URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [avr/] [libgcc.S] - Rev 438
Go to most recent revision | Compare with Previous | Blame | View Log
/* -*- Mode: Asm -*- */
/* Copyright (C) 1998, 1999, 2000, 2007, 2008, 2009
Free Software Foundation, Inc.
Contributed by Denis Chertykov <chertykov@gmail.com>
This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#define __zero_reg__ r1
#define __tmp_reg__ r0
#define __SREG__ 0x3f
#define __SP_H__ 0x3e
#define __SP_L__ 0x3d
#define __RAMPZ__ 0x3B
/* Most of the functions here are called directly from avr.md
patterns, instead of using the standard libcall mechanisms.
This can make better code because GCC knows exactly which
of the call-used registers (not all of them) are clobbered. */
.section .text.libgcc, "ax", @progbits
.macro mov_l r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
movw \r_dest, \r_src
#else
mov \r_dest, \r_src
#endif
.endm
.macro mov_h r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
; empty
#else
mov \r_dest, \r_src
#endif
.endm
/* Note: mulqi3, mulhi3 are open-coded on the enhanced core. */
#if !defined (__AVR_HAVE_MUL__)
/*******************************************************
Multiplication 8 x 8
*******************************************************/
#if defined (L_mulqi3)
#define r_arg2 r22 /* multiplicand */
#define r_arg1 r24 /* multiplier */
#define r_res __tmp_reg__ /* result */
.global __mulqi3
.func __mulqi3
__mulqi3:
clr r_res ; clear result
__mulqi3_loop:
sbrc r_arg1,0
add r_res,r_arg2
add r_arg2,r_arg2 ; shift multiplicand
breq __mulqi3_exit ; while multiplicand != 0
lsr r_arg1 ;
brne __mulqi3_loop ; exit if multiplier = 0
__mulqi3_exit:
mov r_arg1,r_res ; result to return register
ret
#undef r_arg2
#undef r_arg1
#undef r_res
.endfunc
#endif /* defined (L_mulqi3) */
#if defined (L_mulqihi3)
.global __mulqihi3
.func __mulqihi3
__mulqihi3:
clr r25
sbrc r24, 7
dec r25
clr r23
sbrc r22, 7
dec r22
rjmp __mulhi3
.endfunc
#endif /* defined (L_mulqihi3) */
#if defined (L_umulqihi3)
.global __umulqihi3
.func __umulqihi3
__umulqihi3:
clr r25
clr r23
rjmp __mulhi3
.endfunc
#endif /* defined (L_umulqihi3) */
/*******************************************************
Multiplication 16 x 16
*******************************************************/
#if defined (L_mulhi3)
#define r_arg1L r24 /* multiplier Low */
#define r_arg1H r25 /* multiplier High */
#define r_arg2L r22 /* multiplicand Low */
#define r_arg2H r23 /* multiplicand High */
#define r_resL __tmp_reg__ /* result Low */
#define r_resH r21 /* result High */
.global __mulhi3
.func __mulhi3
__mulhi3:
clr r_resH ; clear result
clr r_resL ; clear result
__mulhi3_loop:
sbrs r_arg1L,0
rjmp __mulhi3_skip1
add r_resL,r_arg2L ; result + multiplicand
adc r_resH,r_arg2H
__mulhi3_skip1:
add r_arg2L,r_arg2L ; shift multiplicand
adc r_arg2H,r_arg2H
cp r_arg2L,__zero_reg__
cpc r_arg2H,__zero_reg__
breq __mulhi3_exit ; while multiplicand != 0
lsr r_arg1H ; gets LSB of multiplier
ror r_arg1L
sbiw r_arg1L,0
brne __mulhi3_loop ; exit if multiplier = 0
__mulhi3_exit:
mov r_arg1H,r_resH ; result to return register
mov r_arg1L,r_resL
ret
#undef r_arg1L
