URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [frv/] [frv.c] - Rev 282
Compare with Previous | Blame | View Log
/* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by Red Hat, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "recog.h" #include "reload.h" #include "expr.h" #include "obstack.h" #include "except.h" #include "function.h" #include "optabs.h" #include "toplev.h" #include "basic-block.h" #include "tm_p.h" #include "ggc.h" #include <ctype.h> #include "target.h" #include "target-def.h" #include "targhooks.h" #include "integrate.h" #include "langhooks.h" #include "df.h" #ifndef FRV_INLINE #define FRV_INLINE inline #endif /* The maximum number of distinct NOP patterns. There are three: nop, fnop and mnop. */ #define NUM_NOP_PATTERNS 3 /* Classification of instructions and units: integer, floating-point/media, branch and control. */ enum frv_insn_group { GROUP_I, GROUP_FM, GROUP_B, GROUP_C, NUM_GROUPS }; /* The DFA names of the units, in packet order. */ static const char *const frv_unit_names[] = { "c", "i0", "f0", "i1", "f1", "i2", "f2", "i3", "f3", "b0", "b1" }; /* The classification of each unit in frv_unit_names[]. */ static const enum frv_insn_group frv_unit_groups[ARRAY_SIZE (frv_unit_names)] = { GROUP_C, GROUP_I, GROUP_FM, GROUP_I, GROUP_FM, GROUP_I, GROUP_FM, GROUP_I, GROUP_FM, GROUP_B, GROUP_B }; /* Return the DFA unit code associated with the Nth unit of integer or floating-point group GROUP, */ #define NTH_UNIT(GROUP, N) frv_unit_codes[(GROUP) + (N) * 2 + 1] /* Return the number of integer or floating-point unit UNIT (1 for I1, 2 for F2, etc.). */ #define UNIT_NUMBER(UNIT) (((UNIT) - 1) / 2) /* The DFA unit number for each unit in frv_unit_names[]. */ static int frv_unit_codes[ARRAY_SIZE (frv_unit_names)]; /* FRV_TYPE_TO_UNIT[T] is the last unit in frv_unit_names[] that can issue an instruction of type T. The value is ARRAY_SIZE (frv_unit_names) if no instruction of type T has been seen. */ static unsigned int frv_type_to_unit[TYPE_UNKNOWN + 1]; /* An array of dummy nop INSNs, one for each type of nop that the target supports. */ static GTY(()) rtx frv_nops[NUM_NOP_PATTERNS]; /* The number of nop instructions in frv_nops[]. */ static unsigned int frv_num_nops; /* Information about one __builtin_read or __builtin_write access, or the combination of several such accesses. The most general value is all-zeros (an unknown access to an unknown address). */ struct frv_io { /* The type of access. FRV_IO_UNKNOWN means the access can be either a read or a write. */ enum { FRV_IO_UNKNOWN, FRV_IO_READ, FRV_IO_WRITE } type; /* The constant address being accessed, or zero if not known. */ HOST_WIDE_INT const_address; /* The run-time address, as used in operand 0 of the membar pattern. */ rtx var_address; }; /* Return true if instruction INSN should be packed with the following instruction. */ #define PACKING_FLAG_P(INSN) (GET_MODE (INSN) == TImode) /* Set the value of PACKING_FLAG_P(INSN). */ #define SET_PACKING_FLAG(INSN) PUT_MODE (INSN, TImode) #define CLEAR_PACKING_FLAG(INSN) PUT_MODE (INSN, VOIDmode) /* Loop with REG set to each hard register in rtx X. */ #define FOR_EACH_REGNO(REG, X) \ for (REG = REGNO (X); \ REG < REGNO (X) + HARD_REGNO_NREGS (REGNO (X), GET_MODE (X)); \ REG++) /* This structure contains machine specific function data. */ struct GTY(()) machine_function { /* True if we have created an rtx that relies on the stack frame. */ int frame_needed; /* True if this function contains at least one __builtin_{read,write}*. */ bool has_membar_p; }; /* Temporary register allocation support structure. */ typedef struct frv_tmp_reg_struct { HARD_REG_SET regs; /* possible registers to allocate */ int next_reg[N_REG_CLASSES]; /* next register to allocate per class */ } frv_tmp_reg_t; /* Register state information for VLIW re-packing phase. */ #define REGSTATE_CC_MASK 0x07 /* Mask to isolate CCn for cond exec */ #define REGSTATE_MODIFIED 0x08 /* reg modified in current VLIW insn */ #define REGSTATE_IF_TRUE 0x10 /* reg modified in cond exec true */ #define REGSTATE_IF_FALSE 0x20 /* reg modified in cond exec false */ #define REGSTATE_IF_EITHER (REGSTATE_IF_TRUE | REGSTATE_IF_FALSE) typedef unsigned char regstate_t; /* Used in frv_frame_accessor_t to indicate the direction of a register-to- memory move. */ enum frv_stack_op { FRV_LOAD, FRV_STORE }; /* Information required by frv_frame_access. */ typedef struct { /* This field is FRV_LOAD if registers are to be loaded from the stack and FRV_STORE if they should be stored onto the stack. FRV_STORE implies the move is being done by the prologue code while FRV_LOAD implies it is being done by the epilogue. */ enum frv_stack_op op; /* The base register to use when accessing the stack. This may be the frame pointer, stack pointer, or a temporary. The choice of register depends on which part of the frame is being accessed and how big the frame is. */ rtx base; /* The offset of BASE from the bottom of the current frame, in bytes. */ int base_offset; } frv_frame_accessor_t; /* Conditional execution support gathered together in one structure. */ typedef struct { /* Linked list of insns to add if the conditional execution conversion was successful. Each link points to an EXPR_LIST which points to the pattern of the insn to add, and the insn to be inserted before. */ rtx added_insns_list; /* Identify which registers are safe to allocate for if conversions to conditional execution. We keep the last allocated register in the register classes between COND_EXEC statements. This will mean we allocate different registers for each different COND_EXEC group if we can. This might allow the scheduler to intermix two different COND_EXEC sections. */ frv_tmp_reg_t tmp_reg; /* For nested IFs, identify which CC registers are used outside of setting via a compare isnsn, and using via a check insn. This will allow us to know if we can rewrite the register to use a different register that will be paired with the CR register controlling the nested IF-THEN blocks. */ HARD_REG_SET nested_cc_ok_rewrite; /* Temporary registers allocated to hold constants during conditional execution. */ rtx scratch_regs[FIRST_PSEUDO_REGISTER]; /* Current number of temp registers available. */ int cur_scratch_regs; /* Number of nested conditional execution blocks. */ int num_nested_cond_exec; /* Map of insns that set up constants in scratch registers. */ bitmap scratch_insns_bitmap; /* Conditional execution test register (CC0..CC7). */ rtx cr_reg; /* Conditional execution compare register that is paired with cr_reg, so that nested compares can be done. The csubcc and caddcc instructions don't have enough bits to specify both a CC register to be set and a CR register to do the test on, so the same bit number is used for both. Needless to say, this is rather inconvenient for GCC. */ rtx nested_cc_reg; /* Extra CR registers used for &&, ||. */ rtx extra_int_cr; rtx extra_fp_cr; /* Previous CR used in nested if, to make sure we are dealing with the same nested if as the previous statement. */ rtx last_nested_if_cr; } frv_ifcvt_t; static /* GTY(()) */ frv_ifcvt_t frv_ifcvt; /* Map register number to smallest register class. */ enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER]; /* Map class letter into register class. */ enum reg_class reg_class_from_letter[256]; /* Cached value of frv_stack_info. */ static frv_stack_t *frv_stack_cache = (frv_stack_t *)0; /* -mcpu= support */ frv_cpu_t frv_cpu_type = CPU_TYPE; /* value of -mcpu= */ /* Forward references */ static bool frv_handle_option (size_t, const char *, int); static bool frv_legitimate_address_p (enum machine_mode, rtx, bool); static int frv_default_flags_for_cpu (void); static int frv_string_begins_with (const_tree, const char *); static FRV_INLINE bool frv_small_data_reloc_p (rtx, int); static void frv_print_operand_memory_reference_reg (FILE *, rtx); static void frv_print_operand_memory_reference (FILE *, rtx, int); static int frv_print_operand_jump_hint (rtx); static const char *comparison_string (enum rtx_code, rtx); static rtx frv_function_value (const_tree, const_tree, bool); static rtx frv_libcall_value (enum machine_mode, const_rtx); static FRV_INLINE int frv_regno_ok_for_base_p (int, int); static rtx single_set_pattern (rtx); static int frv_function_contains_far_jump (void); static rtx frv_alloc_temp_reg (frv_tmp_reg_t *, enum reg_class, enum machine_mode, int, int); static rtx frv_frame_offset_rtx (int); static rtx frv_frame_mem (enum machine_mode, rtx, int); static rtx frv_dwarf_store (rtx, int); static void frv_frame_insn (rtx, rtx); static void frv_frame_access (frv_frame_accessor_t*, rtx, int); static void frv_frame_access_multi (frv_frame_accessor_t*, frv_stack_t *, int); static void frv_frame_access_standard_regs (enum frv_stack_op, frv_stack_t *); static struct machine_function *frv_init_machine_status (void); static rtx frv_int_to_acc (enum insn_code, int, rtx); static enum machine_mode frv_matching_accg_mode (enum machine_mode); static rtx frv_read_argument (tree, unsigned int); static rtx frv_read_iacc_argument (enum machine_mode, tree, unsigned int); static int frv_check_constant_argument (enum insn_code, int, rtx); static rtx frv_legitimize_target (enum insn_code, rtx); static rtx frv_legitimize_argument (enum insn_code, int, rtx); static rtx frv_legitimize_tls_address (rtx, enum tls_model); static rtx frv_legitimize_address (rtx, rtx, enum machine_mode); static rtx frv_expand_set_builtin (enum insn_code, tree, rtx); static rtx frv_expand_unop_builtin (enum insn_code, tree, rtx); static rtx frv_expand_binop_builtin (enum insn_code, tree, rtx); static rtx frv_expand_cut_builtin (enum insn_code, tree, rtx); static rtx frv_expand_binopimm_builtin (enum insn_code, tree, rtx); static rtx frv_expand_voidbinop_builtin (enum insn_code, tree); static rtx frv_expand_int_void2arg (enum insn_code, tree); static rtx frv_expand_prefetches (enum insn_code, tree); static rtx frv_expand_voidtriop_builtin (enum insn_code, tree); static rtx frv_expand_voidaccop_builtin (enum insn_code, tree); static rtx frv_expand_mclracc_builtin (tree); static rtx frv_expand_mrdacc_builtin (enum insn_code, tree); static rtx frv_expand_mwtacc_builtin (enum insn_code, tree); static rtx frv_expand_noargs_builtin (enum insn_code); static void frv_split_iacc_move (rtx, rtx); static rtx frv_emit_comparison (enum rtx_code, rtx, rtx); static int frv_clear_registers_used (rtx *, void *); static void frv_ifcvt_add_insn (rtx, rtx, int); static rtx frv_ifcvt_rewrite_mem (rtx, enum machine_mode, rtx); static rtx frv_ifcvt_load_value (rtx, rtx); static int frv_acc_group_1 (rtx *, void *); static unsigned int frv_insn_unit (rtx); static bool frv_issues_to_branch_unit_p (rtx); static int frv_cond_flags (rtx); static bool frv_regstate_conflict_p (regstate_t, regstate_t); static int frv_registers_conflict_p_1 (rtx *, void *); static bool frv_registers_conflict_p (rtx); static void frv_registers_update_1 (rtx, const_rtx, void *); static void frv_registers_update (rtx); static void frv_start_packet (void); static void frv_start_packet_block (void); static void frv_finish_packet (void (*) (void)); static bool frv_pack_insn_p (rtx); static void frv_add_insn_to_packet (rtx); static void frv_insert_nop_in_packet (rtx); static bool frv_for_each_packet (void (*) (void)); static bool frv_sort_insn_group_1 (enum frv_insn_group, unsigned int, unsigned int, unsigned int, unsigned int, state_t); static int frv_compare_insns (const void *, const void *); static void frv_sort_insn_group (enum frv_insn_group); static void frv_reorder_packet (void); static void frv_fill_unused_units (enum frv_insn_group); static void frv_align_label (void); static void frv_reorg_packet (void); static void frv_register_nop (rtx); static void frv_reorg (void); static void frv_pack_insns (void); static void frv_function_prologue (FILE *, HOST_WIDE_INT); static void frv_function_epilogue (FILE *, HOST_WIDE_INT); static bool frv_assemble_integer (rtx, unsigned, int); static void frv_init_builtins (void); static rtx frv_expand_builtin (tree, rtx, rtx, enum machine_mode, int); static void frv_init_libfuncs (void); static bool frv_in_small_data_p (const_tree); static void frv_asm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree); static void frv_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode, tree, int *, int); static rtx frv_expand_builtin_saveregs (void); static void frv_expand_builtin_va_start (tree, rtx); static bool frv_rtx_costs (rtx, int, int, int*, bool); static void frv_asm_out_constructor (rtx, int); static void frv_asm_out_destructor (rtx, int); static bool frv_function_symbol_referenced_p (rtx); static bool frv_cannot_force_const_mem (rtx); static const char *unspec_got_name (int); static void frv_output_const_unspec (FILE *, const struct frv_unspec *); static bool frv_function_ok_for_sibcall (tree, tree); static rtx frv_struct_value_rtx (tree, int); static bool frv_must_pass_in_stack (enum machine_mode mode, const_tree type); static int frv_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode, tree, bool); static void frv_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED; static bool frv_secondary_reload (bool, rtx, enum reg_class, enum machine_mode, secondary_reload_info *); static bool frv_frame_pointer_required (void); static bool frv_can_eliminate (const int, const int); static void frv_trampoline_init (rtx, tree, rtx); /* Allow us to easily change the default for -malloc-cc. */ #ifndef DEFAULT_NO_ALLOC_CC #define MASK_DEFAULT_ALLOC_CC MASK_ALLOC_CC #else #define MASK_DEFAULT_ALLOC_CC 0 #endif /* Initialize the GCC target structure. */ #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE frv_function_prologue #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE frv_function_epilogue #undef TARGET_ASM_INTEGER #define TARGET_ASM_INTEGER frv_assemble_integer #undef TARGET_DEFAULT_TARGET_FLAGS #define TARGET_DEFAULT_TARGET_FLAGS \ (MASK_DEFAULT_ALLOC_CC \ | MASK_COND_MOVE \ | MASK_SCC \ | MASK_COND_EXEC \ | MASK_VLIW_BRANCH \ | MASK_MULTI_CE \ | MASK_NESTED_CE) #undef TARGET_HANDLE_OPTION #define TARGET_HANDLE_OPTION frv_handle_option #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS frv_init_builtins #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN frv_expand_builtin #undef TARGET_INIT_LIBFUNCS #define TARGET_INIT_LIBFUNCS frv_init_libfuncs #undef TARGET_IN_SMALL_DATA_P #define TARGET_IN_SMALL_DATA_P frv_in_small_data_p #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS frv_rtx_costs #undef TARGET_ASM_CONSTRUCTOR #define TARGET_ASM_CONSTRUCTOR frv_asm_out_constructor #undef TARGET_ASM_DESTRUCTOR #define TARGET_ASM_DESTRUCTOR frv_asm_out_destructor #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK frv_asm_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE frv_issue_rate #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS frv_legitimize_address #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL frv_function_ok_for_sibcall #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM frv_cannot_force_const_mem #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS HAVE_AS_TLS #undef TARGET_STRUCT_VALUE_RTX #define TARGET_STRUCT_VALUE_RTX frv_struct_value_rtx #undef TARGET_MUST_PASS_IN_STACK #define TARGET_MUST_PASS_IN_STACK frv_must_pass_in_stack #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE hook_pass_by_reference_must_pass_in_stack #undef TARGET_ARG_PARTIAL_BYTES #define TARGET_ARG_PARTIAL_BYTES frv_arg_partial_bytes #undef TARGET_EXPAND_BUILTIN_SAVEREGS #define TARGET_EXPAND_BUILTIN_SAVEREGS frv_expand_builtin_saveregs #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS frv_setup_incoming_varargs #undef TARGET_MACHINE_DEPENDENT_REORG #define TARGET_MACHINE_DEPENDENT_REORG frv_reorg #undef TARGET_EXPAND_BUILTIN_VA_START #define TARGET_EXPAND_BUILTIN_VA_START frv_expand_builtin_va_start #if HAVE_AS_TLS #undef TARGET_ASM_OUTPUT_DWARF_DTPREL #define TARGET_ASM_OUTPUT_DWARF_DTPREL frv_output_dwarf_dtprel #endif #undef TARGET_SECONDARY_RELOAD #define TARGET_SECONDARY_RELOAD frv_secondary_reload #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P frv_legitimate_address_p #undef TARGET_FRAME_POINTER_REQUIRED #define TARGET_FRAME_POINTER_REQUIRED frv_frame_pointer_required #undef TARGET_CAN_ELIMINATE #define TARGET_CAN_ELIMINATE frv_can_eliminate #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT frv_trampoline_init #undef TARGET_FUNCTION_VALUE #define TARGET_FUNCTION_VALUE frv_function_value #undef TARGET_LIBCALL_VALUE #define TARGET_LIBCALL_VALUE frv_libcall_value struct gcc_target targetm = TARGET_INITIALIZER; #define FRV_SYMBOL_REF_TLS_P(RTX) \ (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0) /* Any function call that satisfies the machine-independent requirements is eligible on FR-V. */ static bool frv_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED, tree exp ATTRIBUTE_UNUSED) { return true; } /* Return true if SYMBOL is a small data symbol and relocation RELOC can be used to access it directly in a load or store. */ static FRV_INLINE bool frv_small_data_reloc_p (rtx symbol, int reloc) { return (GET_CODE (symbol) == SYMBOL_REF && SYMBOL_REF_SMALL_P (symbol) && (!TARGET_FDPIC || flag_pic == 1) && (reloc == R_FRV_GOTOFF12 || reloc == R_FRV_GPREL12)); } /* Return true if X is a valid relocation unspec. If it is, fill in UNSPEC appropriately. */ bool frv_const_unspec_p (rtx x, struct frv_unspec *unspec) { if (GET_CODE (x) == CONST) { unspec->offset = 0; x = XEXP (x, 0); if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT) { unspec->offset += INTVAL (XEXP (x, 1)); x = XEXP (x, 0); } if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_GOT) { unspec->symbol = XVECEXP (x, 0, 0); unspec->reloc = INTVAL (XVECEXP (x, 0, 1)); if (unspec->offset == 0) return true; if (frv_small_data_reloc_p (unspec->symbol, unspec->reloc) && unspec->offset > 0 && (unsigned HOST_WIDE_INT) unspec->offset < g_switch_value) return true; } } return false; } /* Decide whether we can force certain constants to memory. If we decide we can't, the caller should be able to cope with it in another way. We never allow constants to be forced into memory for TARGET_FDPIC. This is necessary for several reasons: 1. Since LEGITIMATE_CONSTANT_P rejects constant pool addresses, the target-independent code will try to force them into the constant pool, thus leading to infinite recursion. 2. We can never introduce new constant pool references during reload. Any such reference would require use of the pseudo FDPIC register. 3. We can't represent a constant added to a function pointer (which is not the same as a pointer to a function+constant). 4. In many cases, it's more efficient to calculate the constant in-line. */ static bool frv_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED) { return TARGET_FDPIC; } /* Implement TARGET_HANDLE_OPTION. */ static bool frv_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED) { switch (code) { case OPT_mcpu_: if (strcmp (arg, "simple") == 0) frv_cpu_type = FRV_CPU_SIMPLE; else if (strcmp (arg, "tomcat") == 0) frv_cpu_type = FRV_CPU_TOMCAT; else if (strcmp (arg, "fr550") == 0) frv_cpu_type = FRV_CPU_FR550; else if (strcmp (arg, "fr500") == 0) frv_cpu_type = FRV_CPU_FR500; else if (strcmp (arg, "fr450") == 0) frv_cpu_type = FRV_CPU_FR450; else if (strcmp (arg, "fr405") == 0) frv_cpu_type = FRV_CPU_FR405; else if (strcmp (arg, "fr400") == 0) frv_cpu_type = FRV_CPU_FR400; else if (strcmp (arg, "fr300") == 0) frv_cpu_type = FRV_CPU_FR300; else if (strcmp (arg, "frv") == 0) frv_cpu_type = FRV_CPU_GENERIC; else return false; return true; default: return true; } } static int frv_default_flags_for_cpu (void) { switch (frv_cpu_type) { case FRV_CPU_GENERIC: return MASK_DEFAULT_FRV; case FRV_CPU_FR550: return MASK_DEFAULT_FR550; case FRV_CPU_FR500: case FRV_CPU_TOMCAT: return MASK_DEFAULT_FR500; case FRV_CPU_FR450: return MASK_DEFAULT_FR450; case FRV_CPU_FR405: case FRV_CPU_FR400: return MASK_DEFAULT_FR400; case FRV_CPU_FR300: case FRV_CPU_SIMPLE: return MASK_DEFAULT_SIMPLE; default: gcc_unreachable (); } } /* Sometimes certain combinations of command options do not make sense on a particular target machine. You can define a macro `OVERRIDE_OPTIONS' to take account of this. This macro, if defined, is executed once just after all the command options have been parsed. Don't use this macro to turn on various extra optimizations for `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */ void frv_override_options (void) { int regno; unsigned int i; target_flags |= (frv_default_flags_for_cpu () & ~target_flags_explicit); /* -mlibrary-pic sets -fPIC and -G0 and also suppresses warnings from the linker about linking pic and non-pic code. */ if (TARGET_LIBPIC) { if (!flag_pic) /* -fPIC */ flag_pic = 2; if (! g_switch_set) /* -G0 */ { g_switch_set = 1; g_switch_value = 0; } } /* A C expression whose value is a register class containing hard register REGNO. In general there is more than one such class; choose a class which is "minimal", meaning that no smaller class also contains the register. */ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) { enum reg_class rclass; if (GPR_P (regno)) { int gpr_reg = regno - GPR_FIRST; if (gpr_reg == GR8_REG) rclass = GR8_REGS; else if (gpr_reg == GR9_REG) rclass = GR9_REGS; else if (gpr_reg == GR14_REG) rclass = FDPIC_FPTR_REGS; else if (gpr_reg == FDPIC_REGNO) rclass = FDPIC_REGS; else if ((gpr_reg & 3) == 0) rclass = QUAD_REGS; else if ((gpr_reg & 1) == 0) rclass = EVEN_REGS; else rclass = GPR_REGS; } else if (FPR_P (regno)) { int fpr_reg = regno - GPR_FIRST; if ((fpr_reg & 3) == 0) rclass = QUAD_FPR_REGS; else if ((fpr_reg & 1) == 0) rclass = FEVEN_REGS; else rclass = FPR_REGS; } else if (regno == LR_REGNO) rclass = LR_REG; else if (regno == LCR_REGNO) rclass = LCR_REG; else if (ICC_P (regno)) rclass = ICC_REGS; else if (FCC_P (regno)) rclass = FCC_REGS; else if (ICR_P (regno)) rclass = ICR_REGS; else if (FCR_P (regno)) rclass = FCR_REGS; else if (ACC_P (regno)) { int r = regno - ACC_FIRST; if ((r & 3) == 0) rclass = QUAD_ACC_REGS; else if ((r & 1) == 0) rclass = EVEN_ACC_REGS; else rclass = ACC_REGS; } else if (ACCG_P (regno)) rclass = ACCG_REGS; else rclass = NO_REGS; regno_reg_class[regno] = rclass; } /* Check for small data option */ if (!g_switch_set) g_switch_value = SDATA_DEFAULT_SIZE; /* A C expression which defines the machine-dependent operand constraint letters for register classes. If CHAR is such a letter, the value should be the register class corresponding to it. Otherwise, the value should be `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS', will not be passed to this macro; you do not need to handle it. The following letters are unavailable, due to being used as constraints: '0'..'9' '<', '>' 'E', 'F', 'G', 'H' 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P' 'Q', 'R', 'S', 'T', 'U' 'V', 'X' 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */ for (i = 0; i < 256; i++) reg_class_from_letter[i] = NO_REGS; reg_class_from_letter['a'] = ACC_REGS; reg_class_from_letter['b'] = EVEN_ACC_REGS; reg_class_from_letter['c'] = CC_REGS; reg_class_from_letter['d'] = GPR_REGS; reg_class_from_letter['e'] = EVEN_REGS; reg_class_from_letter['f'] = FPR_REGS; reg_class_from_letter['h'] = FEVEN_REGS; reg_class_from_letter['l'] = LR_REG; reg_class_from_letter['q'] = QUAD_REGS; reg_class_from_letter['t'] = ICC_REGS; reg_class_from_letter['u'] = FCC_REGS; reg_class_from_letter['v'] = ICR_REGS; reg_class_from_letter['w'] = FCR_REGS; reg_class_from_letter['x'] = QUAD_FPR_REGS; reg_class_from_letter['y'] = LCR_REG; reg_class_from_letter['z'] = SPR_REGS; reg_class_from_letter['A'] = QUAD_ACC_REGS; reg_class_from_letter['B'] = ACCG_REGS; reg_class_from_letter['C'] = CR_REGS; reg_class_from_letter['W'] = FDPIC_CALL_REGS; /* gp14+15 */ reg_class_from_letter['Z'] = FDPIC_REGS; /* gp15 */ /* There is no single unaligned SI op for PIC code. Sometimes we need to use ".4byte" and sometimes we need to use ".picptr". See frv_assemble_integer for details. */ if (flag_pic || TARGET_FDPIC) targetm.asm_out.unaligned_op.si = 0; if ((target_flags_explicit & MASK_LINKED_FP) == 0) target_flags |= MASK_LINKED_FP; if ((target_flags_explicit & MASK_OPTIMIZE_MEMBAR) == 0) target_flags |= MASK_OPTIMIZE_MEMBAR; for (i = 0; i < ARRAY_SIZE (frv_unit_names); i++) frv_unit_codes[i] = get_cpu_unit_code (frv_unit_names[i]); for (i = 0; i < ARRAY_SIZE (frv_type_to_unit); i++) frv_type_to_unit[i] = ARRAY_SIZE (frv_unit_codes); init_machine_status = frv_init_machine_status; } /* Some machines may desire to change what optimizations are performed for various optimization levels. This macro, if defined, is executed once just after the optimization level is determined and before the remainder of the command options have been parsed. Values set in this macro are used as the default values for the other command line options. LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if `-O' is specified, and 0 if neither is specified. SIZE is nonzero if `-Os' is specified, 0 otherwise. You should not use this macro to change options that are not machine-specific. These should uniformly selected by the same optimization level on all supported machines. Use this macro to enable machine-specific optimizations. *Do not examine `write_symbols' in this macro!* The debugging options are *not supposed to alter the generated code. */ /* On the FRV, possibly disable VLIW packing which is done by the 2nd scheduling pass at the current time. */ void frv_optimization_options (int level, int size ATTRIBUTE_UNUSED) { if (level >= 2) { #ifdef DISABLE_SCHED2 flag_schedule_insns_after_reload = 0; #endif #ifdef ENABLE_RCSP flag_rcsp = 1; #endif } } /* Return true if NAME (a STRING_CST node) begins with PREFIX. */ static int frv_string_begins_with (const_tree name, const char *prefix) { const int prefix_len = strlen (prefix); /* Remember: NAME's length includes the null terminator. */ return (TREE_STRING_LENGTH (name) > prefix_len && strncmp (TREE_STRING_POINTER (name), prefix, prefix_len) == 0); } /* Zero or more C statements that may conditionally modify two variables `fixed_regs' and `call_used_regs' (both of type `char []') after they have been initialized from the two preceding macros. This is necessary in case the fixed or call-clobbered registers depend on target flags. You need not define this macro if it has no work to do. If the usage of an entire class of registers depends on the target flags, you may indicate this to GCC by using this macro to modify `fixed_regs' and `call_used_regs' to 1 for each of the registers in the classes which should not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a letter for a class that shouldn't be used. (However, if this class is not included in `GENERAL_REGS' and all of the insn patterns whose constraints permit this class are controlled by target switches, then GCC will automatically avoid using these registers when the target switches are opposed to them.) */ void frv_conditional_register_usage (void) { int i; for (i = GPR_FIRST + NUM_GPRS; i <= GPR_LAST; i++) fixed_regs[i] = call_used_regs[i] = 1; for (i = FPR_FIRST + NUM_FPRS; i <= FPR_LAST; i++) fixed_regs[i] = call_used_regs[i] = 1; /* Reserve the registers used for conditional execution. At present, we need 1 ICC and 1 ICR register. */ fixed_regs[ICC_TEMP] = call_used_regs[ICC_TEMP] = 1; fixed_regs[ICR_TEMP] = call_used_regs[ICR_TEMP] = 1; if (TARGET_FIXED_CC) { fixed_regs[ICC_FIRST] = call_used_regs[ICC_FIRST] = 1; fixed_regs[FCC_FIRST] = call_used_regs[FCC_FIRST] = 1; fixed_regs[ICR_FIRST] = call_used_regs[ICR_FIRST] = 1; fixed_regs[FCR_FIRST] = call_used_regs[FCR_FIRST] = 1; } if (TARGET_FDPIC) fixed_regs[GPR_FIRST + 16] = fixed_regs[GPR_FIRST + 17] = call_used_regs[GPR_FIRST + 16] = call_used_regs[GPR_FIRST + 17] = 0; #if 0 /* If -fpic, SDA_BASE_REG is the PIC register. */ if (g_switch_value == 0 && !flag_pic) fixed_regs[SDA_BASE_REG] = call_used_regs[SDA_BASE_REG] = 0; if (!flag_pic) fixed_regs[PIC_REGNO] = call_used_regs[PIC_REGNO] = 0; #endif } /* * Compute the stack frame layout * * Register setup: * +---------------+-----------------------+-----------------------+ * |Register |type |caller-save/callee-save| * +---------------+-----------------------+-----------------------+ * |GR0 |Zero register | - | * |GR1 |Stack pointer(SP) | - | * |GR2 |Frame pointer(FP) | - | * |GR3 |Hidden parameter | caller save | * |GR4-GR7 | - | caller save | * |GR8-GR13 |Argument register | caller save | * |GR14-GR15 | - | caller save | * |GR16-GR31 | - | callee save | * |GR32-GR47 | - | caller save | * |GR48-GR63 | - | callee save | * |FR0-FR15 | - | caller save | * |FR16-FR31 | - | callee save | * |FR32-FR47 | - | caller save | * |FR48-FR63 | - | callee save | * +---------------+-----------------------+-----------------------+ * * Stack frame setup: * Low * SP-> |-----------------------------------| * | Argument area | * |-----------------------------------| * | Register save area | * |-----------------------------------| * | Local variable save area | * FP-> |-----------------------------------| * | Old FP | * |-----------------------------------| * | Hidden parameter save area | * |-----------------------------------| * | Return address(LR) storage area | * |-----------------------------------| * | Padding for alignment | * |-----------------------------------| * | Register argument area | * OLD SP-> |-----------------------------------| * | Parameter area | * |-----------------------------------| * High * * Argument area/Parameter area: * * When a function is called, this area is used for argument transfer. When * the argument is set up by the caller function, this area is referred to as * the argument area. When the argument is referenced by the callee function, * this area is referred to as the parameter area. The area is allocated when * all arguments cannot be placed on the argument register at the time of * argument transfer. * * Register save area: * * This is a register save area that must be guaranteed for the caller * function. This area is not secured when the register save operation is not * needed. * * Local variable save area: * * This is the area for local variables and temporary variables. * * Old FP: * * This area stores the FP value of the caller function. * * Hidden parameter save area: * * This area stores the start address of the return value storage * area for a struct/union return function. * When a struct/union is used as the return value, the caller * function stores the return value storage area start address in * register GR3 and passes it to the caller function. * The callee function interprets the address stored in the GR3 * as the return value storage area start address. * When register GR3 needs to be saved into memory, the callee * function saves it in the hidden parameter save area. This * area is not secured when the save operation is not needed. * * Return address(LR) storage area: * * This area saves the LR. The LR stores the address of a return to the caller * function for the purpose of function calling. * * Argument register area: * * This area saves the argument register. This area is not secured when the * save operation is not needed. * * Argument: * * Arguments, the count of which equals the count of argument registers (6 * words), are positioned in registers GR8 to GR13 and delivered to the callee * function. When a struct/union return function is called, the return value * area address is stored in register GR3. Arguments not placed in the * argument registers will be stored in the stack argument area for transfer * purposes. When an 8-byte type argument is to be delivered using registers, * it is divided into two and placed in two registers for transfer. When * argument registers must be saved to memory, the callee function secures an * argument register save area in the stack. In this case, a continuous * argument register save area must be established in the parameter area. The * argument register save area must be allocated as needed