URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [arm/] [cortex-r4.md] - Rev 282
Compare with Previous | Blame | View Log
;; ARM Cortex-R4 scheduling description.;; Copyright (C) 2007, 2008 Free Software Foundation, Inc.;; Contributed by CodeSourcery.;; This file is part of GCC.;; GCC is free software; you can redistribute it and/or modify it;; under the terms of the GNU General Public License as published;; by the Free Software Foundation; either version 3, or (at your;; option) any later version.;; GCC is distributed in the hope that it will be useful, but WITHOUT;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public;; License for more details.;; You should have received a copy of the GNU General Public License;; along with GCC; see the file COPYING3. If not see;; <http://www.gnu.org/licenses/>.(define_automaton "cortex_r4");; We approximate the dual-issue constraints of this core using four;; "issue units" and a reservation matrix as follows. The numbers indicate;; the instruction groups' preferences in order. Multiple entries for;; the same numbered preference indicate units that must be reserved;; together.;;;; Issue unit: A B C ALU;;;; ALU w/o reg shift 1st 2nd 1st and 2nd;; ALU w/ reg shift 1st 2nd 2nd 1st and 2nd;; Moves 1st 2nd 2nd;; Multiplication 1st 1st;; Division 1st 1st;; Load/store single 1st 1st;; Other load/store 1st 1st;; Branches 1st(define_cpu_unit "cortex_r4_issue_a" "cortex_r4")(define_cpu_unit "cortex_r4_issue_b" "cortex_r4")(define_cpu_unit "cortex_r4_issue_c" "cortex_r4")(define_cpu_unit "cortex_r4_issue_alu" "cortex_r4")(define_reservation "cortex_r4_alu""(cortex_r4_issue_a+cortex_r4_issue_alu)|\(cortex_r4_issue_b+cortex_r4_issue_alu)")(define_reservation "cortex_r4_alu_shift_reg""(cortex_r4_issue_a+cortex_r4_issue_alu)|\(cortex_r4_issue_b+cortex_r4_issue_c+\cortex_r4_issue_alu)")(define_reservation "cortex_r4_mov""cortex_r4_issue_a|(cortex_r4_issue_b+\cortex_r4_issue_alu)")(define_reservation "cortex_r4_mul" "cortex_r4_issue_a+cortex_r4_issue_alu")(define_reservation "cortex_r4_mul_2""(cortex_r4_issue_a+cortex_r4_issue_alu)*2");; Division instructions execute out-of-order with respect to the;; rest of the pipeline and only require reservations on their first and;; final cycles.(define_reservation "cortex_r4_div_9""cortex_r4_issue_a+cortex_r4_issue_alu,\nothing*7,\cortex_r4_issue_a+cortex_r4_issue_alu")(define_reservation "cortex_r4_div_10""cortex_r4_issue_a+cortex_r4_issue_alu,\nothing*8,\cortex_r4_issue_a+cortex_r4_issue_alu")(define_reservation "cortex_r4_load_store""cortex_r4_issue_a+cortex_r4_issue_c")(define_reservation "cortex_r4_load_store_2""(cortex_r4_issue_a+cortex_r4_issue_b)*2")(define_reservation "cortex_r4_branch" "cortex_r4_issue_b");; We assume that all instructions are unconditional.;; Data processing instructions. Moves without shifts are kept separate;; for the purposes of the dual-issue constraints above.(define_insn_reservation "cortex_r4_alu" 2(and (eq_attr "tune_cortexr4" "yes")(and (eq_attr "type" "alu")(not (eq_attr "insn" "mov"))))"cortex_r4_alu")(define_insn_reservation "cortex_r4_mov" 2(and (eq_attr "tune_cortexr4" "yes")(and (eq_attr "type" "alu")(eq_attr "insn" "mov")))"cortex_r4_mov")(define_insn_reservation "cortex_r4_alu_shift" 2(and (eq_attr "tune_cortexr4" "yes")(eq_attr "type" "alu_shift"))"cortex_r4_alu")(define_insn_reservation "cortex_r4_alu_shift_reg" 2(and (eq_attr "tune_cortexr4" "yes")(eq_attr "type" "alu_shift_reg"))"cortex_r4_alu_shift_reg");; An ALU instruction followed by an ALU instruction with no early dep.(define_bypass 1 "cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,\cortex_r4_mov""cortex_r4_alu")(define_bypass 1 "cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,\cortex_r4_mov""cortex_r4_alu_shift""arm_no_early_alu_shift_dep")(define_bypass 1 "cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,\cortex_r4_mov""cortex_r4_alu_shift_reg""arm_no_early_alu_shift_value_dep");; In terms of availabilities, a consumer mov could theoretically be;; issued together with a producer ALU instruction, without stalls.;; In practice this cannot happen because mov;add (in that order) is not;; eligible for dual issue and furthermore dual issue is not permitted;; when a dependency is involved. We therefore note it as latency one.;; A mov followed by another of the same is also latency one.(define_bypass 1 "cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,\cortex_r4_mov""cortex_r4_mov");; qadd, qdadd, qsub and qdsub are not currently emitted, and neither are;; media data processing instructions nor sad instructions.;; Multiplication instructions.