URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [s-gecobl.adb] - Rev 438
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- S Y S T E M . G E N E R I C _ C O M P L E X _ B L A S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2006-2009, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- <http://www.gnu.org/licenses/>. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Ada.Unchecked_Conversion; use Ada; with Interfaces; use Interfaces; with Interfaces.Fortran; use Interfaces.Fortran; with Interfaces.Fortran.BLAS; use Interfaces.Fortran.BLAS; with System.Generic_Array_Operations; use System.Generic_Array_Operations; package body System.Generic_Complex_BLAS is Is_Single : constant Boolean := Real'Machine_Mantissa = Fortran.Real'Machine_Mantissa and then Fortran.Real (Real'First) = Fortran.Real'First and then Fortran.Real (Real'Last) = Fortran.Real'Last; Is_Double : constant Boolean := Real'Machine_Mantissa = Double_Precision'Machine_Mantissa and then Double_Precision (Real'First) = Double_Precision'First and then Double_Precision (Real'Last) = Double_Precision'Last; subtype Complex is Complex_Types.Complex; -- Local subprograms function To_Double_Precision (X : Real) return Double_Precision; pragma Inline (To_Double_Precision); function To_Double_Complex (X : Complex) return Double_Complex; pragma Inline (To_Double_Complex); function To_Complex (X : Double_Complex) return Complex; function To_Complex (X : Fortran.Complex) return Complex; pragma Inline (To_Complex); function To_Fortran (X : Complex) return Fortran.Complex; pragma Inline (To_Fortran); -- Instantiations function To_Double_Complex is new Vector_Elementwise_Operation (X_Scalar => Complex_Types.Complex, Result_Scalar => Fortran.Double_Complex, X_Vector => Complex_Vector, Result_Vector => BLAS.Double_Complex_Vector, Operation => To_Double_Complex); function To_Complex is new Vector_Elementwise_Operation (X_Scalar => Fortran.Double_Complex, Result_Scalar => Complex, X_Vector => BLAS.Double_Complex_Vector, Result_Vector => Complex_Vector, Operation => To_Complex); function To_Double_Complex is new Matrix_Elementwise_Operation (X_Scalar => Complex, Result_Scalar => Double_Complex, X_Matrix => Complex_Matrix, Result_Matrix => BLAS.Double_Complex_Matrix, Operation => To_Double_Complex); function To_Complex is new Matrix_Elementwise_Operation (X_Scalar => Double_Complex, Result_Scalar => Complex, X_Matrix => BLAS.Double_Complex_Matrix, Result_Matrix => Complex_Matrix, Operation => To_Complex); function To_Double_Precision (X : Real) return Double_Precision is begin return Double_Precision (X); end To_Double_Precision; function To_Double_Complex (X : Complex) return Double_Complex is begin return (To_Double_Precision (X.Re), To_Double_Precision (X.Im)); end To_Double_Complex; function To_Complex (X : Double_Complex) return Complex is begin return (Real (X.Re), Real (X.Im)); end To_Complex; function To_Complex (X : Fortran.Complex) return Complex is begin return (Real (X.Re), Real (X.Im)); end To_Complex; function To_Fortran (X : Complex) return Fortran.Complex is begin return (Fortran.Real (X.Re), Fortran.Real (X.Im)); end To_Fortran; --------- -- dot -- --------- function dot (N : Positive; X : Complex_Vector; Inc_X : Integer := 1; Y : Complex_Vector; Inc_Y : Integer := 1) return Complex is begin if Is_Single then declare type X_Ptr is access all BLAS.Complex_Vector (X'Range); type Y_Ptr is access all BLAS.Complex_Vector (Y'Range); function Conv_X is new Unchecked_Conversion (Address, X_Ptr); function Conv_Y is new Unchecked_Conversion (Address, Y_Ptr); begin return To_Complex (BLAS.cdotu (N, Conv_X (X'Address).all, Inc_X, Conv_Y (Y'Address).all, Inc_Y)); end; elsif Is_Double then declare type X_Ptr is access all BLAS.Double_Complex_Vector (X'Range); type Y_Ptr is access all BLAS.Double_Complex_Vector (Y'Range); function Conv_X is new Unchecked_Conversion (Address, X_Ptr); function Conv_Y is new Unchecked_Conversion (Address, Y_Ptr); begin return To_Complex (BLAS.zdotu (N, Conv_X (X'Address).all, Inc_X, Conv_Y (Y'Address).all, Inc_Y)); end; else return To_Complex (BLAS.zdotu (N, To_Double_Complex (X), Inc_X, To_Double_Complex (Y), Inc_Y)); end if; end dot; ---------- -- gemm -- ---------- procedure gemm (Trans_A : access constant Character; Trans_B : access constant Character; M : Positive; N : Positive; K : Positive; Alpha : Complex := (1.0, 0.0); A : Complex_Matrix; Ld_A : Integer; B : Complex_Matrix; Ld_B : Integer; Beta : Complex := (0.0, 0.0); C : in out Complex_Matrix; Ld_C : Integer) is begin if Is_Single then declare subtype A_Type is BLAS.Complex_Matrix (A'Range (1), A'Range (2)); subtype B_Type is BLAS.Complex_Matrix (B'Range (1), B'Range (2)); type C_Ptr is access all BLAS.Complex_Matrix (C'Range (1), C'Range (2)); function Conv_A is new Unchecked_Conversion (Complex_Matrix, A_Type); function Conv_B is new Unchecked_Conversion (Complex_Matrix, B_Type); function Conv_C is new Unchecked_Conversion (Address, C_Ptr); begin BLAS.cgemm (Trans_A, Trans_B, M, N, K, To_Fortran (Alpha), Conv_A (A), Ld_A, Conv_B (B), Ld_B, To_Fortran (Beta), Conv_C (C'Address).all, Ld_C); end; elsif Is_Double then declare subtype A_Type is BLAS.Double_Complex_Matrix (A'Range (1), A'Range (2)); subtype B_Type is BLAS.Double_Complex_Matrix (B'Range (1), B'Range (2)); type C_Ptr is access all BLAS.Double_Complex_Matrix (C'Range (1), C'Range (2)); function Conv_A is new Unchecked_Conversion (Complex_Matrix, A_Type); function Conv_B is new Unchecked_Conversion (Complex_Matrix, B_Type); function Conv_C is new Unchecked_Conversion (Address, C_Ptr); begin BLAS.zgemm (Trans_A, Trans_B, M, N, K, To_Double_Complex (Alpha), Conv_A (A), Ld_A, Conv_B (B), Ld_B, To_Double_Complex (Beta), Conv_C (C'Address).all, Ld_C); end; else declare DP_C : BLAS.Double_Complex_Matrix (C'Range (1), C'Range (2)); begin if Beta.Re /= 0.0 or else Beta.Im /= 0.0 then DP_C := To_Double_Complex (C); end if; BLAS.zgemm (Trans_A, Trans_B, M, N, K, To_Double_Complex (Alpha), To_Double_Complex (A), Ld_A, To_Double_Complex (B), Ld_B, To_Double_Complex (Beta), DP_C, Ld_C); C := To_Complex (DP_C); end; end if; end gemm; ---------- -- gemv -- ---------- procedure gemv (Trans : access constant Character; M : Natural := 0; N : Natural := 0; Alpha : Complex := (1.0, 0.0); A : Complex_Matrix; Ld_A : Positive; X : Complex_Vector; Inc_X : Integer := 1; Beta : Complex := (0.0, 0.0); Y : in out Complex_Vector; Inc_Y : Integer := 1) is begin if Is_Single then declare subtype A_Type is BLAS.Complex_Matrix (A'Range (1), A'Range (2)); subtype X_Type is BLAS.Complex_Vector (X'Range); type Y_Ptr is access all BLAS.Complex_Vector (Y'Range); function Conv_A is new Unchecked_Conversion (Complex_Matrix, A_Type); function Conv_X is new Unchecked_Conversion (Complex_Vector, X_Type); function Conv_Y is new Unchecked_Conversion (Address, Y_Ptr); begin BLAS.cgemv (Trans, M, N, To_Fortran (Alpha), Conv_A (A), Ld_A, Conv_X (X), Inc_X, To_Fortran (Beta), Conv_Y (Y'Address).all, Inc_Y); end; elsif Is_Double then declare subtype A_Type is BLAS.Double_Complex_Matrix (A'Range (1), A'Range (2)); subtype X_Type is BLAS.Double_Complex_Vector (X'Range); type Y_Ptr is access all BLAS.Double_Complex_Vector (Y'Range); function Conv_A is new Unchecked_Conversion (Complex_Matrix, A_Type); function Conv_X is new Unchecked_Conversion (Complex_Vector, X_Type); function Conv_Y is new Unchecked_Conversion (Address, Y_Ptr); begin BLAS.zgemv (Trans, M, N, To_Double_Complex (Alpha), Conv_A (A), Ld_A, Conv_X (X), Inc_X, To_Double_Complex (Beta), Conv_Y (Y'Address).all, Inc_Y); end; else declare DP_Y : BLAS.Double_Complex_Vector (Y'Range); begin if Beta.Re /= 0.0 or else Beta.Im /= 0.0 then DP_Y := To_Double_Complex (Y); end if; BLAS.zgemv (Trans, M, N, To_Double_Complex (Alpha), To_Double_Complex (A), Ld_A, To_Double_Complex (X), Inc_X, To_Double_Complex (Beta), DP_Y, Inc_Y); Y := To_Complex (DP_Y); end; end if; end gemv; ---------- -- nrm2 -- ---------- function nrm2 (N : Natural; X : Complex_Vector; Inc_X : Integer := 1) return Real is begin if Is_Single then declare subtype X_Type is BLAS.Complex_Vector (X'Range); function Conv_X is new Unchecked_Conversion (Complex_Vector, X_Type); begin return Real (BLAS.scnrm2 (N, Conv_X (X), Inc_X)); end; elsif Is_Double then declare subtype X_Type is BLAS.Double_Complex_Vector (X'Range); function Conv_X is new Unchecked_Conversion (Complex_Vector, X_Type); begin return Real (BLAS.dznrm2 (N, Conv_X (X), Inc_X)); end; else return Real (BLAS.dznrm2 (N, To_Double_Complex (X), Inc_X)); end if; end nrm2; end System.Generic_Complex_BLAS;
Go to most recent revision | Compare with Previous | Blame | View Log