URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [arm/] [neon-docgen.ml] - Rev 282
Compare with Previous | Blame | View Log
(* ARM NEON documentation generator.
Copyright (C) 2006, 2007 Free Software Foundation, Inc.
Contributed by CodeSourcery.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>.
This is an O'Caml program. The O'Caml compiler is available from:
http://caml.inria.fr/
Or from your favourite OS's friendly packaging system. Tested with version
3.09.2, though other versions will probably work too.
Compile with:
ocamlc -c neon.ml
ocamlc -o neon-docgen neon.cmo neon-docgen.ml
Run with:
/path/to/neon-docgen /path/to/gcc/doc/arm-neon-intrinsics.texi
*)
open Neon
(* The combined "ops" and "reinterp" table. *)
let ops_reinterp = reinterp @ ops
(* Helper functions for extracting things from the "ops" table. *)
let single_opcode desired_opcode () =
List.fold_left (fun got_so_far ->
fun row ->
match row with
(opcode, _, _, _, _, _) ->
if opcode = desired_opcode then row :: got_so_far
else got_so_far
) [] ops_reinterp
let multiple_opcodes desired_opcodes () =
List.fold_left (fun got_so_far ->
fun desired_opcode ->
(single_opcode desired_opcode ()) @ got_so_far)
[] desired_opcodes
let ldx_opcode number () =
List.fold_left (fun got_so_far ->
fun row ->
match row with
(opcode, _, _, _, _, _) ->
match opcode with
Vldx n | Vldx_lane n | Vldx_dup n when n = number ->
row :: got_so_far
| _ -> got_so_far
) [] ops_reinterp
let stx_opcode number () =
List.fold_left (fun got_so_far ->
fun row ->
match row with
(opcode, _, _, _, _, _) ->
match opcode with
Vstx n | Vstx_lane n when n = number ->
row :: got_so_far
| _ -> got_so_far
) [] ops_reinterp
let tbl_opcode () =
List.fold_left (fun got_so_far ->
fun row ->
match row with
(opcode, _, _, _, _, _) ->
match opcode with
Vtbl _ -> row :: got_so_far
| _ -> got_so_far
) [] ops_reinterp
let tbx_opcode () =
List.fold_left (fun got_so_far ->
fun row ->
match row with
(opcode, _, _, _, _, _) ->
match opcode with
Vtbx _ -> row :: got_so_far
| _ -> got_so_far
) [] ops_reinterp
(* The groups of intrinsics. *)
let intrinsic_groups =
[ "Addition", single_opcode Vadd;
"Multiplication", single_opcode Vmul;
"Multiply-accumulate", single_opcode Vmla;
"Multiply-subtract", single_opcode Vmls;
"Subtraction", single_opcode Vsub;
"Comparison (equal-to)", single_opcode Vceq;
"Comparison (greater-than-or-equal-to)", single_opcode Vcge;
"Comparison (less-than-or-equal-to)", single_opcode Vcle;
"Comparison (greater-than)", single_opcode Vcgt;
"Comparison (less-than)", single_opcode Vclt;
"Comparison (absolute greater-than-or-equal-to)", single_opcode Vcage;
"Comparison (absolute less-than-or-equal-to)", single_opcode Vcale;
"Comparison (absolute greater-than)", single_opcode Vcagt;
"Comparison (absolute less-than)", single_opcode Vcalt;
"Test bits", single_opcode Vtst;
"Absolute difference", single_opcode Vabd;
"Absolute difference and accumulate", single_opcode Vaba;
"Maximum", single_opcode Vmax;
"Minimum", single_opcode Vmin;
"Pairwise add", single_opcode Vpadd;
"Pairwise add, single_opcode widen and accumulate", single_opcode Vpada;
"Folding maximum", single_opcode Vpmax;
"Folding minimum", single_opcode Vpmin;
"Reciprocal step", multiple_opcodes [Vrecps; Vrsqrts];
"Vector shift left", single_opcode Vshl;
"Vector shift left by constant", single_opcode Vshl_n;
"Vector shift right by constant", single_opcode Vshr_n;
"Vector shift right by constant and accumulate", single_opcode Vsra_n;
"Vector shift right and insert", single_opcode Vsri;
"Vector shift left and insert", single_opcode Vsli;
"Absolute value", single_opcode Vabs;
"Negation", single_opcode Vneg;
"Bitwise not", single_opcode Vmvn;
"Count leading sign bits", single_opcode Vcls;
"Count leading zeros", single_opcode Vclz;
"Count number of set bits", single_opcode Vcnt;