to cover the size of * the argument register to be saved. If the function has a variable count of * arguments, it saves all argument registers in the argument register save * area. * * Argument Extension Format: * * When an argument is to be stored in the stack, its type is converted to an * extended type in accordance with the individual argument type. The argument * is freed by the caller function after the return from the callee function is * made. * * +-----------------------+---------------+------------------------+ * | Argument Type |Extended Type |Stack Storage Size(byte)| * +-----------------------+---------------+------------------------+ * |char |int | 4 | * |signed char |int | 4 | * |unsigned char |int | 4 | * |[signed] short int |int | 4 | * |unsigned short int |int | 4 | * |[signed] int |No extension | 4 | * |unsigned int |No extension | 4 | * |[signed] long int |No extension | 4 | * |unsigned long int |No extension | 4 | * |[signed] long long int |No extension | 8 | * |unsigned long long int |No extension | 8 | * |float |double | 8 | * |double |No extension | 8 | * |long double |No extension | 8 | * |pointer |No extension | 4 | * |struct/union |- | 4 (*1) | * +-----------------------+---------------+------------------------+ * * When a struct/union is to be delivered as an argument, the caller copies it * to the local variable area and delivers the address of that area. * * Return Value: * * +-------------------------------+----------------------+ * |Return Value Type |Return Value Interface| * +-------------------------------+----------------------+ * |void |None | * |[signed|unsigned] char |GR8 | * |[signed|unsigned] short int |GR8 | * |[signed|unsigned] int |GR8 | * |[signed|unsigned] long int |GR8 | * |pointer |GR8 | * |[signed|unsigned] long long int|GR8 & GR9 | * |float |GR8 | * |double |GR8 & GR9 | * |long double |GR8 & GR9 | * |struct/union |(*1) | * +-------------------------------+----------------------+ * * When a struct/union is used as the return value, the caller function stores * the start address of the return value storage area into GR3 and then passes * it to the callee function. The callee function interprets GR3 as the start * address of the return value storage area. When this address needs to be * saved in memory, the callee function secures the hidden parameter save area * and saves the address in that area. */ frv_stack_t * frv_stack_info (void) { static frv_stack_t info, zero_info; frv_stack_t *info_ptr = &info; tree fndecl = current_function_decl; int varargs_p = 0; tree cur_arg; tree next_arg; int range; int alignment; int offset; /* If we've already calculated the values and reload is complete, just return now. */ if (frv_stack_cache) return frv_stack_cache; /* Zero all fields. */ info = zero_info; /* Set up the register range information. */ info_ptr->regs[STACK_REGS_GPR].name = "gpr"; info_ptr->regs[STACK_REGS_GPR].first = LAST_ARG_REGNUM + 1; info_ptr->regs[STACK_REGS_GPR].last = GPR_LAST; info_ptr->regs[STACK_REGS_GPR].dword_p = TRUE; info_ptr->regs[STACK_REGS_FPR].name = "fpr"; info_ptr->regs[STACK_REGS_FPR].first = FPR_FIRST; info_ptr->regs[STACK_REGS_FPR].last = FPR_LAST; info_ptr->regs[STACK_REGS_FPR].dword_p = TRUE; info_ptr->regs[STACK_REGS_LR].name = "lr"; info_ptr->regs[STACK_REGS_LR].first = LR_REGNO; info_ptr->regs[STACK_REGS_LR].last = LR_REGNO; info_ptr->regs[STACK_REGS_LR].special_p = 1; info_ptr->regs[STACK_REGS_CC].name = "cc"; info_ptr->regs[STACK_REGS_CC].first = CC_FIRST; info_ptr->regs[STACK_REGS_CC].last = CC_LAST; info_ptr->regs[STACK_REGS_CC].field_p = TRUE; info_ptr->regs[STACK_REGS_LCR].name = "lcr"; info_ptr->regs[STACK_REGS_LCR].first = LCR_REGNO; info_ptr->regs[STACK_REGS_LCR].last = LCR_REGNO; info_ptr->regs[STACK_REGS_STDARG].name = "stdarg"; info_ptr->regs[STACK_REGS_STDARG].first = FIRST_ARG_REGNUM; info_ptr->regs[STACK_REGS_STDARG].last = LAST_ARG_REGNUM; info_ptr->regs[STACK_REGS_STDARG].dword_p = 1; info_ptr->regs[STACK_REGS_STDARG].special_p = 1; info_ptr->regs[STACK_REGS_STRUCT].name = "struct"; info_ptr->regs[STACK_REGS_STRUCT].first = FRV_STRUCT_VALUE_REGNUM; info_ptr->regs[STACK_REGS_STRUCT].last = FRV_STRUCT_VALUE_REGNUM; info_ptr->regs[STACK_REGS_STRUCT].special_p = 1; info_ptr->regs[STACK_REGS_FP].name = "fp"; info_ptr->regs[STACK_REGS_FP].first = FRAME_POINTER_REGNUM; info_ptr->regs[STACK_REGS_FP].last = FRAME_POINTER_REGNUM; info_ptr->regs[STACK_REGS_FP].special_p = 1; /* Determine if this is a stdarg function. If so, allocate space to store the 6 arguments. */ if (cfun->stdarg) varargs_p = 1; else { /* Find the last argument, and see if it is __builtin_va_alist. */ for (cur_arg = DECL_ARGUMENTS (fndecl); cur_arg != (tree)0; cur_arg = next_arg) { next_arg = TREE_CHAIN (cur_arg); if (next_arg == (tree)0) { if (DECL_NAME (cur_arg) && !strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)), "__builtin_va_alist")) varargs_p = 1; break; } } } /* Iterate over all of the register ranges. */ for (range = 0; range < STACK_REGS_MAX; range++) { frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]); int first = reg_ptr->first; int last = reg_ptr->last; int size_1word = 0; int size_2words = 0; int regno; /* Calculate which registers need to be saved & save area size. */ switch (range) { default: for (regno = first; regno <= last; regno++) { if ((df_regs_ever_live_p (regno) && !call_used_regs[regno]) || (crtl->calls_eh_return && (regno >= FIRST_EH_REGNUM && regno <= LAST_EH_REGNUM)) || (!TARGET_FDPIC && flag_pic && crtl->uses_pic_offset_table && regno == PIC_REGNO)) { info_ptr->save_p[regno] = REG_SAVE_1WORD; size_1word += UNITS_PER_WORD; } } break; /* Calculate whether we need to create a frame after everything else has been processed. */ case STACK_REGS_FP: break; case STACK_REGS_LR: if (df_regs_ever_live_p (LR_REGNO) || profile_flag /* This is set for __builtin_return_address, etc. */ || cfun->machine->frame_needed || (TARGET_LINKED_FP && frame_pointer_needed) || (!TARGET_FDPIC && flag_pic && crtl->uses_pic_offset_table)) { info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD; size_1word += UNITS_PER_WORD; } break; case STACK_REGS_STDARG: if (varargs_p) { /* If this is a stdarg function with a non varardic argument split between registers and the stack, adjust the saved registers downward. */ last -= (ADDR_ALIGN (crtl->args.pretend_args_size, UNITS_PER_WORD) / UNITS_PER_WORD); for (regno = first; regno <= last; regno++) { info_ptr->save_p[regno] = REG_SAVE_1WORD; size_1word += UNITS_PER_WORD; } info_ptr->stdarg_size = size_1word; } break; case STACK_REGS_STRUCT: if (cfun->returns_struct) { info_ptr->save_p[FRV_STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD; size_1word += UNITS_PER_WORD; } break; } if (size_1word) { /* If this is a field, it only takes one word. */ if (reg_ptr->field_p) size_1word = UNITS_PER_WORD; /* Determine which register pairs can be saved together. */ else if (reg_ptr->dword_p && TARGET_DWORD) { for (regno = first; regno < last; regno += 2) { if (info_ptr->save_p[regno] && info_ptr->save_p[regno+1]) { size_2words += 2 * UNITS_PER_WORD; size_1word -= 2 * UNITS_PER_WORD; info_ptr->save_p[regno] = REG_SAVE_2WORDS; info_ptr->save_p[regno+1] = REG_SAVE_NO_SAVE; } } } reg_ptr->size_1word = size_1word; reg_ptr->size_2words = size_2words; if (! reg_ptr->special_p) { info_ptr->regs_size_1word += size_1word; info_ptr->regs_size_2words += size_2words; } } } /* Set up the sizes of each each field in the frame body, making the sizes of each be divisible by the size of a dword if dword operations might be used, or the size of a word otherwise. */ alignment = (TARGET_DWORD? 2 * UNITS_PER_WORD : UNITS_PER_WORD); info_ptr->parameter_size = ADDR_ALIGN (crtl->outgoing_args_size, alignment); info_ptr->regs_size = ADDR_ALIGN (info_ptr->regs_size_2words + info_ptr->regs_size_1word, alignment); info_ptr->vars_size = ADDR_ALIGN (get_frame_size (), alignment); info_ptr->pretend_size = crtl->args.pretend_args_size; /* Work out the size of the frame, excluding the header. Both the frame body and register parameter area will be dword-aligned. */ info_ptr->total_size = (ADDR_ALIGN (info_ptr->parameter_size + info_ptr->regs_size + info_ptr->vars_size, 2 * UNITS_PER_WORD) + ADDR_ALIGN (info_ptr->pretend_size + info_ptr->stdarg_size, 2 * UNITS_PER_WORD)); /* See if we need to create a frame at all, if so add header area. */ if (info_ptr->total_size > 0 || frame_pointer_needed || info_ptr->regs[STACK_REGS_LR].size_1word > 0 || info_ptr->regs[STACK_REGS_STRUCT].size_1word > 0) { offset = info_ptr->parameter_size; info_ptr->header_size = 4 * UNITS_PER_WORD; info_ptr->total_size += 4 * UNITS_PER_WORD; /* Calculate the offsets to save normal register pairs. */ for (range = 0; range < STACK_REGS_MAX; range++) { frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]); if (! reg_ptr->special_p) { int first = reg_ptr->first; int last = reg_ptr->last; int regno; for (regno = first; regno <= last; regno++) if (info_ptr->save_p[regno] == REG_SAVE_2WORDS && regno != FRAME_POINTER_REGNUM && (regno < FIRST_ARG_REGNUM || regno > LAST_ARG_REGNUM)) { info_ptr->reg_offset[regno] = offset; offset += 2 * UNITS_PER_WORD; } } } /* Calculate the offsets to save normal single registers. */ for (range = 0; range < STACK_REGS_MAX; range++) { frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]); if (! reg_ptr->special_p) { int first = reg_ptr->first; int last = reg_ptr->last; int regno; for (regno = first; regno <= last; regno++) if (info_ptr->save_p[regno] == REG_SAVE_1WORD && regno != FRAME_POINTER_REGNUM && (regno < FIRST_ARG_REGNUM || regno > LAST_ARG_REGNUM)) { info_ptr->reg_offset[regno] = offset; offset += UNITS_PER_WORD; } } } /* Calculate the offset to save the local variables at. */ offset = ADDR_ALIGN (offset, alignment); if (info_ptr->vars_size) { info_ptr->vars_offset = offset; offset += info_ptr->vars_size; } /* Align header to a dword-boundary. */ offset = ADDR_ALIGN (offset, 2 * UNITS_PER_WORD); /* Calculate the offsets in the fixed frame. */ info_ptr->save_p[FRAME_POINTER_REGNUM] = REG_SAVE_1WORD; info_ptr->reg_offset[FRAME_POINTER_REGNUM] = offset; info_ptr->regs[STACK_REGS_FP].size_1word = UNITS_PER_WORD; info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD; info_ptr->reg_offset[LR_REGNO] = offset + 2*UNITS_PER_WORD; info_ptr->regs[STACK_REGS_LR].size_1word = UNITS_PER_WORD; if (cfun->returns_struct) { info_ptr->save_p[FRV_STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD; info_ptr->reg_offset[FRV_STRUCT_VALUE_REGNUM] = offset + UNITS_PER_WORD; info_ptr->regs[STACK_REGS_STRUCT].size_1word = UNITS_PER_WORD; } /* Calculate the offsets to store the arguments passed in registers for stdarg functions. The register pairs are first and the single register if any is last. The register save area starts on a dword-boundary. */ if (info_ptr->stdarg_size) { int first = info_ptr->regs[STACK_REGS_STDARG].first; int last = info_ptr->regs[STACK_REGS_STDARG].last; int regno; /* Skip the header. */ offset += 4 * UNITS_PER_WORD; for (regno = first; regno <= last; regno++) { if (info_ptr->save_p[regno] == REG_SAVE_2WORDS) { info_ptr->reg_offset[regno] = offset; offset += 2 * UNITS_PER_WORD; } else if (info_ptr->save_p[regno] == REG_SAVE_1WORD) { info_ptr->reg_offset[regno] = offset; offset += UNITS_PER_WORD; } } } } if (reload_completed) frv_stack_cache = info_ptr; return info_ptr; } /* Print the information about the frv stack offsets, etc. when debugging. */ void frv_debug_stack (frv_stack_t *info) { int range; if (!info) info = frv_stack_info (); fprintf (stderr, "\nStack information for function %s:\n", ((current_function_decl && DECL_NAME (current_function_decl)) ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl)) : "<unknown>")); fprintf (stderr, "\ttotal_size\t= %6d\n", info->total_size); fprintf (stderr, "\tvars_size\t= %6d\n", info->vars_size); fprintf (stderr, "\tparam_size\t= %6d\n", info->parameter_size); fprintf (stderr, "\tregs_size\t= %6d, 1w = %3d, 2w = %3d\n", info->regs_size, info->regs_size_1word, info->regs_size_2words); fprintf (stderr, "\theader_size\t= %6d\n", info->header_size); fprintf (stderr, "\tpretend_size\t= %6d\n", info->pretend_size); fprintf (stderr, "\tvars_offset\t= %6d\n", info->vars_offset); fprintf (stderr, "\tregs_offset\t= %6d\n", info->regs_offset); for (range = 0; range < STACK_REGS_MAX; range++) { frv_stack_regs_t *regs = &(info->regs[range]); if ((regs->size_1word + regs->size_2words) > 0) { int first = regs->first; int last = regs->last; int regno; fprintf (stderr, "\t%s\tsize\t= %6d, 1w = %3d, 2w = %3d, save =", regs->name, regs->size_1word + regs->size_2words, regs->size_1word, regs->size_2words); for (regno = first; regno <= last; regno++) { if (info->save_p[regno] == REG_SAVE_1WORD) fprintf (stderr, " %s (%d)", reg_names[regno], info->reg_offset[regno]); else if (info->save_p[regno] == REG_SAVE_2WORDS) fprintf (stderr, " %s-%s (%d)", reg_names[regno], reg_names[regno+1], info->reg_offset[regno]); } fputc ('\n', stderr); } } fflush (stderr); } /* Used during final to control the packing of insns. The value is 1 if the current instruction should be packed with the next one, 0 if it shouldn't or -1 if packing is disabled altogether. */ static int frv_insn_packing_flag; /* True if the current function contains a far jump. */ static int frv_function_contains_far_jump (void) { rtx insn = get_insns (); while (insn != NULL && !(GET_CODE (insn) == JUMP_INSN /* Ignore tablejump patterns. */ && GET_CODE (PATTERN (insn)) != ADDR_VEC && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC && get_attr_far_jump (insn) == FAR_JUMP_YES)) insn = NEXT_INSN (insn); return (insn != NULL); } /* For the FRV, this function makes sure that a function with far jumps will return correctly. It also does the VLIW packing. */ static void frv_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { /* If no frame was created, check whether the function uses a call instruction to implement a far jump. If so, save the link in gr3 and replace all returns to LR with returns to GR3. GR3 is used because it is call-clobbered, because is not available to the register allocator, and because all functions that take a hidden argument pointer will have a stack frame. */ if (frv_stack_info ()->total_size == 0 && frv_function_contains_far_jump ()) { rtx insn; /* Just to check that the above comment is true. */ gcc_assert (!df_regs_ever_live_p (GPR_FIRST + 3)); /* Generate the instruction that saves the link register. */ fprintf (file, "\tmovsg lr,gr3\n"); /* Replace the LR with GR3 in *return_internal patterns. The insn will now return using jmpl @(gr3,0) rather than bralr. We cannot simply emit a different assembly directive because bralr and jmpl execute in different units. */ for (insn = get_insns(); insn != NULL; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == JUMP_INSN) { rtx pattern = PATTERN (insn); if (GET_CODE (pattern) == PARALLEL && XVECLEN (pattern, 0) >= 2 && GET_CODE (XVECEXP (pattern, 0, 0)) == RETURN && GET_CODE (XVECEXP (pattern, 0, 1)) == USE) { rtx address = XEXP (XVECEXP (pattern, 0, 1), 0); if (GET_CODE (address) == REG && REGNO (address) == LR_REGNO) SET_REGNO (address, GPR_FIRST + 3); } } } frv_pack_insns (); /* Allow the garbage collector to free the nops created by frv_reorg. */ memset (frv_nops, 0, sizeof (frv_nops)); } /* Return the next available temporary register in a given class. */ static rtx frv_alloc_temp_reg ( frv_tmp_reg_t *info, /* which registers are available */ enum reg_class rclass, /* register class desired */ enum machine_mode mode, /* mode to allocate register with */ int mark_as_used, /* register not available after allocation */ int no_abort) /* return NULL instead of aborting */ { int regno = info->next_reg[ (int)rclass ]; int orig_regno = regno; HARD_REG_SET *reg_in_class = ®_class_contents[ (int)rclass ]; int i, nr; for (;;) { if (TEST_HARD_REG_BIT (*reg_in_class, regno) && TEST_HARD_REG_BIT (info->regs, regno)) break; if (++regno >= FIRST_PSEUDO_REGISTER) regno = 0; if (regno == orig_regno) { gcc_assert (no_abort); return NULL_RTX; } } nr = HARD_REGNO_NREGS (regno, mode); info->next_reg[ (int)rclass ] = regno + nr; if (mark_as_used) for (i = 0; i < nr; i++) CLEAR_HARD_REG_BIT (info->regs, regno+i); return gen_rtx_REG (mode, regno); } /* Return an rtx with the value OFFSET, which will either be a register or a signed 12-bit integer. It can be used as the second operand in an "add" instruction, or as the index in a load or store. The function returns a constant rtx if OFFSET is small enough, otherwise it loads the constant into register OFFSET_REGNO and returns that. */ static rtx frv_frame_offset_rtx (int offset) { rtx offset_rtx = GEN_INT (offset); if (IN_RANGE_P (offset, -2048, 2047)) return offset_rtx; else { rtx reg_rtx = gen_rtx_REG (SImode, OFFSET_REGNO); if (IN_RANGE_P (offset, -32768, 32767)) emit_insn (gen_movsi (reg_rtx, offset_rtx)); else { emit_insn (gen_movsi_high (reg_rtx, offset_rtx)); emit_insn (gen_movsi_lo_sum (reg_rtx, offset_rtx)); } return reg_rtx; } } /* Generate (mem:MODE (plus:Pmode BASE (frv_frame_offset OFFSET)))). The prologue and epilogue uses such expressions to access the stack. */ static rtx frv_frame_mem (enum machine_mode mode, rtx base, int offset) { return gen_rtx_MEM (mode, gen_rtx_PLUS (Pmode, base, frv_frame_offset_rtx (offset))); } /* Generate a frame-related expression: (set REG (mem (plus (sp) (const_int OFFSET)))). Such expressions are used in FRAME_RELATED_EXPR notes for more complex instructions. Marking the expressions as frame-related is superfluous if the note contains just a single set. But if the note contains a PARALLEL or SEQUENCE that has several sets, each set must be individually marked as frame-related. */ static rtx frv_dwarf_store (rtx reg, int offset) { rtx set = gen_rtx_SET (VOIDmode, gen_rtx_MEM (GET_MODE (reg), plus_constant (stack_pointer_rtx, offset)), reg); RTX_FRAME_RELATED_P (set) = 1; return set; } /* Emit a frame-related instruction whose pattern is PATTERN. The instruction is the last in a sequence that cumulatively performs the operation described by DWARF_PATTERN. The instruction is marked as frame-related and has a REG_FRAME_RELATED_EXPR note containing DWARF_PATTERN. */ static void frv_frame_insn (rtx pattern, rtx dwarf_pattern) { rtx insn = emit_insn (pattern); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf_pattern, REG_NOTES (insn)); } /* Emit instructions that transfer REG to or from the memory location (sp + STACK_OFFSET). The register is stored in memory if ACCESSOR->OP is FRV_STORE and loaded if it is FRV_LOAD. Only the prologue uses this function to store registers and only the epilogue uses it to load them. The caller sets up ACCESSOR so that BASE is equal to (sp + BASE_OFFSET). The generated instruction will use BASE as its base register. BASE may simply be the stack pointer, but if several accesses are being made to a region far away from the stack pointer, it may be more efficient to set up a temporary instead. Store instructions will be frame-related and will be annotated with the overall effect of the store. Load instructions will be followed by a (use) to prevent later optimizations from zapping them. The function takes care of the moves to and from SPRs, using TEMP_REGNO as a temporary in such cases. */ static void frv_frame_access (frv_frame_accessor_t *accessor, rtx reg, int stack_offset) { enum machine_mode mode = GET_MODE (reg); rtx mem = frv_frame_mem (mode, accessor->base, stack_offset - accessor->base_offset); if (accessor->op == FRV_LOAD) { if (SPR_P (REGNO (reg))) { rtx temp = gen_rtx_REG (mode, TEMP_REGNO); emit_insn (gen_rtx_SET (VOIDmode, temp, mem)); emit_insn (gen_rtx_SET (VOIDmode, reg, temp)); } else { /* We cannot use reg+reg addressing for DImode access. */ if (mode == DImode && GET_CODE (XEXP (mem, 0)) == PLUS && GET_CODE (XEXP (XEXP (mem, 0), 0)) == REG && GET_CODE (XEXP (XEXP (mem, 0), 1)) == REG) { rtx temp = gen_rtx_REG (SImode, TEMP_REGNO); rtx insn = emit_move_insn (temp, gen_rtx_PLUS (SImode, XEXP (XEXP (mem, 0), 0), XEXP (XEXP (mem, 0), 1))); mem = gen_rtx_MEM (DImode, temp); } emit_insn (gen_rtx_SET (VOIDmode, reg, mem)); } emit_use (reg); } else { if (SPR_P (REGNO (reg))) { rtx temp = gen_rtx_REG (mode, TEMP_REGNO); emit_insn (gen_rtx_SET (VOIDmode, temp, reg)); frv_frame_insn (gen_rtx_SET (Pmode, mem, temp), frv_dwarf_store (reg, stack_offset)); } else if (mode == DImode) { /* For DImode saves, the dwarf2 version needs to be a SEQUENCE with a separate save for each register. */ rtx reg1 = gen_rtx_REG (SImode, REGNO (reg)); rtx reg2 = gen_rtx_REG (SImode, REGNO (reg) + 1); rtx set1 = frv_dwarf_store (reg1, stack_offset); rtx set2 = frv_dwarf_store (reg2, stack_offset + 4); /* Also we cannot use reg+reg addressing. */ if (GET_CODE (XEXP (mem, 0)) == PLUS && GET_CODE (XEXP (XEXP (mem, 0), 0)) == REG && GET_CODE (XEXP (XEXP (mem, 0), 1)) == REG) { rtx temp = gen_rtx_REG (SImode, TEMP_REGNO); rtx insn = emit_move_insn (temp, gen_rtx_PLUS (SImode, XEXP (XEXP (mem, 0), 0), XEXP (XEXP (mem, 0), 1))); mem = gen_rtx_MEM (DImode, temp); } frv_frame_insn (gen_rtx_SET (Pmode, mem, reg), gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set1, set2))); } else frv_frame_insn (gen_rtx_SET (Pmode, mem, reg), frv_dwarf_store (reg, stack_offset)); } } /* A function that uses frv_frame_access to transfer a group of registers to or from the stack. ACCESSOR is passed directly to frv_frame_access, INFO is the stack information generated by frv_stack_info, and REG_SET is the number of the register set to transfer. */ static void frv_frame_access_multi (frv_frame_accessor_t *accessor, frv_stack_t *info, int reg_set) { frv_stack_regs_t *regs_info; int regno; regs_info = &info->regs[reg_set]; for (regno = regs_info->first; regno <= regs_info->last; regno++) if (info->save_p[regno]) frv_frame_access (accessor, info->save_p[regno] == REG_SAVE_2WORDS ? gen_rtx_REG (DImode, regno) : gen_rtx_REG (SImode, regno), info->reg_offset[regno]); } /* Save or restore callee-saved registers that are kept outside the frame header. The function saves the registers if OP is FRV_STORE and restores them if OP is FRV_LOAD. INFO is the stack information generated by frv_stack_info. */ static void frv_frame_access_standard_regs (enum frv_stack_op op, frv_stack_t *info) { frv_frame_accessor_t accessor; accessor.op = op; accessor.base = stack_pointer_rtx; accessor.base_offset = 0; frv_frame_access_multi (&accessor, info, STACK_REGS_GPR); frv_frame_access_multi (&accessor, info, STACK_REGS_FPR); frv_frame_access_multi (&accessor, info, STACK_REGS_LCR); } /* Called after register allocation to add any instructions needed for the prologue. Using a prologue insn is favored compared to putting all of the instructions in the TARGET_ASM_FUNCTION_PROLOGUE target hook, since it allows the scheduler to intermix instructions with the saves of the caller saved registers. In some cases, it might be necessary to emit a barrier instruction as the last insn to prevent such scheduling. Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1 so that the debug info generation code can handle them properly. */ void frv_expand_prologue (void) { frv_stack_t *info = frv_stack_info (); rtx sp = stack_pointer_rtx; rtx fp = frame_pointer_rtx; frv_frame_accessor_t accessor; if (TARGET_DEBUG_STACK) frv_debug_stack (info); if (info->total_size == 0) return; /* We're interested in three areas of the frame here: A: the register save area B: the old FP C: the header after B If the frame pointer isn't used, we'll have to set up A, B and C using the stack pointer. If the frame pointer is used, we'll access them as follows: A: set up using sp B: set up using sp or a temporary (see below) C: set up using fp We set up B using the stack pointer if the frame is small enough. Otherwise, it's more efficient to copy the old stack pointer into a temporary and use that. Note that it's important to make sure the prologue and epilogue use the same registers to access A and C, since doing otherwise will confuse the aliasing code. */ /* Set up ACCESSOR for accessing region B above. If the frame pointer isn't used, the same method will serve for C. */ accessor.op = FRV_STORE; if (frame_pointer_needed && info->total_size > 2048) { rtx insn; accessor.base = gen_rtx_REG (Pmode, OLD_SP_REGNO); accessor.base_offset = info->total_size; insn = emit_insn (gen_movsi (accessor.base, sp)); } else { accessor.base = stack_pointer_rtx; accessor.base_offset = 0; } /* Allocate the stack space. */ { rtx asm_offset = frv_frame_offset_rtx (-info->total_size); rtx dwarf_offset = GEN_INT (-info->total_size); frv_frame_insn (gen_stack_adjust (sp, sp, asm_offset), gen_rtx_SET (Pmode, sp, gen_rtx_PLUS (Pmode, sp, dwarf_offset))); } /* If the frame pointer is needed, store the old one at (sp + FP_OFFSET) and point the new one to that location. */ if (frame_pointer_needed) { int fp_offset = info->reg_offset[FRAME_POINTER_REGNUM]; /* ASM_SRC and DWARF_SRC both point to the frame header. ASM_SRC is based on ACCESSOR.BASE but DWARF_SRC is always based on the stack pointer. */ rtx asm_src = plus_constant (accessor.base, fp_offset - accessor.base_offset); rtx dwarf_src = plus_constant (sp, fp_offset); /* Store the old frame pointer at (sp + FP_OFFSET). */ frv_frame_access (&accessor, fp, fp_offset); /* Set up the new frame pointer. */ frv_frame_insn (gen_rtx_SET (VOIDmode, fp, asm_src), gen_rtx_SET (VOIDmode, fp, dwarf_src)); /* Access region C from the frame pointer. */ accessor.base = fp; accessor.base_offset = fp_offset; } /* Set up region C. */ frv_frame_access_multi (&accessor, info, STACK_REGS_STRUCT); frv_frame_access_multi (&accessor, info, STACK_REGS_LR); frv_frame_access_multi (&accessor, info, STACK_REGS_STDARG); /* Set up region A. */ frv_frame_access_standard_regs (FRV_STORE, info); /* If this is a varargs/stdarg function, issue a blockage to prevent the scheduler from moving loads before the stores saving the registers. */ if (info->stdarg_size > 0) emit_insn (gen_blockage ()); /* Set up pic register/small data register for this function. */ if (!TARGET_FDPIC && flag_pic && crtl->uses_pic_offset_table) emit_insn (gen_pic_prologue (gen_rtx_REG (Pmode, PIC_REGNO), gen_rtx_REG (Pmode, LR_REGNO), gen_rtx_REG (SImode, OFFSET_REGNO))); } /* Under frv, all of the work is done via frv_expand_epilogue, but this function provides a convenient place to do cleanup. */ static void frv_function_epilogue (FILE *file ATTRIBUTE_UNUSED, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { frv_stack_cache = (frv_stack_t *)0; /* Zap last used registers for conditional execution. */ memset (&frv_ifcvt.tmp_reg, 0, sizeof (frv_ifcvt.tmp_reg)); /* Release the bitmap of created insns. */ BITMAP_FREE (frv_ifcvt.scratch_insns_bitmap); } /* Called after register allocation to add any instructions needed for the epilogue. Using an epilogue insn is favored compared to putting all of the instructions in the TARGET_ASM_FUNCTION_PROLOGUE target hook, since it allows the scheduler to intermix instructions with the saves of the caller saved registers. In some cases, it might be necessary to emit a barrier instruction as the last insn to prevent such scheduling. */ void frv_expand_epilogue (bool emit_return) { frv_stack_t *info = frv_stack_info (); rtx fp = frame_pointer_rtx; rtx sp = stack_pointer_rtx; rtx return_addr; int fp_offset; fp_offset = info->reg_offset[FRAME_POINTER_REGNUM]; /* Restore the stack pointer to its original value if alloca or the like is used. */ if (! current_function_sp_is_unchanging) emit_insn (gen_addsi3 (sp, fp, frv_frame_offset_rtx (-fp_offset))); /* Restore the callee-saved registers that were used in this function. */ frv_frame_access_standard_regs (FRV_LOAD, info); /* Set RETURN_ADDR to the address we should return to. Set it to NULL if no return instruction should be emitted. */ if (info->save_p[LR_REGNO]) { int lr_offset; rtx mem; /* Use the same method to access the link register's slot as we did in the prologue. In other words, use the frame pointer if available, otherwise use the stack pointer. LR_OFFSET is the offset of the link register's slot from the start of the frame and MEM is a memory rtx for it. */ lr_offset = info->reg_offset[LR_REGNO]; if (frame_pointer_needed) mem = frv_frame_mem (Pmode, fp, lr_offset - fp_offset); else mem = frv_frame_mem (Pmode, sp, lr_offset); /* Load the old link register into a GPR. */ return_addr = gen_rtx_REG (Pmode, TEMP_REGNO); emit_insn (gen_rtx_SET (VOIDmode, return_addr, mem)); } else return_addr = gen_rtx_REG (Pmode, LR_REGNO); /* Restore the old frame pointer. Emit a USE afterwards to make sure the load is preserved. */ if (frame_pointer_needed) { emit_insn (gen_rtx_SET (VOIDmode, fp, gen_rtx_MEM (Pmode, fp))); emit_use (fp); } /* Deallocate the stack frame. */ if (info->total_size != 0) { rtx offset = frv_frame_offset_rtx (info->total_size); emit_insn (gen_stack_adjust (sp, sp, offset)); } /* If this function uses eh_return, add the final stack adjustment now. */ if (crtl->calls_eh_return) emit_insn (gen_stack_adjust (sp, sp, EH_RETURN_STACKADJ_RTX)); if (emit_return) emit_jump_insn (gen_epilogue_return (return_addr)); else { rtx lr = return_addr; if (REGNO (return_addr) != LR_REGNO) { lr = gen_rtx_REG (Pmode, LR_REGNO); emit_move_insn (lr, return_addr); } emit_use (lr); } } /* Worker function for TARGET_ASM_OUTPUT_MI_THUNK. */ static void frv_asm_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED, tree function) { const char *name_func = XSTR (XEXP (DECL_RTL (function), 0), 0); const char *name_arg0 = reg_names[FIRST_ARG_REGNUM]; const char *name_jmp = reg_names[JUMP_REGNO]; const char *parallel = (frv_issue_rate () > 1 ? ".p" : ""); /* Do the add using an addi if possible. */ if (IN_RANGE_P (delta, -2048, 2047)) fprintf (file, "\taddi %s,#%d,%s\n", name_arg0, (int) delta, name_arg0); else { const char *const name_add = reg_names[TEMP_REGNO]; fprintf (file, "\tsethi%s #hi(" HOST_WIDE_INT_PRINT_DEC "),%s\n", parallel, delta, name_add); fprintf (file, "\tsetlo #lo(" HOST_WIDE_INT_PRINT_DEC "),%s\n", delta, name_add); fprintf (file, "\tadd %s,%s,%s\n", name_add, name_arg0, name_arg0); } if (TARGET_FDPIC) { const char *name_pic = reg_names[FDPIC_REGNO]; name_jmp = reg_names[FDPIC_FPTR_REGNO]; if (flag_pic != 1) { fprintf (file, "\tsethi%s #gotofffuncdeschi(", parallel); assemble_name (file, name_func); fprintf (file, "),%s\n", name_jmp); fprintf (file, "\tsetlo #gotofffuncdesclo("); assemble_name (file, name_func); fprintf (file, "),%s\n", name_jmp); fprintf (file, "\tldd @(%s,%s), %s\n", name_jmp, name_pic, name_jmp); } else { fprintf (file, "\tlddo @(%s,#gotofffuncdesc12(", name_pic); assemble_name (file, name_func); fprintf (file, "\t)), %s\n", name_jmp); } } else if (!flag_pic) { fprintf (file, "\tsethi%s #hi(", parallel); assemble_name (file, name_func); fprintf (file, "),%s\n", name_jmp); fprintf (file, "\tsetlo #lo("); assemble_name (file, name_func); fprintf (file, "),%s\n", name_jmp); } else { /* Use JUMP_REGNO as a temporary PIC register. */ const char *name_lr = reg_names[LR_REGNO]; const char *name_gppic = name_jmp; const char *name_tmp = reg_names[TEMP_REGNO]; fprintf (file, "\tmovsg %s,%s\n", name_lr, name_tmp); fprintf (file, "\tcall 1f\n"); fprintf (file, "1:\tmovsg %s,%s\n", name_lr, name_gppic); fprintf (file, "\tmovgs %s,%s\n", name_tmp, name_lr); fprintf (file, "\tsethi%s #gprelhi(1b),%s\n", parallel, name_tmp); fprintf (file, "\tsetlo #gprello(1b),%s\n", name_tmp); fprintf (file, "\tsub %s,%s,%s\n", name_gppic, name_tmp, name_gppic); fprintf (file, "\tsethi%s #gprelhi(", parallel); assemble_name (file, name_func); fprintf (file, "),%s\n", name_tmp); fprintf (file, "\tsetlo #gprello("); assemble_name (file, name_func); fprintf (file, "),%s\n", name_tmp); fprintf (file, "\tadd %s,%s,%s\n", name_gppic, name_tmp, name_jmp); } /* Jump to the function address. */ fprintf (file, "\tjmpl @(%s,%s)\n", name_jmp, reg_names[GPR_FIRST+0]); } /* On frv, create a frame whenever we need to create stack. */ static bool frv_frame_pointer_required (void) { /* If we