URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [arm/] [arm1020e.md] - Rev 282
Compare with Previous | Blame | View Log
;; ARM 1020E & ARM 1022E Pipeline Description;; Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com);;;; This file is part of GCC.;;;; GCC is free software; you can redistribute it and/or modify it;; under the terms of the GNU General Public License as published by;; the Free Software Foundation; either version 3, or (at your option);; any later version.;;;; GCC is distributed in the hope that it will be useful, but;; WITHOUT ANY WARRANTY; without even the implied warranty of;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU;; General Public License for more details.;;;; You should have received a copy of the GNU General Public License;; along with GCC; see the file COPYING3. If not see;; <http://www.gnu.org/licenses/>. */;; These descriptions are based on the information contained in the;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM;; Limited.;;;; This automaton provides a pipeline description for the ARM;; 1020E core.;;;; The model given here assumes that the condition for all conditional;; instructions is "true", i.e., that all of the instructions are;; actually executed.(define_automaton "arm1020e");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Pipelines;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; There are two pipelines:;;;; - An Arithmetic Logic Unit (ALU) pipeline.;;;; The ALU pipeline has fetch, issue, decode, execute, memory, and;; write stages. We only need to model the execute, memory and write;; stages.;;;; - A Load-Store Unit (LSU) pipeline.;;;; The LSU pipeline has decode, execute, memory, and write stages.;; We only model the execute, memory and write stages.(define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")(define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ALU Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ALU instructions require three cycles to execute, and use the ALU;; pipeline in each of the three stages. The results are available;; after the execute stage stage has finished.;;;; If the destination register is the PC, the pipelines are stalled;; for several cycles. That case is not modeled here.;; ALU operations with no shifted operand(define_insn_reservation "1020alu_op" 1(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "type" "alu"))"1020a_e,1020a_m,1020a_w");; ALU operations with a shift-by-constant operand(define_insn_reservation "1020alu_shift_op" 1(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "type" "alu_shift"))"1020a_e,1020a_m,1020a_w");; ALU operations with a shift-by-register operand;; These really stall in the decoder, in order to read;; the shift value in a second cycle. Pretend we take two cycles in;; the execute stage.(define_insn_reservation "1020alu_shift_reg_op" 2(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "type" "alu_shift_reg"))"1020a_e*2,1020a_m,1020a_w");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Multiplication Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Multiplication instructions loop in the execute stage until the;; instruction has been passed through the multiplier array enough;; times.;; The result of the "smul" and "smulw" instructions is not available;; until after the memory stage.(define_insn_reservation "1020mult1" 2(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "insn" "smulxy,smulwy"))"1020a_e,1020a_m,1020a_w");; The "smlaxy" and "smlawx" instructions require two iterations through;; the execute stage; the result is available immediately following;; the execute stage.(define_insn_reservation "1020mult2" 2(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "insn" "smlaxy,smlalxy,smlawx"))"1020a_e*2,1020a_m,1020a_w");; The "smlalxy", "mul", and "mla" instructions require two iterations;; through the execute stage; the result is not available until after;; the memory stage.(define_insn_reservation "1020mult3" 3(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "insn" "smlalxy,mul,mla"))"1020a_e*2,1020a_m,1020a_w");; The "muls" and "mlas" instructions loop in the execute stage for;; four iterations in order to set the flags. The value result is;; available after three iterations.(define_insn_reservation "1020mult4" 3(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "insn" "muls,mlas"))"1020a_e*4,1020a_m,1020a_w");; Long multiply instructions that produce two registers of;; output (such as umull) make their results available in two cycles;;; the least significant word is available before the most significant;; word. That fact is not modeled; instead, the instructions are;; described.as if the entire result was available at the end of the;; cycle in which both words are available.;; The "umull", "umlal", "smull", and "smlal" instructions all take;; three iterations through the execute cycle, and make their results;; available after the memory cycle.(define_insn_reservation "1020mult5" 4(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "insn" "umull,umlal,smull,smlal"))"1020a_e*3,1020a_m,1020a_w");; The "umulls", "umlals", "smulls", and "smlals" instructions loop in;; the execute stage for five iterations in order to set the flags.;; The value result is available after four iterations.(define_insn_reservation "1020mult6" 4(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "insn" "umulls,umlals,smulls,smlals"))"1020a_e*5,1020a_m,1020a_w");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Load/Store Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; The models for load/store instructions do not accurately describe;; the difference between operations with a base register writeback;; (such as "ldm!"). These models assume that all memory references;; hit in dcache.;; LSU instructions require six cycles to execute. They use the ALU;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles;; three through six.;; Loads and stores which use a scaled register offset or scaled;; register pre-indexed addressing mode take three cycles EXCEPT for;; those that are base + offset with LSL of 0 or 2, or base - offset;; with LSL of zero. The remainder take 1 cycle to execute.;; For 4byte loads there is a bypass from the load stage(define_insn_reservation "1020load1_op" 2(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "type" "load_byte,load1"))"1020a_e+1020l_e,1020l_m,1020l_w")(define_insn_reservation "1020store1_op" 0(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "type" "store1"))"1020a_e+1020l_e,1020l_m,1020l_w");; A load's result can be stored by an immediately following store(define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep");; On a LDM/STM operation, the LSU pipeline iterates until all of the;; registers have been processed.;;;; The time it takes to load the data depends on whether or not the;; base address is 64-bit aligned; if it is not, an additional cycle;; is required. This model assumes that the address is always 64-bit;; aligned. Because the processor can load two registers per cycle,;; that assumption means that we use the same instruction reservations;; for loading 2k and 2k - 1 registers.;;;; The ALU pipeline is decoupled after the first cycle unless there is;; a register dependency; the dependency is cleared as soon as the LDM/STM;; has dealt with the corresponding register. So for example,;; stmia sp, {r0-r3};; add r0, r0, #4;; will have one fewer stalls than;; stmia sp, {r0-r3};; add r3, r3, #4;;;; As with ALU operations, if one of the destination registers is the;; PC, there are additional stalls; that is not modeled.(define_insn_reservation "1020load2_op" 2(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "type" "load2"))"1020a_e+1020l_e,1020l_m,1020l_w")(define_insn_reservation "1020store2_op" 0(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "type" "store2"))"1020a_e+1020l_e,1020l_m,1020l_w")(define_insn_reservation "1020load34_op" 3(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "type" "load3,load4"))"1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")(define_insn_reservation "1020store34_op" 0(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "type" "store3,store4"))"1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Branch and Call Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Branch instructions are difficult to model accurately. The ARM;; core can predict most branches. If the branch is predicted;; correctly, and predicted early enough, the branch can be completely;; eliminated from the instruction stream. Some branches can;; therefore appear to require zero cycles to execute. We assume that;; all branches are predicted correctly, and that the latency is;; therefore the minimum value.(define_insn_reservation "1020branch_op" 0(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "type" "branch"))"1020a_e");; The latency for a call is not predictable. Therefore, we use 32 as;; roughly equivalent to positive infinity.(define_insn_reservation "1020call_op" 32(and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "type" "call"))"1020a_e*32");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; VFP;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;(define_cpu_unit "v10_fmac" "arm1020e")(define_cpu_unit "v10_ds" "arm1020e")(define_cpu_unit "v10_fmstat" "arm1020e")(define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e");; fmstat is a serializing instruction. It will stall the core until;; the mac and ds units have completed.(exclusion_set "v10_fmac,v10_ds" "v10_fmstat")(define_attr "vfp10" "yes,no"(const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")(eq_attr "fpu" "vfp"))(const_string "yes") (const_string "no"))));; Note, no instruction can issue to the VFP if the core is stalled in the;; first execute state. We model this by using 1020a_e in the first cycle.(define_insn_reservation "v10_ffarith" 5(and (eq_attr "vfp10" "yes")(eq_attr "type" "fcpys,ffariths,ffarithd,fcmps,fcmpd"))"1020a_e+v10_fmac")(define_insn_reservation "v10_farith" 5(and (eq_attr "vfp10" "yes")(eq_attr "type" "faddd,fadds"))"1020a_e+v10_fmac")(define_insn_reservation "v10_cvt" 5(and (eq_attr "vfp10" "yes")(eq_attr "type" "f_cvt"))"1020a_e+v10_fmac")(define_insn_reservation "v10_fmul" 6(and (eq_attr "vfp10" "yes")(eq_attr "type" "fmuls,fmacs,fmuld,fmacd"))"1020a_e+v10_fmac*2")(define_insn_reservation "v10_fdivs" 18(and (eq_attr "vfp10" "yes")(eq_attr "type" "fdivs"))"1020a_e+v10_ds*14")(define_insn_reservation "v10_fdivd" 32(and (eq_attr "vfp10" "yes")(eq_attr "type" "fdivd"))"1020a_e+v10_fmac+v10_ds*28")(define_insn_reservation "v10_floads" 4(and (eq_attr "vfp10" "yes")(eq_attr "type" "f_loads"))"1020a_e+1020l_e+v10_ls1,v10_ls2");; We model a load of a double as needing all the vfp ls* stage in cycle 1.;; This gives the correct mix between single-and double loads where a flds;; followed by and fldd will stall for one cycle, but two back-to-back fldd;; insns stall for two cycles.(define_insn_reservation "v10_floadd" 5(and (eq_attr "vfp10" "yes")(eq_attr "type" "f_loadd"))"1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3");; Moves to/from arm regs also use the load/store pipeline.(define_insn_reservation "v10_c2v" 4(and (eq_attr "vfp10" "yes")(eq_attr "type" "r_2_f"))"1020a_e+1020l_e+v10_ls1,v10_ls2")(define_insn_reservation "v10_fstores" 1(and (eq_attr "vfp10" "yes")(eq_attr "type" "f_stores"))"1020a_e+1020l_e+v10_ls1,v10_ls2")(define_insn_reservation "v10_fstored" 1(and (eq_attr "vfp10" "yes")(eq_attr "type" "f_stored"))"1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")(define_insn_reservation "v10_v2c" 1(and (eq_attr "vfp10" "yes")(eq_attr "type" "f_2_r"))"1020a_e+1020l_e,1020l_m,1020l_w")(define_insn_reservation "v10_to_cpsr" 2(and (eq_attr "vfp10" "yes")(eq_attr "type" "f_flag"))"1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w");; VFP bypasses;; There are bypasses for most operations other than store(define_bypass 3"v10_c2v,v10_floads""v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")(define_bypass 4"v10_floadd""v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd");; Arithmetic to other arithmetic saves a cycle due to forwarding(define_bypass 4"v10_ffarith,v10_farith""v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")(define_bypass 5"v10_fmul""v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")(define_bypass 17"v10_fdivs""v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")(define_bypass 31"v10_fdivd""v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd");; VFP anti-dependencies.;; There is one anti-dependence in the following case (not yet modelled):;; - After a store: one extra cycle for both fsts and fstd;; Note, back-to-back fstd instructions will overload the load/store datapath;; causing a two-cycle stall.
