OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [a-numaux-x86.adb] - Rev 473

Go to most recent revision | Compare with Previous | Blame | View Log

------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--                     A D A . N U M E R I C S . A U X                      --
--                                                                          --
--                                 B o d y                                  --
--                        (Machine Version for x86)                         --
--                                                                          --
--          Copyright (C) 1998-2009, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------
 
--  File a-numaux.adb <- 86numaux.adb
 
--  This version of Numerics.Aux is for the IEEE Double Extended floating
--  point format on x86.
 
with System.Machine_Code; use System.Machine_Code;
 
package body Ada.Numerics.Aux is
 
   NL : constant String := ASCII.LF & ASCII.HT;
 
   -----------------------
   -- Local subprograms --
   -----------------------
 
   function Is_Nan (X : Double) return Boolean;
   --  Return True iff X is a IEEE NaN value
 
   function Logarithmic_Pow (X, Y : Double) return Double;
   --  Implementation of X**Y using Exp and Log functions (binary base)
   --  to calculate the exponentiation. This is used by Pow for values
   --  for values of Y in the open interval (-0.25, 0.25)
 
   procedure Reduce (X : in out Double; Q : out Natural);
   --  Implements reduction of X by Pi/2. Q is the quadrant of the final
   --  result in the range 0 .. 3. The absolute value of X is at most Pi.
 
   pragma Inline (Is_Nan);
   pragma Inline (Reduce);
 
   --------------------------------
   -- Basic Elementary Functions --
   --------------------------------
 
   --  This section implements a few elementary functions that are used to
   --  build the more complex ones. This ordering enables better inlining.
 
   ----------
   -- Atan --
   ----------
 
   function Atan (X : Double) return Double is
      Result  : Double;
 
   begin
      Asm (Template =>
           "fld1" & NL
         & "fpatan",
         Outputs  => Double'Asm_Output ("=t", Result),
         Inputs   => Double'Asm_Input  ("0", X));
 
      --  The result value is NaN iff input was invalid
 
      if not (Result = Result) then
         raise Argument_Error;
      end if;
 
      return Result;
   end Atan;
 
   ---------
   -- Exp --
   ---------
 
   function Exp (X : Double) return Double is
      Result : Double;
   begin
      Asm (Template =>
         "fldl2e               " & NL
       & "fmulp   %%st, %%st(1)" & NL -- X * log2 (E)
       & "fld     %%st(0)      " & NL
       & "frndint              " & NL -- Integer (X * Log2 (E))
       & "fsubr   %%st, %%st(1)" & NL -- Fraction (X * Log2 (E))
       & "fxch                 " & NL
       & "f2xm1                " & NL -- 2**(...) - 1
       & "fld1                 " & NL
       & "faddp   %%st, %%st(1)" & NL -- 2**(Fraction (X * Log2 (E)))
       & "fscale               " & NL -- E ** X
       & "fstp    %%st(1)      ",
         Outputs  => Double'Asm_Output ("=t", Result),
         Inputs   => Double'Asm_Input  ("0", X));
      return Result;
   end Exp;
 
   ------------
   -- Is_Nan --
   ------------
 
   function Is_Nan (X : Double) return Boolean is
   begin
      --  The IEEE NaN values are the only ones that do not equal themselves
 
      return not (X = X);
   end Is_Nan;
 
   ---------
   -- Log --
   ---------
 
   function Log (X : Double) return Double is
      Result : Double;
 
   begin
      Asm (Template =>
         "fldln2               " & NL
       & "fxch                 " & NL
       & "fyl2x                " & NL,
         Outputs  => Double'Asm_Output ("=t", Result),
         Inputs   => Double'Asm_Input  ("0", X));
      return Result;
   end Log;
 
   ------------
   -- Reduce --
   ------------
 
   procedure Reduce (X : in out Double; Q : out Natural) is
      Half_Pi     : constant := Pi / 2.0;
      Two_Over_Pi : constant := 2.0 / Pi;
 
      HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
      M  : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
      P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
      P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
      P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
      P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
      P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
                                                                 - P4, HM);
      P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
      K  : Double := X * Two_Over_Pi;
   begin
      --  For X < 2.0**32, all products below are computed exactly.
      --  Due to cancellation effects all subtractions are exact as well.
      --  As no double extended floating-point number has more than 75
      --  zeros after the binary point, the result will be the correctly
      --  rounded result of X - K * (Pi / 2.0).
 
      while abs K >= 2.0**HM loop
         K := K * M - (K * M - K);
         X := (((((X - K * P1) - K * P2) - K * P3)
                     - K * P4) - K * P5) - K * P6;
         K := X * Two_Over_Pi;
      end loop;
 
      if K /= K then
 
         --  K is not a number, because X was not finite
 
         raise Constraint_Error;
      end if;
 
      K := Double'Rounding (K);
      Q := Integer (K) mod 4;
      X := (((((X - K * P1) - K * P2) - K * P3)
                  - K * P4) - K * P5) - K * P6;
   end Reduce;
 
