URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [g-dyntab.adb] - Rev 438
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- G N A T . D Y N A M I C _ T A B L E S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2000-2009, AdaCore -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 2, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING. If not, write -- -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, -- -- Boston, MA 02110-1301, USA. -- -- -- -- As a special exception, if other files instantiate generics from this -- -- unit, or you link this unit with other files to produce an executable, -- -- this unit does not by itself cause the resulting executable to be -- -- covered by the GNU General Public License. This exception does not -- -- however invalidate any other reasons why the executable file might be -- -- covered by the GNU Public License. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ pragma Compiler_Unit; with GNAT.Heap_Sort_G; with System; use System; with System.Memory; use System.Memory; with Ada.Unchecked_Conversion; package body GNAT.Dynamic_Tables is Min : constant Integer := Integer (Table_Low_Bound); -- Subscript of the minimum entry in the currently allocated table ----------------------- -- Local Subprograms -- ----------------------- procedure Reallocate (T : in out Instance); -- Reallocate the existing table according to the current value stored -- in Max. Works correctly to do an initial allocation if the table -- is currently null. pragma Warnings (Off); -- These unchecked conversions are in fact safe, since they never -- generate improperly aliased pointer values. function To_Address is new Ada.Unchecked_Conversion (Table_Ptr, Address); function To_Pointer is new Ada.Unchecked_Conversion (Address, Table_Ptr); pragma Warnings (On); -------------- -- Allocate -- -------------- procedure Allocate (T : in out Instance; Num : Integer := 1) is begin T.P.Last_Val := T.P.Last_Val + Num; if T.P.Last_Val > T.P.Max then Reallocate (T); end if; end Allocate; ------------ -- Append -- ------------ procedure Append (T : in out Instance; New_Val : Table_Component_Type) is begin Set_Item (T, Table_Index_Type (T.P.Last_Val + 1), New_Val); end Append; ---------------- -- Append_All -- ---------------- procedure Append_All (T : in out Instance; New_Vals : Table_Type) is begin for J in New_Vals'Range loop Append (T, New_Vals (J)); end loop; end Append_All; -------------------- -- Decrement_Last -- -------------------- procedure Decrement_Last (T : in out Instance) is begin T.P.Last_Val := T.P.Last_Val - 1; end Decrement_Last; -------------- -- For_Each -- -------------- procedure For_Each (Table : Instance) is Quit : Boolean := False; begin for Index in Table_Low_Bound .. Table_Index_Type (Table.P.Last_Val) loop Action (Index, Table.Table (Index), Quit); exit when Quit; end loop; end For_Each; ---------- -- Free -- ---------- procedure Free (T : in out Instance) is begin Free (To_Address (T.Table)); T.Table := null; T.P.Length := 0; end Free; -------------------- -- Increment_Last -- -------------------- procedure Increment_Last (T : in out Instance) is begin T.P.Last_Val := T.P.Last_Val + 1; if T.P.Last_Val > T.P.Max then Reallocate (T); end if; end Increment_Last; ---------- -- Init -- ---------- procedure Init (T : in out Instance) is Old_Length : constant Integer := T.P.Length; begin T.P.Last_Val := Min - 1; T.P.Max := Min + Table_Initial - 1; T.P.Length := T.P.Max - Min + 1; -- If table is same size as before (happens when table is never -- expanded which is a common case), then simply reuse it. Note -- that this also means that an explicit Init call right after -- the implicit one in the package body is harmless. if Old_Length = T.P.Length then return; -- Otherwise we can use Reallocate to get a table of the right size. -- Note that Reallocate works fine to allocate a table of the right -- initial size when it is first allocated. else Reallocate (T); end if; end Init; ---------- -- Last -- ---------- function Last (T : Instance) return Table_Index_Type is begin return Table_Index_Type (T.P.Last_Val); end Last; ---------------- -- Reallocate -- ---------------- procedure Reallocate (T : in out Instance) is New_Length : Integer; New_Size : size_t; begin if T.P.Max < T.P.Last_Val then while T.P.Max < T.P.Last_Val loop New_Length := T.P.Length * (100 + Table_Increment) / 100; if New_Length > T.P.Length then T.P.Length := New_Length; else T.P.Length := T.P.Length + 1; end if; T.P.Max := Min + T.P.Length - 1; end loop; end if; New_Size := size_t ((T.P.Max - Min + 1) * (Table_Type'Component_Size / Storage_Unit)); if T.Table = null then T.Table := To_Pointer (Alloc (New_Size)); elsif New_Size > 0 then T.Table := To_Pointer (Realloc (Ptr => To_Address (T.Table), Size => New_Size)); end if; if T.P.Length /= 0 and then T.Table = null then raise Storage_Error; end if; end