#undef r_arg1H
#undef r_arg2L
#undef r_arg2H
#undef r_resL
#undef r_resH
.endfunc
#endif /* defined (L_mulhi3) */
#endif /* !defined (__AVR_HAVE_MUL__) */
#if defined (L_mulhisi3)
.global __mulhisi3
.func __mulhisi3
__mulhisi3:
mov_l r18, r24
mov_h r19, r25
clr r24
sbrc r23, 7
dec r24
mov r25, r24
clr r20
sbrc r19, 7
dec r20
mov r21, r20
rjmp __mulsi3
.endfunc
#endif /* defined (L_mulhisi3) */
#if defined (L_umulhisi3)
.global __umulhisi3
.func __umulhisi3
__umulhisi3:
mov_l r18, r24
mov_h r19, r25
clr r24
clr r25
clr r20
clr r21
rjmp __mulsi3
.endfunc
#endif /* defined (L_umulhisi3) */
#if defined (L_mulsi3)
/*******************************************************
Multiplication 32 x 32
*******************************************************/
#define r_arg1L r22 /* multiplier Low */
#define r_arg1H r23
#define r_arg1HL r24
#define r_arg1HH r25 /* multiplier High */
#define r_arg2L r18 /* multiplicand Low */
#define r_arg2H r19
#define r_arg2HL r20
#define r_arg2HH r21 /* multiplicand High */
#define r_resL r26 /* result Low */
#define r_resH r27
#define r_resHL r30
#define r_resHH r31 /* result High */
.global __mulsi3
.func __mulsi3
__mulsi3:
#if defined (__AVR_HAVE_MUL__)
mul r_arg1L, r_arg2L
movw r_resL, r0
mul r_arg1H, r_arg2H
movw r_resHL, r0
mul r_arg1HL, r_arg2L
add r_resHL, r0
adc r_resHH, r1
mul r_arg1L, r_arg2HL
add r_resHL, r0
adc r_resHH, r1
mul r_arg1HH, r_arg2L
add r_resHH, r0
mul r_arg1HL, r_arg2H
add r_resHH, r0
mul r_arg1H, r_arg2HL
add r_resHH, r0
mul r_arg1L, r_arg2HH
add r_resHH, r0
clr r_arg1HH ; use instead of __zero_reg__ to add carry
mul r_arg1H, r_arg2L
add r_resH, r0
adc r_resHL, r1
adc r_resHH, r_arg1HH ; add carry
mul r_arg1L, r_arg2H
add r_resH, r0
adc r_resHL, r1
adc r_resHH, r_arg1HH ; add carry
movw r_arg1L, r_resL
movw r_arg1HL, r_resHL
clr r1 ; __zero_reg__ clobbered by "mul"
ret
#else
clr r_resHH ; clear result
clr r_resHL ; clear result
clr r_resH ; clear result
clr r_resL ; clear result
__mulsi3_loop:
sbrs r_arg1L,0
rjmp __mulsi3_skip1
add r_resL,r_arg2L ; result + multiplicand
adc r_resH,r_arg2H
adc r_resHL,r_arg2HL
adc r_resHH,r_arg2HH
__mulsi3_skip1:
add r_arg2L,r_arg2L ; shift multiplicand
adc r_arg2H,r_arg2H
adc r_arg2HL,r_arg2HL
adc r_arg2HH,r_arg2HH
lsr r_arg1HH ; gets LSB of multiplier
ror r_arg1HL
ror r_arg1H
ror r_arg1L
brne __mulsi3_loop
sbiw r_arg1HL,0
cpc r_arg1H,r_arg1L
brne __mulsi3_loop ; exit if multiplier = 0
__mulsi3_exit:
mov_h r_arg1HH,r_resHH ; result to return register
mov_l r_arg1HL,r_resHL
mov_h r_arg1H,r_resH
mov_l r_arg1L,r_resL
ret
#endif /* defined (__AVR_HAVE_MUL__) */
#undef r_arg1L
#undef r_arg1H
#undef r_arg1HL
#undef r_arg1HH
#undef r_arg2L
#undef r_arg2H
#undef r_arg2HL
#undef r_arg2HH
#undef r_resL
#undef r_resH
#undef r_resHL
#undef r_resHH
.endfunc
#endif /* defined (L_mulsi3) */
/*******************************************************
Division 8 / 8 => (result + remainder)
*******************************************************/
#define r_rem r25 /* remainder */
#define r_arg1 r24 /* dividend, quotient */
#define r_arg2 r22 /* divisor */
#define r_cnt r23 /* loop count */
#if defined (L_udivmodqi4)
