URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [mips/] [mips.h] - Rev 298
Go to most recent revision | Compare with Previous | Blame | View Log
/* Definitions of target machine for GNU compiler. MIPS version. Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by A. Lichnewsky (lich@inria.inria.fr). Changed by Michael Meissner (meissner@osf.org). 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and Brendan Eich (brendan@microunity.com). This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config/vxworks-dummy.h" /* MIPS external variables defined in mips.c. */ /* Which processor to schedule for. Since there is no difference between a R2000 and R3000 in terms of the scheduler, we collapse them into just an R3000. The elements of the enumeration must match exactly the cpu attribute in the mips.md machine description. */ enum processor_type { PROCESSOR_R3000, PROCESSOR_4KC, PROCESSOR_4KP, PROCESSOR_5KC, PROCESSOR_5KF, PROCESSOR_20KC, PROCESSOR_24KC, PROCESSOR_24KF2_1, PROCESSOR_24KF1_1, PROCESSOR_74KC, PROCESSOR_74KF2_1, PROCESSOR_74KF1_1, PROCESSOR_74KF3_2, PROCESSOR_LOONGSON_2E, PROCESSOR_LOONGSON_2F, PROCESSOR_M4K, PROCESSOR_OCTEON, PROCESSOR_R3900, PROCESSOR_R6000, PROCESSOR_R4000, PROCESSOR_R4100, PROCESSOR_R4111, PROCESSOR_R4120, PROCESSOR_R4130, PROCESSOR_R4300, PROCESSOR_R4600, PROCESSOR_R4650, PROCESSOR_R5000, PROCESSOR_R5400, PROCESSOR_R5500, PROCESSOR_R7000, PROCESSOR_R8000, PROCESSOR_R9000, PROCESSOR_R10000, PROCESSOR_SB1, PROCESSOR_SB1A, PROCESSOR_SR71000, PROCESSOR_XLR, PROCESSOR_MAX }; /* Costs of various operations on the different architectures. */ struct mips_rtx_cost_data { unsigned short fp_add; unsigned short fp_mult_sf; unsigned short fp_mult_df; unsigned short fp_div_sf; unsigned short fp_div_df; unsigned short int_mult_si; unsigned short int_mult_di; unsigned short int_div_si; unsigned short int_div_di; unsigned short branch_cost; unsigned short memory_latency; }; /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32), ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended to work on a 64-bit machine. */ #define ABI_32 0 #define ABI_N32 1 #define ABI_64 2 #define ABI_EABI 3 #define ABI_O64 4 /* Masks that affect tuning. PTF_AVOID_BRANCHLIKELY Set if it is usually not profitable to use branch-likely instructions for this target, typically because the branches are always predicted taken and so incur a large overhead when not taken. */ #define PTF_AVOID_BRANCHLIKELY 0x1 /* Information about one recognized processor. Defined here for the benefit of TARGET_CPU_CPP_BUILTINS. */ struct mips_cpu_info { /* The 'canonical' name of the processor as far as GCC is concerned. It's typically a manufacturer's prefix followed by a numerical designation. It should be lowercase. */ const char *name; /* The internal processor number that most closely matches this entry. Several processors can have the same value, if there's no difference between them from GCC's point of view. */ enum processor_type cpu; /* The ISA level that the processor implements. */ int isa; /* A mask of PTF_* values. */ unsigned int tune_flags; }; /* Enumerates the setting of the -mcode-readable option. */ enum mips_code_readable_setting { CODE_READABLE_NO, CODE_READABLE_PCREL, CODE_READABLE_YES }; /* Macros to silence warnings about numbers being signed in traditional C and unsigned in ISO C when compiled on 32-bit hosts. */ #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */ #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */ #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */ /* Run-time compilation parameters selecting different hardware subsets. */ /* True if we are generating position-independent VxWorks RTP code. */ #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic) /* True if the output file is marked as ".abicalls; .option pic0" (-call_nonpic). */ #define TARGET_ABICALLS_PIC0 \ (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT) /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */ #define TARGET_ABICALLS_PIC2 \ (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0) /* True if the call patterns should be split into a jalr followed by an instruction to restore $gp. It is only safe to split the load from the call when every use of $gp is explicit. See mips_must_initialize_gp_p for details about how we manage the global pointer. */ #define TARGET_SPLIT_CALLS \ (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed) /* True if we're generating a form of -mabicalls in which we can use operators like %hi and %lo to refer to locally-binding symbols. We can only do this for -mno-shared, and only then if we can use