forgoing the usual linkage requirements, we only need a frame pointer if the stack pointer might change. */ if (!TARGET_LINKED_FP) return !current_function_sp_is_unchanging; if (! current_function_is_leaf) return true; if (get_frame_size () != 0) return true; if (cfun->stdarg) return true; if (!current_function_sp_is_unchanging) return true; if (!TARGET_FDPIC && flag_pic && crtl->uses_pic_offset_table) return true; if (profile_flag) return true; if (cfun->machine->frame_needed) return true; return false; } /* Worker function for TARGET_CAN_ELIMINATE. */ bool frv_can_eliminate (const int from, const int to) { return (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true); } /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the initial difference between the specified pair of registers. This macro must be defined if `ELIMINABLE_REGS' is defined. */ /* See frv_stack_info for more details on the frv stack frame. */ int frv_initial_elimination_offset (int from, int to) { frv_stack_t *info = frv_stack_info (); int ret = 0; if (to == STACK_POINTER_REGNUM && from == ARG_POINTER_REGNUM) ret = info->total_size - info->pretend_size; else if (to == STACK_POINTER_REGNUM && from == FRAME_POINTER_REGNUM) ret = info->reg_offset[FRAME_POINTER_REGNUM]; else if (to == FRAME_POINTER_REGNUM && from == ARG_POINTER_REGNUM) ret = (info->total_size - info->reg_offset[FRAME_POINTER_REGNUM] - info->pretend_size); else gcc_unreachable (); if (TARGET_DEBUG_STACK) fprintf (stderr, "Eliminate %s to %s by adding %d\n", reg_names [from], reg_names[to], ret); return ret; } /* Worker function for TARGET_SETUP_INCOMING_VARARGS. */ static void frv_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type ATTRIBUTE_UNUSED, int *pretend_size, int second_time) { if (TARGET_DEBUG_ARG) fprintf (stderr, "setup_vararg: words = %2d, mode = %4s, pretend_size = %d, second_time = %d\n", *cum, GET_MODE_NAME (mode), *pretend_size, second_time); } /* Worker function for TARGET_EXPAND_BUILTIN_SAVEREGS. */ static rtx frv_expand_builtin_saveregs (void) { int offset = UNITS_PER_WORD * FRV_NUM_ARG_REGS; if (TARGET_DEBUG_ARG) fprintf (stderr, "expand_builtin_saveregs: offset from ap = %d\n", offset); return gen_rtx_PLUS (Pmode, virtual_incoming_args_rtx, GEN_INT (- offset)); } /* Expand __builtin_va_start to do the va_start macro. */ static void frv_expand_builtin_va_start (tree valist, rtx nextarg) { tree t; int num = crtl->args.info - FIRST_ARG_REGNUM - FRV_NUM_ARG_REGS; nextarg = gen_rtx_PLUS (Pmode, virtual_incoming_args_rtx, GEN_INT (UNITS_PER_WORD * num)); if (TARGET_DEBUG_ARG) { fprintf (stderr, "va_start: args_info = %d, num = %d\n", crtl->args.info, num); debug_rtx (nextarg); } t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, fold_convert (TREE_TYPE (valist), make_tree (sizetype, nextarg))); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Expand a block move operation, and return 1 if successful. Return 0 if we should let the compiler generate normal code. operands[0] is the destination operands[1] is the source operands[2] is the length operands[3] is the alignment */ /* Maximum number of loads to do before doing the stores */ #ifndef MAX_MOVE_REG #define MAX_MOVE_REG 4 #endif /* Maximum number of total loads to do. */ #ifndef TOTAL_MOVE_REG #define TOTAL_MOVE_REG 8 #endif int frv_expand_block_move (rtx operands[]) { rtx orig_dest = operands[0]; rtx orig_src = operands[1]; rtx bytes_rtx = operands[2]; rtx align_rtx = operands[3]; int constp = (GET_CODE (bytes_rtx) == CONST_INT); int align; int bytes; int offset; int num_reg; int i; rtx src_reg; rtx dest_reg; rtx src_addr; rtx dest_addr; rtx src_mem; rtx dest_mem; rtx tmp_reg; rtx stores[MAX_MOVE_REG]; int move_bytes; enum machine_mode mode; /* If this is not a fixed size move, just call memcpy. */ if (! constp) return FALSE; /* This should be a fixed size alignment. */ gcc_assert (GET_CODE (align_rtx) == CONST_INT); align = INTVAL (align_rtx); /* Anything to move? */ bytes = INTVAL (bytes_rtx); if (bytes <= 0) return TRUE; /* Don't support real large moves. */ if (bytes > TOTAL_MOVE_REG*align) return FALSE; /* Move the address into scratch registers. */ dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0)); src_reg = copy_addr_to_reg (XEXP (orig_src, 0)); num_reg = offset = 0; for ( ; bytes > 0; (bytes -= move_bytes), (offset += move_bytes)) { /* Calculate the correct offset for src/dest. */ if (offset == 0) { src_addr = src_reg; dest_addr = dest_reg; } else { src_addr = plus_constant (src_reg, offset); dest_addr = plus_constant (dest_reg, offset); } /* Generate the appropriate load and store, saving the stores for later. */ if (bytes >= 4 && align >= 4) mode = SImode; else if (bytes >= 2 && align >= 2) mode = HImode; else mode = QImode; move_bytes = GET_MODE_SIZE (mode); tmp_reg = gen_reg_rtx (mode); src_mem = change_address (orig_src, mode, src_addr); dest_mem = change_address (orig_dest, mode, dest_addr); emit_insn (gen_rtx_SET (VOIDmode, tmp_reg, src_mem)); stores[num_reg++] = gen_rtx_SET (VOIDmode, dest_mem, tmp_reg); if (num_reg >= MAX_MOVE_REG) { for (i = 0; i < num_reg; i++) emit_insn (stores[i]); num_reg = 0; } } for (i = 0; i < num_reg; i++) emit_insn (stores[i]); return TRUE; } /* Expand a block clear operation, and return 1 if successful. Return 0 if we should let the compiler generate normal code. operands[0] is the destination operands[1] is the length operands[3] is the alignment */ int frv_expand_block_clear (rtx operands[]) { rtx orig_dest = operands[0]; rtx bytes_rtx = operands[1]; rtx align_rtx = operands[3]; int constp = (GET_CODE (bytes_rtx) == CONST_INT); int align; int bytes; int offset; int num_reg; rtx dest_reg; rtx dest_addr; rtx dest_mem; int clear_bytes; enum machine_mode mode; /* If this is not a fixed size move, just call memcpy. */ if (! constp) return FALSE; /* This should be a fixed size alignment. */ gcc_assert (GET_CODE (align_rtx) == CONST_INT); align = INTVAL (align_rtx); /* Anything to move? */ bytes = INTVAL (bytes_rtx); if (bytes <= 0) return TRUE; /* Don't support real large clears. */ if (bytes > TOTAL_MOVE_REG*align) return FALSE; /* Move the address into a scratch register. */ dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0)); num_reg = offset = 0; for ( ; bytes > 0; (bytes -= clear_bytes), (offset += clear_bytes)) { /* Calculate the correct offset for src/dest. */ dest_addr = ((offset == 0) ? dest_reg : plus_constant (dest_reg, offset)); /* Generate the appropriate store of gr0. */ if (bytes >= 4 && align >= 4) mode = SImode; else if (bytes >= 2 && align >= 2) mode = HImode; else mode = QImode; clear_bytes = GET_MODE_SIZE (mode); dest_mem = change_address (orig_dest, mode, dest_addr); emit_insn (gen_rtx_SET (VOIDmode, dest_mem, const0_rtx)); } return TRUE; } /* The following variable is used to output modifiers of assembler code of the current output insn. */ static rtx *frv_insn_operands; /* The following function is used to add assembler insn code suffix .p if it is necessary. */ const char * frv_asm_output_opcode (FILE *f, const char *ptr) { int c; if (frv_insn_packing_flag <= 0) return ptr; for (; *ptr && *ptr != ' ' && *ptr != '\t';) { c = *ptr++; if (c == '%' && ((*ptr >= 'a' && *ptr <= 'z') || (*ptr >= 'A' && *ptr <= 'Z'))) { int letter = *ptr++; c = atoi (ptr); frv_print_operand (f, frv_insn_operands [c], letter); while ((c = *ptr) >= '0' && c <= '9') ptr++; } else fputc (c, f); } fprintf (f, ".p"); return ptr; } /* Set up the packing bit for the current output insn. Note that this function is not called for asm insns. */ void frv_final_prescan_insn (rtx insn, rtx *opvec, int noperands ATTRIBUTE_UNUSED) { if (INSN_P (insn)) { if (frv_insn_packing_flag >= 0) { frv_insn_operands = opvec; frv_insn_packing_flag = PACKING_FLAG_P (insn); } else if (recog_memoized (insn) >= 0 && get_attr_acc_group (insn) == ACC_GROUP_ODD) /* Packing optimizations have been disabled, but INSN can only be issued in M1. Insert an mnop in M0. */ fprintf (asm_out_file, "\tmnop.p\n"); } } /* A C expression whose value is RTL representing the address in a stack frame where the pointer to the caller's frame is stored. Assume that FRAMEADDR is an RTL expression for the address of the stack frame itself. If you don't define this macro, the default is to return the value of FRAMEADDR--that is, the stack frame address is also the address of the stack word that points to the previous frame. */ /* The default is correct, but we need to make sure the frame gets created. */ rtx frv_dynamic_chain_address (rtx frame) { cfun->machine->frame_needed = 1; return frame; } /* A C expression whose value is RTL representing the value of the return address for the frame COUNT steps up from the current frame, after the prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is defined. The value of the expression must always be the correct address when COUNT is zero, but may be `NULL_RTX' if there is not way to determine the return address of other frames. */ rtx frv_return_addr_rtx (int count, rtx frame) { if (count != 0) return const0_rtx; cfun->machine->frame_needed = 1; return gen_rtx_MEM (Pmode, plus_constant (frame, 8)); } /* Given a memory reference MEMREF, interpret the referenced memory as an array of MODE values, and return a reference to the element specified by INDEX. Assume that any pre-modification implicit in MEMREF has already happened. MEMREF must be a legitimate operand for modes larger than SImode. frv_legitimate_address_p forbids register+register addresses, which this function cannot handle. */ rtx frv_index_memory (rtx memref, enum machine_mode mode, int index) { rtx base = XEXP (memref, 0); if (GET_CODE (base) == PRE_MODIFY) base = XEXP (base, 0); return change_address (memref, mode, plus_constant (base, index * GET_MODE_SIZE (mode))); } /* Print a memory address as an operand to reference that memory location. */ void frv_print_operand_address (FILE * stream, rtx x) { if (GET_CODE (x) == MEM) x = XEXP (x, 0); switch (GET_CODE (x)) { case REG: fputs (reg_names [ REGNO (x)], stream); return; case CONST_INT: fprintf (stream, "%ld", (long) INTVAL (x)); return; case SYMBOL_REF: assemble_name (stream, XSTR (x, 0)); return; case LABEL_REF: case CONST: output_addr_const (stream, x); return; case PLUS: /* Poorly constructed asm statements can trigger this alternative. See gcc/testsuite/gcc.dg/asm-4.c for an example. */ frv_print_operand_memory_reference (stream, x, 0); return; default: break; } fatal_insn ("bad insn to frv_print_operand_address:", x); } static void frv_print_operand_memory_reference_reg (FILE * stream, rtx x) { int regno = true_regnum (x); if (GPR_P (regno)) fputs (reg_names[regno], stream); else fatal_insn ("bad register to frv_print_operand_memory_reference_reg:", x); } /* Print a memory reference suitable for the ld/st instructions. */ static void frv_print_operand_memory_reference (FILE * stream, rtx x, int addr_offset) { struct frv_unspec unspec; rtx x0 = NULL_RTX; rtx x1 = NULL_RTX; switch (GET_CODE (x)) { case SUBREG: case REG: x0 = x; break; case PRE_MODIFY: /* (pre_modify (reg) (plus (reg) (reg))) */ x0 = XEXP (x, 0); x1 = XEXP (XEXP (x, 1), 1); break; case CONST_INT: x1 = x; break; case PLUS: x0 = XEXP (x, 0); x1 = XEXP (x, 1); if (GET_CODE (x0) == CONST_INT) { x0 = XEXP (x, 1); x1 = XEXP (x, 0); } break; default: fatal_insn ("bad insn to frv_print_operand_memory_reference:", x); break; } if (addr_offset) { if (!x1) x1 = const0_rtx; else if (GET_CODE (x1) != CONST_INT) fatal_insn ("bad insn to frv_print_operand_memory_reference:", x); } fputs ("@(", stream); if (!x0) fputs (reg_names[GPR_R0], stream); else if (GET_CODE (x0) == REG || GET_CODE (x0) == SUBREG) frv_print_operand_memory_reference_reg (stream, x0); else fatal_insn ("bad insn to frv_print_operand_memory_reference:", x); fputs (",", stream); if (!x1) fputs (reg_names [GPR_R0], stream); else { switch (GET_CODE (x1)) { case SUBREG: case REG: frv_print_operand_memory_reference_reg (stream, x1); break; case CONST_INT: fprintf (stream, "%ld", (long) (INTVAL (x1) + addr_offset)); break; case CONST: if (!frv_const_unspec_p (x1, &unspec)) fatal_insn ("bad insn to frv_print_operand_memory_reference:", x1); frv_output_const_unspec (stream, &unspec); break; default: fatal_insn ("bad insn to frv_print_operand_memory_reference:", x); } } fputs (")", stream); } /* Return 2 for likely branches and 0 for non-likely branches */ #define FRV_JUMP_LIKELY 2 #define FRV_JUMP_NOT_LIKELY 0 static int frv_print_operand_jump_hint (rtx insn) { rtx note; rtx labelref; int ret; HOST_WIDE_INT prob = -1; enum { UNKNOWN, BACKWARD, FORWARD } jump_type = UNKNOWN; gcc_assert (GET_CODE (insn) == JUMP_INSN); /* Assume any non-conditional jump is likely. */ if (! any_condjump_p (insn)) ret = FRV_JUMP_LIKELY; else { labelref = condjump_label (insn); if (labelref) { rtx label = XEXP (labelref, 0); jump_type = (insn_current_address > INSN_ADDRESSES (INSN_UID (label)) ? BACKWARD : FORWARD); } note = find_reg_note (insn, REG_BR_PROB, 0); if (!note) ret = ((jump_type == BACKWARD) ? FRV_JUMP_LIKELY : FRV_JUMP_NOT_LIKELY); else { prob = INTVAL (XEXP (note, 0)); ret = ((prob >= (REG_BR_PROB_BASE / 2)) ? FRV_JUMP_LIKELY : FRV_JUMP_NOT_LIKELY); } } #if 0 if (TARGET_DEBUG) { char *direction; switch (jump_type) { default: case UNKNOWN: direction = "unknown jump direction"; break; case BACKWARD: direction = "jump backward"; break; case FORWARD: direction = "jump forward"; break; } fprintf (stderr, "%s: uid %ld, %s, probability = %ld, max prob. = %ld, hint = %d\n", IDENTIFIER_POINTER (DECL_NAME (current_function_decl)), (long)INSN_UID (insn), direction, (long)prob, (long)REG_BR_PROB_BASE, ret); } #endif return ret; } /* Return the comparison operator to use for CODE given that the ICC register is OP0. */ static const char * comparison_string (enum rtx_code code, rtx op0) { bool is_nz_p = GET_MODE (op0) == CC_NZmode; switch (code) { default: output_operand_lossage ("bad condition code"); case EQ: return "eq"; case NE: return "ne"; case LT: return is_nz_p ? "n" : "lt"; case LE: return "le"; case GT: return "gt"; case GE: return is_nz_p ? "p" : "ge"; case LTU: return is_nz_p ? "no" : "c"; case LEU: return is_nz_p ? "eq" : "ls"; case GTU: return is_nz_p ? "ne" : "hi"; case GEU: return is_nz_p ? "ra" : "nc"; } } /* Print an operand to an assembler instruction. `%' followed by a letter and a digit says to output an operand in an alternate fashion. Four letters have standard, built-in meanings described below. The machine description macro `PRINT_OPERAND' can define additional letters with nonstandard meanings. `%cDIGIT' can be used to substitute an operand that is a constant value without the syntax that normally indicates an immediate operand. `%nDIGIT' is like `%cDIGIT' except that the value of the constant is negated before printing. `%aDIGIT' can be used to substitute an operand as if it were a memory reference, with the actual operand treated as the address. This may be useful when outputting a "load address" instruction, because often the assembler syntax for such an instruction requires you to write the operand as if it were a memory reference. `%lDIGIT' is used to substitute a `label_ref' into a jump instruction. `%=' outputs a number which is unique to each instruction in the entire compilation. This is useful for making local labels to be referred to more than once in a single template that generates multiple assembler instructions. `%' followed by a punctuation character specifies a substitution that does not use an operand. Only one case is standard: `%%' outputs a `%' into the assembler code. Other nonstandard cases can be defined in the `PRINT_OPERAND' macro. You must also define which punctuation characters are valid with the `PRINT_OPERAND_PUNCT_VALID_P' macro. */ void frv_print_operand (FILE * file, rtx x, int code) { struct frv_unspec unspec; HOST_WIDE_INT value; int offset; if (code != 0 && !ISALPHA (code)) value = 0; else if (GET_CODE (x) == CONST_INT) value = INTVAL (x); else if (GET_CODE (x) == CONST_DOUBLE) { if (GET_MODE (x) == SFmode) { REAL_VALUE_TYPE rv; long l; REAL_VALUE_FROM_CONST_DOUBLE (rv, x); REAL_VALUE_TO_TARGET_SINGLE (rv, l); value = l; } else if (GET_MODE (x) == VOIDmode) value = CONST_DOUBLE_LOW (x); else fatal_insn ("bad insn in frv_print_operand, bad const_double", x); } else value = 0; switch (code) { case '.': /* Output r0. */ fputs (reg_names[GPR_R0], file); break; case '#': fprintf (file, "%d", frv_print_operand_jump_hint (current_output_insn)); break; case '@': /* Output small data area base register (gr16). */ fputs (reg_names[SDA_BASE_REG], file); break; case '~': /* Output pic register (gr17). */ fputs (reg_names[PIC_REGNO], file); break; case '*': /* Output the temporary integer CCR register. */ fputs (reg_names[ICR_TEMP], file); break; case '&': /* Output the temporary integer CC register. */ fputs (reg_names[ICC_TEMP], file); break; /* case 'a': print an address. */ case 'C': /* Print appropriate test for integer branch false operation. */ fputs (comparison_string (reverse_condition (GET_CODE (x)), XEXP (x, 0)), file); break; case 'c': /* Print appropriate test for integer branch true operation. */ fputs (comparison_string (GET_CODE (x), XEXP (x, 0)), file); break; case 'e': /* Print 1 for a NE and 0 for an EQ to give the final argument for a conditional instruction. */ if (GET_CODE (x) == NE) fputs ("1", file); else if (GET_CODE (x) == EQ) fputs ("0", file); else fatal_insn ("bad insn to frv_print_operand, 'e' modifier:", x); break; case 'F': /* Print appropriate test for floating point branch false operation. */ switch (GET_CODE (x)) { default: fatal_insn ("bad insn to frv_print_operand, 'F' modifier:", x); case EQ: fputs ("ne", file); break; case NE: fputs ("eq", file); break; case LT: fputs ("uge", file); break; case LE: fputs ("ug", file); break; case GT: fputs ("ule", file); break; case GE: fputs ("ul", file); break; } break; case 'f': /* Print appropriate test for floating point branch true operation. */ switch (GET_CODE (x)) { default: fatal_insn ("bad insn to frv_print_operand, 'f' modifier:", x); case EQ: fputs ("eq", file); break; case NE: fputs ("ne", file); break; case LT: fputs ("lt", file); break; case LE: fputs ("le", file); break; case GT: fputs ("gt", file); break; case GE: fputs ("ge", file); break; } break; case 'g': /* Print appropriate GOT function. */ if (GET_CODE (x) != CONST_INT) fatal_insn ("bad insn to frv_print_operand, 'g' modifier:", x); fputs (unspec_got_name (INTVAL (x)), file); break; case 'I': /* Print 'i' if the operand is a constant, or is a memory reference that adds a constant. */ if (GET_CODE (x) == MEM) x = ((GET_CODE (XEXP (x, 0)) == PLUS) ? XEXP (XEXP (x, 0), 1) : XEXP (x, 0)); else if (GET_CODE (x) == PLUS) x = XEXP (x, 1); switch (GET_CODE (x)) { default: break; case CONST_INT: case SYMBOL_REF: case CONST: fputs ("i", file); break; } break; case 'i': /* For jump instructions, print 'i' if the operand is a constant or is an expression that adds a constant. */ if (GET_CODE (x) == CONST_INT) fputs ("i", file); else { if (GET_CODE (x) == CONST_INT || (GET_CODE (x) == PLUS && (GET_CODE (XEXP (x, 1)) == CONST_INT || GET_CODE (XEXP (x, 0)) == CONST_INT))) fputs ("i", file); } break; case 'L': /* Print the lower register of a double word register pair */ if (GET_CODE (x) == REG) fputs (reg_names[ REGNO (x)+1 ], file); else fatal_insn ("bad insn to frv_print_operand, 'L' modifier:", x); break; /* case 'l': print a LABEL_REF. */ case 'M': case 'N': /* Print a memory reference for ld/st/jmp, %N prints a memory reference for the second word of double memory operations. */ offset = (code == 'M') ? 0 : UNITS_PER_WORD; switch (GET_CODE (x)) { default: fatal_insn ("bad insn to frv_print_operand, 'M/N' modifier:", x); case MEM: frv_print_operand_memory_reference (file, XEXP (x, 0), offset); break; case REG: case SUBREG: case CONST_INT: case PLUS: case SYMBOL_REF: frv_print_operand_memory_reference (file, x, offset); break; } break; case 'O': /* Print the opcode of a command. */ switch (GET_CODE (x)) { default: fatal_insn ("bad insn to frv_print_operand, 'O' modifier:", x); case PLUS: fputs ("add", file); break; case MINUS: fputs ("sub", file); break; case AND: fputs ("and", file); break; case IOR: fputs ("or", file); break; case XOR: fputs ("xor", file); break; case ASHIFT: fputs ("sll", file); break; case ASHIFTRT: fputs ("sra", file); break; case LSHIFTRT: fputs ("srl", file); break; } break; /* case 'n': negate and print a constant int. */ case 'P': /* Print PIC label using operand as the number. */ if (GET_CODE (x) != CONST_INT) fatal_insn ("bad insn to frv_print_operand, P modifier:", x); fprintf (file, ".LCF%ld", (long)INTVAL (x)); break; case 'U': /* Print 'u' if the operand is a update load/store. */ if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == PRE_MODIFY) fputs ("u", file); break; case 'z': /* If value is 0, print gr0, otherwise it must be a register. */ if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0) fputs (reg_names[GPR_R0], file); else if (GET_CODE (x) == REG) fputs (reg_names [REGNO (x)], file); else fatal_insn ("bad insn in frv_print_operand, z case", x); break; case 'x': /* Print constant in hex. */ if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE) { fprintf (file, "%s0x%.4lx", IMMEDIATE_PREFIX, (long) value); break; } /* Fall through. */ case '\0': if (GET_CODE (x) == REG) fputs (reg_names [REGNO (x)], file); else if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE) fprintf (file, "%s%ld", IMMEDIATE_PREFIX, (long) value); else if (frv_const_unspec_p (x, &unspec)) frv_output_const_unspec (file, &unspec); else if (GET_CODE (x) == MEM) frv_print_operand_address (file, XEXP (x, 0)); else if (CONSTANT_ADDRESS_P (x)) frv_print_operand_address (file, x); else fatal_insn ("bad insn in frv_print_operand, 0 case", x); break; default: fatal_insn ("frv_print_operand: unknown code", x); break; } return; } /* A C statement (sans semicolon) for initializing the variable CUM for the state at the beginning of the argument list. The variable has type `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type of the function which will receive the args, or 0 if the args are to a compiler support library function. The value of INDIRECT is nonzero when processing an indirect call, for example a call through a function pointer. The value of INDIRECT is zero for a call to an explicitly named function, a library function call, or when `INIT_CUMULATIVE_ARGS' is used to find arguments for the function being compiled. When processing a call to a compiler support library function, LIBNAME identifies which one. It is a `symbol_ref' rtx which contains the name of the function, as a string. LIBNAME is 0 when an ordinary C function call is being processed. Thus, each time this macro is called, either LIBNAME or FNTYPE is nonzero, but never both of them at once. */ void frv_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname, tree fndecl, int incoming) { *cum = FIRST_ARG_REGNUM; if (TARGET_DEBUG_ARG) { fprintf (stderr, "\ninit_cumulative_args:"); if (!fndecl && fntype) fputs (" indirect", stderr); if (incoming) fputs (" incoming", stderr); if (fntype) { tree ret_type = TREE_TYPE (fntype); fprintf (stderr, " return=%s,", tree_code_name[ (int)TREE_CODE (ret_type) ]); } if (libname && GET_CODE (libname) == SYMBOL_REF) fprintf (stderr, " libname=%s", XSTR (libname, 0)); if (cfun->returns_struct) fprintf (stderr, " return-struct"); putc ('\n', stderr); } } /* Return true if we should pass an argument on the stack rather than in registers. */ static bool frv_must_pass_in_stack (enum machine_mode mode, const_tree type) { if (mode == BLKmode) return true; if (type == NULL) return false; return AGGREGATE_TYPE_P (type); } /* If defined, a C expression that gives the alignment boundary, in bits, of an argument with the specified mode and type. If it is not defined, `PARM_BOUNDARY' is used for all arguments. */ int frv_function_arg_boundary (enum machine_mode mode ATTRIBUTE_UNUSED, tree type ATTRIBUTE_UNUSED) { return BITS_PER_WORD; } rtx frv_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type ATTRIBUTE_UNUSED, int named, int incoming ATTRIBUTE_UNUSED) { enum machine_mode xmode = (mode == BLKmode) ? SImode : mode; int arg_num = *cum; rtx ret; const char *debstr; /* Return a marker for use in the call instruction. */ if (xmode == VOIDmode) { ret = const0_rtx; debstr = "<0>"; } else if (arg_num <= LAST_ARG_REGNUM) { ret = gen_rtx_REG (xmode, arg_num); debstr = reg_names[arg_num]; } else { ret = NULL_RTX; debstr = "memory"; } if (TARGET_DEBUG_ARG) fprintf (stderr, "function_arg: words = %2d, mode = %4s, named = %d, size = %3d, arg = %s\n", arg_num, GET_MODE_NAME (mode), named, GET_MODE_SIZE (mode), debstr); return ret; } /* A C statement (sans semicolon) to update the summarizer variable CUM to advance past an argument in the argument list. The values MODE, TYPE and NAMED describe that argument. Once this is done, the variable CUM is suitable for analyzing the *following* argument with `FUNCTION_ARG', etc. This macro need not do anything if the argument in question was passed on the stack. The compiler knows how to track the amount of stack space used for arguments without any special help. */ void frv_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type ATTRIBUTE_UNUSED, int named) { enum machine_mode xmode = (mode == BLKmode) ? SImode : mode; int bytes = GET_MODE_SIZE (xmode); int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; int arg_num = *cum; *cum = arg_num + words; if (TARGET_DEBUG_ARG) fprintf (stderr, "function_adv: words = %2d, mode = %4s, named = %d, size = %3d\n", arg_num, GET_MODE_NAME (mode), named, words * UNITS_PER_WORD); } /* A C expression for the number of words, at the beginning of an argument, must be put in registers. The value must be zero for arguments that are passed entirely in registers or that are entirely pushed on the stack. On some machines, certain arguments must be passed partially in registers and partially in memory. On these machines, typically the first N words of arguments are passed in registers, and the rest on the stack. If a multi-word argument (a `double' or a structure) crosses that boundary, its first few words must be passed in registers and the rest must be pushed. This macro tells the compiler when this occurs, and how many of the words should go in registers. `FUNCTION_ARG' for these arguments should return the first register to be used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for the called function. */ static int frv_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type ATTRIBUTE_UNUSED, bool named ATTRIBUTE_UNUSED) { enum machine_mode xmode = (mode == BLKmode) ? SImode : mode; int bytes = GET_MODE_SIZE (xmode); int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; int arg_num = *cum; int ret; ret = ((arg_num <= LAST_ARG_REGNUM && arg_num + words > LAST_ARG_REGNUM+1) ? LAST_ARG_REGNUM - arg_num + 1 : 0); ret *= UNITS_PER_WORD; if (TARGET_DEBUG_ARG && ret) fprintf (stderr, "frv_arg_partial_bytes: %d\n", ret); return ret; } /* Implements TARGET_FUNCTION_VALUE. */ static rtx frv_function_value (const_tree valtype, const_tree fn_decl_or_type ATTRIBUTE_UNUSED, bool outgoing ATTRIBUTE_UNUSED) { return gen_rtx_REG (TYPE_MODE (valtype), RETURN_VALUE_REGNUM); } /* Implements TARGET_LIBCALL_VALUE. */ static rtx frv_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED) { return gen_rtx_REG (mode, RETURN_VALUE_REGNUM); } /* Implements FUNCTION_VALUE_REGNO_P. */ bool frv_function_value_regno_p (const unsigned int regno) { return (regno == RETURN_VALUE_REGNUM); } /* Return true if a register is ok to use as a base or index register. */ static FRV_INLINE int frv_regno_ok_for_base_p (int regno, int strict_p) { if (GPR_P (regno)) return TRUE; if (strict_p) return (reg_renumber[regno] >= 0 && GPR_P (reg_renumber[regno])); if (regno == ARG_POINTER_REGNUM) return TRUE; return (regno >= FIRST_PSEUDO_REGISTER); } /* A C compound statement with a conditional `goto LABEL;' executed if X (an RTX) is a legitimate memory address on the target machine for a memory operand of mode MODE. It usually pays to define several simpler macros to serve as subroutines for this one. Otherwise it may be too complicated to understand. This macro must exist in two variants: a strict variant and a non-strict one. The strict variant is used in the reload pass. It must be defined so that any pseudo-register that has not been allocated a hard register is considered a memory reference. In contexts where some kind of register is required, a pseudo-register with no hard register must be rejected. The non-strict variant is used in other passes. It must be defined to accept all pseudo-registers in every context where some kind of register is required. Compiler source files that want to use the strict variant of this macro define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT' conditional to define the strict variant in that case and the non-strict variant otherwise. Normally, constant addresses which are the sum of a `symbol_ref' and an integer are stored inside a `const' RTX to mark them as constant. Therefore, there is no need to recognize such sums specifically as legitimate addresses. Normally you would simply recognize any `const' as legitimate. Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that are not marked with `const'. It assumes that a naked `plus' indicates indexing. If so, then you *must* reject such naked constant sums as illegitimate addresses, so that none of them will be given to `PRINT_OPERAND_ADDRESS'. */ int frv_legitimate_address_p_1 (enum machine_mode mode, rtx x, int strict_p, int condexec_p, int allow_double_reg_p) { rtx x0, x1; int ret = 0; HOST_WIDE_INT value; unsigned regno0; if (FRV_SYMBOL_REF_TLS_P (x)) return 0; switch (GET_CODE (x)) { default: break; case SUBREG: x = SUBREG_REG (x); if (GET_CODE (x) != REG) break; /* Fall through. */ case REG: ret = frv_regno_ok_for_base_p (REGNO (x), strict_p); break; case PRE_MODIFY: x0 = XEXP (x, 0); x1 = XEXP (x, 1); if (GET_CODE (x0) != REG || ! frv_regno_ok_for_base_p (REGNO (x0), strict_p) || GET_CODE (x1) != PLUS || ! rtx_equal_p (x0, XEXP (x1, 0)) || GET_CODE (XEXP (x1, 1)) != REG || ! frv_regno_ok_for_base_p (REGNO (XEXP (x1, 1)), strict_p)) break; ret = 1; break; case CONST_INT: /* 12-bit immediate */ if (condexec_p) ret = FALSE; else { ret = IN_RANGE_P (INTVAL (x), -2048, 2047); /* If we can't use load/store double operations, make sure we can address the second word. */ if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD) ret = IN_RANGE_P (INTVAL (x) + GET_MODE_SIZE (mode) - 1, -2048, 2047); } break; case PLUS: x0 = XEXP (x, 0); x1 = XEXP (x, 1); if (GET_CODE (x0) == SUBREG) x0 = SUBREG_REG (x0); if (GET_CODE (x0) != REG) break; regno0 = REGNO (x0); if (!frv_regno_ok_for_base_p (regno0, strict_p)) break; switch (GET_CODE (x1)) { default: break; case SUBREG: x1 = SUBREG_REG (x1); if (GET_CODE (x1) != REG) break; /* Fall through. */ case REG: /* Do not allow reg+reg addressing for modes > 1 word if we can't depend on having move double instructions. */ if (!allow_double_reg_p && GET_MODE_SIZE (mode) > UNITS_PER_WORD) ret = FALSE; else ret = frv_regno_ok_for_base_p (REGNO (x1), strict_p); break; case CONST_INT: /* 12-bit immediate */ if (condexec_p) ret = FALSE; else { value = INTVAL (x1); ret = IN_RANGE_P (value, -2048, 2047); /* If we can't use load/store double operations, make sure we can address the second word. */ if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD) ret = IN_RANGE_P (value + GET_MODE_SIZE (mode) - 1, -2048, 2047); } break; case CONST: if (!condexec_p && got12_operand (x1, VOIDmode)) ret = TRUE; break; } break; } if (TARGET_DEBUG_ADDR) { fprintf (stderr, "\n========== legitimate_address_p, mode = %s, result = %d, addresses are %sstrict%s\n", GET_MODE_NAME (mode), ret, (strict_p) ? "" : "not ", (condexec_p) ? ", inside conditional code" : ""); debug_rtx (x); } return ret; } bool frv_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p) { return frv_legitimate_address_p_1 (mode, x, strict_p, FALSE, FALSE); } /* Given an ADDR, generate code to inline the PLT. */ static rtx gen_inlined_tls_plt (rtx addr) { rtx retval, dest; rtx picreg = get_hard_reg_initial_val (Pmode, FDPIC_REG); dest = gen_reg_rtx (DImode); if (flag_pic == 1) { /* -fpic version: lddi.p @(gr15, #gottlsdesc12(ADDR)), gr8 calll #gettlsoff(ADDR)@(gr8, gr0) */ emit_insn (gen_tls_lddi (dest, addr, picreg)); } else { /* -fPIC version: sethi.p #gottlsdeschi(ADDR), gr8 setlo #gottlsdesclo(ADDR), gr8 ldd #tlsdesc(ADDR)@(gr15, gr8), gr8 calll #gettlsoff(ADDR)@(gr8, gr0) */ rtx reguse = gen_reg_rtx (Pmode); emit_insn (gen_tlsoff_hilo (reguse, addr, GEN_INT (R_FRV_GOTTLSDESCHI))); emit_insn (gen_tls_tlsdesc_ldd (dest, picreg, reguse, addr)); } retval = gen_reg_rtx (Pmode); emit_insn (gen_tls_indirect_call (retval, addr, dest, picreg)); return retval; } /* Emit a TLSMOFF or TLSMOFF12 offset, depending on -mTLS. Returns the destination address. */ static rtx gen_tlsmoff (rtx addr, rtx reg) { rtx dest = gen_reg_rtx (Pmode); if (TARGET_BIG_TLS) { /* sethi.p #tlsmoffhi(x), grA setlo #tlsmofflo(x), grA */ dest = gen_reg_rtx (Pmode); emit_insn (gen_tlsoff_hilo (dest, addr, GEN_INT (R_FRV_TLSMOFFHI))); dest = gen_rtx_PLUS (Pmode, dest, reg); } else { /* addi grB, #tlsmoff12(x), grC -or- ld/st @(grB, #tlsmoff12(x)), grC */ dest = gen_reg_rtx (Pmode); emit_insn (gen_symGOTOFF2reg_i (dest, addr, reg, GEN_INT (R_FRV_TLSMOFF12))); } return dest; } /* Generate code for a TLS address. */ static rtx frv_legitimize_tls_address (rtx addr, enum tls_model model) { rtx dest, tp = gen_rtx_REG (Pmode, 29); rtx picreg = get_hard_reg_initial_val (Pmode, 15); switch (model) { case TLS_MODEL_INITIAL_EXEC: if (flag_pic == 1) { /* -fpic version. ldi @(gr15, #gottlsoff12(x)), gr5 */ dest = gen_reg_rtx (Pmode); emit_insn (gen_tls_load_gottlsoff12 (dest, addr, picreg)); dest = gen_rtx_PLUS (Pmode, tp, dest); } else { /* -fPIC or anything else. sethi.p #gottlsoffhi(x), gr14 setlo #gottlsofflo(x), gr14 ld #tlsoff(x)@(gr15, gr14), gr9 */ rtx tmp = gen_reg_rtx (Pmode); dest = gen_reg_rtx (Pmode); emit_insn (gen_tlsoff_hilo (tmp, addr, GEN_INT (R_FRV_GOTTLSOFF_HI))); emit_insn (gen_tls_tlsoff_ld (dest, picreg, tmp, addr)); dest = gen_rtx_PLUS (Pmode, tp, dest); } break; case TLS_MODEL_LOCAL_DYNAMIC: { rtx reg, retval; if (TARGET_INLINE_PLT) retval = gen_inlined_tls_plt (GEN_INT (0)); else { /* call #gettlsoff(0) */ retval = gen_reg_rtx (Pmode); emit_insn (gen_call_gettlsoff (retval, GEN_INT (0), picreg)); } reg = gen_reg_rtx (Pmode); emit_insn (gen_rtx_SET (VOIDmode, reg, gen_rtx_PLUS (Pmode, retval, tp))); dest = gen_tlsmoff (addr, reg); /* dest = gen_reg_rtx (Pmode); emit_insn (gen_tlsoff_hilo (dest, addr, GEN_INT (R_FRV_TLSMOFFHI))); dest = gen_rtx_PLUS (Pmode, dest, reg); */ break; } case TLS_MODEL_LOCAL_EXEC: dest = gen_tlsmoff (addr, gen_rtx_REG (Pmode, 29)); break; case TLS_MODEL_GLOBAL_DYNAMIC: { rtx retval; if (TARGET_INLINE_PLT) retval = gen_inlined_tls_plt (addr); else { /* call #gettlsoff(x) */ retval = gen_reg_rtx (Pmode); emit_insn (gen_call_gettlsoff (retval, addr, picreg)); } dest = gen_rtx_PLUS (Pmode, retval, tp); break; } default: gcc_unreachable (); } return dest; } rtx frv_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED) { if (GET_CODE (x) == SYMBOL_REF) { enum tls_model model = SYMBOL_REF_TLS_MODEL (x); if (model != 0) return frv_legitimize_tls_address (x, model); } return x; } /* Test whether a local function descriptor is canonical, i.e., whether we can use FUNCDESC_GOTOFF to compute the address of the function. */ static bool frv_local_funcdesc_p (rtx fnx) { tree fn; enum symbol_visibility vis; bool ret; if (! SYMBOL_REF_LOCAL_P (fnx)) return FALSE; fn = SYMBOL_REF_DECL (fnx); if (! fn) return FALSE; vis = DECL_VISIBILITY (fn); if (vis == VISIBILITY_PROTECTED) /* Private function descriptors for protected functions are not canonical. Temporarily change the visibility to global. */ vis = VISIBILITY_DEFAULT; else if (flag_shlib) /* If we're already compiling for a shared library (that, unlike executables, can't assume that the existence of a definition implies local binding), we can skip the re-testing. */ return TRUE; ret = default_binds_local_p_1 (fn, flag_pic); DECL_VISIBILITY (fn) = vis; return ret; } /* Load the _gp symbol into DEST. SRC is supposed to be the FDPIC register. */ rtx frv_gen_GPsym2reg (rtx dest, rtx src) { tree gp = get_identifier ("_gp"); rtx gp_sym = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (gp)); return gen_symGOT2reg (dest, gp_sym, src, GEN_INT (R_FRV_GOT12)); } static const char * unspec_got_name (int i) { switch (i) { case R_FRV_GOT12: return "got12"; case R_FRV_GOTHI: return "gothi"; case R_FRV_GOTLO: return "gotlo"; case R_FRV_FUNCDESC: return "funcdesc"; case R_FRV_FUNCDESC_GOT12: return "gotfuncdesc12"; case R_FRV_FUNCDESC_GOTHI: return "gotfuncdeschi"; case R_FRV_FUNCDESC_GOTLO: return "gotfuncdesclo"; case R_FRV_FUNCDESC_VALUE: return "funcdescvalue"; case R_FRV_FUNCDESC_GOTOFF12: return "gotofffuncdesc12"; case R_FRV_FUNCDESC_GOTOFFHI: return "gotofffuncdeschi"; case R_FRV_FUNCDESC_GOTOFFLO: return "gotofffuncdesclo"; case R_FRV_GOTOFF12: return "gotoff12"; case R_FRV_GOTOFFHI: return "gotoffhi"; case R_FRV_GOTOFFLO: return "gotofflo"; case R_FRV_GPREL12: return "gprel12"; case R_FRV_GPRELHI: return "gprelhi"; case R_FRV_GPRELLO: return "gprello"; case R_FRV_GOTTLSOFF_HI: return "gottlsoffhi"; case R_FRV_GOTTLSOFF_LO: return "gottlsofflo"; case R_FRV_TLSMOFFHI: return "tlsmoffhi"; case R_FRV_TLSMOFFLO: return "tlsmofflo"; case R_FRV_TLSMOFF12: return "tlsmoff12"; case R_FRV_TLSDESCHI: return "tlsdeschi"; case R_FRV_TLSDESCLO: return "tlsdesclo"; case R_FRV_GOTTLSDESCHI: return "gottlsdeschi"; case R_FRV_GOTTLSDESCLO: return "gottlsdesclo"; default: gcc_unreachable (); } } /* Write the assembler syntax for UNSPEC to STREAM. Note that any offset is added inside the relocation operator. */ static void frv_output_const_unspec (FILE *stream, const struct frv_unspec *unspec) { fprintf (stream, "#%s(", unspec_got_name (unspec->reloc)); output_addr_const (stream, plus_constant (unspec->symbol, unspec->offset)); fputs (")", stream); } /* Implement FIND_BASE_TERM. See whether ORIG_X represents #gprel12(foo) or #gotoff12(foo) for some small data symbol foo. If so, return foo, otherwise return ORIG_X. */ rtx frv_find_base_term (rtx x) { struct frv_unspec unspec; if (frv_const_unspec_p (x, &unspec) && frv_small_data_reloc_p (unspec.symbol, unspec.reloc)) return plus_constant (unspec.symbol, unspec.offset); return x; } /* Return 1 if operand is a valid FRV address. CONDEXEC_P is true if the operand is used by a predicated instruction. */ int frv_legitimate_memory_operand (rtx op, enum machine_mode mode, int condexec_p) { return ((GET_MODE (op) == mode || mode == VOIDmode) && GET_CODE (op) == MEM && frv_legitimate_address_p_1 (mode, XEXP (op, 0), reload_completed, condexec_p, FALSE)); } void frv_expand_fdpic_call (rtx *operands, bool ret_value, bool sibcall) { rtx lr = gen_rtx_REG (Pmode, LR_REGNO); rtx picreg = get_hard_reg_initial_val (SImode, FDPIC_REG); rtx c, rvrtx=0; rtx addr; if (ret_value) { rvrtx = operands[0]; operands ++; } addr = XEXP (operands[0], 0); /* Inline PLTs if we're optimizing for speed. We'd like to inline any calls that would involve a PLT, but can't tell, since we don't know whether an extern function is going to be provided by a separate translation unit or imported from a separate module. When compiling for shared libraries, if the function has default visibility, we assume it's overridable, so we inline the PLT, but for executables, we don't really have a way to make a good decision: a function is as likely to be imported from a shared library as it is to be defined in the executable itself. We assume executables will get global functions defined locally, whereas shared libraries will have them potentially overridden, so we only inline PLTs when compiling for shared libraries. In order to mark a function as local to a shared library, any non-default visibility attribute suffices. Unfortunately, there's no simple way to tag a function declaration as ``in a different module'', which we could then use to trigger PLT inlining on executables. There's -minline-plt, but it affects all external functions, so one would have to also mark function declarations available in the same module with non-default visibility, which is advantageous in itself. */ if (GET_CODE (addr) == SYMBOL_REF && ((!SYMBOL_REF_LOCAL_P (addr) && TARGET_INLINE_PLT) || sibcall)) { rtx x, dest; dest = gen_reg_rtx (SImode); if (flag_pic != 1) x = gen_symGOTOFF2reg_hilo (dest, addr, OUR_FDPIC_REG, GEN_INT (R_FRV_FUNCDESC_GOTOFF12)); else x = gen_symGOTOFF2reg (dest, addr, OUR_FDPIC_REG, GEN_INT (R_FRV_FUNCDESC_GOTOFF12)); emit_insn (x); crtl->uses_pic_offset_table = TRUE; addr = dest; } else if (GET_CODE (addr) == SYMBOL_REF) { /* These are always either local, or handled through a local PLT. */ if (ret_value) c = gen_call_value_fdpicsi (rvrtx, addr, operands[1], operands[2], picreg, lr); else c = gen_call_fdpicsi (addr, operands[1], operands[2], picreg, lr); emit_call_insn (c); return; } else if (! ldd_address_operand (addr, Pmode)) addr = force_reg (Pmode, addr); picreg = gen_reg_rtx (DImode); emit_insn (gen_movdi_ldd (picreg, addr)); if (sibcall && ret_value) c = gen_sibcall_value_fdpicdi (rvrtx, picreg, const0_rtx); else if (sibcall) c = gen_sibcall_fdpicdi (picreg, const0_rtx); else if (ret_value) c = gen_call_value_fdpicdi (rvrtx, picreg, const0_rtx, lr); else c = gen_call_fdpicdi (picreg, const0_rtx, lr); emit_call_insn (c); } /* Look for a SYMBOL_REF of a function in an rtx. We always want to process these separately from any offsets, such that we add any offsets to the function descriptor (the actual pointer), not to the function address. */ static bool frv_function_symbol_referenced_p (rtx x) { const char *format; int length; int j; if (GET_CODE (x) == SYMBOL_REF) return SYMBOL_REF_FUNCTION_P (x); length = GET_RTX_LENGTH (GET_CODE (x)); format = GET_RTX_FORMAT (GET_CODE (x)); for (j = 0; j < length; ++j) { switch (format[j]) { case 'e': if (frv_function_symbol_referenced_p (XEXP (x, j))) return TRUE; break; case 'V': case 'E': if (XVEC (x, j) != 0) { int k; for (k = 0; k < XVECLEN (x, j); ++k) if (frv_function_symbol_referenced_p (XVECEXP (x, j, k))) return TRUE; } break; default: /* Nothing to do. */ break; } } return FALSE; } /* Return true if the memory operand is one that can be conditionally executed. */ int condexec_memory_operand (rtx op, enum machine_mode mode) { enum machine_mode op_mode = GET_MODE (op); rtx addr; if (mode != VOIDmode && op_mode != mode) return FALSE; switch (op_mode) { default: return FALSE; case QImode: case HImode: case SImode: case SFmode: break; } if (GET_CODE (op) != MEM) return FALSE; addr = XEXP (op, 0); return frv_legitimate_address_p_1 (mode, addr, reload_completed, TRUE, FALSE); } /* Return true if the bare return instruction can be used outside of the epilog code. For frv, we only do it if there was no stack allocation. */ int direct_return_p (void) { frv_stack_t *info; if (!reload_completed) return FALSE; info = frv_stack_info (); return (info->total_size == 0); } void frv_emit_move (enum machine_mode mode, rtx dest, rtx src) { if (GET_CODE (src) == SYMBOL_REF) { enum tls_model model = SYMBOL_REF_TLS_MODEL (src); if (model != 0) src = frv_legitimize_tls_address (src, model); } switch (mode) { case SImode: if (frv_emit_movsi (dest, src)) return; break; case QImode: case HImode: case DImode: case SFmode: case DFmode: if (!reload_in_progress && !reload_completed && !register_operand (dest, mode) && !reg_or_0_operand (src, mode)) src = copy_to_mode_reg (mode, src); break; default: gcc_unreachable (); } emit_insn (gen_rtx_SET (VOIDmode, dest, src)); } /* Emit code to handle a MOVSI, adding in the small data register or pic register if needed to load up addresses. Return TRUE if the appropriate instructions are emitted. */ int frv_emit_movsi (rtx dest, rtx src) { int base_regno = -1; int unspec = 0; rtx sym = src; struct frv_unspec old_unspec; if (!reload_in_progress && !reload_completed && !register_operand (dest, SImode) && (!reg_or_0_operand (src, SImode) /* Virtual registers will almost always be replaced by an add instruction, so expose this to CSE by copying to an intermediate register. */ || (GET_CODE (src) == REG && IN_RANGE_P (REGNO (src), FIRST_VIRTUAL_REGISTER, LAST_VIRTUAL_REGISTER)))) { emit_insn (gen_rtx_SET (VOIDmode, dest, copy_to_mode_reg (SImode, src))); return TRUE; } /* Explicitly add in the PIC or small data register if needed. */ switch (GET_CODE (src)) { default: break; case LABEL_REF: handle_label: if (TARGET_FDPIC) { /* Using GPREL12, we use a single GOT entry for all symbols in read-only sections, but trade sequences such as: sethi #gothi(label), gr# setlo #gotlo(label), gr# ld @(gr15,gr#), gr# for ld @(gr15,#got12(_gp)), gr# sethi #gprelhi(label), gr## setlo #gprello(label), gr## add gr#, gr##, gr## We may often be able to share gr# for multiple computations of GPREL addresses, and we may often fold the final add into the pair of registers of a load or store instruction, so it's often profitable. Even when optimizing for size, we're trading a GOT entry for an additional instruction, which trades GOT space (read-write) for code size (read-only, shareable), as long as the symbol is not used in more than two different locations. With -fpie/-fpic, we'd be trading a single load for a sequence of 4 instructions, because the offset of the label can't be assumed to be addressable with 12 bits, so we don't do this. */ if (TARGET_GPREL_RO) unspec = R_FRV_GPREL12; else unspec = R_FRV_GOT12; } else if (flag_pic) base_regno = PIC_REGNO; break; case CONST: if (frv_const_unspec_p (src, &old_unspec)) break; if (TARGET_FDPIC && frv_function_symbol_referenced_p (XEXP (src, 0))) { handle_whatever: src = force_reg (GET_MODE (XEXP (src, 0)), XEXP (src, 0)); emit_move_insn (dest, src); return TRUE; } else { sym = XEXP (sym, 0); if (GET_CODE (sym) == PLUS && GET_CODE (XEXP (sym, 0)) == SYMBOL_REF && GET_CODE (XEXP (sym, 1)) == CONST_INT) sym = XEXP (sym, 0); if (GET_CODE (sym) == SYMBOL_REF) goto handle_sym; else if (GET_CODE (sym) == LABEL_REF) goto handle_label; else goto handle_whatever; } break; case SYMBOL_REF: handle_sym: if (TARGET_FDPIC) { enum tls_model model = SYMBOL_REF_TLS_MODEL (sym); if (model != 0) { src = frv_legitimize_tls_address (src, model); emit_move_insn (dest, src); return TRUE; } if (SYMBOL_REF_FUNCTION_P (sym)) { if (frv_local_funcdesc_p (sym)) unspec = R_FRV_FUNCDESC_GOTOFF12; else unspec = R_FRV_FUNCDESC_GOT12; } else { if (CONSTANT_POOL_ADDRESS_P (sym)) switch (GET_CODE (get_pool_constant (sym))) { case CONST: case SYMBOL_REF: case LABEL_REF: if (flag_pic) { unspec = R_FRV_GOTOFF12; break; } /* Fall through. */ default: if (TARGET_GPREL_RO) unspec = R_FRV_GPREL12; else unspec = R_FRV_GOT12; break; } else if (SYMBOL_REF_LOCAL_P (sym) && !SYMBOL_REF_EXTERNAL_P (sym) && SYMBOL_REF_DECL (sym) && (!DECL_P (SYMBOL_REF_DECL (sym)) || !DECL_COMMON (SYMBOL_REF_DECL (sym)))) { tree decl = SYMBOL_REF_DECL (sym); tree init = TREE_CODE (decl) == VAR_DECL ? DECL_INITIAL (decl) : TREE_CODE (decl) == CONSTRUCTOR ? decl : 0; int reloc = 0; bool named_section, readonly; if (init && init != error_mark_node) reloc = compute_reloc_for_constant (init); named_section = TREE_CODE (decl) == VAR_DECL && lookup_attribute ("section", DECL_ATTRIBUTES (decl)); readonly = decl_readonly_section (decl, reloc); if (named_section) unspec = R_FRV_GOT12; else if (!readonly) unspec = R_FRV_GOTOFF12; else if (readonly && TARGET_GPREL_RO) unspec = R_FRV_GPREL12; else unspec = R_FRV_GOT12; } else unspec = R_FRV_GOT12; } } else if (SYMBOL_REF_SMALL_P (sym)) base_regno = SDA_BASE_REG; else if (flag_pic) base_regno = PIC_REGNO; break; } if (base_regno >= 0) { if (GET_CODE (sym) == SYMBOL_REF && SYMBOL_REF_SMALL_P (sym)) emit_insn (gen_symGOTOFF2reg (dest, src, gen_rtx_REG (Pmode, base_regno), GEN_INT (R_FRV_GPREL12))); else emit_insn (gen_symGOTOFF2reg_hilo (dest, src, gen_rtx_REG (Pmode, base_regno), GEN_INT (R_FRV_GPREL12))); if (base_regno == PIC_REGNO) crtl->uses_pic_offset_table = TRUE; return TRUE; } if (unspec) { rtx x; /* Since OUR_FDPIC_REG is a pseudo register, we can't safely introduce new uses of it once reload has begun. */ gcc_assert (!reload_in_progress && !reload_completed); switch (unspec) { case R_FRV_GOTOFF12: if (!frv_small_data_reloc_p (sym, unspec)) x = gen_symGOTOFF2reg_hilo (dest, src, OUR_FDPIC_REG, GEN_INT (unspec)); else x = gen_symGOTOFF2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec)); break; case R_FRV_GPREL12: if (!frv_small_data_reloc_p (sym, unspec)) x = gen_symGPREL2reg_hilo (dest, src, OUR_FDPIC_REG, GEN_INT (unspec)); else x = gen_symGPREL2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec)); break; case R_FRV_FUNCDESC_GOTOFF12: if (flag_pic != 1) x = gen_symGOTOFF2reg_hilo (dest, src, OUR_FDPIC_REG, GEN_INT (unspec)); else x = gen_symGOTOFF2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec)); break; default: if (flag_pic != 1) x = gen_symGOT2reg_hilo (dest, src, OUR_FDPIC_REG, GEN_INT (unspec)); else x = gen_symGOT2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec)); break; } emit_insn (x); crtl->uses_pic_offset_table = TRUE; return TRUE; } return FALSE; } /* Return a string to output a single word move. */ const char * output_move_single (rtx operands[], rtx insn) { rtx dest = operands[0]; rtx src = operands[1]; if (GET_CODE (dest) == REG) { int dest_regno = REGNO (dest); enum machine_mode mode = GET_MODE (dest); if (GPR_P (dest_regno)) { if (GET_CODE (src) == REG) { /* gpr <- some sort of register */ int src_regno = REGNO (src); if (GPR_P (src_regno)) return "mov %1, %0"; else if (FPR_P (src_regno)) return "movfg %1, %0"; else if (SPR_P (src_regno)) return "movsg %1, %0"; } else if (GET_CODE (src) == MEM) { /* gpr <- memory */ switch (mode) { default: break; case QImode: return "ldsb%I1%U1 %M1,%0"; case HImode: return "ldsh%I1%U1 %M1,%0"; case SImode: case SFmode: return "ld%I1%U1 %M1, %0"; } } else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE) { /* gpr <- integer/floating constant */ HOST_WIDE_INT value; if (GET_CODE (src) == CONST_INT) value = INTVAL (src); else if (mode == SFmode) { REAL_VALUE_TYPE rv; long l; REAL_VALUE_FROM_CONST_DOUBLE (rv, src); REAL_VALUE_TO_TARGET_SINGLE (rv, l); value = l; } else value = CONST_DOUBLE_LOW (src); if (IN_RANGE_P (value, -32768, 32767)) return "setlos %1, %0"; return "#"; } else if (GET_CODE (src) == SYMBOL_REF || GET_CODE (src) == LABEL_REF || GET_CODE (src) == CONST) { return "#"; } } else if (FPR_P (dest_regno)) { if (GET_CODE (src) == REG) { /* fpr <- some sort of register */ int src_regno = REGNO (src); if (GPR_P (src_regno)) return "movgf %1, %0"; else if (FPR_P (src_regno)) { if (TARGET_HARD_FLOAT) return "fmovs %1, %0"; else return "mor %1, %1, %0"; } } else if (GET_CODE (src) == MEM) { /* fpr <- memory */ switch (mode) { default: break; case QImode: return "ldbf%I1%U1 %M1,%0"; case HImode: return "ldhf%I1%U1 %M1,%0"; case SImode: case SFmode: return "ldf%I1%U1 %M1, %0"; } } else if (ZERO_P (src)) return "movgf %., %0"; } else if (SPR_P (dest_regno)) { if (GET_CODE (src) == REG) { /* spr <- some sort of register */ int src_regno = REGNO (src); if (GPR_P (src_regno)) return "movgs %1, %0"; } else if (ZERO_P (src)) return "movgs %., %0"; } } else if (GET_CODE (dest) == MEM) { if (GET_CODE (src) == REG) { int src_regno = REGNO (src); enum machine_mode mode = GET_MODE (dest); if (GPR_P (src_regno)) { switch (mode) { default: break; case QImode: return "stb%I0%U0 %1, %M0"; case HImode: return "sth%I0%U0 %1, %M0"; case SImode: case SFmode: return "st%I0%U0 %1, %M0"; } } else if (FPR_P (src_regno)) { switch (mode) { default: break; case QImode: return "stbf%I0%U0 %1, %M0"; case HImode: return "sthf%I0%U0 %1, %M0"; case SImode: case SFmode: return "stf%I0%U0 %1, %M0"; } } } else if (ZERO_P (src)) { switch (GET_MODE (dest)) { default: break; case QImode: return "stb%I0%U0 %., %M0"; case HImode: return "sth%I0%U0 %., %M0"; case SImode: case SFmode: return "st%I0%U0 %., %M0"; } } } fatal_insn ("bad output_move_single operand", insn); return ""; } /* Return a string to output a double word move. */ const char * output_move_double (rtx operands[], rtx insn) { rtx dest = operands[0]; rtx src = operands[1]; enum machine_mode mode = GET_MODE (dest); if (GET_CODE (dest) == REG) { int dest_regno = REGNO (dest); if (GPR_P (dest_regno)) { if (GET_CODE (src) == REG) { /* gpr <- some sort of register */ int src_regno = REGNO (src); if (GPR_P (src_regno)) return "#"; else if (FPR_P (src_regno)) { if (((dest_regno - GPR_FIRST) & 1) == 0 && ((src_regno - FPR_FIRST) & 1) == 0) return "movfgd %1, %0"; return "#"; } } else if (GET_CODE (src) == MEM) { /* gpr <- memory */ if (dbl_memory_one_insn_operand (src, mode)) return "ldd%I1%U1 %M1, %0"; return "#"; } else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE) return "#"; } else if (FPR_P (dest_regno)) { if (GET_CODE (src) == REG) { /* fpr <- some sort of register */ int src_regno = REGNO (src); if (GPR_P (src_regno)) { if (((dest_regno - FPR_FIRST) & 1) == 0 && ((src_regno - GPR_FIRST) & 1) == 0) return "movgfd %1, %0"; return "#"; } else if (FPR_P (src_regno)) { if (TARGET_DOUBLE && ((dest_regno - FPR_FIRST) & 1) == 0 && ((src_regno - FPR_FIRST) & 1) == 0) return "fmovd %1, %0"; return "#"; } } else if (GET_CODE (src) == MEM) { /* fpr <- memory */ if (dbl_memory_one_insn_operand (src, mode)) return "lddf%I1%U1 %M1, %0"; return "#"; } else if (ZERO_P (src)) return "#"; } } else if (GET_CODE (dest) == MEM) { if (GET_CODE (src) == REG) { int src_regno = REGNO (src); if (GPR_P (src_regno)) { if (((src_regno - GPR_FIRST) & 1) == 0 && dbl_memory_one_insn_operand (dest, mode)) return "std%I0%U0 %1, %M0"; return "#"; } if (FPR_P (src_regno)) { if (((src_regno - FPR_FIRST) & 1) == 0 && dbl_memory_one_insn_operand (dest, mode)) return "stdf%I0%U0 %1, %M0"; return "#"; } } else if (ZERO_P (src)) { if (dbl_memory_one_insn_operand (dest, mode)) return "std%I0%U0 %., %M0"; return "#"; } } fatal_insn ("bad output_move_double operand", insn); return ""; } /* Return a string to output a single word conditional move. Operand0 -- EQ/NE of ccr register and 0 Operand1 -- CCR register Operand2 -- destination Operand3 -- source */ const char * output_condmove_single (rtx operands[], rtx insn) { rtx dest = operands[2]; rtx src = operands[3]; if (GET_CODE (dest) == REG) { int dest_regno = REGNO (dest); enum machine_mode mode = GET_MODE (dest); if (GPR_P (dest_regno)) { if (GET_CODE (src) == REG) { /* gpr <- some sort of register */ int src_regno = REGNO (src); if (GPR_P (src_regno)) return "cmov %z3, %2, %1, %e0"; else if (FPR_P (src_regno)) return "cmovfg %3, %2, %1, %e0"; } else if (GET_CODE (src) == MEM) { /* gpr <- memory */ switch (mode) { default: break; case QImode: return "cldsb%I3%U3 %M3, %2, %1, %e0"; case HImode: return "cldsh%I3%U3 %M3, %2, %1, %e0"; case SImode: case SFmode: return "cld%I3%U3 %M3, %2, %1, %e0"; } } else if (ZERO_P (src)) return "cmov %., %2, %1, %e0"; } else if (FPR_P (dest_regno)) { if (GET_CODE (src) == REG) { /* fpr <- some sort of register */ int src_regno = REGNO (src); if (GPR_P (src_regno)) return "cmovgf %3, %2, %1, %e0"; else if (FPR_P (src_regno)) { if (TARGET_HARD_FLOAT) return "cfmovs %3,%2,%1,%e0"; else return "cmor %3, %3, %2, %1, %e0"; } } else if (GET_CODE (src) == MEM) { /* fpr <- memory */ if (mode == SImode || mode == SFmode) return "cldf%I3%U3 %M3, %2, %1, %e0"; } else if (ZERO_P (src)) return "cmovgf %., %2, %1, %e0"; } } else if (GET_CODE (dest) == MEM) { if (GET_CODE (src) == REG) { int src_regno = REGNO (src); enum machine_mode mode = GET_MODE (dest); if (GPR_P (src_regno)) { switch (mode) { default: break; case QImode: return "cstb%I2%U2 %3, %M2, %1, %e0"; case HImode: return "csth%I2%U2 %3, %M2, %1, %e0"; case SImode: case SFmode: return "cst%I2%U2 %3, %M2, %1, %e0"; } } else if (FPR_P (src_regno) && (mode == SImode || mode == SFmode)) return "cstf%I2%U2 %3, %M2, %1, %e0"; } else if (ZERO_P (src)) { enum machine_mode mode = GET_MODE (dest); switch (mode) { default: break; case QImode: return "cstb%I2%U2 %., %M2, %1, %e0"; case HImode: return "csth%I2%U2 %., %M2, %1, %e0"; case SImode: case SFmode: return "cst%I2%U2 %., %M2, %1, %e0"; } } } fatal_insn ("bad output_condmove_single operand", insn); return ""; } /* Emit the appropriate code to do a comparison, returning the register the comparison was done it. */ static rtx frv_emit_comparison (enum rtx_code test, rtx op0, rtx op1) { enum machine_mode cc_mode; rtx cc_reg; /* Floating point doesn't have comparison against a constant. */ if (GET_MODE (op0) == CC_FPmode && GET_CODE (op1) != REG) op1 = force_reg (GET_MODE (op0), op1); /* Possibly disable using anything but a fixed register in order to work around cse moving comparisons past function calls. */ cc_mode = SELECT_CC_MODE (test, op0, op1); cc_reg = ((TARGET_ALLOC_CC) ? gen_reg_rtx (cc_mode) : gen_rtx_REG (cc_mode, (cc_mode == CC_FPmode) ? FCC_FIRST : ICC_FIRST)); emit_insn (gen_rtx_SET (VOIDmode, cc_reg, gen_rtx_COMPARE (cc_mode, op0, op1))); return cc_reg; } /* Emit code for a conditional branch. XXX: I originally wanted to add a clobber of a CCR register to use in conditional execution, but that confuses the rest of the compiler. */ int frv_emit_cond_branch (rtx operands[]) { rtx test_rtx; rtx label_ref; rtx if_else; enum rtx_code test = GET_CODE (operands[0]); rtx cc_reg = frv_emit_comparison (test, operands[1], operands[2]); enum machine_mode cc_mode = GET_MODE (cc_reg); /* Branches generate: (set (pc) (if_then_else (<test>, <cc_reg>, (const_int 0)) (label_ref <branch_label>) (pc))) */ label_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]); test_rtx = gen_rtx_fmt_ee (test, cc_mode, cc_reg, const0_rtx); if_else = gen_rtx_IF_THEN_ELSE (cc_mode, test_rtx, label_ref, pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, if_else)); return TRUE; } /* Emit code to set a gpr to 1/0 based on a comparison. */ int frv_emit_scc (rtx operands[]) { rtx set; rtx test_rtx; rtx clobber; rtx cr_reg; enum rtx_code test = GET_CODE (operands[1]); rtx cc_reg = frv_emit_comparison (test, operands[2], operands[3]); /* SCC instructions generate: (parallel [(set <target> (<test>, <cc_reg>, (const_int 0)) (clobber (<ccr_reg>))]) */ test_rtx = gen_rtx_fmt_ee (test, SImode, cc_reg, const0_rtx); set = gen_rtx_SET (VOIDmode, operands[0], test_rtx); cr_reg = ((TARGET_ALLOC_CC) ? gen_reg_rtx (CC_CCRmode) : gen_rtx_REG (CC_CCRmode, ((GET_MODE (cc_reg) == CC_FPmode) ? FCR_FIRST : ICR_FIRST))); clobber = gen_rtx_CLOBBER (VOIDmode, cr_reg); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber))); return TRUE; } /* Split a SCC instruction into component parts, returning a SEQUENCE to hold the separate insns. */ rtx frv_split_scc (rtx dest, rtx test, rtx cc_reg, rtx cr_reg, HOST_WIDE_INT value) { rtx ret; start_sequence (); /* Set the appropriate CCR bit. */ emit_insn (gen_rtx_SET (VOIDmode, cr_reg, gen_rtx_fmt_ee (GET_CODE (test), GET_MODE (cr_reg), cc_reg, const0_rtx))); /* Move the value into the destination. */ emit_move_insn (dest, GEN_INT (value)); /* Move 0 into the destination if the test failed */ emit_insn (gen_rtx_COND_EXEC (VOIDmode, gen_rtx_EQ (GET_MODE (cr_reg), cr_reg, const0_rtx), gen_rtx_SET (VOIDmode, dest, const0_rtx))); /* Finish up, return sequence. */ ret = get_insns (); end_sequence (); return ret; } /* Emit the code for a conditional move, return TRUE if we could do the move. */ int frv_emit_cond_move (rtx dest, rtx test_rtx, rtx src1, rtx src2) { rtx set; rtx clobber_cc; rtx test2; rtx cr_reg; rtx if_rtx; enum rtx_code test = GET_CODE (test_rtx); rtx cc_reg = frv_emit_comparison (test, XEXP (test_rtx, 0), XEXP (test_rtx, 1)); enum machine_mode cc_mode = GET_MODE (cc_reg); /* Conditional move instructions generate: (parallel [(set <target> (if_then_else (<test> <cc_reg> (const_int 0)) <src1> <src2>)) (clobber (<ccr_reg>))]) */ /* Handle various cases of conditional move involving two constants. */ if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT) { HOST_WIDE_INT value1 = INTVAL (src1); HOST_WIDE_INT value2 = INTVAL (src2); /* Having 0 as one of the constants can be done by loading the other constant, and optionally moving in gr0. */ if (value1 == 0 || value2 == 0) ; /* If the first value is within an addi range and also the difference between the two fits in an addi's range, load up the difference, then conditionally move in 0, and then unconditionally add the first value. */ else if (IN_RANGE_P (value1, -2048, 2047) && IN_RANGE_P (value2 - value1, -2048, 2047)) ; /* If neither condition holds, just force the constant into a register. */ else { src1 = force_reg (GET_MODE (dest), src1); src2 = force_reg (GET_MODE (dest), src2); } } /* If one value is a register, insure the other value is either 0 or a register. */ else { if (GET_CODE (src1) == CONST_INT && INTVAL (src1) != 0) src1 = force_reg (GET_MODE (dest), src1); if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0) src2 = force_reg (GET_MODE (dest), src2); } test2 = gen_rtx_fmt_ee (test, cc_mode, cc_reg, const0_rtx); if_rtx = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), test2, src1, src2); set = gen_rtx_SET (VOIDmode, dest, if_rtx); cr_reg = ((TARGET_ALLOC_CC) ? gen_reg_rtx (CC_CCRmode) : gen_rtx_REG (CC_CCRmode, (cc_mode == CC_FPmode) ? FCR_FIRST : ICR_FIRST)); clobber_cc = gen_rtx_CLOBBER (VOIDmode, cr_reg); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber_cc))); return TRUE; } /* Split a conditional move into constituent parts, returning a SEQUENCE containing all of the insns. */ rtx frv_split_cond_move (rtx operands[]) { rtx dest = operands[0]; rtx test = operands[1]; rtx cc_reg = operands[2]; rtx src1 = operands[3]; rtx src2 = operands[4]; rtx cr_reg = operands[5]; rtx ret; enum machine_mode cr_mode = GET_MODE (cr_reg); start_sequence (); /* Set the appropriate CCR bit. */ emit_insn (gen_rtx_SET (VOIDmode, cr_reg, gen_rtx_fmt_ee (GET_CODE (test), GET_MODE (cr_reg), cc_reg, const0_rtx))); /* Handle various cases of conditional move involving two constants. */ if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT) { HOST_WIDE_INT value1 = INTVAL (src1); HOST_WIDE_INT value2 = INTVAL (src2); /* Having 0 as one of the constants can be done by loading the other constant, and optionally moving in gr0. */ if (value1 == 0) { emit_move_insn (dest, src2); emit_insn (gen_rtx_COND_EXEC (VOIDmode, gen_rtx_NE (cr_mode, cr_reg, const0_rtx), gen_rtx_SET (VOIDmode, dest, src1))); } else if (value2 == 0) { emit_move_insn (dest, src1); emit_insn (gen_rtx_COND_EXEC (VOIDmode, gen_rtx_EQ (cr_mode, cr_reg, const0_rtx), gen_rtx_SET (VOIDmode, dest, src2))); } /* If the first value is within an addi range and also the difference between the two fits in an addi's range, load up the difference, then conditionally move in 0, and then unconditionally add the first value. */ else if (IN_RANGE_P (value1, -2048, 2047) && IN_RANGE_P (value2 - value1, -2048, 2047)) { rtx dest_si = ((GET_MODE (dest) == SImode) ? dest : gen_rtx_SUBREG (SImode, dest, 0)); emit_move_insn (dest_si, GEN_INT (value2 - value1)); emit_insn (gen_rtx_COND_EXEC (VOIDmode, gen_rtx_NE (cr_mode, cr_reg, const0_rtx), gen_rtx_SET (VOIDmode, dest_si, const0_rtx))); emit_insn (gen_addsi3 (dest_si, dest_si, src1)); } else gcc_unreachable (); } else { /* Emit the conditional move for the test being true if needed. */ if (! rtx_equal_p (dest, src1)) emit_insn (gen_rtx_COND_EXEC (VOIDmode, gen_rtx_NE (cr_mode, cr_reg, const0_rtx), gen_rtx_SET (VOIDmode, dest, src1))); /* Emit the conditional move for the test being false if needed. */ if (! rtx_equal_p (dest, src2)) emit_insn (gen_rtx_COND_EXEC (VOIDmode, gen_rtx_EQ (cr_mode, cr_reg, const0_rtx), gen_rtx_SET (VOIDmode, dest, src2))); } /* Finish up, return sequence. */ ret = get_insns (); end_sequence (); return ret; } /* Split (set DEST SOURCE), where DEST is