.global __udivmodqi4
.func __udivmodqi4
__udivmodqi4:
sub r_rem,r_rem ; clear remainder and carry
ldi r_cnt,9 ; init loop counter
rjmp __udivmodqi4_ep ; jump to entry point
__udivmodqi4_loop:
rol r_rem ; shift dividend into remainder
cp r_rem,r_arg2 ; compare remainder & divisor
brcs __udivmodqi4_ep ; remainder <= divisor
sub r_rem,r_arg2 ; restore remainder
__udivmodqi4_ep:
rol r_arg1 ; shift dividend (with CARRY)
dec r_cnt ; decrement loop counter
brne __udivmodqi4_loop
com r_arg1 ; complement result
; because C flag was complemented in loop
ret
.endfunc
#endif /* defined (L_udivmodqi4) */
#if defined (L_divmodqi4)
.global __divmodqi4
.func __divmodqi4
__divmodqi4:
bst r_arg1,7 ; store sign of dividend
mov __tmp_reg__,r_arg1
eor __tmp_reg__,r_arg2; r0.7 is sign of result
sbrc r_arg1,7
neg r_arg1 ; dividend negative : negate
sbrc r_arg2,7
neg r_arg2 ; divisor negative : negate
rcall __udivmodqi4 ; do the unsigned div/mod
brtc __divmodqi4_1
neg r_rem ; correct remainder sign
__divmodqi4_1:
sbrc __tmp_reg__,7
neg r_arg1 ; correct result sign
__divmodqi4_exit:
ret
.endfunc
#endif /* defined (L_divmodqi4) */
#undef r_rem
#undef r_arg1
#undef r_arg2
#undef r_cnt
/*******************************************************
Division 16 / 16 => (result + remainder)
*******************************************************/
#define r_remL r26 /* remainder Low */
#define r_remH r27 /* remainder High */
/* return: remainder */
#define r_arg1L r24 /* dividend Low */
#define r_arg1H r25 /* dividend High */
/* return: quotient */
#define r_arg2L r22 /* divisor Low */
#define r_arg2H r23 /* divisor High */
#define r_cnt r21 /* loop count */
#if defined (L_udivmodhi4)
.global __udivmodhi4
.func __udivmodhi4
__udivmodhi4:
sub r_remL,r_remL
sub r_remH,r_remH ; clear remainder and carry
ldi r_cnt,17 ; init loop counter
rjmp __udivmodhi4_ep ; jump to entry point
__udivmodhi4_loop:
rol r_remL ; shift dividend into remainder
rol r_remH
cp r_remL,r_arg2L ; compare remainder & divisor
cpc r_remH,r_arg2H
brcs __udivmodhi4_ep ; remainder < divisor
sub r_remL,r_arg2L ; restore remainder
sbc r_remH,r_arg2H
__udivmodhi4_ep:
rol r_arg1L ; shift dividend (with CARRY)
rol r_arg1H
dec r_cnt ; decrement loop counter
brne __udivmodhi4_loop
com r_arg1L
com r_arg1H
; div/mod results to return registers, as for the div() function
mov_l r_arg2L, r_arg1L ; quotient
mov_h r_arg2H, r_arg1H
mov_l r_arg1L, r_remL ; remainder
mov_h r_arg1H, r_remH
ret
.endfunc
#endif /* defined (L_udivmodhi4) */
#if defined (L_divmodhi4)
.global __divmodhi4
.func __divmodhi4
__divmodhi4:
.global _div
_div:
bst r_arg1H,7 ; store sign of dividend
mov __tmp_reg__,r_arg1H
eor __tmp_reg__,r_arg2H ; r0.7 is sign of result
rcall __divmodhi4_neg1 ; dividend negative : negate
sbrc r_arg2H,7
rcall __divmodhi4_neg2 ; divisor negative : negate
rcall __udivmodhi4 ; do the unsigned div/mod
rcall __divmodhi4_neg1 ; correct remainder sign
tst __tmp_reg__
brpl __divmodhi4_exit
__divmodhi4_neg2:
com r_arg2H
neg r_arg2L ; correct divisor/result sign
sbci r_arg2H,0xff
__divmodhi4_exit:
ret
__divmodhi4_neg1:
brtc __divmodhi4_exit
com r_arg1H