   ----------
   -- Sqrt --
   ----------
 
   function Sqrt (X : Double) return Double is
      Result  : Double;
 
   begin
      if X < 0.0 then
         raise Argument_Error;
      end if;
 
      Asm (Template => "fsqrt",
           Outputs  => Double'Asm_Output ("=t", Result),
           Inputs   => Double'Asm_Input  ("0", X));
 
      return Result;
   end Sqrt;
 
   --------------------------------
   -- Other Elementary Functions --
   --------------------------------
 
   --  These are built using the previously implemented basic functions
 
   ----------
   -- Acos --
   ----------
 
   function Acos (X : Double) return Double is
      Result  : Double;
 
   begin
      Result := 2.0 * Atan (Sqrt ((1.0 - X) / (1.0 + X)));
 
      --  The result value is NaN iff input was invalid
 
      if Is_Nan (Result) then
         raise Argument_Error;
      end if;
 
      return Result;
   end Acos;
 
   ----------
   -- Asin --
   ----------
 
   function Asin (X : Double) return Double is
      Result  : Double;
 
   begin
      Result := Atan (X / Sqrt ((1.0 - X) * (1.0 + X)));
 
      --  The result value is NaN iff input was invalid
 
      if Is_Nan (Result) then
         raise Argument_Error;
      end if;
 
      return Result;
   end Asin;
 
   ---------
   -- Cos --
   ---------
 
   function Cos (X : Double) return Double is
      Reduced_X : Double := abs X;
      Result    : Double;
      Quadrant  : Natural range 0 .. 3;
 
   begin
      if Reduced_X > Pi / 4.0 then
         Reduce (Reduced_X, Quadrant);
 
         case Quadrant is
            when 0 =>
               Asm (Template  => "fcos",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
            when 1 =>
               Asm (Template  => "fsin",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", -Reduced_X));
            when 2 =>
               Asm (Template  => "fcos ; fchs",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
            when 3 =>
               Asm (Template  => "fsin",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
         end case;
 
      else
         Asm (Template  => "fcos",
              Outputs  => Double'Asm_Output ("=t", Result),
              Inputs   => Double'Asm_Input  ("0", Reduced_X));
      end if;
 
      return Result;
   end Cos;
 
   ---------------------
   -- Logarithmic_Pow --
   ---------------------
 
   function Logarithmic_Pow (X, Y : Double) return Double is
      Result  : Double;
   begin
      Asm (Template => ""             --  X                  : Y
       & "fyl2x                " & NL --  Y * Log2 (X)
       & "fld     %%st(0)      " & NL --  Y * Log2 (X)       : Y * Log2 (X)
       & "frndint              " & NL --  Int (...)          : Y * Log2 (X)
       & "fsubr   %%st, %%st(1)" & NL --  Int (...)          : Fract (...)
       & "fxch                 " & NL --  Fract (...)        : Int (...)
       & "f2xm1                " & NL --  2**Fract (...) - 1 : Int (...)
       & "fld1                 " & NL --  1 : 2**Fract (...) - 1 : Int (...)
       & "faddp   %%st, %%st(1)" & NL --  2**Fract (...)     : Int (...)
       & "fscale               ",     --  2**(Fract (...) + Int (...))
         Outputs  => Double'Asm_Output ("=t", Result),
         Inputs   =>
           (Double'Asm_Input  ("0", X),
            Double'Asm_Input  ("u", Y)));
      return Result;
   end Logarithmic_Pow;
 
   ---------
   -- Pow --
   ---------
 
   function Pow (X, Y : Double) return Double is
      type Mantissa_Type is mod 2**Double'Machine_Mantissa;
      --  Modular type that can hold all bits of the mantissa of Double
 
      --  For negative exponents, do divide at the end of the processing
 
      Negative_Y : constant Boolean := Y < 0.0;
      Abs_Y      : constant Double := abs Y;
 
      --  During this function the following invariant is kept:
      --  X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor
 
      Base : Double := X;
 
      Exp_High : Double := Double'Floor (Abs_Y);
      Exp_Mid  : Double;
      Exp_Low  : Double;
      Exp_Int  : Mantissa_Type;
 
      Factor : Double := 1.0;
 
   begin
      --  Select algorithm for calculating Pow (integer cases fall through)
 
      if Exp_High >= 2.0**Double'Machine_Mantissa then
 
         --  In case of Y that is IEEE infinity, just raise constraint error
 
         if Exp_High > Double'Safe_Last then
            raise Constraint_Error;
         end if;
 
         --  Large values of Y are even integers and will stay integer
         --  after division by two.
 
         loop
            --  Exp_Mid and Exp_Low are zero, so
            --    X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2)
 
            Exp_High := Exp_High / 2.0;
            Base := Base * Base;
            exit when Exp_High < 2.0**Double'Machine_Mantissa;
         end loop;
 
      elsif Exp_High /= Abs_Y then
         Exp_Low := Abs_Y - Exp_High;
         Factor := 1.0;
 
         if Exp_Low /= 0.0 then
 
            --  Exp_Low now is in interval (0.0, 1.0)
            --  Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0;
 