a double register and SOURCE is a memory location that is not known to be dword-aligned. */ void frv_split_double_load (rtx dest, rtx source) { int regno = REGNO (dest); rtx dest1 = gen_highpart (SImode, dest); rtx dest2 = gen_lowpart (SImode, dest); rtx address = XEXP (source, 0); /* If the address is pre-modified, load the lower-numbered register first, then load the other register using an integer offset from the modified base register. This order should always be safe, since the pre-modification cannot affect the same registers as the load does. The situation for other loads is more complicated. Loading one of the registers could affect the value of ADDRESS, so we must be careful which order we do them in. */ if (GET_CODE (address) == PRE_MODIFY || ! refers_to_regno_p (regno, regno + 1, address, NULL)) { /* It is safe to load the lower-numbered register first. */ emit_move_insn (dest1, change_address (source, SImode, NULL)); emit_move_insn (dest2, frv_index_memory (source, SImode, 1)); } else { /* ADDRESS is not pre-modified and the address depends on the lower-numbered register. Load the higher-numbered register first. */ emit_move_insn (dest2, frv_index_memory (source, SImode, 1)); emit_move_insn (dest1, change_address (source, SImode, NULL)); } } /* Split (set DEST SOURCE), where DEST refers to a dword memory location and SOURCE is either a double register or the constant zero. */ void frv_split_double_store (rtx dest, rtx source) { rtx dest1 = change_address (dest, SImode, NULL); rtx dest2 = frv_index_memory (dest, SImode, 1); if (ZERO_P (source)) { emit_move_insn (dest1, CONST0_RTX (SImode)); emit_move_insn (dest2, CONST0_RTX (SImode)); } else { emit_move_insn (dest1, gen_highpart (SImode, source)); emit_move_insn (dest2, gen_lowpart (SImode, source)); } } /* Split a min/max operation returning a SEQUENCE containing all of the insns. */ rtx frv_split_minmax (rtx operands[]) { rtx dest = operands[0]; rtx minmax = operands[1]; rtx src1 = operands[2]; rtx src2 = operands[3]; rtx cc_reg = operands[4]; rtx cr_reg = operands[5]; rtx ret; enum rtx_code test_code; enum machine_mode cr_mode = GET_MODE (cr_reg); start_sequence (); /* Figure out which test to use. */ switch (GET_CODE (minmax)) { default: gcc_unreachable (); case SMIN: test_code = LT; break; case SMAX: test_code = GT; break; case UMIN: test_code = LTU; break; case UMAX: test_code = GTU; break; } /* Issue the compare instruction. */ emit_insn (gen_rtx_SET (VOIDmode, cc_reg, gen_rtx_COMPARE (GET_MODE (cc_reg), src1, src2))); /* Set the appropriate CCR bit. */ emit_insn (gen_rtx_SET (VOIDmode, cr_reg, gen_rtx_fmt_ee (test_code, GET_MODE (cr_reg), cc_reg, const0_rtx))); /* If are taking the min/max of a nonzero constant, load that first, and then do a conditional move of the other value. */ if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0) { gcc_assert (!rtx_equal_p (dest, src1)); emit_move_insn (dest, src2); emit_insn (gen_rtx_COND_EXEC (VOIDmode, gen_rtx_NE (cr_mode, cr_reg, const0_rtx), gen_rtx_SET (VOIDmode, dest, src1))); } /* Otherwise, do each half of the move. */ else { /* Emit the conditional move for the test being true if needed. */ if (! rtx_equal_p (dest, src1)) emit_insn (gen_rtx_COND_EXEC (VOIDmode, gen_rtx_NE (cr_mode, cr_reg, const0_rtx), gen_rtx_SET (VOIDmode, dest, src1))); /* Emit the conditional move for the test being false if needed. */ if (! rtx_equal_p (dest, src2)) emit_insn (gen_rtx_COND_EXEC (VOIDmode, gen_rtx_EQ (cr_mode, cr_reg, const0_rtx), gen_rtx_SET (VOIDmode, dest, src2))); } /* Finish up, return sequence. */ ret = get_insns (); end_sequence (); return ret; } /* Split an integer abs operation returning a SEQUENCE containing all of the insns. */ rtx frv_split_abs (rtx operands[]) { rtx dest = operands[0]; rtx src = operands[1]; rtx cc_reg = operands[2]; rtx cr_reg = operands[3]; rtx ret; start_sequence (); /* Issue the compare < 0 instruction. */ emit_insn (gen_rtx_SET (VOIDmode, cc_reg, gen_rtx_COMPARE (CCmode, src, const0_rtx))); /* Set the appropriate CCR bit. */ emit_insn (gen_rtx_SET (VOIDmode, cr_reg, gen_rtx_fmt_ee (LT, CC_CCRmode, cc_reg, const0_rtx))); /* Emit the conditional negate if the value is negative. */ emit_insn (gen_rtx_COND_EXEC (VOIDmode, gen_rtx_NE (CC_CCRmode, cr_reg, const0_rtx), gen_negsi2 (dest, src))); /* Emit the conditional move for the test being false if needed. */ if (! rtx_equal_p (dest, src)) emit_insn (gen_rtx_COND_EXEC (VOIDmode, gen_rtx_EQ (CC_CCRmode, cr_reg, const0_rtx), gen_rtx_SET (VOIDmode, dest, src))); /* Finish up, return sequence. */ ret = get_insns (); end_sequence (); return ret; } /* An internal function called by for_each_rtx to clear in a hard_reg set each register used in an insn. */ static int frv_clear_registers_used (rtx *ptr, void *data) { if (GET_CODE (*ptr) == REG) { int regno = REGNO (*ptr); HARD_REG_SET *p_regs = (HARD_REG_SET *)data; if (regno < FIRST_PSEUDO_REGISTER) { int reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (*ptr)); while (regno < reg_max) { CLEAR_HARD_REG_BIT (*p_regs, regno); regno++; } } } return 0; } /* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */ /* On the FR-V, we don't have any extra fields per se, but it is useful hook to initialize the static storage. */ void frv_ifcvt_init_extra_fields (ce_if_block_t *ce_info ATTRIBUTE_UNUSED) { frv_ifcvt.added_insns_list = NULL_RTX; frv_ifcvt.cur_scratch_regs = 0; frv_ifcvt.num_nested_cond_exec = 0; frv_ifcvt.cr_reg = NULL_RTX; frv_ifcvt.nested_cc_reg = NULL_RTX; frv_ifcvt.extra_int_cr = NULL_RTX; frv_ifcvt.extra_fp_cr = NULL_RTX; frv_ifcvt.last_nested_if_cr = NULL_RTX; } /* Internal function to add a potential insn to the list of insns to be inserted if the conditional execution conversion is successful. */ static void frv_ifcvt_add_insn (rtx pattern, rtx insn, int before_p) { rtx link = alloc_EXPR_LIST (VOIDmode, pattern, insn); link->jump = before_p; /* Mark to add this before or after insn. */ frv_ifcvt.added_insns_list = alloc_EXPR_LIST (VOIDmode, link, frv_ifcvt.added_insns_list); if (TARGET_DEBUG_COND_EXEC) { fprintf (stderr, "\n:::::::::: frv_ifcvt_add_insn: add the following %s insn %d:\n", (before_p) ? "before" : "after", (int)INSN_UID (insn)); debug_rtx (pattern); } } /* A C expression to modify the code described by the conditional if information CE_INFO, possibly updating the tests in TRUE_EXPR, and FALSE_EXPR for converting if-then and if-then-else code to conditional instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the tests cannot be converted. */ void frv_ifcvt_modify_tests (ce_if_block_t *ce_info, rtx *p_true, rtx *p_false) { basic_block test_bb = ce_info->test_bb; /* test basic block */ basic_block then_bb = ce_info->then_bb; /* THEN */ basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */ basic_block join_bb = ce_info->join_bb; /* join block or NULL */ rtx true_expr = *p_true; rtx cr; rtx cc; rtx nested_cc; enum machine_mode mode = GET_MODE (true_expr); int j; basic_block *bb; int num_bb; frv_tmp_reg_t *tmp_reg = &frv_ifcvt.tmp_reg; rtx check_insn; rtx sub_cond_exec_reg; enum rtx_code code; enum rtx_code code_true; enum rtx_code code_false; enum reg_class cc_class; enum reg_class cr_class; int cc_first; int cc_last; reg_set_iterator rsi; /* Make sure we are only dealing with hard registers. Also honor the -mno-cond-exec switch, and -mno-nested-cond-exec switches if applicable. */ if (!reload_completed || !TARGET_COND_EXEC || (!TARGET_NESTED_CE && ce_info->pass > 1)) goto fail; /* Figure out which registers we can allocate for our own purposes. Only consider registers that are not preserved across function calls and are not fixed. However, allow the ICC/ICR temporary registers to be allocated if we did not need to use them in reloading other registers. */ memset (&tmp_reg->regs, 0, sizeof (tmp_reg->regs)); COPY_HARD_REG_SET (tmp_reg->regs, call_used_reg_set); AND_COMPL_HARD_REG_SET (tmp_reg->regs, fixed_reg_set); SET_HARD_REG_BIT (tmp_reg->regs, ICC_TEMP); SET_HARD_REG_BIT (tmp_reg->regs, ICR_TEMP); /* If this is a nested IF, we need to discover whether the CC registers that are set/used inside of the block are used anywhere else. If not, we can change them to be the CC register that is paired with the CR register that controls the outermost IF block. */ if (ce_info->pass > 1) { CLEAR_HARD_REG_SET (frv_ifcvt.nested_cc_ok_rewrite); for (j = CC_FIRST; j <= CC_LAST; j++) if (TEST_HARD_REG_BIT (tmp_reg->regs, j)) { if (REGNO_REG_SET_P (df_get_live_in (then_bb), j)) continue; if (else_bb && REGNO_REG_SET_P (df_get_live_in (else_bb), j)) continue; if (join_bb && REGNO_REG_SET_P (df_get_live_in (join_bb), j)) continue; SET_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j); } } for (j = 0; j < frv_ifcvt.cur_scratch_regs; j++) frv_ifcvt.scratch_regs[j] = NULL_RTX; frv_ifcvt.added_insns_list = NULL_RTX; frv_ifcvt.cur_scratch_regs = 0; bb = (basic_block *) alloca ((2 + ce_info->num_multiple_test_blocks) * sizeof (basic_block)); if (join_bb) { unsigned int regno; /* Remove anything live at the beginning of the join block from being available for allocation. */ EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (join_bb), 0, regno, rsi) { if (regno < FIRST_PSEUDO_REGISTER) CLEAR_HARD_REG_BIT (tmp_reg->regs, regno); } } /* Add in all of the blocks in multiple &&/|| blocks to be scanned. */ num_bb = 0; if (ce_info->num_multiple_test_blocks) { basic_block multiple_test_bb = ce_info->last_test_bb; while (multiple_test_bb != test_bb) { bb[num_bb++] = multiple_test_bb; multiple_test_bb = EDGE_PRED (multiple_test_bb, 0)->src; } } /* Add in the THEN and ELSE blocks to be scanned. */ bb[num_bb++] = then_bb; if (else_bb) bb[num_bb++] = else_bb; sub_cond_exec_reg = NULL_RTX; frv_ifcvt.num_nested_cond_exec = 0; /* Scan all of the blocks for registers that must not be allocated. */ for (j = 0; j < num_bb; j++) { rtx last_insn = BB_END (bb[j]); rtx insn = BB_HEAD (bb[j]); unsigned int regno; if (dump_file) fprintf (dump_file, "Scanning %s block %d, start %d, end %d\n", (bb[j] == else_bb) ? "else" : ((bb[j] == then_bb) ? "then" : "test"), (int) bb[j]->index, (int) INSN_UID (BB_HEAD (bb[j])), (int) INSN_UID (BB_END (bb[j]))); /* Anything live at the beginning of the block is obviously unavailable for allocation. */ EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (bb[j]), 0, regno, rsi) { if (regno < FIRST_PSEUDO_REGISTER) CLEAR_HARD_REG_BIT (tmp_reg->regs, regno); } /* Loop through the insns in the block. */ for (;;) { /* Mark any new registers that are created as being unavailable for allocation. Also see if the CC register used in nested IFs can be reallocated. */ if (INSN_P (insn)) { rtx pattern; rtx set; int skip_nested_if = FALSE; for_each_rtx (&PATTERN (insn), frv_clear_registers_used, (void *)&tmp_reg->regs); pattern = PATTERN (insn); if (GET_CODE (pattern) == COND_EXEC) { rtx reg = XEXP (COND_EXEC_TEST (pattern), 0); if (reg != sub_cond_exec_reg) { sub_cond_exec_reg = reg; frv_ifcvt.num_nested_cond_exec++; } } set = single_set_pattern (pattern); if (set) { rtx dest = SET_DEST (set); rtx src = SET_SRC (set); if (GET_CODE (dest) == REG) { int regno = REGNO (dest); enum rtx_code src_code = GET_CODE (src); if (CC_P (regno) && src_code == COMPARE) skip_nested_if = TRUE; else if (CR_P (regno) && (src_code == IF_THEN_ELSE || COMPARISON_P (src))) skip_nested_if = TRUE; } } if (! skip_nested_if) for_each_rtx (&PATTERN (insn), frv_clear_registers_used, (void *)&frv_ifcvt.nested_cc_ok_rewrite); } if (insn == last_insn) break; insn = NEXT_INSN (insn); } } /* If this is a nested if, rewrite the CC registers that are available to include the ones that can be rewritten, to increase the chance of being able to allocate a paired CC/CR register combination. */ if (ce_info->pass > 1) { for (j = CC_FIRST; j <= CC_LAST; j++) if (TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j)) SET_HARD_REG_BIT (tmp_reg->regs, j); else CLEAR_HARD_REG_BIT (tmp_reg->regs, j); } if (dump_file) { int num_gprs = 0; fprintf (dump_file, "Available GPRs: "); for (j = GPR_FIRST; j <= GPR_LAST; j++) if (TEST_HARD_REG_BIT (tmp_reg->regs, j)) { fprintf (dump_file, " %d [%s]", j, reg_names[j]); if (++num_gprs > GPR_TEMP_NUM+2) break; } fprintf (dump_file, "%s\nAvailable CRs: ", (num_gprs > GPR_TEMP_NUM+2) ? " ..." : ""); for (j = CR_FIRST; j <= CR_LAST; j++) if (TEST_HARD_REG_BIT (tmp_reg->regs, j)) fprintf (dump_file, " %d [%s]", j, reg_names[j]); fputs ("\n", dump_file); if (ce_info->pass > 1) { fprintf (dump_file, "Modifiable CCs: "); for (j = CC_FIRST; j <= CC_LAST; j++) if (TEST_HARD_REG_BIT (tmp_reg->regs, j)) fprintf (dump_file, " %d [%s]", j, reg_names[j]); fprintf (dump_file, "\n%d nested COND_EXEC statements\n", frv_ifcvt.num_nested_cond_exec); } } /* Allocate the appropriate temporary condition code register. Try to allocate the ICR/FCR register that corresponds to the ICC/FCC register so that conditional cmp's can be done. */ if (mode == CCmode || mode == CC_UNSmode || mode == CC_NZmode) { cr_class = ICR_REGS; cc_class = ICC_REGS; cc_first = ICC_FIRST; cc_last = ICC_LAST; } else if (mode == CC_FPmode) { cr_class = FCR_REGS; cc_class = FCC_REGS; cc_first = FCC_FIRST; cc_last = FCC_LAST; } else { cc_first = cc_last = 0; cr_class = cc_class = NO_REGS; } cc = XEXP (true_expr, 0); nested_cc = cr = NULL_RTX; if (cc_class != NO_REGS) { /* For nested IFs and &&/||, see if we can find a CC and CR register pair so we can execute a csubcc/caddcc/cfcmps instruction. */ int cc_regno; for (cc_regno = cc_first; cc_regno <= cc_last; cc_regno++) { int cr_regno = cc_regno - CC_FIRST + CR_FIRST; if (TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cc_regno) && TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cr_regno)) { frv_ifcvt.tmp_reg.next_reg[ (int)cr_class ] = cr_regno; cr = frv_alloc_temp_reg (tmp_reg, cr_class, CC_CCRmode, TRUE, TRUE); frv_ifcvt.tmp_reg.next_reg[ (int)cc_class ] = cc_regno; nested_cc = frv_alloc_temp_reg (tmp_reg, cc_class, CCmode, TRUE, TRUE); break; } } } if (! cr) { if (dump_file) fprintf (dump_file, "Could not allocate a CR temporary register\n"); goto fail; } if (dump_file) fprintf (dump_file, "Will use %s for conditional execution, %s for nested comparisons\n", reg_names[ REGNO (cr)], (nested_cc) ? reg_names[ REGNO (nested_cc) ] : "<none>"); /* Set the CCR bit. Note for integer tests, we reverse the condition so that in an IF-THEN-ELSE sequence, we are testing the TRUE case against the CCR bit being true. We don't do this for floating point, because of NaNs. */ code = GET_CODE (true_expr); if (GET_MODE (cc) != CC_FPmode) { code = reverse_condition (code); code_true = EQ; code_false = NE; } else { code_true = NE; code_false = EQ; } check_insn = gen_rtx_SET (VOIDmode, cr, gen_rtx_fmt_ee (code, CC_CCRmode, cc, const0_rtx)); /* Record the check insn to be inserted later. */ frv_ifcvt_add_insn (check_insn, BB_END (test_bb), TRUE); /* Update the tests. */ frv_ifcvt.cr_reg = cr; frv_ifcvt.nested_cc_reg = nested_cc; *p_true = gen_rtx_fmt_ee (code_true, CC_CCRmode, cr, const0_rtx); *p_false = gen_rtx_fmt_ee (code_false, CC_CCRmode, cr, const0_rtx); return; /* Fail, don't do this conditional execution. */ fail: *p_true = NULL_RTX; *p_false = NULL_RTX; if (dump_file) fprintf (dump_file, "Disabling this conditional execution.\n"); return; } /* A C expression to modify the code described by the conditional if information CE_INFO, for the basic block BB, possibly updating the tests in TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or if-then-else code to conditional instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the tests cannot be converted. */ /* p_true and p_false are given expressions of the form: (and (eq:CC_CCR (reg:CC_CCR) (const_int 0)) (eq:CC (reg:CC) (const_int 0))) */ void frv_ifcvt_modify_multiple_tests (ce_if_block_t *ce_info, basic_block bb, rtx *p_true, rtx *p_false) { rtx old_true = XEXP (*p_true, 0); rtx old_false = XEXP (*p_false, 0); rtx true_expr = XEXP (*p_true, 1); rtx false_expr = XEXP (*p_false, 1); rtx test_expr; rtx old_test; rtx cr = XEXP (old_true, 0); rtx check_insn; rtx new_cr = NULL_RTX; rtx *p_new_cr = (rtx *)0; rtx if_else; rtx compare; rtx cc; enum reg_class cr_class; enum machine_mode mode = GET_MODE (true_expr); rtx (*logical_func)(rtx, rtx, rtx); if (TARGET_DEBUG_COND_EXEC) { fprintf (stderr, "\n:::::::::: frv_ifcvt_modify_multiple_tests, before modification for %s\ntrue insn:\n", ce_info->and_and_p ? "&&" : "||"); debug_rtx (*p_true); fputs ("\nfalse insn:\n", stderr); debug_rtx (*p_false); } if (!TARGET_MULTI_CE) goto fail; if (GET_CODE (cr) != REG) goto fail; if (mode == CCmode || mode == CC_UNSmode || mode == CC_NZmode) { cr_class = ICR_REGS; p_new_cr = &frv_ifcvt.extra_int_cr; } else if (mode == CC_FPmode) { cr_class = FCR_REGS; p_new_cr = &frv_ifcvt.extra_fp_cr; } else goto fail; /* Allocate a temp CR, reusing a previously allocated temp CR if we have 3 or more &&/|| tests. */ new_cr = *p_new_cr; if (! new_cr) { new_cr = *p_new_cr = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, cr_class, CC_CCRmode, TRUE, TRUE); if (! new_cr) goto fail; } if (ce_info->and_and_p) { old_test = old_false; test_expr = true_expr; logical_func = (GET_CODE (old_true) == EQ) ? gen_andcr : gen_andncr; *p_true = gen_rtx_NE (CC_CCRmode, cr, const0_rtx); *p_false = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx); } else { old_test = old_false; test_expr = false_expr; logical_func = (GET_CODE (old_false) == EQ) ? gen_orcr : gen_orncr; *p_true = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx); *p_false = gen_rtx_NE (CC_CCRmode, cr, const0_rtx); } /* First add the andcr/andncr/orcr/orncr, which will be added after the conditional check instruction, due to frv_ifcvt_add_insn being a LIFO stack. */ frv_ifcvt_add_insn ((*logical_func) (cr, cr, new_cr), BB_END (bb), TRUE); /* Now add the conditional check insn. */ cc = XEXP (test_expr, 0); compare = gen_rtx_fmt_ee (GET_CODE (test_expr), CC_CCRmode, cc, const0_rtx); if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, old_test, compare, const0_rtx); check_insn = gen_rtx_SET (VOIDmode, new_cr, if_else); /* Add the new check insn to the list of check insns that need to be inserted. */ frv_ifcvt_add_insn (check_insn, BB_END (bb), TRUE); if (TARGET_DEBUG_COND_EXEC) { fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, after modification\ntrue insn:\n", stderr); debug_rtx (*p_true); fputs ("\nfalse insn:\n", stderr); debug_rtx (*p_false); } return; fail: *p_true = *p_false = NULL_RTX; /* If we allocated a CR register, release it. */ if (new_cr) { CLEAR_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, REGNO (new_cr)); *p_new_cr = NULL_RTX; } if (TARGET_DEBUG_COND_EXEC) fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, failed.\n", stderr); return; } /* Return a register which will be loaded with a value if an IF block is converted to conditional execution. This is used to rewrite instructions that use constants to ones that just use registers. */ static rtx frv_ifcvt_load_value (rtx value, rtx insn ATTRIBUTE_UNUSED) { int num_alloc = frv_ifcvt.cur_scratch_regs; int i; rtx reg; /* We know gr0 == 0, so replace any errant uses. */ if (value == const0_rtx) return gen_rtx_REG (SImode, GPR_FIRST); /* First search all registers currently loaded to see if we have an applicable constant. */ if (CONSTANT_P (value) || (GET_CODE (value) == REG && REGNO (value) == LR_REGNO)) { for (i = 0; i < num_alloc; i++) { if (rtx_equal_p (SET_SRC (frv_ifcvt.scratch_regs[i]), value)) return SET_DEST (frv_ifcvt.scratch_regs[i]); } } /* Have we exhausted the number of registers available? */ if (num_alloc >= GPR_TEMP_NUM) { if (dump_file) fprintf (dump_file, "Too many temporary registers allocated\n"); return NULL_RTX; } /* Allocate the new register. */ reg = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, GPR_REGS, SImode, TRUE, TRUE); if (! reg) { if (dump_file) fputs ("Could not find a scratch register\n", dump_file); return NULL_RTX; } frv_ifcvt.cur_scratch_regs++; frv_ifcvt.scratch_regs[num_alloc] = gen_rtx_SET (VOIDmode, reg, value); if (dump_file) { if (GET_CODE (value) == CONST_INT) fprintf (dump_file, "Register %s will hold %ld\n", reg_names[ REGNO (reg)], (long)INTVAL (value)); else if (GET_CODE (value) == REG && REGNO (value) == LR_REGNO) fprintf (dump_file, "Register %s will hold LR\n", reg_names[ REGNO (reg)]); else fprintf (dump_file, "Register %s will hold a saved value\n", reg_names[ REGNO (reg)]); } return reg; } /* Update a MEM used in conditional code that might contain an offset to put the offset into a scratch register, so that the conditional load/store operations can be used. This function returns the original pointer if the MEM is valid to use in conditional code, NULL if we can't load up the offset into a temporary register, or the new MEM if we were successful. */ static rtx frv_ifcvt_rewrite_mem (rtx mem, enum machine_mode mode, rtx insn) { rtx addr = XEXP (mem, 0); if (!frv_legitimate_address_p_1 (mode, addr, reload_completed, TRUE, FALSE)) { if (GET_CODE (addr) == PLUS) { rtx addr_op0 = XEXP (addr, 0); rtx addr_op1 = XEXP (addr, 1); if (GET_CODE (addr_op0) == REG && CONSTANT_P (addr_op1)) { rtx reg = frv_ifcvt_load_value (addr_op1, insn); if (!reg) return NULL_RTX; addr = gen_rtx_PLUS (Pmode, addr_op0, reg); } else return NULL_RTX; } else if (CONSTANT_P (addr)) addr = frv_ifcvt_load_value (addr, insn); else return NULL_RTX; if (addr == NULL_RTX) return NULL_RTX; else if (XEXP (mem, 0) != addr) return change_address (mem, mode, addr); } return mem; } /* Given a PATTERN, return a SET expression if this PATTERN has only a single SET, possibly conditionally executed. It may also have CLOBBERs, USEs. */ static rtx single_set_pattern (rtx pattern) { rtx set; int i; if (GET_CODE (pattern) == COND_EXEC) pattern = COND_EXEC_CODE (pattern); if (GET_CODE (pattern) == SET) return pattern; else if (GET_CODE (pattern) == PARALLEL) { for (i = 0, set = 0; i < XVECLEN (pattern, 0); i++) { rtx sub = XVECEXP (pattern, 0, i); switch (GET_CODE (sub)) { case USE: case CLOBBER: break; case SET: if (set) return 0; else set = sub; break; default: return 0; } } return set; } return 0; } /* A C expression to modify the code described by the conditional if information CE_INFO with the new PATTERN in INSN. If PATTERN is a null pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that insn cannot be converted to be executed conditionally. */ rtx frv_ifcvt_modify_insn (ce_if_block_t *ce_info, rtx pattern, rtx insn) { rtx orig_ce_pattern = pattern; rtx set; rtx op0; rtx op1; rtx test; gcc_assert (GET_CODE (pattern) == COND_EXEC); test = COND_EXEC_TEST (pattern); if (GET_CODE (test) == AND) { rtx cr = frv_ifcvt.cr_reg; rtx test_reg; op0 = XEXP (test, 0); if (! rtx_equal_p (cr, XEXP (op0, 0))) goto fail; op1 = XEXP (test, 1); test_reg = XEXP (op1, 0); if (GET_CODE (test_reg) != REG) goto fail; /* Is this the first nested if block in this sequence? If so, generate an andcr or andncr. */ if (! frv_ifcvt.last_nested_if_cr) { rtx and_op; frv_ifcvt.last_nested_if_cr = test_reg; if (GET_CODE (op0) == NE) and_op = gen_andcr (test_reg, cr, test_reg); else and_op = gen_andncr (test_reg, cr, test_reg); frv_ifcvt_add_insn (and_op, insn, TRUE); } /* If this isn't the first statement in the nested if sequence, see if we are dealing with the same register. */ else if (! rtx_equal_p (test_reg, frv_ifcvt.last_nested_if_cr)) goto fail; COND_EXEC_TEST (pattern) = test = op1; } /* If this isn't a nested if, reset state variables. */ else { frv_ifcvt.last_nested_if_cr = NULL_RTX; } set = single_set_pattern (pattern); if (set) { rtx dest = SET_DEST (set); rtx src = SET_SRC (set); enum machine_mode mode = GET_MODE (dest); /* Check for normal binary operators. */ if (mode == SImode && ARITHMETIC_P (src)) { op0 = XEXP (src, 0); op1 = XEXP (src, 1); if (integer_register_operand (op0, SImode) && CONSTANT_P (op1)) { op1 = frv_ifcvt_load_value (op1, insn); if (op1) COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, dest, gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), op0, op1)); else goto fail; } } /* For multiply by a constant, we need to handle the sign extending correctly. Add a USE of the value after the multiply to prevent flow from cratering because only one register out of the two were used. */ else if (mode == DImode && GET_CODE (src) == MULT) { op0 = XEXP (src, 0); op1 = XEXP (src, 1); if (GET_CODE (op0) == SIGN_EXTEND && GET_CODE (op1) == CONST_INT) { op1 = frv_ifcvt_load_value (op1, insn); if (op1) { op1 = gen_rtx_SIGN_EXTEND (DImode, op1); COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, dest, gen_rtx_MULT (DImode, op0, op1)); } else goto fail; } frv_ifcvt_add_insn (gen_use (dest), insn, FALSE); } /* If we are just loading a constant created for a nested conditional execution statement, just load the constant without any conditional execution, since we know that the constant will not interfere with any other registers. */ else if (frv_ifcvt.scratch_insns_bitmap && bitmap_bit_p (frv_ifcvt.scratch_insns_bitmap, INSN_UID (insn)) && REG_P (SET_DEST (set)) /* We must not unconditionally set a scratch reg chosen for a nested if-converted block if its incoming value from the TEST block (or the result of the THEN branch) could/should propagate to the JOIN block. It suffices to test whether the register is live at the JOIN point: if it's live there, we can infer that we set it in the former JOIN block of the nested if-converted block (otherwise it wouldn't have been available as a scratch register), and it is either propagated through or set in the other conditional block. It's probably not worth trying to catch the latter case, and it could actually limit scheduling of the combined block quite severely. */ && ce_info->join_bb && ! (REGNO_REG_SET_P (df_get_live_in (ce_info->join_bb), REGNO (SET_DEST (set)))) /* Similarly, we must not unconditionally set a reg used as scratch in the THEN branch if the same reg is live in the ELSE branch. */ && (! ce_info->else_bb || BLOCK_FOR_INSN (insn) == ce_info->else_bb || ! (REGNO_REG_SET_P (df_get_live_in (ce_info->else_bb), REGNO (SET_DEST (set)))))) pattern = set; else if (mode == QImode || mode == HImode || mode == SImode || mode == SFmode) { int changed_p = FALSE; /* Check for just loading up a constant */ if (CONSTANT_P (src) && integer_register_operand (dest, mode)) { src = frv_ifcvt_load_value (src, insn); if (!src) goto fail; changed_p = TRUE; } /* See if we need to fix up stores */ if (GET_CODE (dest) == MEM) { rtx new_mem = frv_ifcvt_rewrite_mem (dest, mode, insn); if (!new_mem) goto fail; else if (new_mem != dest) { changed_p = TRUE; dest = new_mem; } } /* See if we need to fix up loads */ if (GET_CODE (src) == MEM) { rtx new_mem = frv_ifcvt_rewrite_mem (src, mode, insn); if (!new_mem) goto fail; else if (new_mem != src) { changed_p = TRUE; src = new_mem; } } /* If either src or destination changed, redo SET. */ if (changed_p) COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, dest, src); } /* Rewrite a nested set cccr in terms of IF_THEN_ELSE. Also deal with rewriting the CC register to be the same as the paired CC/CR register for nested ifs. */ else if (mode == CC_CCRmode && COMPARISON_P (src)) { int regno = REGNO (XEXP (src, 0)); rtx if_else; if (ce_info->pass > 1 && regno != (int)REGNO (frv_ifcvt.nested_cc_reg) && TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, regno)) { src = gen_rtx_fmt_ee (GET_CODE (src), CC_CCRmode, frv_ifcvt.nested_cc_reg, XEXP (src, 1)); } if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, test, src, const0_rtx); pattern = gen_rtx_SET (VOIDmode, dest, if_else); } /* Remap a nested compare instruction to use the paired CC/CR reg. */ else if (ce_info->pass > 1 && GET_CODE (dest) == REG && CC_P (REGNO (dest)) && REGNO (dest) != REGNO (frv_ifcvt.nested_cc_reg) && TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, REGNO (dest)) && GET_CODE (src) == COMPARE) { PUT_MODE (frv_ifcvt.nested_cc_reg, GET_MODE (dest)); COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, frv_ifcvt.nested_cc_reg, copy_rtx (src)); } } if (TARGET_DEBUG_COND_EXEC) { rtx orig_pattern = PATTERN (insn); PATTERN (insn) = pattern; fprintf (stderr, "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn after modification:\n", ce_info->pass); debug_rtx (insn); PATTERN (insn) = orig_pattern; } return pattern; fail: if (TARGET_DEBUG_COND_EXEC) { rtx orig_pattern = PATTERN (insn); PATTERN (insn) = orig_ce_pattern; fprintf (stderr, "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn could not be modified:\n", ce_info->pass); debug_rtx (insn); PATTERN (insn) = orig_pattern; } return NULL_RTX; } /* A C expression to perform any final machine dependent modifications in converting code to conditional execution in the code described by the conditional if information CE_INFO. */ void frv_ifcvt_modify_final (ce_if_block_t *ce_info ATTRIBUTE_UNUSED) { rtx existing_insn; rtx check_insn; rtx p = frv_ifcvt.added_insns_list; int i; /* Loop inserting the check insns. The last check insn is the first test, and is the appropriate place to insert constants. */ gcc_assert (p); do { rtx check_and_insert_insns = XEXP (p, 0); rtx old_p = p; check_insn = XEXP (check_and_insert_insns, 0); existing_insn = XEXP (check_and_insert_insns, 1); p = XEXP (p, 1); /* The jump bit is used to say that the new insn is to be inserted BEFORE the existing insn, otherwise it is to be inserted AFTER. */ if (check_and_insert_insns->jump) { emit_insn_before (check_insn, existing_insn); check_and_insert_insns->jump = 0; } else emit_insn_after (check_insn, existing_insn); free_EXPR_LIST_node (check_and_insert_insns); free_EXPR_LIST_node (old_p); } while (p != NULL_RTX); /* Load up any constants needed into temp gprs */ for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++) { rtx insn = emit_insn_before (frv_ifcvt.scratch_regs[i], existing_insn); if (! frv_ifcvt.scratch_insns_bitmap) frv_ifcvt.scratch_insns_bitmap = BITMAP_ALLOC (NULL); bitmap_set_bit (frv_ifcvt.scratch_insns_bitmap, INSN_UID (insn)); frv_ifcvt.scratch_regs[i] = NULL_RTX; } frv_ifcvt.added_insns_list = NULL_RTX; frv_ifcvt.cur_scratch_regs = 0; } /* A C expression to cancel any machine dependent modifications in converting code to conditional execution in the code described by the conditional if information CE_INFO. */ void frv_ifcvt_modify_cancel (ce_if_block_t *ce_info ATTRIBUTE_UNUSED) { int i; rtx p = frv_ifcvt.added_insns_list; /* Loop freeing up the EXPR_LIST's allocated. */ while (p != NULL_RTX) { rtx check_and_jump = XEXP (p, 0); rtx old_p = p; p = XEXP (p, 1); free_EXPR_LIST_node (check_and_jump); free_EXPR_LIST_node (old_p); } /* Release any temporary gprs allocated. */ for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++) frv_ifcvt.scratch_regs[i] = NULL_RTX; frv_ifcvt.added_insns_list = NULL_RTX; frv_ifcvt.cur_scratch_regs = 0; return; } /* A C expression for the size in bytes of the trampoline, as an integer. The template is: setlo #0, <jmp_reg> setlo #0, <static_chain> sethi #0, <jmp_reg> sethi #0, <static_chain> jmpl @(gr0,<jmp_reg>) */ int frv_trampoline_size (void) { if (TARGET_FDPIC) /* Allocate room for the function descriptor and the lddi instruction. */ return 8 + 6 * 4; return 5 /* instructions */ * 4 /* instruction size. */; } /* A C statement to initialize the variable parts of a trampoline. ADDR is an RTX for the address of the trampoline; FNADDR is an RTX for the address of the nested function; STATIC_CHAIN is an RTX for the static chain value that should be passed to the function when it is called. The template is: setlo #0, <jmp_reg> setlo #0, <static_chain> sethi #0, <jmp_reg> sethi #0, <static_chain> jmpl @(gr0,<jmp_reg>) */ static void frv_trampoline_init (rtx m_tramp, tree fndecl, rtx static_chain) { rtx addr = XEXP (m_tramp, 0); rtx fnaddr = XEXP (DECL_RTL (fndecl), 0); rtx sc_reg = force_reg (Pmode, static_chain); emit_library_call (gen_rtx_SYMBOL_REF (SImode, "__trampoline_setup"), FALSE, VOIDmode, 4, addr, Pmode, GEN_INT (frv_trampoline_size ()), SImode, fnaddr, Pmode, sc_reg, Pmode); } /* Many machines have some