"Reciprocal estimate", single_opcode Vrecpe;
"Reciprocal square-root estimate", single_opcode Vrsqrte;
"Get lanes from a vector", single_opcode Vget_lane;
"Set lanes in a vector", single_opcode Vset_lane;
"Create vector from literal bit pattern", single_opcode Vcreate;
"Set all lanes to the same value",
multiple_opcodes [Vdup_n; Vmov_n; Vdup_lane];
"Combining vectors", single_opcode Vcombine;
"Splitting vectors", multiple_opcodes [Vget_high; Vget_low];
"Conversions", multiple_opcodes [Vcvt; Vcvt_n];
"Move, single_opcode narrowing", single_opcode Vmovn;
"Move, single_opcode long", single_opcode Vmovl;
"Table lookup", tbl_opcode;
"Extended table lookup", tbx_opcode;
"Multiply, lane", single_opcode Vmul_lane;
"Long multiply, lane", single_opcode Vmull_lane;
"Saturating doubling long multiply, lane", single_opcode Vqdmull_lane;
"Saturating doubling multiply high, lane", single_opcode Vqdmulh_lane;
"Multiply-accumulate, lane", single_opcode Vmla_lane;
"Multiply-subtract, lane", single_opcode Vmls_lane;
"Vector multiply by scalar", single_opcode Vmul_n;
"Vector long multiply by scalar", single_opcode Vmull_n;
"Vector saturating doubling long multiply by scalar",
single_opcode Vqdmull_n;
"Vector saturating doubling multiply high by scalar",
single_opcode Vqdmulh_n;
"Vector multiply-accumulate by scalar", single_opcode Vmla_n;
"Vector multiply-subtract by scalar", single_opcode Vmls_n;
"Vector extract", single_opcode Vext;
"Reverse elements", multiple_opcodes [Vrev64; Vrev32; Vrev16];
"Bit selection", single_opcode Vbsl;
"Transpose elements", single_opcode Vtrn;
"Zip elements", single_opcode Vzip;
"Unzip elements", single_opcode Vuzp;
"Element/structure loads, VLD1 variants", ldx_opcode 1;
"Element/structure stores, VST1 variants", stx_opcode 1;
"Element/structure loads, VLD2 variants", ldx_opcode 2;
"Element/structure stores, VST2 variants", stx_opcode 2;
"Element/structure loads, VLD3 variants", ldx_opcode 3;
"Element/structure stores, VST3 variants", stx_opcode 3;
"Element/structure loads, VLD4 variants", ldx_opcode 4;
"Element/structure stores, VST4 variants", stx_opcode 4;
"Logical operations (AND)", single_opcode Vand;
"Logical operations (OR)", single_opcode Vorr;
"Logical operations (exclusive OR)", single_opcode Veor;
"Logical operations (AND-NOT)", single_opcode Vbic;
"Logical operations (OR-NOT)", single_opcode Vorn;
"Reinterpret casts", single_opcode Vreinterp ]
(* Given an intrinsic shape, produce a string to document the corresponding
operand shapes. *)
let rec analyze_shape shape =
let rec n_things n thing =
match n with
0 -> []
| n -> thing :: (n_things (n - 1) thing)
in
let rec analyze_shape_elt reg_no elt =
match elt with
Dreg -> "@var{d" ^ (string_of_int reg_no) ^ "}"
| Qreg -> "@var{q" ^ (string_of_int reg_no) ^ "}"
| Corereg -> "@var{r" ^ (string_of_int reg_no) ^ "}"
| Immed -> "#@var{0}"
| VecArray (1, elt) ->
let elt_regexp = analyze_shape_elt 0 elt in
"@{" ^ elt_regexp ^ "@}"
| VecArray (n, elt) ->
let rec f m =
match m with
0 -> []
| m -> (analyze_shape_elt (m - 1) elt) :: (f (m - 1))
in
let ops = List.rev (f n) in
"@{" ^ (commas (fun x -> x) ops "") ^ "@}"
| (PtrTo elt | CstPtrTo elt) ->
"[" ^ (analyze_shape_elt reg_no elt) ^ "]"
| Element_of_dreg -> (analyze_shape_elt reg_no Dreg) ^ "[@var{0}]"
| Element_of_qreg -> (analyze_shape_elt reg_no Qreg) ^ "[@var{0}]"
| All_elements_of_dreg -> (analyze_shape_elt reg_no Dreg) ^ "[]"
| Alternatives alts -> (analyze_shape_elt reg_no (List.hd alts))
in
match shape with
All (n, elt) -> commas (analyze_shape_elt 0) (n_things n elt) ""
| Long -> (analyze_shape_elt 0 Qreg) ^ ", " ^ (analyze_shape_elt 0 Dreg) ^
", " ^ (analyze_shape_elt 0 Dreg)
| Long_noreg elt -> (analyze_shape_elt 0 elt) ^ ", " ^
(analyze_shape_elt 0 elt)
| Wide -> (analyze_shape_elt 0 Qreg) ^ ", " ^ (analyze_shape_elt 0 Qreg) ^
", " ^ (analyze_shape_elt 0 Dreg)