neg r_arg1L ; correct dividend/remainder sign
sbci r_arg1H,0xff
ret
.endfunc
#endif /* defined (L_divmodhi4) */
#undef r_remH
#undef r_remL
#undef r_arg1H
#undef r_arg1L
#undef r_arg2H
#undef r_arg2L
#undef r_cnt
/*******************************************************
Division 32 / 32 => (result + remainder)
*******************************************************/
#define r_remHH r31 /* remainder High */
#define r_remHL r30
#define r_remH r27
#define r_remL r26 /* remainder Low */
/* return: remainder */
#define r_arg1HH r25 /* dividend High */
#define r_arg1HL r24
#define r_arg1H r23
#define r_arg1L r22 /* dividend Low */
/* return: quotient */
#define r_arg2HH r21 /* divisor High */
#define r_arg2HL r20
#define r_arg2H r19
#define r_arg2L r18 /* divisor Low */
#define r_cnt __zero_reg__ /* loop count (0 after the loop!) */
#if defined (L_udivmodsi4)
.global __udivmodsi4
.func __udivmodsi4
__udivmodsi4:
ldi r_remL, 33 ; init loop counter
mov r_cnt, r_remL
sub r_remL,r_remL
sub r_remH,r_remH ; clear remainder and carry
mov_l r_remHL, r_remL
mov_h r_remHH, r_remH
rjmp __udivmodsi4_ep ; jump to entry point
__udivmodsi4_loop:
rol r_remL ; shift dividend into remainder
rol r_remH
rol r_remHL
rol r_remHH
cp r_remL,r_arg2L ; compare remainder & divisor
cpc r_remH,r_arg2H
cpc r_remHL,r_arg2HL
cpc r_remHH,r_arg2HH
brcs __udivmodsi4_ep ; remainder <= divisor
sub r_remL,r_arg2L ; restore remainder
sbc r_remH,r_arg2H
sbc r_remHL,r_arg2HL
sbc r_remHH,r_arg2HH
__udivmodsi4_ep:
rol r_arg1L ; shift dividend (with CARRY)
rol r_arg1H
rol r_arg1HL
rol r_arg1HH
dec r_cnt ; decrement loop counter
brne __udivmodsi4_loop
; __zero_reg__ now restored (r_cnt == 0)
com r_arg1L
com r_arg1H
com r_arg1HL
com r_arg1HH
; div/mod results to return registers, as for the ldiv() function
mov_l r_arg2L, r_arg1L ; quotient
mov_h r_arg2H, r_arg1H
mov_l r_arg2HL, r_arg1HL
mov_h r_arg2HH, r_arg1HH
mov_l r_arg1L, r_remL ; remainder
mov_h r_arg1H, r_remH
mov_l r_arg1HL, r_remHL
mov_h r_arg1HH, r_remHH
ret
.endfunc
#endif /* defined (L_udivmodsi4) */
#if defined (L_divmodsi4)
.global __divmodsi4
.func __divmodsi4
__divmodsi4:
bst r_arg1HH,7 ; store sign of dividend
mov __tmp_reg__,r_arg1HH
eor __tmp_reg__,r_arg2HH ; r0.7 is sign of result
rcall __divmodsi4_neg1 ; dividend negative : negate
sbrc r_arg2HH,7
rcall __divmodsi4_neg2 ; divisor negative : negate
rcall __udivmodsi4 ; do the unsigned div/mod
rcall __divmodsi4_neg1 ; correct remainder sign
rol __tmp_reg__
brcc __divmodsi4_exit
__divmodsi4_neg2:
com r_arg2HH
com r_arg2HL
com r_arg2H
neg r_arg2L ; correct divisor/quotient sign
sbci r_arg2H,0xff
sbci r_arg2HL,0xff
sbci r_arg2HH,0xff
__divmodsi4_exit:
ret
__divmodsi4_neg1:
brtc __divmodsi4_exit
com r_arg1HH
com r_arg1HL
com r_arg1H
neg r_arg1L ; correct dividend/remainder sign
sbci r_arg1H, 0xff
sbci r_arg1HL,0xff
sbci r_arg1HH,0xff
ret
.endfunc
#endif /* defined (L_divmodsi4) */
/**********************************
* This is a prologue subroutine
**********************************/
#if defined (L_prologue)
.global __prologue_saves__
.func __prologue_saves__
__prologue_saves__:
push r2
push r3
push r4
push r5
