of the errors over the subintervals c errbnd - requested accuracy max(epsabs,epsrel* c abs(result)) c *****1 - variable for the left subinterval c *****2 - variable for the right subinterval c last - index for subdivision c c c machine dependent constants c --------------------------- c c epmach is the largest relative spacing. c uflow is the smallest positive magnitude. c c***first executable statement dqage epmach = d1mach(4) uflow = d1mach(1) c c test on validity of parameters c ------------------------------ c ier = 0 neval = 0 last = 0 result = 0.0d+00 abserr = 0.0d+00 alist(1) = a blist(1) = b rlist(1) = 0.0d+00 elist(1) = 0.0d+00 iord(1) = 0 if(epsabs.le.0.0d+00.and. * epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)) ier = 6 if(ier.eq.6) go to 999 c c first approximation to the integral c ----------------------------------- c neval = 0 call dqk15(f,a,b,result,abserr,defabs,resabs) last = 1 rlist(1) = result elist(1) = abserr iord(1) = 1 c c test on accuracy. c errbnd = dmax1(epsabs,epsrel*dabs(result)) if(abserr.le.0.5d+02*epmach*defabs.and.abserr.gt.errbnd) ier = 2 if(limit.eq.1) ier = 1 if(ier.ne.0.or.(abserr.le.errbnd.and.abserr.ne.resabs) * .or.abserr.eq.0.0d+00) go to 60 c c initialization c -------------- c c errmax = abserr maxerr = 1 area = result errsum = abserr nrmax = 1 iroff1 = 0 iroff2 = 0 c c main do-loop c ------------ c do 30 last = 2,limit c c bisect the subinterval with the largest error estimate. c a1 = alist(maxerr) b1 = 0.5d+00*(alist(maxerr)+blist(maxerr)) a2 = b1 b2 = blist(maxerr) call dqk15(f,a1,b1,area1,error1,resabs,defab1) call dqk15(f,a2,b2,area2,error2,resabs,defab2) c c improve previous approximations to integral c and error and test for accuracy. c neval = neval+1 area12 = area1+area2 erro12 = error1+error2 errsum = errsum+erro12-errmax area = area+area12-rlist(maxerr) if(defab1.eq.error1.or.defab2.eq.error2) go to 5 if(dabs(rlist(maxerr)-area12).le.0.1d-04*dabs(area12) * .and.erro12.ge.0.99d+00*errmax) iroff1 = iroff1+1 if(last.gt.10.and.erro12.gt.errmax) iroff2 = iroff2+1 5 rlist(maxerr) = area1 rlist(last) = area2 errbnd = dmax1(epsabs,epsrel*dabs(area)) if(errsum.le.errbnd) go to 8 c c test for roundoff error and eventually set error flag. c if(iroff1.ge.6.or.iroff2.ge.20) ier = 2 c c set error flag in the case that the number of subintervals c equals limit. c if(last.eq.limit) ier = 1 c c set error flag in the case of bad integrand behavior c at a point of the integration range. c if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03* * epmach)*(dabs(a2)+0.1d+04*uflow)) ier = 3 c c append the newly-created intervals to the list. c 8 if(error2.gt.error1) go to 10 alist(last) = a2 blist(maxerr) = b1 blist(last) = b2 elist(maxerr) = error1 elist(last) = error2 go to 20 10 alist(maxerr) = a2 alist(last) = a1 blist(last) = b1 rlist(maxerr) = area2 rlist(last) = area1 elist(maxerr) = error2 elist(last) = error1 c c call subroutine dqpsrt to maintain the descending ordering c in the list of error estimates and select the subinterval c with the largest error estimate (to be bisected next). c 20 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax) c ***jump out of do-loop if(ier.ne.0.or.errsum.le.errbnd) go to 40 30 continue c c compute final result. c --------------------- c 40 result = 0.0d+00 do 50 k=1,last result = result+rlist(k) 50 continue abserr = errsum 60 neval = 30*neval+15 999 return end