| Wide_noreg elt -> analyze_shape (Long_noreg elt)
| Narrow -> (analyze_shape_elt 0 Dreg) ^ ", " ^ (analyze_shape_elt 0 Qreg) ^
", " ^ (analyze_shape_elt 0 Qreg)
| Use_operands elts -> commas (analyze_shape_elt 0) (Array.to_list elts) ""
| By_scalar Dreg ->
analyze_shape (Use_operands [| Dreg; Dreg; Element_of_dreg |])
| By_scalar Qreg ->
analyze_shape (Use_operands [| Qreg; Qreg; Element_of_dreg |])
| By_scalar _ -> assert false
| Wide_lane ->
analyze_shape (Use_operands [| Qreg; Dreg; Element_of_dreg |])
| Wide_scalar ->
analyze_shape (Use_operands [| Qreg; Dreg; Element_of_dreg |])
| Pair_result elt ->
let elt_regexp = analyze_shape_elt 0 elt in
let elt_regexp' = analyze_shape_elt 1 elt in
elt_regexp ^ ", " ^ elt_regexp'
| Unary_scalar _ -> "FIXME Unary_scalar"
| Binary_imm elt -> analyze_shape (Use_operands [| elt; elt; Immed |])
| Narrow_imm -> analyze_shape (Use_operands [| Dreg; Qreg; Immed |])
| Long_imm -> analyze_shape (Use_operands [| Qreg; Dreg; Immed |])
(* Document a single intrinsic. *)
let describe_intrinsic first chan
(elt_ty, (_, features, shape, name, munge, _)) =
let c_arity, new_elt_ty = munge shape elt_ty in
let c_types = strings_of_arity c_arity in
Printf.fprintf chan "@itemize @bullet\n";
let item_code = if first then "@item" else "@itemx" in
Printf.fprintf chan "%s %s %s_%s (" item_code (List.hd c_types)
(intrinsic_name name) (string_of_elt elt_ty);
Printf.fprintf chan "%s)\n" (commas (fun ty -> ty) (List.tl c_types) "");
if not (List.exists (fun feature -> feature = No_op) features) then
begin
let print_one_insn name =
Printf.fprintf chan "@code{";
let no_suffix = (new_elt_ty = NoElts) in
let name_with_suffix =
if no_suffix then name
else name ^ "." ^ (string_of_elt_dots new_elt_ty)
in
let possible_operands = analyze_all_shapes features shape
analyze_shape
in
let rec print_one_possible_operand op =
Printf.fprintf chan "%s %s}" name_with_suffix op
in
(* If the intrinsic expands to multiple instructions, we assume
they are all of the same form. *)
print_one_possible_operand (List.hd possible_operands)
in
let rec print_insns names =
match names with
[] -> ()
| [name] -> print_one_insn name
| name::names -> (print_one_insn name;
Printf.fprintf chan " @emph{or} ";
print_insns names)
in
let insn_names = get_insn_names features name in
Printf.fprintf chan "@*@emph{Form of expected instruction(s):} ";
print_insns insn_names;
Printf.fprintf chan "\n"
end;
Printf.fprintf chan "@end itemize\n";
Printf.fprintf chan "\n\n"
(* Document a group of intrinsics. *)
let document_group chan (group_title, group_extractor) =
(* Extract the rows in question from the ops table and then turn them
into a list of intrinsics. *)
let intrinsics =
List.fold_left (fun got_so_far ->
fun row ->
match row with
(_, _, _, _, _, elt_tys) ->
List.fold_left (fun got_so_far' ->
fun elt_ty ->
(elt_ty, row) :: got_so_far')
got_so_far elt_tys
) [] (group_extractor ())
in
(* Emit the title for this group. *)
Printf.fprintf chan "@subsubsection %s\n\n" group_title;
(* Emit a description of each intrinsic. *)
List.iter (describe_intrinsic true chan) intrinsics;
(* Close this group. *)
Printf.fprintf chan "\n\n"
let gnu_header chan =
List.iter (fun s -> Printf.fprintf chan "%s\n" s) [
"@c Copyright (C) 2006 Free Software Foundation, Inc.";
"@c This is part of the GCC manual.";
"@c For copying conditions, see the file gcc.texi.";
"";
"@c This file is generated automatically using gcc/config/arm/neon-docgen.ml";
"@c Please do not edit manually."]
(* Program entry point. *)
let _ =
if Array.length Sys.argv <> 2 then
failwith "Usage: neon-docgen <output filename>"
else
let file = Sys.argv.(1) in
try
let chan = open_out file in
gnu_header chan;
List.iter (document_group chan) intrinsic_groups;
close_out chan
with Sys_error sys ->
failwith ("Could not create output file " ^ file ^ ": " ^ sys)