registers that cannot be copied directly to or from memory or even from other types of registers. An example is the `MQ' register, which on most machines, can only be copied to or from general registers, but not memory. Some machines allow copying all registers to and from memory, but require a scratch register for stores to some memory locations (e.g., those with symbolic address on the RT, and those with certain symbolic address on the SPARC when compiling PIC). In some cases, both an intermediate and a scratch register are required. You should define these macros to indicate to the reload phase that it may need to allocate at least one register for a reload in addition to the register to contain the data. Specifically, if copying X to a register RCLASS in MODE requires an intermediate register, you should define `SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of whose registers can be used as intermediate registers or scratch registers. If copying a register RCLASS in MODE to X requires an intermediate or scratch register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be defined to return the largest register class required. If the requirements for input and output reloads are the same, the macro `SECONDARY_RELOAD_CLASS' should be used instead of defining both macros identically. The values returned by these macros are often `GENERAL_REGS'. Return `NO_REGS' if no spare register is needed; i.e., if X can be directly copied to or from a register of RCLASS in MODE without requiring a scratch register. Do not define this macro if it would always return `NO_REGS'. If a scratch register is required (either with or without an intermediate register), you should define patterns for `reload_inM' or `reload_outM', as required.. These patterns, which will normally be implemented with a `define_expand', should be similar to the `movM' patterns, except that operand 2 is the scratch register. Define constraints for the reload register and scratch register that contain a single register class. If the original reload register (whose class is RCLASS) can meet the constraint given in the pattern, the value returned by these macros is used for the class of the scratch register. Otherwise, two additional reload registers are required. Their classes are obtained from the constraints in the insn pattern. X might be a pseudo-register or a `subreg' of a pseudo-register, which could either be in a hard register or in memory. Use `true_regnum' to find out; it will return -1 if the pseudo is in memory and the hard register number if it is in a register. These macros should not be used in the case where a particular class of registers can only be copied to memory and not to another class of registers. In that case, secondary reload registers are not needed and would not be helpful. Instead, a stack location must be used to perform the copy and the `movM' pattern should use memory as an intermediate storage. This case often occurs between floating-point and general registers. */ enum reg_class frv_secondary_reload_class (enum reg_class rclass, enum machine_mode mode ATTRIBUTE_UNUSED, rtx x) { enum reg_class ret; switch (rclass) { default: ret = NO_REGS; break; /* Accumulators/Accumulator guard registers need to go through floating point registers. */ case QUAD_REGS: case EVEN_REGS: case GPR_REGS: ret = NO_REGS; if (x && GET_CODE (x) == REG) { int regno = REGNO (x); if (ACC_P (regno) || ACCG_P (regno)) ret = FPR_REGS; } break; /* Nonzero constants should be loaded into an FPR through a GPR. */ case QUAD_FPR_REGS: case FEVEN_REGS: case FPR_REGS: if (x && CONSTANT_P (x) && !ZERO_P (x)) ret = GPR_REGS; else ret = NO_REGS; break; /* All of these types need gpr registers. */ case ICC_REGS: case FCC_REGS: case CC_REGS: case ICR_REGS: case FCR_REGS: case CR_REGS: case LCR_REG: case LR_REG: ret = GPR_REGS; break; /* The accumulators need fpr registers. */ case ACC_REGS: case EVEN_ACC_REGS: case QUAD_ACC_REGS: case ACCG_REGS: ret = FPR_REGS; break; } return ret; } /* This hook exists to catch the case where secondary_reload_class() is called from init_reg_autoinc() in regclass.c - before the reload optabs have been initialised. */ static bool frv_secondary_reload (bool in_p, rtx x, enum reg_class reload_class, enum machine_mode reload_mode, secondary_reload_info * sri) { enum reg_class rclass = NO_REGS; if (sri->prev_sri && sri->prev_sri->t_icode != CODE_FOR_nothing) { sri->icode = sri->prev_sri->t_icode; return NO_REGS; } rclass = frv_secondary_reload_class (reload_class, reload_mode, x); if (rclass != NO_REGS) { enum insn_code icode = (in_p ? reload_in_optab[(int) reload_mode] : reload_out_optab[(int) reload_mode]); if (icode == 0) { /* This happens when then the reload_[in|out]_optabs have not been initialised. */ sri->t_icode = CODE_FOR_nothing; return rclass; } } /* Fall back to the default secondary reload handler. */ return default_secondary_reload (in_p, x, reload_class, reload_mode, sri); } /* A C expression whose value is nonzero if pseudos that have been assigned to registers of class RCLASS would likely be spilled because registers of RCLASS are needed for spill registers. The default value of this macro returns 1 if RCLASS has exactly one register and zero otherwise. On most machines, this default should be used. Only define this macro to some other expression if pseudo allocated by `local-alloc.c' end up in memory because their hard registers were needed for spill registers. If this macro returns nonzero for those classes, those pseudos will only be allocated by `global.c', which knows how to reallocate the pseudo to another register. If there would not be another register available for reallocation, you should not change the definition of this macro since the only effect of such a definition would be to slow down register allocation. */ int frv_class_likely_spilled_p (enum reg_class rclass) { switch (rclass) { default: break; case GR8_REGS: case GR9_REGS: case GR89_REGS: case FDPIC_FPTR_REGS: case FDPIC_REGS: case ICC_REGS: case FCC_REGS: case CC_REGS: case ICR_REGS: case FCR_REGS: case CR_REGS: case LCR_REG: case LR_REG: case SPR_REGS: case QUAD_ACC_REGS: case EVEN_ACC_REGS: case ACC_REGS: case ACCG_REGS: return TRUE; } return FALSE; } /* An expression for the alignment of a structure field FIELD if the alignment computed in the usual way is COMPUTED. GCC uses this value instead of the value in `BIGGEST_ALIGNMENT' or `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */ /* The definition type of the bit field data is either char, short, long or long long. The maximum bit size is the number of bits of its own type. The bit field data is assigned to a storage unit that has an adequate size for bit field data retention and is located at the smallest address. Consecutive bit field data are packed at consecutive bits having the same storage unit, with regard to the type, beginning with the MSB and continuing toward the LSB. If a field to be assigned lies over a bit field type boundary, its assignment is completed by aligning it with a boundary suitable for the type. When a bit field having a bit length of 0 is declared, it is forcibly assigned to the next storage unit. e.g) struct { int a:2; int b:6; char c:4; int d:10; int :0; int f:2; } x; +0 +1 +2 +3 &x 00000000 00000000 00000000 00000000 MLM----L a b &x+4 00000000 00000000 00000000 00000000 M--L c &x+8 00000000 00000000 00000000 00000000 M----------L d &x+12 00000000 00000000 00000000 00000000 ML f */ int frv_adjust_field_align (tree field, int computed) { /* Make sure that the bitfield is not wider than the type. */ if (DECL_BIT_FIELD (field) && !DECL_ARTIFICIAL (field)) { tree parent = DECL_CONTEXT (field); tree prev = NULL_TREE; tree cur; for (cur = TYPE_FIELDS (parent); cur && cur != field; cur = TREE_CHAIN (cur)) { if (TREE_CODE (cur) != FIELD_DECL) continue; prev = cur; } gcc_assert (cur); /* If this isn't a :0 field and if the previous element is a bitfield also, see if the type is different, if so, we will need to align the bit-field to the next boundary. */ if (prev && ! DECL_PACKED (field) && ! integer_zerop (DECL_SIZE (field)) && DECL_BIT_FIELD_TYPE (field) != DECL_BIT_FIELD_TYPE (prev)) { int prev_align = TYPE_ALIGN (TREE_TYPE (prev)); int cur_align = TYPE_ALIGN (TREE_TYPE (field)); computed = (prev_align > cur_align) ? prev_align : cur_align; } } return computed; } /* A C expression that is nonzero if it is permissible to store a value of mode MODE in hard register number REGNO (or in several registers starting with that one). For a machine where all registers are equivalent, a suitable definition is #define HARD_REGNO_MODE_OK(REGNO, MODE) 1 It is not necessary for this macro to check for the numbers of fixed registers, because the allocation mechanism considers them to be always occupied. On some machines, double-precision values must be kept in even/odd register pairs. The way to implement that is to define this macro to reject odd register numbers for such modes. The minimum requirement for a mode to be OK in a register is that the `movMODE' instruction pattern support moves between the register and any other hard register for which the mode is OK; and that moving a value into the register and back out not alter it. Since the same instruction used to move `SImode' will work for all narrower integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK' to distinguish between these modes, provided you define patterns `movhi', etc., to take advantage of this. This is useful because of the interaction between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for all integer modes to be tieable. Many machines have special registers for floating point arithmetic. Often people assume that floating point machine modes are allowed only in floating point registers. This is not true. Any registers that can hold integers can safely *hold* a floating point machine mode, whether or not floating arithmetic can be done on it in those registers. Integer move instructions can be used to move the values. On some machines, though, the converse is true: fixed-point machine modes may not go in floating registers. This is true if the floating registers normalize any value stored in them, because storing a non-floating value there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject fixed-point machine modes in floating registers. But if the floating registers do not automatically normalize, if you can store any bit pattern in one and retrieve it unchanged without a trap, then any machine mode may go in a floating register, so you can define this macro to say so. The primary significance of special floating registers is rather that they are the registers acceptable in floating point arithmetic instructions. However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by writing the proper constraints for those instructions. On some machines, the floating registers are especially slow to access, so that it is better to store a value in a stack frame than in such a register if floating point arithmetic is not being done. As long as the floating registers are not in class `GENERAL_REGS', they will not be used unless some pattern's constraint asks for one. */ int frv_hard_regno_mode_ok (int regno, enum machine_mode mode) { int base; int mask; switch (mode) { case CCmode: case CC_UNSmode: case CC_NZmode: return ICC_P (regno) || GPR_P (regno); case CC_CCRmode: return CR_P (regno) || GPR_P (regno); case CC_FPmode: return FCC_P (regno) || GPR_P (regno); default: break; } /* Set BASE to the first register in REGNO's class. Set MASK to the bits that must be clear in (REGNO - BASE) for the register to be well-aligned. */ if (INTEGRAL_MODE_P (mode) || FLOAT_MODE_P (mode) || VECTOR_MODE_P (mode)) { if (ACCG_P (regno)) { /* ACCGs store one byte. Two-byte quantities must start in even-numbered registers, four-byte ones in registers whose numbers are divisible by four, and so on. */ base = ACCG_FIRST; mask = GET_MODE_SIZE (mode) - 1; } else { /* The other registers store one word. */ if (GPR_P (regno) || regno == AP_FIRST) base = GPR_FIRST; else if (FPR_P (regno)) base = FPR_FIRST; else if (ACC_P (regno)) base = ACC_FIRST; else if (SPR_P (regno)) return mode == SImode; /* Fill in the table. */ else return 0; /* Anything smaller than an SI is OK in any word-sized register. */ if (GET_MODE_SIZE (mode) < 4) return 1; mask = (GET_MODE_SIZE (mode) / 4) - 1; } return (((regno - base) & mask) == 0); } return 0; } /* A C expression for the number of consecutive hard registers, starting at register number REGNO, required to hold a value of mode MODE. On a machine where all registers are exactly one word, a suitable definition of this macro is #define HARD_REGNO_NREGS(REGNO, MODE) \ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \ / UNITS_PER_WORD)) */ /* On the FRV, make the CC_FP mode take 3 words in the integer registers, so that we can build the appropriate instructions to properly reload the values. Also, make the byte-sized accumulator guards use one guard for each byte. */ int frv_hard_regno_nregs (int regno, enum machine_mode mode) { if (ACCG_P (regno)) return GET_MODE_SIZE (mode); else return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; } /* A C expression for the maximum number of consecutive registers of class RCLASS needed to hold a value of mode MODE. This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value of the macro `CLASS_MAX_NREGS (RCLASS, MODE)' should be the maximum value of `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class RCLASS. This macro helps control the handling of multiple-word values in the reload pass. This declaration is required. */ int frv_class_max_nregs (enum reg_class rclass, enum machine_mode mode) { if (rclass == ACCG_REGS) /* An N-byte value requires N accumulator guards. */ return GET_MODE_SIZE (mode); else return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; } /* A C expression that is nonzero if X is a legitimate constant for an immediate operand on the target machine. You can assume that X satisfies `CONSTANT_P', so you need not check this. In fact, `1' is a suitable definition for this macro on machines where anything `CONSTANT_P' is valid. */ int frv_legitimate_constant_p (rtx x) { enum machine_mode mode = GET_MODE (x); /* frv_cannot_force_const_mem always returns true for FDPIC. This means that the move expanders will be expected to deal with most kinds of constant, regardless of what we return here. However, among its other duties, LEGITIMATE_CONSTANT_P decides whether a constant can be entered into reg_equiv_constant[]. If we return true, reload can create new instances of the constant whenever it likes. The idea is therefore to accept as many constants as possible (to give reload more freedom) while rejecting constants that can only be created at certain times. In particular, anything with a symbolic component will require use of the pseudo FDPIC register, which is only available before reload. */ if (TARGET_FDPIC) return LEGITIMATE_PIC_OPERAND_P (x); /* All of the integer constants are ok. */ if (GET_CODE (x) != CONST_DOUBLE) return TRUE; /* double integer constants are ok. */ if (mode == VOIDmode || mode == DImode) return TRUE; /* 0 is always ok. */ if (x == CONST0_RTX (mode)) return TRUE; /* If floating point is just emulated, allow any constant, since it will be constructed in the GPRs. */ if (!TARGET_HAS_FPRS) return TRUE; if (mode == DFmode && !TARGET_DOUBLE) return TRUE; /* Otherwise store the constant away and do a load. */ return FALSE; } /* Implement SELECT_CC_MODE. Choose CC_FP for floating-point comparisons, CC_NZ for comparisons against zero in which a single Z or N flag test is enough, CC_UNS for other unsigned comparisons, and CC for other signed comparisons. */ enum machine_mode frv_select_cc_mode (enum rtx_code code, rtx x, rtx y) { if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) return CC_FPmode; switch (code) { case EQ: case NE: case LT: case GE: return y == const0_rtx ? CC_NZmode : CCmode; case GTU: case GEU: case LTU: case LEU: return y == const0_rtx ? CC_NZmode : CC_UNSmode; default: return CCmode; } } /* A C expression for the cost of moving data from a register in class FROM to one in class TO. The classes are expressed using the enumeration values such as `GENERAL_REGS'. A value of 4 is the default; other values are interpreted relative to that. It is not required that the cost always equal 2 when FROM is the same as TO; on some machines it is expensive to move between registers if they are not general registers. If reload sees an insn consisting of a single `set' between two hard registers, and if `REGISTER_MOVE_COST' applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You should do this if the `movM' pattern's constraints do not allow such copying. */ #define HIGH_COST 40 #define MEDIUM_COST 3 #define LOW_COST 1 int frv_register_move_cost (enum reg_class from, enum reg_class to) { switch (from) { default: break; case QUAD_REGS: case EVEN_REGS: case GPR_REGS: switch (to) { default: break; case QUAD_REGS: case EVEN_REGS: case GPR_REGS: return LOW_COST; case FEVEN_REGS: case FPR_REGS: return LOW_COST; case LCR_REG: case LR_REG: case SPR_REGS: return LOW_COST; } case FEVEN_REGS: case FPR_REGS: switch (to) { default: break; case QUAD_REGS: case EVEN_REGS: case GPR_REGS: case ACC_REGS: case EVEN_ACC_REGS: case QUAD_ACC_REGS: case ACCG_REGS: return MEDIUM_COST; case FEVEN_REGS: case FPR_REGS: return LOW_COST; } case LCR_REG: case LR_REG: case SPR_REGS: switch (to) { default: break; case QUAD_REGS: case EVEN_REGS: case GPR_REGS: return MEDIUM_COST; } case ACC_REGS: case EVEN_ACC_REGS: case QUAD_ACC_REGS: case ACCG_REGS: switch (to) { default: break; case FEVEN_REGS: case FPR_REGS: return MEDIUM_COST; } } return HIGH_COST; } /* Implementation of TARGET_ASM_INTEGER. In the FRV case we need to use ".picptr" to generate safe relocations for PIC code. We also need a fixup entry for aligned (non-debugging) code. */ static bool frv_assemble_integer (rtx value, unsigned int size, int aligned_p) { if ((flag_pic || TARGET_FDPIC) && size == UNITS_PER_WORD) { if (GET_CODE (value) == CONST || GET_CODE (value) == SYMBOL_REF || GET_CODE (value) == LABEL_REF) { if (TARGET_FDPIC && GET_CODE (value) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (value)) { fputs ("\t.picptr\tfuncdesc(", asm_out_file); output_addr_const (asm_out_file, value); fputs (")\n", asm_out_file); return true; } else if (TARGET_FDPIC && GET_CODE (value) == CONST && frv_function_symbol_referenced_p (value)) return false; if (aligned_p && !TARGET_FDPIC) { static int label_num = 0; char buf[256]; const char *p; ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", label_num++); p = (* targetm.strip_name_encoding) (buf); fprintf (asm_out_file, "%s:\n", p); fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP); fprintf (asm_out_file, "\t.picptr\t%s\n", p); fprintf (asm_out_file, "\t.previous\n"); } assemble_integer_with_op ("\t.picptr\t", value); return true; } if (!aligned_p) { /* We've set the unaligned SI op to NULL, so we always have to handle the unaligned case here. */ assemble_integer_with_op ("\t.4byte\t", value); return true; } } return default_assemble_integer (value, size, aligned_p); } /* Function to set up the backend function structure. */ static struct machine_function * frv_init_machine_status (void) { return GGC_CNEW (struct machine_function); } /* Implement TARGET_SCHED_ISSUE_RATE. */ int frv_issue_rate (void) { if (!TARGET_PACK) return 1; switch (frv_cpu_type) { default: case FRV_CPU_FR300: case FRV_CPU_SIMPLE: return 1; case FRV_CPU_FR400: case FRV_CPU_FR405: case FRV_CPU_FR450: return 2; case FRV_CPU_GENERIC: case FRV_CPU_FR500: case FRV_CPU_TOMCAT: return 4; case FRV_CPU_FR550: return 8; } } /* A for_each_rtx callback. If X refers to an accumulator, return ACC_GROUP_ODD if the bit 2 of the register number is set and ACC_GROUP_EVEN if it is clear. Return 0 (ACC_GROUP_NONE) otherwise. */ static int frv_acc_group_1 (rtx *x, void *data ATTRIBUTE_UNUSED) { if (REG_P (*x)) { if (ACC_P (REGNO (*x))) return (REGNO (*x) - ACC_FIRST) & 4 ? ACC_GROUP_ODD : ACC_GROUP_EVEN; if (ACCG_P (REGNO (*x))) return (REGNO (*x) - ACCG_FIRST) & 4 ? ACC_GROUP_ODD : ACC_GROUP_EVEN; } return 0; } /* Return the value of INSN's acc_group attribute. */ int frv_acc_group (rtx insn) { /* This distinction only applies to the FR550 packing constraints. */ if (frv_cpu_type != FRV_CPU_FR550) return ACC_GROUP_NONE; return for_each_rtx (&PATTERN (insn), frv_acc_group_1, 0); } /* Return the index of the DFA unit in FRV_UNIT_NAMES[] that instruction INSN will try to claim first. Since this value depends only on the type attribute, we can cache the results in FRV_TYPE_TO_UNIT[]. */ static unsigned int frv_insn_unit (rtx insn) { enum attr_type type; type = get_attr_type (insn); if (frv_type_to_unit[type] == ARRAY_SIZE (frv_unit_codes)) { /* We haven't seen this type of instruction before. */ state_t state; unsigned int unit; /* Issue the instruction on its own to see which unit it prefers. */ state = alloca (state_size ()); state_reset (state); state_transition (state, insn); /* Find out which unit was taken. */ for (unit = 0; unit < ARRAY_SIZE (frv_unit_codes); unit++) if (cpu_unit_reservation_p (state, frv_unit_codes[unit])) break; gcc_assert (unit != ARRAY_SIZE (frv_unit_codes)); frv_type_to_unit[type] = unit; } return frv_type_to_unit[type]; } /* Return true if INSN issues to a branch unit. */ static bool frv_issues_to_branch_unit_p (rtx insn) { return frv_unit_groups[frv_insn_unit (insn)] == GROUP_B; } /* The current state of the packing pass, implemented by frv_pack_insns. */ static struct { /* The state of the pipeline DFA. */ state_t dfa_state; /* Which hardware registers are set within the current packet, and the conditions under which they are set. */ regstate_t regstate[FIRST_PSEUDO_REGISTER]; /* The memory locations that have been modified so far in this packet. MEM is the memref and COND is the regstate_t condition under which it is set. */ struct { rtx mem; regstate_t cond; } mems[2]; /* The number of valid entries in MEMS. The value is larger than ARRAY_SIZE (mems) if there were too many mems to record. */ unsigned int num_mems; /* The maximum number of instructions that can be packed together. */ unsigned int issue_rate; /* The instructions in the packet, partitioned into groups. */ struct frv_packet_group { /* How many instructions in the packet belong to this group. */ unsigned int num_insns; /* A list of the instructions that belong to this group, in the order they appear in the rtl stream. */ rtx insns[ARRAY_SIZE (frv_unit_codes)]; /* The contents of INSNS after they have been sorted into the correct assembly-language order. Element X issues to unit X. The list may contain extra nops. */ rtx sorted[ARRAY_SIZE (frv_unit_codes)]; /* The member of frv_nops[] to use in sorted[]. */ rtx nop; } groups[NUM_GROUPS]; /* The instructions that make up the current packet. */ rtx insns[ARRAY_SIZE (frv_unit_codes)]; unsigned int num_insns; } frv_packet; /* Return the regstate_t flags for the given COND_EXEC condition. Abort if the condition isn't in the right form. */ static int frv_cond_flags (rtx cond) { gcc_assert ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE) && GET_CODE (XEXP (cond, 0)) == REG && CR_P (REGNO (XEXP (cond, 0))) && XEXP (cond, 1) == const0_rtx); return ((REGNO (XEXP (cond, 0)) - CR_FIRST) | (GET_CODE (cond) == NE ? REGSTATE_IF_TRUE : REGSTATE_IF_FALSE)); } /* Return true if something accessed under condition COND2 can conflict with something written under condition COND1. */ static bool frv_regstate_conflict_p (regstate_t cond1, regstate_t cond2) { /* If either reference was unconditional, we have a conflict. */ if ((cond1 & REGSTATE_IF_EITHER) == 0 || (cond2 & REGSTATE_IF_EITHER) == 0) return true; /* The references might conflict if they were controlled by different CRs. */ if ((cond1 & REGSTATE_CC_MASK) != (cond2 & REGSTATE_CC_MASK)) return true; /* They definitely conflict if they are controlled by the same condition. */ if ((cond1 & cond2 & REGSTATE_IF_EITHER) != 0) return true; return false; } /* A for_each_rtx callback. Return 1 if *X depends on an instruction in the current packet. DATA points to a regstate_t that describes the condition under which *X might be set or used. */ static int frv_registers_conflict_p_1 (rtx *x, void *data) { unsigned int regno, i; regstate_t cond; cond = *(regstate_t *) data; if (GET_CODE (*x) == REG) FOR_EACH_REGNO (regno, *x) if ((frv_packet.regstate[regno] & REGSTATE_MODIFIED) != 0) if (frv_regstate_conflict_p (frv_packet.regstate[regno], cond)) return 1; if (GET_CODE (*x) == MEM) { /* If we ran out of memory slots, assume a conflict. */ if (frv_packet.num_mems > ARRAY_SIZE (frv_packet.mems)) return 1; /* Check for output or true dependencies with earlier MEMs. */ for (i = 0; i < frv_packet.num_mems; i++) if (frv_regstate_conflict_p (frv_packet.mems[i].cond, cond)) { if (true_dependence (frv_packet.mems[i].mem, VOIDmode, *x, rtx_varies_p)) return 1; if (output_dependence (frv_packet.mems[i].mem, *x)) return 1; } } /* The return values of calls aren't significant: they describe the effect of the call as a whole, not of the insn itself. */ if (GET_CODE (*x) == SET && GET_CODE (SET_SRC (*x)) == CALL) { if (for_each_rtx (&SET_SRC (*x), frv_registers_conflict_p_1, data)) return 1; return -1; } /* Check subexpressions. */ return 0; } /* Return true if something in X might depend on an instruction in the current packet. */ static bool frv_registers_conflict_p (rtx x) { regstate_t flags; flags = 0; if (GET_CODE (x) == COND_EXEC) { if (for_each_rtx (&XEXP (x, 0), frv_registers_conflict_p_1, &flags)) return true; flags |= frv_cond_flags (XEXP (x, 0)); x = XEXP (x, 1); } return for_each_rtx (&x, frv_registers_conflict_p_1, &flags); } /* A note_stores callback. DATA points to the regstate_t condition under which X is modified. Update FRV_PACKET accordingly. */ static void frv_registers_update_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) { unsigned int regno; if (GET_CODE (x) == REG) FOR_EACH_REGNO (regno, x) frv_packet.regstate[regno] |= *(regstate_t *) data; if (GET_CODE (x) == MEM) { if (frv_packet.num_mems < ARRAY_SIZE (frv_packet.mems)) { frv_packet.mems[frv_packet.num_mems].mem = x; frv_packet.mems[frv_packet.num_mems].cond = *(regstate_t *) data; } frv_packet.num_mems++; } } /* Update the register state information for an instruction whose body is X. */ static void frv_registers_update (rtx x) { regstate_t flags; flags = REGSTATE_MODIFIED; if (GET_CODE (x) == COND_EXEC) { flags |= frv_cond_flags (XEXP (x, 0)); x = XEXP (x, 1); } note_stores (x, frv_registers_update_1, &flags); } /* Initialize frv_packet for the start of a new packet. */ static void frv_start_packet (void) { enum frv_insn_group group; memset (frv_packet.regstate, 0, sizeof (frv_packet.regstate)); frv_packet.num_mems = 0; frv_packet.num_insns = 0; for (group = 0; group < NUM_GROUPS; group++) frv_packet.groups[group].num_insns = 0; } /* Likewise for the start of a new basic block. */ static void frv_start_packet_block (void) { state_reset (frv_packet.dfa_state); frv_start_packet (); } /* Finish the current packet, if any, and start a new one. Call HANDLE_PACKET with FRV_PACKET describing the completed packet. */ static void frv_finish_packet (void (*handle_packet) (void)) { if (frv_packet.num_insns > 0) { handle_packet (); state_transition (frv_packet.dfa_state, 0); frv_start_packet (); } } /* Return true if INSN can be added to the current packet. Update the DFA state on success. */ static bool frv_pack_insn_p (rtx insn) { /* See if the packet is already as long as it can be. */ if (frv_packet.num_insns == frv_packet.issue_rate) return false; /* If the scheduler thought that an instruction should start a packet, it's usually a good idea to believe it. It knows much more about the latencies than we do. There are some exceptions though: - Conditional instructions are scheduled on the assumption that they will be executed. This is usually a good thing, since it tends to avoid unnecessary stalls in the conditional code. But we want to pack conditional instructions as tightly as possible, in order to optimize the case where they aren't executed. - The scheduler will always put branches on their own, even if there's no real dependency. - There's no point putting a call in its own packet unless we have to. */ if (frv_packet.num_insns > 0 && GET_CODE (insn) == INSN && GET_MODE (insn) == TImode && GET_CODE (PATTERN (insn)) != COND_EXEC) return false; /* Check for register conflicts. Don't do this for setlo since any conflict will be with the partnering sethi, with which it can be packed. */ if (get_attr_type (insn) != TYPE_SETLO) if (frv_registers_conflict_p (PATTERN (insn))) return false; return state_transition (frv_packet.dfa_state, insn) < 0; } /* Add instruction INSN to the current packet. */ static void frv_add_insn_to_packet (rtx insn) { struct frv_packet_group *packet_group; packet_group = &frv_packet.groups[frv_unit_groups[frv_insn_unit (insn)]]; packet_group->insns[packet_group->num_insns++] = insn; frv_packet.insns[frv_packet.num_insns++] = insn; frv_registers_update (PATTERN (insn)); } /* Insert INSN (a member of frv_nops[]) into the current packet. If the packet ends in a branch or call, insert the nop before it, otherwise add to the end. */ static void frv_insert_nop_in_packet (rtx insn) { struct frv_packet_group *packet_group; rtx last; packet_group = &frv_packet.groups[frv_unit_groups[frv_insn_unit (insn)]]; last = frv_packet.insns[frv_packet.num_insns - 1]; if (GET_CODE (last) != INSN) { insn = emit_insn_before (PATTERN (insn), last); frv_packet.insns[frv_packet.num_insns - 1] = insn; frv_packet.insns[frv_packet.num_insns++] = last; } else { insn = emit_insn_after (PATTERN (insn), last); frv_packet.insns[frv_packet.num_insns++] = insn; } packet_group->insns[packet_group->num_insns++] = insn; } /* If packing is enabled, divide the instructions into packets and return true. Call HANDLE_PACKET for each complete packet. */ static bool frv_for_each_packet (void (*handle_packet) (void)) { rtx insn, next_insn; frv_packet.issue_rate = frv_issue_rate (); /* Early exit if we don't want to pack insns. */ if (!optimize || !flag_schedule_insns_after_reload || !TARGET_VLIW_BRANCH || frv_packet.issue_rate == 1) return false; /* Set up the initial packing state. */ dfa_start (); frv_packet.dfa_state = alloca (state_size ()); frv_start_packet_block (); for (insn = get_insns (); insn != 0; insn = next_insn) { enum rtx_code code; bool eh_insn_p; code = GET_CODE (insn); next_insn = NEXT_INSN (insn); if (code == CODE_LABEL) { frv_finish_packet (handle_packet); frv_start_packet_block (); } if (INSN_P (insn)) switch (GET_CODE (PATTERN (insn))) { case USE: case CLOBBER: case ADDR_VEC: case ADDR_DIFF_VEC: break; default: /* Calls mustn't be packed on a TOMCAT. */ if (GET_CODE (insn) == CALL_INSN && frv_cpu_type == FRV_CPU_TOMCAT) frv_finish_packet (handle_packet); /* Since the last instruction in a packet determines the EH region, any exception-throwing instruction must come at the end of reordered packet. Insns that issue to a branch unit are bound to come last; for others it's too hard to predict. */ eh_insn_p = (find_reg_note (insn, REG_EH_REGION, NULL) != NULL); if (eh_insn_p && !frv_issues_to_branch_unit_p (insn)) frv_finish_packet (handle_packet); /* Finish the current packet if we can't add INSN to it. Simulate cycles until INSN is ready to issue. */ if (!frv_pack_insn_p (insn)) { frv_finish_packet (handle_packet); while (!frv_pack_insn_p (insn)) state_transition (frv_packet.dfa_state, 0); } /* Add the instruction to the packet. */ frv_add_insn_to_packet (insn); /* Calls and jumps end a packet, as do insns that throw an exception. */ if (code == CALL_INSN || code == JUMP_INSN || eh_insn_p) frv_finish_packet (handle_packet); break; } } frv_finish_packet (handle_packet); dfa_finish (); return true; } /* Subroutine of frv_sort_insn_group. We are trying to sort