            Exp_Mid := 0.0;
            Exp_Low := Exp_Low - Exp_Mid;
 
            if Exp_Low >= 0.5 then
               Factor := Sqrt (X);
               Exp_Low := Exp_Low - 0.5;  -- exact
 
               if Exp_Low >= 0.25 then
                  Factor := Factor * Sqrt (Factor);
                  Exp_Low := Exp_Low - 0.25; --  exact
               end if;
 
            elsif Exp_Low >= 0.25 then
               Factor := Sqrt (Sqrt (X));
               Exp_Low := Exp_Low - 0.25; --  exact
            end if;
 
            --  Exp_Low now is in interval (0.0, 0.25)
 
            --  This means it is safe to call Logarithmic_Pow
            --  for the remaining part.
 
            Factor := Factor * Logarithmic_Pow (X, Exp_Low);
         end if;
 
      elsif X = 0.0 then
         return 0.0;
      end if;
 
      --  Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa
 
      Exp_Int := Mantissa_Type (Exp_High);
 
      --  Standard way for processing integer powers > 0
 
      while Exp_Int > 1 loop
         if (Exp_Int and 1) = 1 then
 
            --  Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0
 
            Factor := Factor * Base;
         end if;
 
         --  Exp_Int is even and Exp_Int > 0, so
         --    Base**Y = (Base**2)**(Exp_Int / 2)
 
         Base := Base * Base;
         Exp_Int := Exp_Int / 2;
      end loop;
 
      --  Exp_Int = 1 or Exp_Int = 0
 
      if Exp_Int = 1 then
         Factor := Base * Factor;
      end if;
 
      if Negative_Y then
         Factor := 1.0 / Factor;
      end if;
 
      return Factor;
   end Pow;
 
   ---------
   -- Sin --
   ---------
 
   function Sin (X : Double) return Double is
      Reduced_X : Double := X;
      Result    : Double;
      Quadrant  : Natural range 0 .. 3;
 
   begin
      if abs X > Pi / 4.0 then
         Reduce (Reduced_X, Quadrant);
 
         case Quadrant is
            when 0 =>
               Asm (Template  => "fsin",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
            when 1 =>
               Asm (Template  => "fcos",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
            when 2 =>
               Asm (Template  => "fsin",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", -Reduced_X));
            when 3 =>
               Asm (Template  => "fcos ; fchs",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
         end case;
 
      else
         Asm (Template  => "fsin",
            Outputs  => Double'Asm_Output ("=t", Result),
            Inputs   => Double'Asm_Input  ("0", Reduced_X));
      end if;
 
      return Result;
   end Sin;
 
   ---------
   -- Tan --
   ---------
 
   function Tan (X : Double) return Double is
      Reduced_X : Double := X;
      Result    : Double;
      Quadrant  : Natural range 0 .. 3;
 
   begin
      if abs X > Pi / 4.0 then
         Reduce (Reduced_X, Quadrant);
 
         if Quadrant mod 2 = 0 then
            Asm (Template  => "fptan" & NL
                            & "ffree   %%st(0)"  & NL
                            & "fincstp",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
         else
            Asm (Template  => "fsincos" & NL
                            & "fdivp   %%st, %%st(1)" & NL
                            & "fchs",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
         end if;
 
      else
         Asm (Template  =>
               "fptan                 " & NL
             & "ffree   %%st(0)      " & NL
             & "fincstp              ",
               Outputs  => Double'Asm_Output ("=t", Result),
               Inputs   => Double'Asm_Input  ("0", Reduced_X));
      end if;
 
      return Result;
   end Tan;
 
   ----------
   -- Sinh --
   ----------
 
   function Sinh (X : Double) return Double is
   begin
      --  Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0
 
      if abs X < 25.0 then
         return (Exp (X) - Exp (-X)) / 2.0;
      else
         return Exp (X) / 2.0;
      end if;
   end Sinh;
 
   ----------
   -- Cosh --
   ----------
 
   function Cosh (X : Double) return Double is
   begin
      --  Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0
 
      if abs X < 22.0 then
         return (Exp (X) + Exp (-X)) / 2.0;
      else
         return Exp (X) / 2.0;
      end if;
   end Cosh;
 
   ----------
   -- Tanh --
   ----------
 
   function Tanh (X : Double) return Double is
   begin
      --  Return the Hyperbolic Tangent of x
 
      --                                    x    -x
      --                                   e  - e        Sinh (X)
      --       Tanh (X) is defined to be -----------   = --------
      --                                    x    -x      Cosh (X)
      --                                   e  + e
 
      if abs X > 23.0 then
         return Double'Copy_Sign (1.0, X);
      end if;
 
      return 1.0 / (1.0 + Exp (-(2.0 * X))) - 1.0 / (1.0 + Exp (2.0 * X));
   end Tanh;
 
end Ada.Numerics.Aux;
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.