push r6
push r7
push r8
push r9
push r10
push r11
push r12
push r13
push r14
push r15
push r16
push r17
push r28
push r29
in r28,__SP_L__
in r29,__SP_H__
sub r28,r26
sbc r29,r27
in __tmp_reg__,__SREG__
cli
out __SP_H__,r29
out __SREG__,__tmp_reg__
out __SP_L__,r28
#if defined (__AVR_HAVE_EIJMP_EICALL__)
eijmp
#else
ijmp
#endif
.endfunc
#endif /* defined (L_prologue) */
/*
* This is an epilogue subroutine
*/
#if defined (L_epilogue)
.global __epilogue_restores__
.func __epilogue_restores__
__epilogue_restores__:
ldd r2,Y+18
ldd r3,Y+17
ldd r4,Y+16
ldd r5,Y+15
ldd r6,Y+14
ldd r7,Y+13
ldd r8,Y+12
ldd r9,Y+11
ldd r10,Y+10
ldd r11,Y+9
ldd r12,Y+8
ldd r13,Y+7
ldd r14,Y+6
ldd r15,Y+5
ldd r16,Y+4
ldd r17,Y+3
ldd r26,Y+2
ldd r27,Y+1
add r28,r30
adc r29,__zero_reg__
in __tmp_reg__,__SREG__
cli
out __SP_H__,r29
out __SREG__,__tmp_reg__
out __SP_L__,r28
mov_l r28, r26
mov_h r29, r27
ret
.endfunc
#endif /* defined (L_epilogue) */
#ifdef L_exit
.section .fini9,"ax",@progbits
.global _exit
.func _exit
_exit:
.weak exit
exit:
/* Code from .fini8 ... .fini1 sections inserted by ld script. */
.section .fini0,"ax",@progbits
cli
__stop_program:
rjmp __stop_program
.endfunc
#endif /* defined (L_exit) */
#ifdef L_cleanup
.weak _cleanup
.func _cleanup
_cleanup:
ret
.endfunc
#endif /* defined (L_cleanup) */
#ifdef L_tablejump
.global __tablejump2__
.func __tablejump2__
__tablejump2__:
lsl r30
rol r31
.global __tablejump__
__tablejump__:
#if defined (__AVR_HAVE_LPMX__)
lpm __tmp_reg__, Z+
lpm r31, Z
mov r30, __tmp_reg__
#if defined (__AVR_HAVE_EIJMP_EICALL__)
eijmp
#else
ijmp
#endif
#else
lpm
adiw r30, 1
push r0
lpm
push r0
#if defined (__AVR_HAVE_EIJMP_EICALL__)
push __zero_reg__
#endif
ret
#endif
.endfunc
#endif /* defined (L_tablejump) */
#ifdef L_copy_data
.section .init4,"ax",@progbits
.global __do_copy_data
__do_copy_data:
#if defined(__AVR_HAVE_ELPMX__)
ldi r17, hi8(__data_end)
ldi r26, lo8(__data_start)
ldi r27, hi8(__data_start)
ldi r30, lo8(__data_load_start)
ldi r31, hi8(__data_load_start)
ldi r16, hh8(__data_load_start)
out __RAMPZ__, r16
rjmp .L__do_copy_data_start
.L__do_copy_data_loop:
elpm r0, Z+
st X+, r0
.L__do_copy_data_start:
cpi r26, lo8(__data_end)
cpc r27, r17
brne .L__do_copy_data_loop
#elif !defined(__AVR_HAVE_ELPMX__) && defined(__AVR_HAVE_ELPM__)
ldi r17, hi8(__data_end)
ldi r26, lo8(__data_start)
ldi r27, hi8(__data_start)
ldi r30, lo8(__data_load_start)
ldi r31, hi8(__data_load_start)
ldi r16, hh8(__data_load_start - 0x10000)
.L__do_copy_data_carry:
inc r16
out __RAMPZ__, r16
rjmp .L__do_copy_data_start
.L__do_copy_data_loop:
elpm
st X+, r0
adiw r30, 1
brcs .L__do_copy_data_carry
.L__do_copy_data_start:
cpi r26, lo8(__data_end)
cpc r27, r17
brne .L__do_copy_data_loop
#elif !defined(__AVR_HAVE_ELPMX__) && !defined(__AVR_HAVE_ELPM__)
ldi r17, hi8(__data_end)
ldi r26, lo8(__data_start)
ldi r27, hi8(__data_start)
ldi r30, lo8(__data_load_start)
ldi r31, hi8(__data_load_start)
rjmp .L__do_copy_data_start
.L__do_copy_data_loop:
#if defined (__AVR_HAVE_LPMX__)
lpm r0, Z+
#else
lpm
adiw r30, 1
#endif
st X+, r0
.L__do_copy_data_start:
cpi r26, lo8(__data_end)
cpc r27, r17