(define_insn_reservation "cortex_r4_mul_4" 4(and (eq_attr "tune_cortexr4" "yes")(eq_attr "insn" "mul,smmul"))"cortex_r4_mul_2")(define_insn_reservation "cortex_r4_mul_3" 3(and (eq_attr "tune_cortexr4" "yes")(eq_attr "insn" "smulxy,smulwy,smuad,smusd"))"cortex_r4_mul")(define_insn_reservation "cortex_r4_mla_4" 4(and (eq_attr "tune_cortexr4" "yes")(eq_attr "insn" "mla,smmla"))"cortex_r4_mul_2")(define_insn_reservation "cortex_r4_mla_3" 3(and (eq_attr "tune_cortexr4" "yes")(eq_attr "insn" "smlaxy,smlawy,smlad,smlsd"))"cortex_r4_mul")(define_insn_reservation "cortex_r4_smlald" 3(and (eq_attr "tune_cortexr4" "yes")(eq_attr "insn" "smlald,smlsld"))"cortex_r4_mul")(define_insn_reservation "cortex_r4_mull" 4(and (eq_attr "tune_cortexr4" "yes")(eq_attr "insn" "smull,umull,umlal,umaal"))"cortex_r4_mul_2");; A multiply or an MLA with a single-register result, followed by an;; MLA with an accumulator dependency, has its result forwarded.(define_bypass 2 "cortex_r4_mul_3,cortex_r4_mla_3""cortex_r4_mla_3,cortex_r4_mla_4""arm_mac_accumulator_is_mul_result")(define_bypass 3 "cortex_r4_mul_4,cortex_r4_mla_4""cortex_r4_mla_3,cortex_r4_mla_4""arm_mac_accumulator_is_mul_result");; A multiply followed by an ALU instruction needing the multiply;; result only at ALU has lower latency than one needing it at Shift.(define_bypass 2 "cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald""cortex_r4_alu")(define_bypass 2 "cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald""cortex_r4_alu_shift""arm_no_early_alu_shift_dep")(define_bypass 2 "cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald""cortex_r4_alu_shift_reg""arm_no_early_alu_shift_value_dep")(define_bypass 3 "cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull""cortex_r4_alu")(define_bypass 3 "cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull""cortex_r4_alu_shift""arm_no_early_alu_shift_dep")(define_bypass 3 "cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull""cortex_r4_alu_shift_reg""arm_no_early_alu_shift_value_dep");; A multiply followed by a mov has one cycle lower latency again.(define_bypass 1 "cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald""cortex_r4_mov")(define_bypass 2 "cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull""cortex_r4_mov");; We guess that division of A/B using sdiv or udiv, on average,;; is performed with B having ten more leading zeros than A.;; This gives a latency of nine for udiv and ten for sdiv.(define_insn_reservation "cortex_r4_udiv" 9(and (eq_attr "tune_cortexr4" "yes")(eq_attr "insn" "udiv"))"cortex_r4_div_9")(define_insn_reservation "cortex_r4_sdiv" 10(and (eq_attr "tune_cortexr4" "yes")(eq_attr "insn" "sdiv"))"cortex_r4_div_10");; Branches. We assume correct prediction.(define_insn_reservation "cortex_r4_branch" 0(and (eq_attr "tune_cortexr4" "yes")(eq_attr "type" "branch"))"cortex_r4_branch");; Call latencies are not predictable. A semi-arbitrary very large;; number is used as "positive infinity" so that everything should be;; finished by the time of return.(define_insn_reservation "cortex_r4_call" 32(and (eq_attr "tune_cortexr4" "yes")(eq_attr "type" "call"))"nothing");; Status register access instructions are not currently emitted.;; Load instructions.;; We do not model the "addr_md_3cycle" cases and assume that;; accesses following are correctly aligned.(define_insn_reservation "cortex_r4_load_1_2" 3(and (eq_attr "tune_cortexr4" "yes")(eq_attr "type" "load1,load2"))"cortex_r4_load_store")(define_insn_reservation "cortex_r4_load_3_4" 4(and (eq_attr "tune_cortexr4" "yes")(eq_attr "type" "load3,load4"))"cortex_r4_load_store_2");; If a producing load is followed by an instruction consuming only;; as a Normal Reg, there is one fewer cycle of latency.(define_bypass 2 "cortex_r4_load_1_2""cortex_r4_alu")(define_bypass 2 "cortex_r4_load_1_2""cortex_r4_alu_shift""arm_no_early_alu_shift_dep")(define_bypass 2 "cortex_r4_load_1_2""cortex_r4_alu_shift_reg""arm_no_early_alu_shift_value_dep")(define_bypass 3 "cortex_r4_load_3_4""cortex_r4_alu")(define_bypass 3 "cortex_r4_load_3_4""cortex_r4_alu_shift""arm_no_early_alu_shift_dep")(define_bypass 3 "cortex_r4_load_3_4""cortex_r4_alu_shift_reg""arm_no_early_alu_shift_value_dep");; If a producing load is followed by an instruction consuming only;; as a Late Reg, there are two fewer cycles of latency. Such consumer;; instructions are moves and stores.(define_bypass 1 "cortex_r4_load_1_2""cortex_r4_mov,cortex_r4_store_1_2,cortex_r4_store_3_4")(define_bypass 2 "cortex_r4_load_3_4""cortex_r4_mov,cortex_r4_store_1_2,cortex_r4_store_3_4");; If a producer's result is required as the base or offset of a load,;; there is an extra cycle latency.(define_bypass 3 "cortex_r4_alu,cortex_r4_mov,cortex_r4_alu_shift,\cortex_r4_alu_shift_reg""cortex_r4_load_1_2,cortex_r4_load_3_4")(define_bypass 4 "cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald""cortex_r4_load_1_2,cortex_r4_load_3_4")(define_bypass 5 "cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull""cortex_r4_load_1_2,cortex_r4_load_3_4");; Store instructions.(define_insn_reservation "cortex_r4_store_1_2" 0(and (eq_attr "tune_cortexr4" "yes")(eq_attr "type" "store1,store2"))"cortex_r4_load_store")(define_insn_reservation "cortex_r4_store_3_4" 0(and (eq_attr "tune_cortexr4" "yes")(eq_attr "type" "store3,store4"))"cortex_r4_load_store_2")