frv_packet.groups[GROUP].sorted[0...NUM_INSNS-1] into assembly language order. We have already picked a new position for frv_packet.groups[GROUP].sorted[X] if bit X of ISSUED is set. These instructions will occupy elements [0, LOWER_SLOT) and [UPPER_SLOT, NUM_INSNS) of the final (sorted) array. STATE is the DFA state after issuing these instructions. Try filling elements [LOWER_SLOT, UPPER_SLOT) with every permutation of the unused instructions. Return true if one such permutation gives a valid ordering, leaving the successful permutation in sorted[]. Do not modify sorted[] until a valid permutation is found. */ static bool frv_sort_insn_group_1 (enum frv_insn_group group, unsigned int lower_slot, unsigned int upper_slot, unsigned int issued, unsigned int num_insns, state_t state) { struct frv_packet_group *packet_group; unsigned int i; state_t test_state; size_t dfa_size; rtx insn; /* Early success if we've filled all the slots. */ if (lower_slot == upper_slot) return true; packet_group = &frv_packet.groups[group]; dfa_size = state_size (); test_state = alloca (dfa_size); /* Try issuing each unused instruction. */ for (i = num_insns - 1; i + 1 != 0; i--) if (~issued & (1 << i)) { insn = packet_group->sorted[i]; memcpy (test_state, state, dfa_size); if (state_transition (test_state, insn) < 0 && cpu_unit_reservation_p (test_state, NTH_UNIT (group, upper_slot - 1)) && frv_sort_insn_group_1 (group, lower_slot, upper_slot - 1, issued | (1 << i), num_insns, test_state)) { packet_group->sorted[upper_slot - 1] = insn; return true; } } return false; } /* Compare two instructions by their frv_insn_unit. */ static int frv_compare_insns (const void *first, const void *second) { const rtx *const insn1 = (rtx const *) first, *const insn2 = (rtx const *) second; return frv_insn_unit (*insn1) - frv_insn_unit (*insn2); } /* Copy frv_packet.groups[GROUP].insns[] to frv_packet.groups[GROUP].sorted[] and sort it into assembly language order. See frv.md for a description of the algorithm. */ static void frv_sort_insn_group (enum frv_insn_group group) { struct frv_packet_group *packet_group; unsigned int first, i, nop, max_unit, num_slots; state_t state, test_state; size_t dfa_size; packet_group = &frv_packet.groups[group]; /* Assume no nop is needed. */ packet_group->nop = 0; if (packet_group->num_insns == 0) return; /* Copy insns[] to sorted[]. */ memcpy (packet_group->sorted, packet_group->insns, sizeof (rtx) * packet_group->num_insns); /* Sort sorted[] by the unit that each insn tries to take first. */ if (packet_group->num_insns > 1) qsort (packet_group->sorted, packet_group->num_insns, sizeof (rtx), frv_compare_insns); /* That's always enough for branch and control insns. */ if (group == GROUP_B || group == GROUP_C) return; dfa_size = state_size (); state = alloca (dfa_size); test_state = alloca (dfa_size); /* Find the highest FIRST such that sorted[0...FIRST-1] can issue consecutively and such that the DFA takes unit X when sorted[X] is added. Set STATE to the new DFA state. */ state_reset (test_state); for (first = 0; first < packet_group->num_insns; first++) { memcpy (state, test_state, dfa_size); if (state_transition (test_state, packet_group->sorted[first]) >= 0 || !cpu_unit_reservation_p (test_state, NTH_UNIT (group, first))) break; } /* If all the instructions issued in ascending order, we're done. */ if (first == packet_group->num_insns) return; /* Add nops to the end of sorted[] and try each permutation until we find one that works. */ for (nop = 0; nop < frv_num_nops; nop++) { max_unit = frv_insn_unit (frv_nops[nop]); if (frv_unit_groups[max_unit] == group) { packet_group->nop = frv_nops[nop]; num_slots = UNIT_NUMBER (max_unit) + 1; for (i = packet_group->num_insns; i < num_slots; i++) packet_group->sorted[i] = frv_nops[nop]; if (frv_sort_insn_group_1 (group, first, num_slots, (1 << first) - 1, num_slots, state)) return; } } gcc_unreachable (); } /* Sort the current packet into assembly-language order. Set packing flags as appropriate. */ static void frv_reorder_packet (void) { unsigned int cursor[NUM_GROUPS]; rtx insns[ARRAY_SIZE (frv_unit_groups)]; unsigned int unit, to, from; enum frv_insn_group group; struct frv_packet_group *packet_group; /* First sort each group individually. */ for (group = 0; group < NUM_GROUPS; group++) { cursor[group] = 0; frv_sort_insn_group (group); } /* Go through the unit template and try add an instruction from that unit's group. */ to = 0; for (unit = 0; unit < ARRAY_SIZE (frv_unit_groups); unit++) { group = frv_unit_groups[unit]; packet_group = &frv_packet.groups[group]; if (cursor[group] < packet_group->num_insns) { /* frv_reorg should have added nops for us. */ gcc_assert (packet_group->sorted[cursor[group]] != packet_group->nop); insns[to++] = packet_group->sorted[cursor[group]++]; } } gcc_assert (to == frv_packet.num_insns); /* Clear the last instruction's packing flag, thus marking the end of a packet. Reorder the other instructions relative to it. */ CLEAR_PACKING_FLAG (insns[to - 1]); for (from = 0; from < to - 1; from++) { remove_insn (insns[from]); add_insn_before (insns[from], insns[to - 1], NULL); SET_PACKING_FLAG (insns[from]); } } /* Divide instructions into packets. Reorder the contents of each packet so that they are in the correct assembly-language order. Since this pass can change the raw meaning of the rtl stream, it must only be called at the last minute, just before the instructions are written out. */ static void frv_pack_insns (void) { if (frv_for_each_packet (frv_reorder_packet)) frv_insn_packing_flag = 0; else frv_insn_packing_flag = -1; } /* See whether we need to add nops to group GROUP in order to make a valid packet. */ static void frv_fill_unused_units (enum frv_insn_group group) { unsigned int non_nops, nops, i; struct frv_packet_group *packet_group; packet_group = &frv_packet.groups[group]; /* Sort the instructions into assembly-language order. Use nops to fill slots that are otherwise unused. */ frv_sort_insn_group (group); /* See how many nops are needed before the final useful instruction. */ i = nops = 0; for (non_nops = 0; non_nops < packet_group->num_insns; non_nops++) while (packet_group->sorted[i++] == packet_group->nop) nops++; /* Insert that many nops into the instruction stream. */ while (nops-- > 0) frv_insert_nop_in_packet (packet_group->nop); } /* Return true if accesses IO1 and IO2 refer to the same doubleword. */ static bool frv_same_doubleword_p (const struct frv_io *io1, const struct frv_io *io2) { if (io1->const_address != 0 && io2->const_address != 0) return io1->const_address == io2->const_address; if (io1->var_address != 0 && io2->var_address != 0) return rtx_equal_p (io1->var_address, io2->var_address); return false; } /* Return true if operations IO1 and IO2 are guaranteed to complete in order. */ static bool frv_io_fixed_order_p (const struct frv_io *io1, const struct frv_io *io2) { /* The order of writes is always preserved. */ if (io1->type == FRV_IO_WRITE && io2->type == FRV_IO_WRITE) return true; /* The order of reads isn't preserved. */ if (io1->type != FRV_IO_WRITE && io2->type != FRV_IO_WRITE) return false; /* One operation is a write and the other is (or could be) a read. The order is only guaranteed if the accesses are to the same doubleword. */ return frv_same_doubleword_p (io1, io2); } /* Generalize I/O operation X so that it covers both X and Y. */ static void frv_io_union (struct frv_io *x, const struct frv_io *y) { if (x->type != y->type) x->type = FRV_IO_UNKNOWN; if (!frv_same_doubleword_p (x, y)) { x->const_address = 0; x->var_address = 0; } } /* Fill IO with information about the load or store associated with membar instruction INSN. */ static void frv_extract_membar (struct frv_io *io, rtx insn) { extract_insn (insn); io->type = INTVAL (recog_data.operand[2]); io->const_address = INTVAL (recog_data.operand[1]); io->var_address = XEXP (recog_data.operand[0], 0); } /* A note_stores callback for which DATA points to an rtx. Nullify *DATA if X is a register and *DATA depends on X. */ static void frv_io_check_address (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) { rtx *other = (rtx *) data; if (REG_P (x) && *other != 0 && reg_overlap_mentioned_p (x, *other)) *other = 0; } /* A note_stores callback for which DATA points to a HARD_REG_SET. Remove every modified register from the set. */ static void frv_io_handle_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) { HARD_REG_SET *set = (HARD_REG_SET *) data; unsigned int regno; if (REG_P (x)) FOR_EACH_REGNO (regno, x) CLEAR_HARD_REG_BIT (*set, regno); } /* A for_each_rtx callback for which DATA points to a HARD_REG_SET. Add every register in *X to the set. */ static int frv_io_handle_use_1 (rtx *x, void *data) { HARD_REG_SET *set = (HARD_REG_SET *) data; unsigned int regno; if (REG_P (*x)) FOR_EACH_REGNO (regno, *x) SET_HARD_REG_BIT (*set, regno); return 0; } /* A note_stores callback that applies frv_io_handle_use_1 to an entire rhs value. */ static void frv_io_handle_use (rtx *x, void *data) { for_each_rtx (x, frv_io_handle_use_1, data); } /* Go through block BB looking for membars to remove. There are two cases where intra-block analysis is enough: - a membar is redundant if it occurs between two consecutive I/O operations and if those operations are guaranteed to complete in order. - a membar for a __builtin_read is redundant if the result is used before the next I/O operation is issued. If the last membar in the block could not be removed, and there are guaranteed to be no I/O operations between that membar and the end of the block, store the membar in *LAST_MEMBAR, otherwise store null. Describe the block's first I/O operation in *NEXT_IO. Describe an unknown operation if the block doesn't do any I/O. */ static void frv_optimize_membar_local (basic_block bb, struct frv_io *next_io, rtx *last_membar) { HARD_REG_SET used_regs; rtx next_membar, set, insn; bool next_is_end_p; /* NEXT_IO is the next I/O operation to be performed after the current instruction. It starts off as being an unknown operation. */ memset (next_io, 0, sizeof (*next_io)); /* NEXT_IS_END_P is true if NEXT_IO describes the end of the block. */ next_is_end_p = true; /* If the current instruction is a __builtin_read or __builtin_write, NEXT_MEMBAR is the membar instruction associated with it. NEXT_MEMBAR is null if the membar has already been deleted. Note that the initialization here should only be needed to suppress warnings. */ next_membar = 0; /* USED_REGS is the set of registers that are used before the next I/O instruction. */ CLEAR_HARD_REG_SET (used_regs); for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn)) if (GET_CODE (insn) == CALL_INSN) { /* We can't predict what a call will do to volatile memory. */ memset (next_io, 0, sizeof (struct frv_io)); next_is_end_p = false; CLEAR_HARD_REG_SET (used_regs); } else if (INSN_P (insn)) switch (recog_memoized (insn)) { case CODE_FOR_optional_membar_qi: case CODE_FOR_optional_membar_hi: case CODE_FOR_optional_membar_si: case CODE_FOR_optional_membar_di: next_membar = insn; if (next_is_end_p) { /* Local information isn't enough to decide whether this membar is needed. Stash it away for later. */ *last_membar = insn; frv_extract_membar (next_io, insn); next_is_end_p = false; } else { /* Check whether the I/O operation before INSN could be reordered with one described by NEXT_IO. If it can't, INSN will not be needed. */ struct frv_io prev_io; frv_extract_membar (&prev_io, insn); if (frv_io_fixed_order_p (&prev_io, next_io)) { if (dump_file) fprintf (dump_file, ";; [Local] Removing membar %d since order" " of accesses is guaranteed\n", INSN_UID (next_membar)); insn = NEXT_INSN (insn); delete_insn (next_membar); next_membar = 0; } *next_io = prev_io; } break; default: /* Invalidate NEXT_IO's address if it depends on something that is clobbered by INSN. */ if (next_io->var_address) note_stores (PATTERN (insn), frv_io_check_address, &next_io->var_address); /* If the next membar is associated with a __builtin_read, see if INSN reads from that address. If it does, and if the destination register is used before the next I/O access, there is no need for the membar. */ set = PATTERN (insn); if (next_io->type == FRV_IO_READ && next_io->var_address != 0 && next_membar != 0 && GET_CODE (set) == SET && GET_CODE (SET_DEST (set)) == REG && TEST_HARD_REG_BIT (used_regs, REGNO (SET_DEST (set)))) { rtx src; src = SET_SRC (set); if (GET_CODE (src) == ZERO_EXTEND) src = XEXP (src, 0); if (GET_CODE (src) == MEM && rtx_equal_p (XEXP (src, 0), next_io->var_address)) { if (dump_file) fprintf (dump_file, ";; [Local] Removing membar %d since the target" " of %d is used before the I/O operation\n", INSN_UID (next_membar), INSN_UID (insn)); if (next_membar == *last_membar) *last_membar = 0; delete_insn (next_membar); next_membar = 0; } } /* If INSN has volatile references, forget about any registers that are used after it. Otherwise forget about uses that are (or might be) defined by INSN. */ if (volatile_refs_p (PATTERN (insn))) CLEAR_HARD_REG_SET (used_regs); else note_stores (PATTERN (insn), frv_io_handle_set, &used_regs); note_uses (&PATTERN (insn), frv_io_handle_use, &used_regs); break; } } /* See if MEMBAR, the last membar instruction in BB, can be removed. FIRST_IO[X] describes the first operation performed by basic block X. */ static void frv_optimize_membar_global (basic_block bb, struct frv_io *first_io, rtx membar) { struct frv_io this_io, next_io; edge succ; edge_iterator ei; /* We need to keep the membar if there is an edge to the exit block. */ FOR_EACH_EDGE (succ, ei, bb->succs) /* for (succ = bb->succ; succ != 0; succ = succ->succ_next) */ if (succ->dest == EXIT_BLOCK_PTR) return; /* Work out the union of all successor blocks. */ ei = ei_start (bb->succs); ei_cond (ei, &succ); /* next_io = first_io[bb->succ->dest->index]; */ next_io = first_io[succ->dest->index]; ei = ei_start (bb->succs); if (ei_cond (ei, &succ)) { for (ei_next (&ei); ei_cond (ei, &succ); ei_next (&ei)) /*for (succ = bb->succ->succ_next; succ != 0; succ = succ->succ_next)*/ frv_io_union (&next_io, &first_io[succ->dest->index]); } else gcc_unreachable (); frv_extract_membar (&this_io, membar); if (frv_io_fixed_order_p (&this_io, &next_io)) { if (dump_file) fprintf (dump_file, ";; [Global] Removing membar %d since order of accesses" " is guaranteed\n", INSN_UID (membar)); delete_insn (membar); } } /* Remove redundant membars from the current function. */ static void frv_optimize_membar (void) { basic_block bb; struct frv_io *first_io; rtx *last_membar; compute_bb_for_insn (); first_io = XCNEWVEC (struct frv_io, last_basic_block); last_membar = XCNEWVEC (rtx, last_basic_block); FOR_EACH_BB (bb) frv_optimize_membar_local (bb, &first_io[bb->index], &last_membar[bb->index]); FOR_EACH_BB (bb) if (last_membar[bb->index] != 0) frv_optimize_membar_global (bb, first_io, last_membar[bb->index]); free (first_io); free (last_membar); } /* Used by frv_reorg to keep track of the current packet's address. */ static unsigned int frv_packet_address; /* If the current packet falls through to a label, try to pad the packet with nops in order to fit the label's alignment requirements. */ static void frv_align_label (void) { unsigned int alignment, target, nop; rtx x, last, barrier, label; /* Walk forward to the start of the next packet. Set ALIGNMENT to the maximum alignment of that packet, LABEL to the last label between the packets, and BARRIER to the last barrier. */ last = frv_packet.insns[frv_packet.num_insns - 1]; label = barrier = 0; alignment = 4; for (x = NEXT_INSN (last); x != 0 && !INSN_P (x); x = NEXT_INSN (x)) { if (LABEL_P (x)) { unsigned int subalign = 1 << label_to_alignment (x); alignment = MAX (alignment, subalign); label = x; } if (BARRIER_P (x)) barrier = x; } /* If -malign-labels, and the packet falls through to an unaligned label, try introducing a nop to align that label to 8 bytes. */ if (TARGET_ALIGN_LABELS && label != 0 && barrier == 0 && frv_packet.num_insns < frv_packet.issue_rate) alignment = MAX (alignment, 8); /* Advance the address to the end of the current packet. */ frv_packet_address += frv_packet.num_insns * 4; /* Work out the target address, after alignment. */ target = (frv_packet_address + alignment - 1) & -alignment; /* If the packet falls through to the label, try to find an efficient padding sequence. */ if (barrier == 0) { /* First try adding nops to the current packet. */ for (nop = 0; nop < frv_num_nops; nop++) while (frv_packet_address < target && frv_pack_insn_p (frv_nops[nop])) { frv_insert_nop_in_packet (frv_nops[nop]); frv_packet_address += 4; } /* If we still haven't reached the target, add some new packets that contain only nops. If there are two types of nop, insert an alternating sequence of frv_nops[0] and frv_nops[1], which will lead to packets like: nop.p mnop.p/fnop.p nop.p mnop/fnop etc. Just emit frv_nops[0] if that's the only nop we have. */ last = frv_packet.insns[frv_packet.num_insns - 1]; nop = 0; while (frv_packet_address < target) { last = emit_insn_after (PATTERN (frv_nops[nop]), last); frv_packet_address += 4; if (frv_num_nops > 1) nop ^= 1; } } frv_packet_address = target; } /* Subroutine of frv_reorg, called after each packet has been constructed in frv_packet. */ static void frv_reorg_packet (void) { frv_fill_unused_units (GROUP_I); frv_fill_unused_units (GROUP_FM); frv_align_label (); } /* Add an instruction with pattern NOP to frv_nops[]. */ static void frv_register_nop (rtx nop) { nop = make_insn_raw (nop); NEXT_INSN (nop) = 0; PREV_INSN (nop) = 0; frv_nops[frv_num_nops++] = nop; } /* Implement TARGET_MACHINE_DEPENDENT_REORG. Divide the instructions into packets and check whether we need to insert nops in order to fulfill the processor's issue requirements. Also, if the user has requested a certain alignment for a label, try to meet that alignment by inserting nops in the previous packet. */ static void frv_reorg (void) { if (optimize > 0 && TARGET_OPTIMIZE_MEMBAR && cfun->machine->has_membar_p) frv_optimize_membar (); frv_num_nops = 0; frv_register_nop (gen_nop ()); if (TARGET_MEDIA) frv_register_nop (gen_mnop ()); if (TARGET_HARD_FLOAT) frv_register_nop (gen_fnop ()); /* Estimate the length of each branch. Although this may change after we've inserted nops, it will only do so in big functions. */ shorten_branches (get_insns ()); frv_packet_address = 0; frv_for_each_packet (frv_reorg_packet); } #define def_builtin(name, type, code) \ add_builtin_function ((name), (type), (code), BUILT_IN_MD, NULL, NULL) struct builtin_description { enum insn_code icode; const char *name; enum frv_builtins code; enum rtx_code comparison; unsigned int flag; }; /* Media intrinsics that take a single, constant argument. */ static struct builtin_description bdesc_set[] = { { CODE_FOR_mhdsets, "__MHDSETS", FRV_BUILTIN_MHDSETS, 0, 0 } }; /* Media intrinsics that take just one argument. */ static struct builtin_description bdesc_1arg[] = { { CODE_FOR_mnot, "__MNOT", FRV_BUILTIN_MNOT, 0, 0 }, { CODE_FOR_munpackh, "__MUNPACKH", FRV_BUILTIN_MUNPACKH, 0, 0 }, { CODE_FOR_mbtoh, "__MBTOH", FRV_BUILTIN_MBTOH, 0, 0 }, { CODE_FOR_mhtob, "__MHTOB", FRV_BUILTIN_MHTOB, 0, 0 }, { CODE_FOR_mabshs, "__MABSHS", FRV_BUILTIN_MABSHS, 0, 0 }, { CODE_FOR_scutss, "__SCUTSS", FRV_BUILTIN_SCUTSS, 0, 0 } }; /* Media intrinsics that take two arguments. */ static struct builtin_description bdesc_2arg[] = { { CODE_FOR_mand, "__MAND", FRV_BUILTIN_MAND, 0, 0 }, { CODE_FOR_mor, "__MOR", FRV_BUILTIN_MOR, 0, 0 }, { CODE_FOR_mxor, "__MXOR", FRV_BUILTIN_MXOR, 0, 0 }, { CODE_FOR_maveh, "__MAVEH", FRV_BUILTIN_MAVEH, 0, 0 }, { CODE_FOR_msaths, "__MSATHS", FRV_BUILTIN_MSATHS, 0, 0 }, { CODE_FOR_msathu, "__MSATHU", FRV_BUILTIN_MSATHU, 0, 0 }, { CODE_FOR_maddhss, "__MADDHSS", FRV_BUILTIN_MADDHSS, 0, 0 }, { CODE_FOR_maddhus, "__MADDHUS", FRV_BUILTIN_MADDHUS, 0, 0 }, { CODE_FOR_msubhss, "__MSUBHSS", FRV_BUILTIN_MSUBHSS, 0, 0 }, { CODE_FOR_msubhus, "__MSUBHUS", FRV_BUILTIN_MSUBHUS, 0, 0 }, { CODE_FOR_mqaddhss, "__MQADDHSS", FRV_BUILTIN_MQADDHSS, 0, 0 }, { CODE_FOR_mqaddhus, "__MQADDHUS", FRV_BUILTIN_MQADDHUS, 0, 0 }, { CODE_FOR_mqsubhss, "__MQSUBHSS", FRV_BUILTIN_MQSUBHSS, 0, 0 }, { CODE_FOR_mqsubhus, "__MQSUBHUS", FRV_BUILTIN_MQSUBHUS, 0, 0 }, { CODE_FOR_mpackh, "__MPACKH", FRV_BUILTIN_MPACKH, 0, 0 }, { CODE_FOR_mcop1, "__Mcop1", FRV_BUILTIN_MCOP1, 0, 0 }, { CODE_FOR_mcop2, "__Mcop2", FRV_BUILTIN_MCOP2, 0, 0 }, { CODE_FOR_mwcut, "__MWCUT", FRV_BUILTIN_MWCUT, 0, 0 }, { CODE_FOR_mqsaths, "__MQSATHS", FRV_BUILTIN_MQSATHS, 0, 0 }, { CODE_FOR_mqlclrhs, "__MQLCLRHS", FRV_BUILTIN_MQLCLRHS, 0, 0 }, { CODE_FOR_mqlmths, "__MQLMTHS", FRV_BUILTIN_MQLMTHS, 0, 0 }, { CODE_FOR_smul, "__SMUL", FRV_BUILTIN_SMUL, 0, 0 }, { CODE_FOR_umul, "__UMUL", FRV_BUILTIN_UMUL, 0, 0 }, { CODE_FOR_addss, "__ADDSS", FRV_BUILTIN_ADDSS, 0, 0 }, { CODE_FOR_subss, "__SUBSS", FRV_BUILTIN_SUBSS, 0, 0 }, { CODE_FOR_slass, "__SLASS", FRV_BUILTIN_SLASS, 0, 0 }, { CODE_FOR_scan, "__SCAN", FRV_BUILTIN_SCAN, 0, 0 } }; /* Integer intrinsics that take two arguments and have no return value. */ static struct builtin_description bdesc_int_void2arg[] = { { CODE_FOR_smass, "__SMASS", FRV_BUILTIN_SMASS, 0, 0 }, { CODE_FOR_smsss, "__SMSSS", FRV_BUILTIN_SMSSS, 0, 0 }, { CODE_FOR_smu, "__SMU", FRV_BUILTIN_SMU, 0, 0 } }; static struct builtin_description bdesc_prefetches[] = { { CODE_FOR_frv_prefetch0, "__data_prefetch0", FRV_BUILTIN_PREFETCH0, 0, 0 }, { CODE_FOR_frv_prefetch, "__data_prefetch", FRV_BUILTIN_PREFETCH, 0, 0 } }; /* Media intrinsics that take two arguments, the first being an ACC number. */ static struct builtin_description bdesc_cut[] = { { CODE_FOR_mcut, "__MCUT", FRV_BUILTIN_MCUT, 0, 0 }, { CODE_FOR_mcutss, "__MCUTSS", FRV_BUILTIN_MCUTSS, 0, 0 }, { CODE_FOR_mdcutssi, "__MDCUTSSI", FRV_BUILTIN_MDCUTSSI, 0, 0 } }; /* Two-argument media intrinsics with an immediate second argument. */ static struct builtin_description bdesc_2argimm[] = { { CODE_FOR_mrotli, "__MROTLI", FRV_BUILTIN_MROTLI, 0, 0 }, { CODE_FOR_mrotri, "__MROTRI", FRV_BUILTIN_MROTRI, 0, 0 }, { CODE_FOR_msllhi, "__MSLLHI", FRV_BUILTIN_MSLLHI, 0, 0 }, { CODE_FOR_msrlhi, "__MSRLHI", FRV_BUILTIN_MSRLHI, 0, 0 }, { CODE_FOR_msrahi, "__MSRAHI", FRV_BUILTIN_MSRAHI, 0, 0 }, { CODE_FOR_mexpdhw, "__MEXPDHW", FRV_BUILTIN_MEXPDHW, 0, 0 }, { CODE_FOR_mexpdhd, "__MEXPDHD", FRV_BUILTIN_MEXPDHD, 0, 0 }, { CODE_FOR_mdrotli, "__MDROTLI", FRV_BUILTIN_MDROTLI, 0, 0 }, { CODE_FOR_mcplhi, "__MCPLHI", FRV_BUILTIN_MCPLHI, 0, 0 }, { CODE_FOR_mcpli, "__MCPLI", FRV_BUILTIN_MCPLI, 0, 0 }, { CODE_FOR_mhsetlos, "__MHSETLOS", FRV_BUILTIN_MHSETLOS, 0, 0 }, { CODE_FOR_mhsetloh, "__MHSETLOH", FRV_BUILTIN_MHSETLOH, 0, 0 }, { CODE_FOR_mhsethis, "__MHSETHIS", FRV_BUILTIN_MHSETHIS, 0, 0 }, { CODE_FOR_mhsethih, "__MHSETHIH", FRV_BUILTIN_MHSETHIH, 0, 0 }, { CODE_FOR_mhdseth, "__MHDSETH", FRV_BUILTIN_MHDSETH, 0, 0 }, { CODE_FOR_mqsllhi, "__MQSLLHI", FRV_BUILTIN_MQSLLHI, 0, 0 }, { CODE_FOR_mqsrahi, "__MQSRAHI", FRV_BUILTIN_MQSRAHI, 0, 0 } }; /* Media intrinsics that take two arguments and return void, the first argument being a pointer to 4 words in memory. */ static struct builtin_description bdesc_void2arg[] = { { CODE_FOR_mdunpackh, "__MDUNPACKH", FRV_BUILTIN_MDUNPACKH, 0, 0 }, { CODE_FOR_mbtohe, "__MBTOHE", FRV_BUILTIN_MBTOHE, 0, 0 }, }; /* Media intrinsics that take three arguments, the first being a const_int that denotes an accumulator, and that return void. */ static struct builtin_description bdesc_void3arg[] = { { CODE_FOR_mcpxrs, "__MCPXRS", FRV_BUILTIN_MCPXRS, 0, 0 }, { CODE_FOR_mcpxru, "__MCPXRU", FRV_BUILTIN_MCPXRU, 0, 0 }, { CODE_FOR_mcpxis, "__MCPXIS", FRV_BUILTIN_MCPXIS, 0, 0 }, { CODE_FOR_mcpxiu, "__MCPXIU", FRV_BUILTIN_MCPXIU, 0, 0 }, { CODE_FOR_mmulhs, "__MMULHS", FRV_BUILTIN_MMULHS, 0, 0 }, { CODE_FOR_mmulhu, "__MMULHU", FRV_BUILTIN_MMULHU, 0, 0 }, { CODE_FOR_mmulxhs, "__MMULXHS", FRV_BUILTIN_MMULXHS, 0, 0 }, { CODE_FOR_mmulxhu, "__MMULXHU", FRV_BUILTIN_MMULXHU, 0, 0 }, { CODE_FOR_mmachs, "__MMACHS", FRV_BUILTIN_MMACHS, 0, 0 }, { CODE_FOR_mmachu, "__MMACHU", FRV_BUILTIN_MMACHU, 0, 0 }, { CODE_FOR_mmrdhs, "__MMRDHS", FRV_BUILTIN_MMRDHS, 0, 0 }, { CODE_FOR_mmrdhu, "__MMRDHU", FRV_BUILTIN_MMRDHU, 0, 0 }, { CODE_FOR_mqcpxrs, "__MQCPXRS", FRV_BUILTIN_MQCPXRS, 0, 0 }, { CODE_FOR_mqcpxru, "__MQCPXRU", FRV_BUILTIN_MQCPXRU, 0, 0 }, { CODE_FOR_mqcpxis, "__MQCPXIS", FRV_BUILTIN_MQCPXIS, 0, 0 }, { CODE_FOR_mqcpxiu, "__MQCPXIU", FRV_BUILTIN_MQCPXIU, 0, 0 }, { CODE_FOR_mqmulhs, "__MQMULHS", FRV_BUILTIN_MQMULHS, 0, 0 }, { CODE_FOR_mqmulhu, "__MQMULHU", FRV_BUILTIN_MQMULHU, 0, 0 }, { CODE_FOR_mqmulxhs, "__MQMULXHS", FRV_BUILTIN_MQMULXHS, 0, 0 }, { CODE_FOR_mqmulxhu, "__MQMULXHU", FRV_BUILTIN_MQMULXHU, 0, 0 }, { CODE_FOR_mqmachs, "__MQMACHS", FRV_BUILTIN_MQMACHS, 0, 0 }, { CODE_FOR_mqmachu, "__MQMACHU", FRV_BUILTIN_MQMACHU, 0, 0 }, { CODE_FOR_mqxmachs, "__MQXMACHS", FRV_BUILTIN_MQXMACHS, 0, 0 }, { CODE_FOR_mqxmacxhs, "__MQXMACXHS", FRV_BUILTIN_MQXMACXHS, 0, 0 }, { CODE_FOR_mqmacxhs, "__MQMACXHS", FRV_BUILTIN_MQMACXHS, 0, 0 } }; /* Media intrinsics that take two accumulator numbers as argument and return void. */ static struct builtin_description bdesc_voidacc[] = { { CODE_FOR_maddaccs, "__MADDACCS", FRV_BUILTIN_MADDACCS, 0, 0 }, { CODE_FOR_msubaccs, "__MSUBACCS", FRV_BUILTIN_MSUBACCS, 0, 0 }, { CODE_FOR_masaccs, "__MASACCS", FRV_BUILTIN_MASACCS, 0, 0 }, { CODE_FOR_mdaddaccs, "__MDADDACCS", FRV_BUILTIN_MDADDACCS, 0, 0 }, { CODE_FOR_mdsubaccs, "__MDSUBACCS", FRV_BUILTIN_MDSUBACCS, 0, 0 }, { CODE_FOR_mdasaccs, "__MDASACCS", FRV_BUILTIN_MDASACCS, 0, 0 } }; /* Intrinsics that load a value and then issue a MEMBAR. The load is a normal move and the ICODE is for the membar. */ static struct builtin_description bdesc_loads[] = { { CODE_FOR_optional_membar_qi, "__builtin_read8", FRV_BUILTIN_READ8, 0, 0 }, { CODE_FOR_optional_membar_hi, "__builtin_read16", FRV_BUILTIN_READ16, 0, 0 }, { CODE_FOR_optional_membar_si, "__builtin_read32", FRV_BUILTIN_READ32, 0, 0 }, { CODE_FOR_optional_membar_di, "__builtin_read64", FRV_BUILTIN_READ64, 0, 0 } }; /* Likewise stores. */ static struct builtin_description bdesc_stores[] = { { CODE_FOR_optional_membar_qi, "__builtin_write8", FRV_BUILTIN_WRITE8, 0, 0 }, { CODE_FOR_optional_membar_hi, "__builtin_write16", FRV_BUILTIN_WRITE16, 0, 0 }, { CODE_FOR_optional_membar_si, "__builtin_write32", FRV_BUILTIN_WRITE32, 0, 0 }, { CODE_FOR_optional_membar_di, "__builtin_write64", FRV_BUILTIN_WRITE64, 0, 0 }, }; /* Initialize media builtins. */ static void frv_init_builtins (void) { tree endlink = void_list_node; tree accumulator = integer_type_node; tree integer = integer_type_node; tree voidt = void_type_node; tree uhalf = short_unsigned_type_node; tree sword1 = long_integer_type_node; tree uword1 = long_unsigned_type_node; tree sword2 = long_long_integer_type_node; tree uword2 = long_long_unsigned_type_node; tree uword4 = build_pointer_type (uword1); tree vptr = build_pointer_type (build_type_variant (void_type_node, 0, 1)); tree ubyte = unsigned_char_type_node; tree iacc = integer_type_node; #define UNARY(RET, T1) \ build_function_type (RET, tree_cons (NULL_TREE, T1, endlink)) #define BINARY(RET, T1, T2) \ build_function_type (RET, tree_cons (NULL_TREE, T1, \ tree_cons (NULL_TREE, T2, endlink))) #define TRINARY(RET, T1, T2, T3) \ build_function_type (RET, tree_cons (NULL_TREE, T1, \ tree_cons (NULL_TREE, T2, \ tree_cons (NULL_TREE, T3, endlink)))) #define QUAD(RET, T1, T2, T3, T4) \ build_function_type (RET, tree_cons (NULL_TREE, T1, \ tree_cons (NULL_TREE, T2, \ tree_cons (NULL_TREE, T3, \ tree_cons (NULL_TREE, T4, endlink))))) tree void_ftype_void = build_function_type (voidt, endlink); tree void_ftype_acc = UNARY (voidt, accumulator); tree void_ftype_uw4_uw1 = BINARY (voidt, uword4, uword1); tree void_ftype_uw4_uw2 = BINARY (voidt, uword4, uword2); tree void_ftype_acc_uw1 = BINARY (voidt, accumulator, uword1); tree void_ftype_acc_acc = BINARY (voidt, accumulator, accumulator); tree void_ftype_acc_uw1_uw1 = TRINARY (voidt, accumulator, uword1, uword1); tree void_ftype_acc_sw1_sw1 = TRINARY (voidt, accumulator, sword1, sword1); tree void_ftype_acc_uw2_uw2 = TRINARY (voidt, accumulator, uword2, uword2); tree void_ftype_acc_sw2_sw2 = TRINARY (voidt, accumulator, sword2, sword2); tree uw1_ftype_uw1 = UNARY (uword1, uword1); tree uw1_ftype_sw1 = UNARY (uword1, sword1); tree uw1_ftype_uw2 = UNARY (uword1, uword2); tree uw1_ftype_acc = UNARY (uword1, accumulator); tree uw1_ftype_uh_uh = BINARY (uword1, uhalf, uhalf); tree uw1_ftype_uw1_uw1 = BINARY (uword1, uword1, uword1); tree uw1_ftype_uw1_int = BINARY (uword1, uword1, integer); tree uw1_ftype_acc_uw1 = BINARY (uword1, accumulator, uword1); tree uw1_ftype_acc_sw1 = BINARY (uword1, accumulator, sword1); tree uw1_ftype_uw2_uw1 = BINARY (uword1, uword2, uword1); tree uw1_ftype_uw2_int = BINARY (uword1, uword2, integer); tree sw1_ftype_int = UNARY (sword1, integer); tree sw1_ftype_sw1_sw1 = BINARY (sword1, sword1, sword1); tree sw1_ftype_sw1_int = BINARY (sword1, sword1, integer); tree uw2_ftype_uw1 = UNARY (uword2, uword1); tree uw2_ftype_uw1_int = BINARY (uword2, uword1, integer); tree uw2_ftype_uw2_uw2 = BINARY (uword2, uword2, uword2); tree uw2_ftype_uw2_int = BINARY (uword2, uword2, integer); tree uw2_ftype_acc_int = BINARY (uword2, accumulator, integer); tree uw2_ftype_uh_uh_uh_uh = QUAD (uword2, uhalf, uhalf, uhalf, uhalf); tree sw2_ftype_sw2_sw2 = BINARY (sword2, sword2, sword2); tree sw2_ftype_sw2_int = BINARY (sword2, sword2, integer); tree uw2_ftype_uw1_uw1 = BINARY (uword2, uword1, uword1); tree sw2_ftype_sw1_sw1 = BINARY (sword2, sword1, sword1); tree void_ftype_sw1_sw1 = BINARY (voidt, sword1, sword1); tree void_ftype_iacc_sw2 = BINARY (voidt, iacc, sword2); tree void_ftype_iacc_sw1 = BINARY (voidt, iacc, sword1); tree sw1_ftype_sw1 = UNARY (sword1, sword1); tree sw2_ftype_iacc = UNARY (sword2, iacc); tree sw1_ftype_iacc = UNARY (sword1, iacc); tree void_ftype_ptr = UNARY (voidt, const_ptr_type_node); tree uw1_ftype_vptr = UNARY (uword1, vptr); tree uw2_ftype_vptr = UNARY (uword2, vptr); tree void_ftype_vptr_ub = BINARY (voidt, vptr, ubyte); tree void_ftype_vptr_uh = BINARY (voidt, vptr, uhalf); tree void_ftype_vptr_uw1 = BINARY (voidt, vptr, uword1); tree void_ftype_vptr_uw2 = BINARY (voidt, vptr, uword2); def_builtin ("__MAND", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAND); def_builtin ("__MOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MOR); def_builtin ("__MXOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MXOR); def_builtin ("__MNOT", uw1_ftype_uw1, FRV_BUILTIN_MNOT); def_builtin ("__MROTLI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTLI); def_builtin ("__MROTRI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTRI); def_builtin ("__MWCUT", uw1_ftype_uw2_uw1, FRV_BUILTIN_MWCUT); def_builtin ("__MAVEH", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAVEH); def_builtin ("__MSLLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSLLHI); def_builtin ("__MSRLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSRLHI); def_builtin ("__MSRAHI", sw1_ftype_sw1_int, FRV_BUILTIN_MSRAHI); def_builtin ("__MSATHS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSATHS); def_builtin ("__MSATHU", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSATHU); def_builtin ("__MADDHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MADDHSS); def_builtin ("__MADDHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MADDHUS); def_builtin ("__MSUBHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSUBHSS); def_builtin ("__MSUBHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSUBHUS); def_builtin ("__MMULHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULHS); def_builtin ("__MMULHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULHU); def_builtin ("__MMULXHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULXHS); def_builtin ("__MMULXHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULXHU); def_builtin ("__MMACHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMACHS); def_builtin ("__MMACHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMACHU); def_builtin ("__MMRDHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMRDHS); def_builtin ("__MMRDHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMRDHU); def_builtin ("__MQADDHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQADDHSS); def_builtin ("__MQADDHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQADDHUS); def_builtin ("__MQSUBHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSUBHSS); def_builtin ("__MQSUBHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQSUBHUS); def_builtin ("__MQMULHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULHS); def_builtin ("__MQMULHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULHU); def_builtin ("__MQMULXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULXHS); def_builtin ("__MQMULXHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULXHU); def_builtin ("__MQMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACHS); def_builtin ("__MQMACHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMACHU); def_builtin ("__MCPXRS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXRS); def_builtin ("__MCPXRU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXRU); def_builtin ("__MCPXIS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXIS); def_builtin ("__MCPXIU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXIU); def_builtin ("__MQCPXRS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXRS); def_builtin ("__MQCPXRU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXRU); def_builtin ("__MQCPXIS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXIS); def_builtin ("__MQCPXIU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXIU); def_builtin ("__MCUT", uw1_ftype_acc_uw1, FRV_BUILTIN_MCUT); def_builtin ("__MCUTSS", uw1_ftype_acc_sw1, FRV_BUILTIN_MCUTSS); def_builtin ("__MEXPDHW", uw1_ftype_uw1_int, FRV_BUILTIN_MEXPDHW); def_builtin ("__MEXPDHD", uw2_ftype_uw1_int, FRV_BUILTIN_MEXPDHD); def_builtin ("__MPACKH", uw1_ftype_uh_uh, FRV_BUILTIN_MPACKH); def_builtin ("__MUNPACKH", uw2_ftype_uw1, FRV_BUILTIN_MUNPACKH); def_builtin ("__MDPACKH", uw2_ftype_uh_uh_uh_uh, FRV_BUILTIN_MDPACKH); def_builtin ("__MDUNPACKH", void_ftype_uw4_uw2, FRV_BUILTIN_MDUNPACKH); def_builtin ("__MBTOH", uw2_ftype_uw1, FRV_BUILTIN_MBTOH); def_builtin ("__MHTOB", uw1_ftype_uw2, FRV_BUILTIN_MHTOB); def_builtin ("__MBTOHE", void_ftype_uw4_uw1, FRV_BUILTIN_MBTOHE); def_builtin ("__MCLRACC", void_ftype_acc, FRV_BUILTIN_MCLRACC); def_builtin ("__MCLRACCA", void_ftype_void, FRV_BUILTIN_MCLRACCA); def_builtin ("__MRDACC", uw1_ftype_acc, FRV_BUILTIN_MRDACC); def_builtin ("__MRDACCG", uw1_ftype_acc, FRV_BUILTIN_MRDACCG); def_builtin ("__MWTACC", void_ftype_acc_uw1, FRV_BUILTIN_MWTACC); def_builtin ("__MWTACCG", void_ftype_acc_uw1, FRV_BUILTIN_MWTACCG); def_builtin ("__Mcop1", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP1); def_builtin ("__Mcop2", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP2); def_builtin ("__MTRAP", void_ftype_void, FRV_BUILTIN_MTRAP); def_builtin ("__MQXMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACHS); def_builtin ("__MQXMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACXHS); def_builtin ("__MQMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACXHS); def_builtin ("__MADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MADDACCS); def_builtin ("__MSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MSUBACCS); def_builtin ("__MASACCS", void_ftype_acc_acc, FRV_BUILTIN_MASACCS); def_builtin ("__MDADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MDADDACCS); def_builtin ("__MDSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MDSUBACCS); def_builtin ("__MDASACCS", void_ftype_acc_acc, FRV_BUILTIN_MDASACCS); def_builtin ("__MABSHS", uw1_ftype_sw1, FRV_BUILTIN_MABSHS); def_builtin ("__MDROTLI", uw2_ftype_uw2_int, FRV_BUILTIN_MDROTLI); def_builtin ("__MCPLHI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLHI); def_builtin ("__MCPLI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLI); def_builtin ("__MDCUTSSI", uw2_ftype_acc_int, FRV_BUILTIN_MDCUTSSI); def_builtin ("__MQSATHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSATHS); def_builtin ("__MHSETLOS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETLOS); def_builtin ("__MHSETHIS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETHIS); def_builtin ("__MHDSETS", sw1_ftype_int, FRV_BUILTIN_MHDSETS); def_builtin ("__MHSETLOH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETLOH); def_builtin ("__MHSETHIH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETHIH); def_builtin ("__MHDSETH", uw1_ftype_uw1_int, FRV_BUILTIN_MHDSETH); def_builtin ("__MQLCLRHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQLCLRHS); def_builtin ("__MQLMTHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQLMTHS); def_builtin ("__MQSLLHI", uw2_ftype_uw2_int, FRV_BUILTIN_MQSLLHI); def_builtin ("__MQSRAHI", sw2_ftype_sw2_int, FRV_BUILTIN_MQSRAHI); def_builtin ("__SMUL", sw2_ftype_sw1_sw1, FRV_BUILTIN_SMUL); def_builtin ("__UMUL", uw2_ftype_uw1_uw1, FRV_BUILTIN_UMUL); def_builtin ("__SMASS", void_ftype_sw1_sw1, FRV_BUILTIN_SMASS); def_builtin ("__SMSSS", void_ftype_sw1_sw1, FRV_BUILTIN_SMSSS); def_builtin ("__SMU", void_ftype_sw1_sw1, FRV_BUILTIN_SMU); def_builtin ("__ADDSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_ADDSS); def_builtin ("__SUBSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_SUBSS); def_builtin ("__SLASS", sw1_ftype_sw1_sw1, FRV_BUILTIN_SLASS); def_builtin ("__SCAN", sw1_ftype_sw1_sw1, FRV_BUILTIN_SCAN); def_builtin ("__SCUTSS", sw1_ftype_sw1, FRV_BUILTIN_SCUTSS); def_builtin ("__IACCreadll", sw2_ftype_iacc, FRV_BUILTIN_IACCreadll); def_builtin ("__IACCreadl", sw1_ftype_iacc, FRV_BUILTIN_IACCreadl); def_builtin ("__IACCsetll", void_ftype_iacc_sw2, FRV_BUILTIN_IACCsetll); def_builtin ("__IACCsetl", void_ftype_iacc_sw1, FRV_BUILTIN_IACCsetl); def_builtin ("__data_prefetch0", void_ftype_ptr, FRV_BUILTIN_PREFETCH0); def_builtin ("__data_prefetch", void_ftype_ptr, FRV_BUILTIN_PREFETCH); def_builtin ("__builtin_read8", uw1_ftype_vptr, FRV_BUILTIN_READ8); def_builtin ("__builtin_read16", uw1_ftype_vptr, FRV_BUILTIN_READ16); def_builtin ("__builtin_read32", uw1_ftype_vptr, FRV_BUILTIN_READ32); def_builtin ("__builtin_read64", uw2_ftype_vptr, FRV_BUILTIN_READ64); def_builtin ("__builtin_write8", void_ftype_vptr_ub, FRV_BUILTIN_WRITE8); def_builtin ("__builtin_write16", void_ftype_vptr_uh, FRV_BUILTIN_WRITE16); def_builtin ("__builtin_write32", void_ftype_vptr_uw1, FRV_BUILTIN_WRITE32); def_builtin ("__builtin_write64", void_ftype_vptr_uw2, FRV_BUILTIN_WRITE64); #undef UNARY #undef BINARY #undef TRINARY #undef QUAD } /* Set the names for various arithmetic operations according to the FRV ABI. */ static void frv_init_libfuncs (void) { set_optab_libfunc (smod_optab, SImode, "__modi"); set_optab_libfunc (umod_optab, SImode, "__umodi"); set_optab_libfunc (add_optab, DImode, "__addll"); set_optab_libfunc (sub_optab, DImode, "__subll"); set_optab_libfunc (smul_optab, DImode, "__mulll"); set_optab_libfunc (sdiv_optab, DImode, "__divll"); set_optab_libfunc (smod_optab, DImode, "__modll"); set_optab_libfunc (umod_optab, DImode, "__umodll"); set_optab_libfunc (and_optab, DImode, "__andll"); set_optab_libfunc (ior_optab, DImode, "__orll"); set_optab_libfunc (xor_optab, DImode, "__xorll"); set_optab_libfunc (one_cmpl_optab, DImode, "__notll"); set_optab_libfunc (add_optab, SFmode, "__addf"); set_optab_libfunc (sub_optab, SFmode, "__subf"); set_optab_libfunc (smul_optab, SFmode, "__mulf"); set_optab_libfunc (sdiv_optab, SFmode, "__divf"); set_optab_libfunc (add_optab, DFmode, "__addd"); set_optab_libfunc (sub_optab, DFmode, "__subd"); set_optab_libfunc (smul_optab, DFmode, "__muld"); set_optab_libfunc (sdiv_optab, DFmode, "__divd"); set_conv_libfunc (sext_optab, DFmode, SFmode, "__ftod"); set_conv_libfunc (trunc_optab, SFmode, DFmode, "__dtof"); set_conv_libfunc (sfix_optab, SImode, SFmode, "__ftoi"); set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftoll"); set_conv_libfunc (sfix_optab, SImode, DFmode, "__dtoi"); set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtoll"); set_conv_libfunc (ufix_optab, SImode, SFmode, "__ftoui"); set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoull"); set_conv_libfunc (ufix_optab, SImode, DFmode, "__dtoui"); set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoull"); set_conv_libfunc (sfloat_optab, SFmode, SImode, "__itof"); set_conv_libfunc (sfloat_optab, SFmode, DImode, "__lltof"); set_conv_libfunc (sfloat_optab, DFmode, SImode, "__itod"); set_conv_libfunc (sfloat_optab, DFmode, DImode, "__lltod"); } /* Convert an integer constant to an accumulator register. ICODE is the code of the target instruction, OPNUM is the number of the accumulator operand and OPVAL is the constant integer. Try both ACC and ACCG registers; only report an error if neither fit the instruction. */ static rtx frv_int_to_acc (enum insn_code icode, int opnum, rtx opval) { rtx reg; int i; /* ACCs and ACCGs are implicit global registers if media intrinsics are being used. We set up this lazily to avoid creating lots of unnecessary call_insn rtl in non-media code. */ for (i = 0; i <= ACC_MASK; i++) if ((i & ACC_MASK) == i) global_regs[i + ACC_FIRST] = global_regs[i + ACCG_FIRST] = 1; if (GET_CODE (opval) != CONST_INT) { error ("accumulator is not a constant integer"); return NULL_RTX; } if ((INTVAL (opval) & ~ACC_MASK) != 0) { error ("accumulator number is out of bounds"); return NULL_RTX; } reg = gen_rtx_REG (insn_data[icode].operand[opnum].mode, ACC_FIRST + INTVAL (opval)); if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode)) SET_REGNO (reg, ACCG_FIRST + INTVAL (opval)); if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode)) { error ("inappropriate accumulator for %qs", insn_data[icode].name); return NULL_RTX; } return reg; } /* If an ACC rtx has mode MODE, return the mode that the matching ACCG should have. */ static enum machine_mode frv_matching_accg_mode (enum machine_mode mode) { switch (mode) { case V4SImode: return V4QImode; case DImode: return HImode; case SImode: return QImode; default: gcc_unreachable (); } } /* Given that a __builtin_read or __builtin_write function is accessing address ADDRESS, return the value that should be used as operand 1 of the membar. */ static rtx frv_io_address_cookie (rtx address) { return (GET_CODE (address) == CONST_INT ? GEN_INT (INTVAL (address) / 8 * 8) : const0_rtx); } /* Return the accumulator guard that should be paired with accumulator register ACC. The mode of the returned register is in the same class as ACC, but is four times smaller. */ rtx frv_matching_accg_for_acc (rtx acc) { return gen_rtx_REG (frv_matching_accg_mode (GET_MODE (acc)), REGNO (acc) - ACC_FIRST + ACCG_FIRST); } /* Read the requested argument from the call EXP given by INDEX. Return the value as an rtx. */ static rtx frv_read_argument (tree exp, unsigned int index) { return expand_expr (CALL_EXPR_ARG (exp, index), NULL_RTX, VOIDmode, 0); } /* Like frv_read_argument, but interpret the argument as the number of an IACC register and return a (reg:MODE ...) rtx for it. */ static rtx frv_read_iacc_argument (enum machine_mode mode, tree call, unsigned int index) { int i, regno; rtx op; op = frv_read_argument (call, index); if (GET_CODE (op) != CONST_INT || INTVAL (op) < 0 || INTVAL (op) > IACC_LAST - IACC_FIRST || ((INTVAL (op) * 4) & (GET_MODE_SIZE (mode) - 1)) != 0) { error ("invalid IACC argument"); op = const0_rtx; } /* IACCs are implicit global registers. We set up this lazily to avoid creating lots of unnecessary call_insn rtl when IACCs aren't being used. */ regno = INTVAL (op) + IACC_FIRST; for (i = 0; i < HARD_REGNO_NREGS (regno, mode); i++) global_regs[regno + i] = 1; return gen_rtx_REG (mode, regno); } /* Return true if OPVAL can be used for operand OPNUM of instruction ICODE. The instruction should require a constant operand of some sort. The function prints an error if OPVAL is not valid. */ static int frv_check_constant_argument (enum insn_code icode, int opnum, rtx opval) { if (GET_CODE (opval) != CONST_INT) { error ("%qs expects a constant argument", insn_data[icode].name); return FALSE; } if (! (*insn_data[icode].operand[opnum].predicate) (opval, VOIDmode)) { error ("constant argument out of range for %qs", insn_data[icode].name); return FALSE; } return TRUE; } /* Return a legitimate rtx for instruction ICODE's return value. Use TARGET if it's not null, has the right mode, and satisfies operand 0's predicate. */ static rtx frv_legitimize_target (enum insn_code icode, rtx target) { enum machine_mode mode = insn_data[icode].operand[0].mode; if (! target || GET_MODE (target) != mode || ! (*insn_data[icode].operand[0].predicate) (target, mode)) return gen_reg_rtx (mode); else return target; } /* Given that ARG is being passed as operand OPNUM to instruction ICODE, check whether ARG satisfies the operand's constraints. If it doesn't, copy ARG to a temporary register and return that. Otherwise return ARG itself. */ static rtx frv_legitimize_argument (enum insn_code icode, int opnum, rtx arg) { enum machine_mode mode = insn_data[icode].operand[opnum].mode; if ((*insn_data[icode].operand[opnum].predicate) (arg, mode)) return arg; else return copy_to_mode_reg (mode, arg); } /* Return a volatile memory reference of mode MODE whose address is ARG. */ static rtx frv_volatile_memref (enum machine_mode mode, rtx arg) { rtx mem; mem = gen_rtx_MEM (mode, memory_address (mode, arg)); MEM_VOLATILE_P (mem) = 1; return mem; } /* Expand builtins that take a single, constant argument. At the moment, only MHDSETS falls into this category. */ static rtx frv_expand_set_builtin (enum insn_code icode, tree call, rtx target) { rtx pat; rtx op0 = frv_read_argument (call, 0); if (! frv_check_constant_argument (icode, 1, op0)) return NULL_RTX; target = frv_legitimize_target (icode, target); pat = GEN_FCN (icode) (target, op0); if (! pat) return NULL_RTX; emit_insn (pat); return target; } /* Expand builtins that take one operand. */ static rtx frv_expand_unop_builtin (enum insn_code icode, tree call, rtx target) { rtx pat; rtx op0 = frv_read_argument (call, 0); target = frv_legitimize_target (icode, target); op0 = frv_legitimize_argument (icode, 1, op0); pat = GEN_FCN (icode) (target, op0); if (! pat) return NULL_RTX; emit_insn (pat); return target; } /* Expand builtins that take two operands. */ static rtx frv_expand_binop_builtin (enum insn_code icode, tree call, rtx target) { rtx pat; rtx op0 = frv_read_argument (call, 0); rtx op1 = frv_read_argument (call, 1); target = frv_legitimize_target (icode, target); op0 = frv_legitimize_argument (icode, 1, op0); op1 = frv_legitimize_argument (icode, 2, op1); pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return NULL_RTX; emit_insn (pat); return target; } /* Expand cut-style builtins, which take two operands and an implicit ACCG one. */ static rtx frv_expand_cut_builtin (enum insn_code icode, tree call, rtx target) { rtx pat; rtx op0 = frv_read_argument (call, 0); rtx op1 = frv_read_argument (call, 1); rtx op2; target = frv_legitimize_target (icode, target); op0 = frv_int_to_acc (icode, 1, op0); if (! op0) return NULL_RTX; if (icode == CODE_FOR_mdcutssi || GET_CODE (op1) == CONST_INT) { if (! frv_check_constant_argument (icode, 2, op1)) return NULL_RTX; } else op1 = frv_legitimize_argument (icode, 2, op1); op2 = frv_matching_accg_for_acc (op0); pat = GEN_FCN (icode) (target, op0, op1, op2); if (! pat) return NULL_RTX; emit_insn (pat); return target; } /* Expand builtins that take two operands and the second is immediate. */ static rtx frv_expand_binopimm_builtin (enum insn_code icode, tree call, rtx target) { rtx pat; rtx op0 = frv_read_argument (call, 0); rtx op1 = frv_read_argument (call, 1); if (! frv_check_constant_argument (icode, 2, op1)) return NULL_RTX; target = frv_legitimize_target (icode, target); op0 = frv_legitimize_argument (icode, 1, op0); pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return NULL_RTX; emit_insn (pat); return target; } /* Expand builtins that take two operands, the first operand being a pointer to ints and return void. */ static rtx frv_expand_voidbinop_builtin (enum insn_code icode, tree call) { rtx pat; rtx op0 = frv_read_argument (call, 0); rtx op1 = frv_read_argument (call, 1); enum machine_mode mode0 = insn_data[icode].operand[0].mode; rtx addr; if (GET_CODE (op0) != MEM) { rtx reg = op0; if (! offsettable_address_p (0, mode0, op0)) { reg = gen_reg_rtx (Pmode); emit_insn (gen_rtx_SET (VOIDmode, reg, op0)); } op0 = gen_rtx_MEM (SImode, reg); } addr = XEXP (op0, 0); if (! offsettable_address_p (0, mode0, addr)) addr = copy_to_mode_reg (Pmode, op0); op0 = change_address (op0, V4SImode, addr); op1 = frv_legitimize_argument (icode, 1, op1); pat = GEN_FCN (icode) (op0, op1); if (! pat) return 0; emit_insn (pat); return 0; } /* Expand builtins that take two long operands and return void. */ static rtx frv_expand_int_void2arg (enum insn_code icode, tree call) { rtx pat; rtx op0 = frv_read_argument (call, 0); rtx op1 = frv_read_argument (call, 1); op0 = frv_legitimize_argument (icode, 1, op0); op1 = frv_legitimize_argument (icode, 1, op1); pat = GEN_FCN (icode) (op0, op1); if (! pat) return NULL_RTX; emit_insn (pat); return NULL_RTX; } /* Expand prefetch builtins. These take a single address as argument. */ static rtx frv_expand_prefetches (enum insn_code icode, tree call) { rtx pat; rtx op0 = frv_read_argument (call, 0); pat = GEN_FCN (icode) (force_reg (Pmode, op0)); if (! pat) return 0; emit_insn (pat); return 0; } /* Expand builtins that take three operands and return void. The first argument must be a constant that describes a pair or quad accumulators. A fourth argument is created that is the accumulator guard register that corresponds to the accumulator. */ static rtx frv_expand_voidtriop_builtin (enum insn_code icode, tree call) { rtx pat; rtx op0 = frv_read_argument (call, 0); rtx op1 = frv_read_argument (call, 1); rtx op2 = frv_read_argument (call, 2); rtx op3; op0 = frv_int_to_acc (icode, 0, op0); if (! op0) return NULL_RTX; op1 = frv_legitimize_argument (icode, 1, op1); op2 = frv_legitimize_argument (icode, 2, op2); op3 = frv_matching_accg_for_acc (op0); pat = GEN_FCN (icode) (op0, op1, op2, op3); if (! pat) return NULL_RTX; emit_insn (pat); return NULL_RTX; } /* Expand builtins that perform accumulator-to-accumulator operations. These builtins take two accumulator numbers as argument and return void. */ static rtx frv_expand_voidaccop_builtin (enum insn_code icode, tree call) { rtx pat; rtx op0 = frv_read_argument (call, 0); rtx op1 = frv_read_argument (call, 1); rtx op2; rtx op3; op0 = frv_int_to_acc (icode, 0, op0); if (! op0) return NULL_RTX; op1 = frv_int_to_acc (icode, 1, op1); if (! op1) return NULL_RTX; op2 = frv_matching_accg_for_acc (op0); op3 = frv_matching_accg_for_acc (op1); pat = GEN_FCN (icode) (op0, op1, op2, op3); if (! pat) return NULL_RTX; emit_insn (pat); return NULL_RTX; } /* Expand a __builtin_read* function. ICODE is the instruction code for the membar and TARGET_MODE is the mode that the loaded value should have. */ static rtx frv_expand_load_builtin (enum insn_code icode, enum machine_mode target_mode, tree call, rtx target) { rtx op0 = frv_read_argument (call, 0); rtx cookie = frv_io_address_cookie (op0); if (target == 0 || !REG_P (target)) target = gen_reg_rtx (target_mode); op0 = frv_volatile_memref (insn_data[icode].operand[0].mode, op0); convert_move (target, op0, 1); emit_insn (GEN_FCN (icode) (copy_rtx (op0), cookie, GEN_INT (FRV_IO_READ))); cfun->machine->has_membar_p = 1; return target; } /* Likewise __builtin_write* functions. */ static rtx frv_expand_store_builtin (enum insn_code icode, tree call) { rtx op0 = frv_read_argument (call, 0); rtx op1 = frv_read_argument (call, 1); rtx cookie = frv_io_address_cookie (op0); op0 = frv_volatile_memref (insn_data[icode].operand[0].mode, op0); convert_move (op0, force_reg (insn_data[icode].operand[0].mode, op1), 1); emit_insn (GEN_FCN (icode) (copy_rtx (op0), cookie, GEN_INT (FRV_IO_WRITE))); cfun->machine->has_membar_p = 1; return NULL_RTX; } /* Expand the MDPACKH builtin. It takes four unsigned short arguments and each argument forms one word of the two double-word input registers. CALL is the tree for the call and TARGET, if nonnull, suggests a good place to put the return value. */ static rtx frv_expand_mdpackh_builtin (tree call, rtx target) { enum insn_code icode = CODE_FOR_mdpackh; rtx pat, op0, op1; rtx arg1 = frv_read_argument (call, 0); rtx arg2 = frv_read_argument (call, 1); rtx arg3 = frv_read_argument (call, 2); rtx arg4 = frv_read_argument (call, 3); target = frv_legitimize_target (icode, target); op0 = gen_reg_rtx (DImode); op1 = gen_reg_rtx (DImode); /* The high half of each word is not explicitly initialized, so indicate that the input operands are not live before this point. */ emit_clobber (op0); emit_clobber (op1); /* Move each argument into the low half of its associated input word. */ emit_move_insn (simplify_gen_subreg (HImode, op0, DImode, 2), arg1); emit_move_insn (simplify_gen_subreg (HImode, op0, DImode, 6), arg2); emit_move_insn (simplify_gen_subreg (HImode, op1, DImode, 2), arg3); emit_move_insn (simplify_gen_subreg (HImode, op1, DImode, 6), arg4); pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return NULL_RTX; emit_insn (pat); return target; } /* Expand the MCLRACC builtin. This builtin takes a single accumulator number as argument. */ static rtx frv_expand_mclracc_builtin (tree call) { enum insn_code icode = CODE_FOR_mclracc; rtx pat; rtx op0 = frv_read_argument (call, 0); op0 = frv_int_to_acc (icode, 0, op0); if (! op0) return NULL_RTX; pat = GEN_FCN (icode) (op0); if (pat) emit_insn (pat); return NULL_RTX; } /* Expand builtins that take no arguments. */ static rtx frv_expand_noargs_builtin (enum insn_code icode) { rtx pat = GEN_FCN (icode) (const0_rtx); if (pat) emit_insn (pat); return NULL_RTX; } /* Expand MRDACC and MRDACCG. These builtins take a single accumulator number or accumulator guard number as argument and return an SI integer. */ static rtx frv_expand_mrdacc_builtin (enum insn_code icode, tree call) { rtx pat; rtx target = gen_reg_rtx (SImode); rtx op0 = frv_read_argument (call, 0); op0 = frv_int_to_acc (icode, 1, op0); if (! op0) return NULL_RTX; pat = GEN_FCN (icode) (target, op0); if (! pat) return NULL_RTX; emit_insn (pat); return target; } /* Expand MWTACC and MWTACCG. These builtins take an accumulator or accumulator guard as their first argument and an SImode value as their second. */ static rtx frv_expand_mwtacc_builtin (enum insn_code icode, tree call) { rtx pat; rtx op0 = frv_read_argument (call, 0); rtx op1 = frv_read_argument (call, 1); op0 = frv_int_to_acc (icode, 0, op0); if (! op0) return NULL_RTX; op1 = frv_legitimize_argument (icode, 1, op1); pat = GEN_FCN (icode) (op0, op1); if (pat) emit_insn (pat); return NULL_RTX; } /* Emit a move from SRC to DEST in SImode chunks. This can be used to move DImode values into and out of IACC0. */ static void frv_split_iacc_move (rtx dest, rtx src) { enum machine_mode inner; int i; inner = GET_MODE (dest); for (i = 0; i < GET_MODE_SIZE (inner); i += GET_MODE_SIZE (SImode)) emit_move_insn (simplify_gen_subreg (SImode, dest, inner, i), simplify_gen_subreg (SImode, src, inner, i)); } /* Expand builtins. */ static rtx frv_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, int ignore ATTRIBUTE_UNUSED) { tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); unsigned fcode = (unsigned)DECL_FUNCTION_CODE (fndecl); unsigned i; struct builtin_description *d; if (fcode < FRV_BUILTIN_FIRST_NONMEDIA && !TARGET_MEDIA) { error ("media functions are not available unless -mmedia is used"); return NULL_RTX; } switch (fcode) { case FRV_BUILTIN_MCOP1: case FRV_BUILTIN_MCOP2: case FRV_BUILTIN_MDUNPACKH: case FRV_BUILTIN_MBTOHE: if (! TARGET_MEDIA_REV1) { error ("this media function is only available on the fr500"); return NULL_RTX; } break; case FRV_BUILTIN_MQXMACHS: case FRV_BUILTIN_MQXMACXHS: case FRV_BUILTIN_MQMACXHS: case FRV_BUILTIN_MADDACCS: case FRV_BUILTIN_MSUBACCS: case FRV_BUILTIN_MASACCS: case FRV_BUILTIN_MDADDACCS: case FRV_BUILTIN_MDSUBACCS: case FRV_BUILTIN_MDASACCS: case FRV_BUILTIN_MABSHS: case FRV_BUILTIN_MDROTLI: case FRV_BUILTIN_MCPLHI: case FRV_BUILTIN_MCPLI: case FRV_BUILTIN_MDCUTSSI: case FRV_BUILTIN_MQSATHS: case FRV_BUILTIN_MHSETLOS: case FRV_BUILTIN_MHSETLOH: case FRV_BUILTIN_MHSETHIS: case FRV_BUILTIN_MHSETHIH: case FRV_BUILTIN_MHDSETS: case FRV_BUILTIN_MHDSETH: if (! TARGET_MEDIA_REV2) { error ("this media function is only available on the fr400" " and fr550"); return NULL_RTX; } break; case FRV_BUILTIN_SMASS: case FRV_BUILTIN_SMSSS: case FRV_BUILTIN_SMU: case FRV_BUILTIN_ADDSS: case FRV_BUILTIN_SUBSS: case FRV_BUILTIN_SLASS: case FRV_BUILTIN_SCUTSS: case FRV_BUILTIN_IACCreadll: case FRV_BUILTIN_IACCreadl: case FRV_BUILTIN_IACCsetll: case FRV_BUILTIN_IACCsetl: if (!TARGET_FR405_BUILTINS) { error ("this builtin function is only available" " on the fr405 and fr450"); return NULL_RTX; } break; case FRV_BUILTIN_PREFETCH: if (!TARGET_FR500_FR550_BUILTINS) { error ("this builtin function is only available on the fr500" " and fr550"); return NULL_RTX; } break; case FRV_BUILTIN_MQLCLRHS: case FRV_BUILTIN_MQLMTHS: case FRV_BUILTIN_MQSLLHI: case FRV_BUILTIN_MQSRAHI: if (!TARGET_MEDIA_FR450) { error ("this builtin function is only available on the fr450"); return NULL_RTX; } break; default: break; } /* Expand unique builtins. */ switch (fcode) { case FRV_BUILTIN_MTRAP: return frv_expand_noargs_builtin (CODE_FOR_mtrap); case FRV_BUILTIN_MCLRACC: return frv_expand_mclracc_builtin (exp); case FRV_BUILTIN_MCLRACCA: if (TARGET_ACC_8) return frv_expand_noargs_builtin (CODE_FOR_mclracca8); else return frv_expand_noargs_builtin (CODE_FOR_mclracca4); case FRV_BUILTIN_MRDACC: return frv_expand_mrdacc_builtin (CODE_FOR_mrdacc, exp); case FRV_BUILTIN_MRDACCG: return frv_expand_mrdacc_builtin (CODE_FOR_mrdaccg, exp); case FRV_BUILTIN_MWTACC: return frv_expand_mwtacc_builtin (CODE_FOR_mwtacc, exp); case FRV_BUILTIN_MWTACCG: return frv_expand_mwtacc_builtin (CODE_FOR_mwtaccg, exp); case FRV_BUILTIN_MDPACKH: return frv_expand_mdpackh_builtin (exp, target); case FRV_BUILTIN_IACCreadll: { rtx src = frv_read_iacc_argument (DImode, exp, 0); if (target == 0 || !REG_P (target)) target = gen_reg_rtx (DImode); frv_split_iacc_move (target, src); return target; } case FRV_BUILTIN_IACCreadl: return frv_read_iacc_argument (SImode, exp, 0); case FRV_BUILTIN_IACCsetll: { rtx dest = frv_read_iacc_argument (DImode, exp, 0); rtx src = frv_read_argument (exp, 1); frv_split_iacc_move (dest, force_reg (DImode, src)); return 0; } case FRV_BUILTIN_IACCsetl: { rtx dest = frv_read_iacc_argument (SImode, exp, 0); rtx src = frv_read_argument (exp, 1); emit_move_insn (dest, force_reg (SImode, src)); return 0; } default: break; } /* Expand groups of builtins. */ for (i = 0, d = bdesc_set; i < ARRAY_SIZE (bdesc_set); i++, d++) if (d->code == fcode) return frv_expand_set_builtin (d->icode, exp, target); for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++) if (d->code == fcode) return frv_expand_unop_builtin (d->icode, exp, target); for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++) if (d->code == fcode) return frv_expand_binop_builtin (d->icode, exp, target); for (i = 0, d = bdesc_cut; i < ARRAY_SIZE (bdesc_cut); i++, d++) if (d->code == fcode) return frv_expand_cut_builtin (d->icode, exp, target); for (i = 0, d = bdesc_2argimm; i < ARRAY_SIZE (bdesc_2argimm); i++, d++) if (d->code == fcode) return frv_expand_binopimm_builtin (d->icode, exp, target); for (i = 0, d = bdesc_void2arg; i < ARRAY_SIZE (bdesc_void2arg); i++, d++) if (d->code == fcode) return frv_expand_voidbinop_builtin (d->icode, exp); for (i = 0, d = bdesc_void3arg; i < ARRAY_SIZE (bdesc_void3arg); i++, d++) if (d->code == fcode) return frv_expand_voidtriop_builtin (d->icode, exp); for (i = 0, d = bdesc_voidacc; i < ARRAY_SIZE (bdesc_voidacc); i++, d++) if (d->code == fcode) return frv_expand_voidaccop_builtin (d->icode, exp); for (i = 0, d = bdesc_int_void2arg; i < ARRAY_SIZE (bdesc_int_void2arg); i++, d++) if (d->code == fcode) return frv_expand_int_void2arg (d->icode, exp); for (i = 0, d = bdesc_prefetches; i < ARRAY_SIZE (bdesc_prefetches); i++, d++) if (d->code == fcode) return frv_expand_prefetches (d->icode, exp); for (i = 0, d = bdesc_loads; i < ARRAY_SIZE (bdesc_loads); i++, d++) if (d->code == fcode) return frv_expand_load_builtin (d->icode, TYPE_MODE (TREE_TYPE (exp)), exp, target); for (i = 0, d = bdesc_stores; i < ARRAY_SIZE (bdesc_stores); i++, d++) if (d->code == fcode) return frv_expand_store_builtin (d->icode, exp); return 0; } static bool frv_in_small_data_p (const_tree decl) { HOST_WIDE_INT size; const_tree section_name; /* Don't apply the -G flag to internal compiler structures. We should leave such structures in the main data section, partly for efficiency and partly because the size of some of them (such as C++ typeinfos) is not known until later. */ if (TREE_CODE (decl) != VAR_DECL || DECL_ARTIFICIAL (decl)) return false; /* If we already know which section the decl should be in, see if it's a small data section. */ section_name = DECL_SECTION_NAME (decl); if (section_name) { gcc_assert (TREE_CODE (section_name) == STRING_CST); if (frv_string_begins_with (section_name, ".sdata")) return true; if (frv_string_begins_with (section_name, ".sbss")) return true; return false; } size = int_size_in_bytes (TREE_TYPE (decl)); if (size > 0 && (unsigned HOST_WIDE_INT) size <= g_switch_value) return true; return false; } static bool frv_rtx_costs (rtx x, int code ATTRIBUTE_UNUSED, int outer_code ATTRIBUTE_UNUSED, int *total, bool speed ATTRIBUTE_UNUSED) { if (outer_code == MEM) { /* Don't differentiate between memory addresses. All the ones we accept have equal cost. */ *total = COSTS_N_INSNS (0); return true; } switch (code) { case CONST_INT: /* Make 12-bit integers really cheap. */ if (IN_RANGE_P (INTVAL (x), -2048, 2047)) { *total = 0; return true; } /* Fall through. */ case CONST: case LABEL_REF: case SYMBOL_REF: case CONST_DOUBLE: *total = COSTS_N_INSNS (2); return true; case PLUS: case MINUS: case AND: case IOR: case XOR: case ASHIFT: case ASHIFTRT: case LSHIFTRT: case NOT: case NEG: case COMPARE: if (GET_MODE (x) == SImode) *total = COSTS_N_INSNS (1); else if (GET_MODE (x) == DImode) *total = COSTS_N_INSNS (2); else *total = COSTS_N_INSNS (3); return true; case MULT: if (GET_MODE (x) == SImode) *total = COSTS_N_INSNS (2); else *total = COSTS_N_INSNS (6); /* guess */ return true; case DIV: case UDIV: case MOD: case UMOD: *total = COSTS_N_INSNS (18); return true; case MEM: *total = COSTS_N_INSNS (3); return true; default: return false; } } static void frv_asm_out_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED) { switch_to_section (ctors_section); assemble_align (POINTER_SIZE); if (TARGET_FDPIC) { int ok = frv_assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, 1); gcc_assert (ok); return; } assemble_integer_with_op ("\t.picptr\t", symbol); } static void frv_asm_out_destructor (rtx symbol, int priority ATTRIBUTE_UNUSED) { switch_to_section (dtors_section); assemble_align (POINTER_SIZE); if (TARGET_FDPIC) { int ok = frv_assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, 1); gcc_assert (ok); return; } assemble_integer_with_op ("\t.picptr\t", symbol); } /* Worker function for TARGET_STRUCT_VALUE_RTX. */ static rtx frv_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED, int incoming ATTRIBUTE_UNUSED) { return gen_rtx_REG (Pmode, FRV_STRUCT_VALUE_REGNUM); } #define TLS_BIAS (2048 - 16) /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL. We need to emit DTP-relative relocations. */ static void frv_output_dwarf_dtprel (FILE *file, int size, rtx x) { gcc_assert (size == 4); fputs ("\t.picptr\ttlsmoff(", file); /* We want the unbiased TLS offset, so add the bias to the expression, such that the implicit biasing cancels out. */ output_addr_const (file, plus_constant (x, TLS_BIAS)); fputs (")", file); } #include "gt-frv.h"