URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [a-ngrear.ads] - Rev 311
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- ADA.NUMERICS.GENERIC_REAL_ARRAYS -- -- -- -- S p e c -- -- -- -- Copyright (C) 2009, Free Software Foundation, Inc. -- -- -- -- This specification is derived from the Ada Reference Manual for use with -- -- GNAT. The copyright notice above, and the license provisions that follow -- -- apply solely to the contents of the part following the private keyword. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- <http://www.gnu.org/licenses/>. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ generic type Real is digits <>; package Ada.Numerics.Generic_Real_Arrays is pragma Pure (Generic_Real_Arrays); -- Types type Real_Vector is array (Integer range <>) of Real'Base; type Real_Matrix is array (Integer range <>, Integer range <>) of Real'Base; -- Subprograms for Real_Vector types -- Real_Vector arithmetic operations function "+" (Right : Real_Vector) return Real_Vector; function "-" (Right : Real_Vector) return Real_Vector; function "abs" (Right : Real_Vector) return Real_Vector; function "+" (Left, Right : Real_Vector) return Real_Vector; function "-" (Left, Right : Real_Vector) return Real_Vector; function "*" (Left, Right : Real_Vector) return Real'Base; function "abs" (Right : Real_Vector) return Real'Base; -- Real_Vector scaling operations function "*" (Left : Real'Base; Right : Real_Vector) return Real_Vector; function "*" (Left : Real_Vector; Right : Real'Base) return Real_Vector; function "/" (Left : Real_Vector; Right : Real'Base) return Real_Vector; -- Other Real_Vector operations function Unit_Vector (Index : Integer; Order : Positive; First : Integer := 1) return Real_Vector; -- Subprograms for Real_Matrix types -- Real_Matrix arithmetic operations function "+" (Right : Real_Matrix) return Real_Matrix; function "-" (Right : Real_Matrix) return Real_Matrix; function "abs" (Right : Real_Matrix) return Real_Matrix; function Transpose (X : Real_Matrix) return Real_Matrix; function "+" (Left, Right : Real_Matrix) return Real_Matrix; function "-" (Left, Right : Real_Matrix) return Real_Matrix; function "*" (Left, Right : Real_Matrix) return Real_Matrix; function "*" (Left, Right : Real_Vector) return Real_Matrix; function "*" (Left : Real_Vector; Right : Real_Matrix) return Real_Vector; function "*" (Left : Real_Matrix; Right : Real_Vector) return Real_Vector; -- Real_Matrix scaling operations function "*" (Left : Real'Base; Right : Real_Matrix) return Real_Matrix; function "*" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix; function "/" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix; -- Real_Matrix inversion and related operations function Solve (A : Real_Matrix; X : Real_Vector) return Real_Vector; function Solve (A, X : Real_Matrix) return Real_Matrix; function Inverse (A : Real_Matrix) return Real_Matrix; function Determinant (A : Real_Matrix) return Real'Base; -- Eigenvalues and vectors of a real symmetric matrix function Eigenvalues (A : Real_Matrix) return Real_Vector; procedure Eigensystem (A : Real_Matrix; Values : out Real_Vector; Vectors : out Real_Matrix); -- Other Real_Matrix operations function Unit_Matrix (Order : Positive; First_1 : Integer := 1; First_2 : Integer := 1) return Real_Matrix; private -- The following operations are either relatively simple compared to the -- expense of returning unconstrained arrays, or are just function wrappers -- calling procedures implementing the actual operation. By having the -- front end always inline these, the expense of the unconstrained returns -- can be avoided. pragma Inline_Always ("+"); pragma Inline_Always ("-"); pragma Inline_Always ("*"); pragma Inline_Always ("/"); pragma Inline_Always ("abs"); pragma Inline_Always (Eigenvalues); pragma Inline_Always (Inverse); pragma Inline_Always (Solve); pragma Inline_Always (Transpose); pragma Inline_Always (Unit_Matrix); pragma Inline_Always (Unit_Vector); end Ada.Numerics.Generic_Real_Arrays;
Go to most recent revision | Compare with Previous | Blame | View Log