brne .L__do_copy_data_loop
#endif /* !defined(__AVR_HAVE_ELPMX__) && !defined(__AVR_HAVE_ELPM__) */
#endif /* L_copy_data */
/* __do_clear_bss is only necessary if there is anything in .bss section. */
#ifdef L_clear_bss
.section .init4,"ax",@progbits
.global __do_clear_bss
__do_clear_bss:
ldi r17, hi8(__bss_end)
ldi r26, lo8(__bss_start)
ldi r27, hi8(__bss_start)
rjmp .do_clear_bss_start
.do_clear_bss_loop:
st X+, __zero_reg__
.do_clear_bss_start:
cpi r26, lo8(__bss_end)
cpc r27, r17
brne .do_clear_bss_loop
#endif /* L_clear_bss */
/* __do_global_ctors and __do_global_dtors are only necessary
if there are any constructors/destructors. */
#if defined (__AVR_HAVE_JMP_CALL__)
#define XCALL call
#else
#define XCALL rcall
#endif
#ifdef L_ctors
.section .init6,"ax",@progbits
.global __do_global_ctors
#if defined(__AVR_HAVE_RAMPZ__)
__do_global_ctors:
ldi r17, hi8(__ctors_start)
ldi r16, hh8(__ctors_start)
ldi r28, lo8(__ctors_end)
ldi r29, hi8(__ctors_end)
ldi r20, hh8(__ctors_end)
rjmp .L__do_global_ctors_start
.L__do_global_ctors_loop:
sbiw r28, 2
sbc r20, __zero_reg__
mov_h r31, r29
mov_l r30, r28
out __RAMPZ__, r20
XCALL __tablejump_elpm__
.L__do_global_ctors_start:
cpi r28, lo8(__ctors_start)
cpc r29, r17
cpc r20, r16
brne .L__do_global_ctors_loop
#else
__do_global_ctors:
ldi r17, hi8(__ctors_start)
ldi r28, lo8(__ctors_end)
ldi r29, hi8(__ctors_end)
rjmp .L__do_global_ctors_start
.L__do_global_ctors_loop:
sbiw r28, 2
mov_h r31, r29
mov_l r30, r28
XCALL __tablejump__
.L__do_global_ctors_start:
cpi r28, lo8(__ctors_start)
cpc r29, r17
brne .L__do_global_ctors_loop
#endif /* defined(__AVR_HAVE_RAMPZ__) */
#endif /* L_ctors */
#ifdef L_dtors
.section .fini6,"ax",@progbits
.global __do_global_dtors
#if defined(__AVR_HAVE_RAMPZ__)
__do_global_dtors:
ldi r17, hi8(__dtors_end)
ldi r16, hh8(__dtors_end)
ldi r28, lo8(__dtors_start)
ldi r29, hi8(__dtors_start)
ldi r20, hh8(__dtors_start)
rjmp .L__do_global_dtors_start
.L__do_global_dtors_loop:
sbiw r28, 2
sbc r20, __zero_reg__
mov_h r31, r29
mov_l r30, r28
out __RAMPZ__, r20
XCALL __tablejump_elpm__
.L__do_global_dtors_start:
cpi r28, lo8(__dtors_end)
cpc r29, r17
cpc r20, r16
brne .L__do_global_dtors_loop
#else
__do_global_dtors:
ldi r17, hi8(__dtors_end)
ldi r28, lo8(__dtors_start)
ldi r29, hi8(__dtors_start)
rjmp .L__do_global_dtors_start
.L__do_global_dtors_loop:
mov_h r31, r29
mov_l r30, r28
XCALL __tablejump__
adiw r28, 2
.L__do_global_dtors_start:
cpi r28, lo8(__dtors_end)
cpc r29, r17
brne .L__do_global_dtors_loop
#endif /* defined(__AVR_HAVE_RAMPZ__) */
#endif /* L_dtors */
#ifdef L_tablejump_elpm
.global __tablejump_elpm__
.func __tablejump_elpm__
__tablejump_elpm__:
#if defined (__AVR_HAVE_ELPM__)
#if defined (__AVR_HAVE_LPMX__)
elpm __tmp_reg__, Z+
elpm r31, Z
mov r30, __tmp_reg__
#if defined (__AVR_HAVE_EIJMP_EICALL__)
eijmp
#else
ijmp
#endif
#else
elpm
adiw r30, 1
push r0
elpm
push r0
#if defined (__AVR_HAVE_EIJMP_EICALL__)
push __zero_reg__
#endif
ret
#endif
#endif /* defined (__AVR_HAVE_ELPM__) */
.endfunc
#endif /* defined (L_tablejump_elpm) */
Go to most recent revision | Compare with Previous | Blame | View Log