Reallocate; ------------- -- Release -- ------------- procedure Release (T : in out Instance) is begin T.P.Length := T.P.Last_Val - Integer (Table_Low_Bound) + 1; T.P.Max := T.P.Last_Val; Reallocate (T); end Release; -------------- -- Set_Item -- -------------- procedure Set_Item (T : in out Instance; Index : Table_Index_Type; Item : Table_Component_Type) is -- If Item is a value within the current allocation, and we are going to -- reallocate, then we must preserve an intermediate copy here before -- calling Increment_Last. Otherwise, if Table_Component_Type is passed -- by reference, we are going to end up copying from storage that might -- have been deallocated from Increment_Last calling Reallocate. subtype Allocated_Table_T is Table_Type (T.Table'First .. Table_Index_Type (T.P.Max + 1)); -- A constrained table subtype one element larger than the currently -- allocated table. Allocated_Table_Address : constant System.Address := T.Table.all'Address; -- Used for address clause below (we can't use non-static expression -- Table.all'Address directly in the clause because some older versions -- of the compiler do not allow it). Allocated_Table : Allocated_Table_T; pragma Import (Ada, Allocated_Table); pragma Suppress (Range_Check, On => Allocated_Table); for Allocated_Table'Address use Allocated_Table_Address; -- Allocated_Table represents the currently allocated array, plus one -- element (the supplementary element is used to have a convenient way -- to the address just past the end of the current allocation). Range -- checks are suppressed because this unit uses direct calls to -- System.Memory for allocation, and this can yield misaligned storage -- (and we cannot rely on the bootstrap compiler supporting specifically -- disabling alignment checks, so we need to suppress all range checks). -- It is safe to suppress this check here because we know that a -- (possibly misaligned) object of that type does actually exist at that -- address. -- ??? We should really improve the allocation circuitry here to -- guarantee proper alignment. Need_Realloc : constant Boolean := Integer (Index) > T.P.Max; -- True if this operation requires storage reallocation (which may -- involve moving table contents around). begin -- If we're going to reallocate, check whether Item references an -- element of the currently allocated table. if Need_Realloc and then Allocated_Table'Address <= Item'Address and then Item'Address < Allocated_Table (Table_Index_Type (T.P.Max + 1))'Address then -- If so, save a copy on the stack because Increment_Last will -- reallocate storage and might deallocate the current table. declare Item_Copy : constant Table_Component_Type := Item; begin Set_Last (T, Index); T.Table (Index) := Item_Copy; end; else -- Here we know that either we won't reallocate (case of Index < Max) -- or that Item is not in the currently allocated table. if Integer (Index) > T.P.Last_Val then Set_Last (T, Index); end if; T.Table (Index) := Item; end if; end Set_Item; -------------- -- Set_Last -- -------------- procedure Set_Last (T : in out Instance; New_Val : Table_Index_Type) is begin if Integer (New_Val) < T.P.Last_Val then T.P.Last_Val := Integer (New_Val); else T.P.Last_Val := Integer (New_Val); if T.P.Last_Val > T.P.Max then Reallocate (T); end if; end if; end Set_Last; ---------------- -- Sort_Table -- ---------------- procedure Sort_Table (Table : in out Instance) is Temp : Table_Component_Type; -- A temporary position to simulate index 0 -- Local subprograms function Index_Of (Idx : Natural) return Table_Index_Type; -- Return index of Idx'th element of table function Lower_Than (Op1, Op2 : Natural) return Boolean; -- Compare two components procedure Move (From : Natural; To : Natural); -- Move one component package Heap_Sort is new GNAT.Heap_Sort_G (Move, Lower_Than); -------------- -- Index_Of -- -------------- function Index_Of (Idx : Natural) return Table_Index_Type is J : constant Integer'Base := Table_Index_Type'Pos (First) + Idx - 1; begin return Table_Index_Type'Val (J); end Index_Of; ---------- -- Move -- ---------- procedure Move (From : Natural; To : Natural) is begin if From = 0 then Table.Table (Index_Of (To)) := Temp; elsif To = 0 then Temp := Table.Table (Index_Of (From)); else Table.Table (Index_Of (To)) := Table.Table (Index_Of (From)); end if; end Move; ---------------- -- Lower_Than -- ---------------- function Lower_Than (Op1, Op2 : Natural) return Boolean is begin if Op1 = 0 then return Lt (Temp, Table.Table (Index_Of (Op2))); elsif Op2 = 0 then return Lt (Table.Table (Index_Of (Op1)), Temp); else return Lt (Table.Table (Index_Of (Op1)), Table.Table (Index_Of (Op2))); end if; end Lower_Than; -- Start of processing for Sort_Table begin Heap_Sort.Sort (Natural (Last (Table) - First) + 1); end Sort_Table; end GNAT.Dynamic_Tables;
Go to most recent revision | Compare with Previous | Blame | View Log