relocation operations instead of assembly macros. It isn't really worth using absolute sequences for 64-bit symbols because GOT accesses are so much shorter. */ #define TARGET_ABSOLUTE_ABICALLS \ (TARGET_ABICALLS \ && !TARGET_SHARED \ && TARGET_EXPLICIT_RELOCS \ && !ABI_HAS_64BIT_SYMBOLS) /* True if we can optimize sibling calls. For simplicity, we only handle cases in which call_insn_operand will reject invalid sibcall addresses. There are two cases in which this isn't true: - TARGET_MIPS16. call_insn_operand accepts constant addresses but there is no direct jump instruction. It isn't worth using sibling calls in this case anyway; they would usually be longer than normal calls. - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand accepts global constants, but all sibcalls must be indirect. */ #define TARGET_SIBCALLS \ (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS)) /* True if we need to use a global offset table to access some symbols. */ #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC) /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */ #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI) /* True if TARGET_USE_GOT and if $gp is a call-saved register. */ #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP) /* True if we should use .cprestore to store to the cprestore slot. We continue to use .cprestore for explicit-reloc code so that JALs inside inline asms will work correctly. */ #define TARGET_CPRESTORE_DIRECTIVE \ (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16) /* True if we can use the J and JAL instructions. */ #define TARGET_ABSOLUTE_JUMPS \ (!flag_pic || TARGET_ABSOLUTE_ABICALLS) /* True if indirect calls must use register class PIC_FN_ADDR_REG. This is true for both the PIC and non-PIC VxWorks RTP modes. */ #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP) /* True if .gpword or .gpdword should be used for switch tables. Although GAS does understand .gpdword, the SGI linker mishandles the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64). We therefore disable GP-relative switch tables for n64 on IRIX targets. */ #define TARGET_GPWORD \ (TARGET_ABICALLS \ && !TARGET_ABSOLUTE_ABICALLS \ && !(mips_abi == ABI_64 && TARGET_IRIX)) /* True if the output must have a writable .eh_frame. See ASM_PREFERRED_EH_DATA_FORMAT for details. */ #ifdef HAVE_LD_PERSONALITY_RELAXATION #define TARGET_WRITABLE_EH_FRAME 0 #else #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED) #endif /* Generate mips16 code */ #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0) /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */ #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32) /* Generate mips16e register save/restore sequences. */ #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32) /* True if we're generating a form of MIPS16 code in which general text loads are allowed. */ #define TARGET_MIPS16_TEXT_LOADS \ (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES) /* True if we're generating a form of MIPS16 code in which PC-relative loads are allowed. */ #define TARGET_MIPS16_PCREL_LOADS \ (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL) /* Generic ISA defines. */ #define ISA_MIPS1 (mips_isa == 1) #define ISA_MIPS2 (mips_isa == 2) #define ISA_MIPS3 (mips_isa == 3) #define ISA_MIPS4 (mips_isa == 4) #define ISA_MIPS32 (mips_isa == 32) #define ISA_MIPS32R2 (mips_isa == 33) #define ISA_MIPS64 (mips_isa == 64) #define ISA_MIPS64R2 (mips_isa == 65) /* Architecture target defines. */ #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E) #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F) #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F) #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900) #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000) #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120) #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130) #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400) #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500) #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000) #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000) #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON) #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \ || mips_arch == PROCESSOR_SB1A) #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000) /* Scheduling target defines. */ #define TUNE_20KC (mips_tune == PROCESSOR_20KC) #define TUNE_24K (mips_tune == PROCESSOR_24KC \ || mips_tune == PROCESSOR_24KF2_1 \ || mips_tune == PROCESSOR_24KF1_1) #define TUNE_74K (mips_tune == PROCESSOR_74KC \ || mips_tune == PROCESSOR_74KF2_1 \ || mips_tune == PROCESSOR_74KF1_1 \ || mips_tune == PROCESSOR_74KF3_2) #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \ || mips_tune == PROCESSOR_LOONGSON_2F) #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000) #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900) #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000) #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120) #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130) #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000) #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400) #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500) #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000) #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000) #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000) #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON) #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \ || mips_tune == PROCESSOR_SB1A) /* Whether vector modes and intrinsics for ST Microelectronics Loongson-2E/2F processors should be enabled. In o32 pairs of floating-point registers provide 64-bit values. */ #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \ && TARGET_LOONGSON_2EF) /* True if the pre-reload scheduler should try to create chains of multiply-add or multiply-subtract instructions. For example, suppose we have: t1 = a * b t2 = t1 + c * d t3 = e * f t4 = t3 - g * h t1 will have a higher priority than t2 and t3 will have a higher priority than t4. However, before reload, there is no dependence between t1 and t3, and they can often have similar priorities. The scheduler will then tend to prefer: t1 = a * b t3 = e * f t2 = t1 + c * d t4 = t3 - g * h which stops us from making full use of macc/madd-style instructions. This sort of situation occurs frequently in Fourier transforms and in unrolled loops. To counter this, the TUNE_MACC_CHAINS code will reorder the ready queue so that chained multiply-add and multiply-subtract instructions appear ahead of any other instruction that is likely to clobber lo. In the example above, if t2 and t3 become ready at the same time, the code ensures that t2 is scheduled first. Multiply-accumulate instructions are a bigger win for some targets than others, so this macro is defined on an opt-in basis. */ #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \ || TUNE_MIPS4120 \ || TUNE_MIPS4130 \ || TUNE_24K) #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64) #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64) /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is directly accessible, while the command-line options select TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI in use. */ #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16) #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16) /* False if SC acts as a memory barrier with respect to itself, otherwise a SYNC will be emitted after SC for atomic operations that require ordering between the SC and following loads and stores. It does not tell anything about ordering of loads and stores prior to and following the SC, only about the SC itself and those loads and stores follow it. */ #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON) /* IRIX specific stuff. */ #define TARGET_IRIX 0 #define TARGET_IRIX6 0 /* Define preprocessor macros for the -march and -mtune options. PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected processor. If INFO's canonical name is "foo", define PREFIX to be "foo", and define an additional macro PREFIX_FOO. */ #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \ do \ { \ char *macro, *p; \ \ macro = concat ((PREFIX), "_", (INFO)->name, NULL); \ for (p = macro; *p != 0; p++) \ *p = TOUPPER (*p); \ \ builtin_define (macro); \ builtin_define_with_value ((PREFIX), (INFO)->name, 1); \ free (macro); \ } \ while (0) /* Target CPU builtins. */ #define TARGET_CPU_CPP_BUILTINS() \ do \ { \ /* Everyone but IRIX defines this to mips. */ \ if (!TARGET_IRIX) \ builtin_assert ("machine=mips"); \ \ builtin_assert ("cpu=mips"); \ builtin_define ("__mips__"); \ builtin_define ("_mips"); \ \ /* We do this here because __mips is defined below and so we \ can't use builtin_define_std. We don't ever want to define \ "mips" for VxWorks because some of the VxWorks headers \ construct include filenames from a root directory macro, \ an architecture macro and a filename, where the architecture \ macro expands to 'mips'. If we define 'mips' to 1, the \ architecture macro expands to 1 as well. */ \ if (!flag_iso && !TARGET_VXWORKS) \ builtin_define ("mips"); \ \ if (TARGET_64BIT) \ builtin_define ("__mips64"); \ \ if (!TARGET_IRIX) \ { \ /* Treat _R3000 and _R4000 like register-size \ defines, which is how they've historically \ been used. */ \ if (TARGET_64BIT) \ { \ builtin_define_std ("R4000"); \ builtin_define ("_R4000"); \ } \ else \ { \ builtin_define_std ("R3000"); \ builtin_define ("_R3000"); \ } \ } \ if (TARGET_FLOAT64) \ builtin_define ("__mips_fpr=64"); \ else \ builtin_define ("__mips_fpr=32"); \ \ if (mips_base_mips16) \ builtin_define ("__mips16"); \ \ if (TARGET_MIPS3D) \ builtin_define ("__mips3d"); \ \ if (TARGET_SMARTMIPS) \ builtin_define ("__mips_smartmips"); \ \ if (TARGET_DSP) \ { \ builtin_define ("__mips_dsp"); \ if (TARGET_DSPR2) \ { \ builtin_define ("__mips_dspr2"); \ builtin_define ("__mips_dsp_rev=2"); \ } \ else \ builtin_define ("__mips_dsp_rev=1"); \ } \ \ MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \ MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \ \ if (ISA_MIPS1) \ { \ builtin_define ("__mips=1"); \ builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \ } \ else if (ISA_MIPS2) \ { \ builtin_define ("__mips=2"); \ builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \ } \ else if (ISA_MIPS3) \ { \ builtin_define ("__mips=3"); \ builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \ } \ else if (ISA_MIPS4) \ { \ builtin_define ("__mips=4"); \ builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \ } \ else if (ISA_MIPS32) \ { \ builtin_define ("__mips=32"); \ builtin_define ("__mips_isa_rev=1"); \ builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \ } \ else if (ISA_MIPS32R2) \ { \ builtin_define ("__mips=32"); \ builtin_define ("__mips_isa_rev=2"); \ builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \ } \ else if (ISA_MIPS64) \ { \ builtin_define ("__mips=64"); \ builtin_define ("__mips_isa_rev=1"); \ builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \ } \ else if (ISA_MIPS64R2) \ { \ builtin_define ("__mips=64"); \ builtin_define ("__mips_isa_rev=2"); \ builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \ } \ \ switch (mips_abi) \ { \ case ABI_32: \ builtin_define ("_ABIO32=1"); \ builtin_define ("_MIPS_SIM=_ABIO32"); \ break; \ \ case ABI_N32: \ builtin_define ("_ABIN32=2"); \ builtin_define ("_MIPS_SIM=_ABIN32"); \ break; \ \ case ABI_64: \ builtin_define ("_ABI64=3"); \ builtin_define ("_MIPS_SIM=_ABI64"); \ break; \ \ case ABI_O64: \ builtin_define ("_ABIO64=4"); \ builtin_define ("_MIPS_SIM=_ABIO64"); \ break; \ } \ \ builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \ builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \ builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \ builtin_define_with_int_value ("_MIPS_FPSET", \ 32 / MAX_FPRS_PER_FMT); \ \ /* These defines reflect the ABI in use, not whether the \ FPU is directly accessible. */ \ if (TARGET_HARD_FLOAT_ABI) \ builtin_define ("__mips_hard_float"); \ else \ builtin_define ("__mips_soft_float"); \ \ if (TARGET_SINGLE_FLOAT) \ builtin_define ("__mips_single_float"); \ \ if (TARGET_PAIRED_SINGLE_FLOAT) \ builtin_define ("__mips_paired_single_float"); \ \ if (TARGET_BIG_ENDIAN) \ { \ builtin_define_std ("MIPSEB"); \ builtin_define ("_MIPSEB"); \ } \ else \ { \ builtin_define_std ("MIPSEL"); \ builtin_define ("_MIPSEL"); \ } \ \ /* Whether calls should go through $25. The separate __PIC__ \ macro indicates whether abicalls code might use a GOT. */ \ if (TARGET_ABICALLS) \ builtin_define ("__mips_abicalls"); \ \ /* Whether Loongson vector modes are enabled. */ \ if (TARGET_LOONGSON_VECTORS) \ builtin_define ("__mips_loongson_vector_rev"); \ \ /* Historical Octeon macro. */ \ if (TARGET_OCTEON) \ builtin_define ("__OCTEON__"); \ \ /* Macros dependent on the C dialect. */ \ if (preprocessing_asm_p ()) \ { \ builtin_define_std ("LANGUAGE_ASSEMBLY"); \ builtin_define ("_LANGUAGE_ASSEMBLY"); \ } \ else if (c_dialect_cxx ()) \ { \ builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \ builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \ builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \ } \ else \ { \ builtin_define_std ("LANGUAGE_C"); \ builtin_define ("_LANGUAGE_C"); \ } \ if (c_dialect_objc ()) \ { \ builtin_define ("_LANGUAGE_OBJECTIVE_C"); \ builtin_define ("__LANGUAGE_OBJECTIVE_C"); \ /* Bizarre, but needed at least for Irix. */ \ builtin_define_std ("LANGUAGE_C"); \ builtin_define ("_LANGUAGE_C"); \ } \ \ if (mips_abi == ABI_EABI) \ builtin_define ("__mips_eabi"); \ \ if (TARGET_CACHE_BUILTIN) \ builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \ } \ while (0) /* Default target_flags if no switches are specified */ #ifndef TARGET_DEFAULT #define TARGET_DEFAULT 0 #endif #ifndef TARGET_CPU_DEFAULT #define TARGET_CPU_DEFAULT 0 #endif #ifndef TARGET_ENDIAN_DEFAULT #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN #endif #ifndef TARGET_FP_EXCEPTIONS_DEFAULT #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS #endif /* 'from-abi' makes a good default: you get whatever the ABI requires. */ #ifndef MIPS_ISA_DEFAULT #ifndef MIPS_CPU_STRING_DEFAULT #define MIPS_CPU_STRING_DEFAULT "from-abi" #endif #endif #ifdef IN_LIBGCC2 #undef TARGET_64BIT /* Make this compile time constant for libgcc2 */ #ifdef __mips64 #define TARGET_64BIT 1 #else #define TARGET_64BIT 0 #endif #endif /* IN_LIBGCC2 */ /* Force the call stack unwinders in unwind.inc not to be MIPS16 code when compiled with hardware floating point. This is because MIPS16 code cannot save and restore the floating-point registers, which is important if in a mixed MIPS16/non-MIPS16 environment. */ #ifdef IN_LIBGCC2 #if __mips_hard_float #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__)) #endif #endif /* IN_LIBGCC2 */ #define TARGET_LIBGCC_SDATA_SECTION ".sdata" #ifndef MULTILIB_ENDIAN_DEFAULT #if TARGET_ENDIAN_DEFAULT == 0 #define MULTILIB_ENDIAN_DEFAULT "EL" #else #define MULTILIB_ENDIAN_DEFAULT "EB" #endif #endif #ifndef MULTILIB_ISA_DEFAULT # if MIPS_ISA_DEFAULT == 1 # define MULTILIB_ISA_DEFAULT "mips1" # else # if MIPS_ISA_DEFAULT == 2 # define MULTILIB_ISA_DEFAULT "mips2" # else # if MIPS_ISA_DEFAULT == 3 # define MULTILIB_ISA_DEFAULT "mips3" # else # if MIPS_ISA_DEFAULT == 4 # define MULTILIB_ISA_DEFAULT "mips4" # else # if MIPS_ISA_DEFAULT == 32 # define MULTILIB_ISA_DEFAULT "mips32" # else # if MIPS_ISA_DEFAULT == 33 # define MULTILIB_ISA_DEFAULT "mips32r2" # else # if MIPS_ISA_DEFAULT == 64 # define MULTILIB_ISA_DEFAULT "mips64" # else # if MIPS_ISA_DEFAULT == 65 # define MULTILIB_ISA_DEFAULT "mips64r2" # else # define MULTILIB_ISA_DEFAULT "mips1" # endif # endif # endif # endif # endif # endif # endif # endif #endif #ifndef MIPS_ABI_DEFAULT #define MIPS_ABI_DEFAULT ABI_32 #endif /* Use the most portable ABI flag for the ASM specs. */ #if MIPS_ABI_DEFAULT == ABI_32 #define MULTILIB_ABI_DEFAULT "mabi=32" #endif #if MIPS_ABI_DEFAULT == ABI_O64 #define MULTILIB_ABI_DEFAULT "mabi=o64" #endif #if MIPS_ABI_DEFAULT == ABI_N32 #define MULTILIB_ABI_DEFAULT "mabi=n32" #endif #if MIPS_ABI_DEFAULT == ABI_64 #define MULTILIB_ABI_DEFAULT "mabi=64" #endif #if MIPS_ABI_DEFAULT == ABI_EABI #define MULTILIB_ABI_DEFAULT "mabi=eabi" #endif #ifndef MULTILIB_DEFAULTS #define MULTILIB_DEFAULTS \ { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT } #endif /* We must pass -EL to the linker by default for little endian embedded targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the linker will default to using big-endian output files. The OUTPUT_FORMAT line must be in the linker script, otherwise -EB/-EL will not work. */ #ifndef ENDIAN_SPEC #if TARGET_ENDIAN_DEFAULT == 0 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}" #else #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}" #endif #endif /* A spec condition that matches all non-mips16 -mips arguments. */ #define MIPS_ISA_LEVEL_OPTION_SPEC \ "mips1|mips2|mips3|mips4|mips32*|mips64*" /* A spec condition that matches all non-mips16 architecture arguments. */ #define MIPS_ARCH_OPTION_SPEC \ MIPS_ISA_LEVEL_OPTION_SPEC "|march=*" /* A spec that infers a -mips argument from an -march argument, or injects the default if no architecture is specified. */ #define MIPS_ISA_LEVEL_SPEC \ "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \ %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \ %{march=mips2|march=r6000:-mips2} \ %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \ %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \ |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \ %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \ %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \ |march=34k*|march=74k*|march=1004k*: -mips32r2} \ %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \ |march=xlr: -mips64} \ %{march=mips64r2|march=octeon: -mips64r2} \ %{!march=*: -" MULTILIB_ISA_DEFAULT "}}" /* A spec that infers a -mhard-float or -msoft-float setting from an -march argument. Note that soft-float and hard-float code are not link-compatible. */ #define MIPS_ARCH_FLOAT_SPEC \ "%{mhard-float|msoft-float|march=mips*:; \ march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \ |march=34kc|march=74kc|march=1004kc|march=5kc \ |march=octeon|march=xlr: -msoft-float; \ march=*: -mhard-float}" /* A spec condition that matches 32-bit options. It only works if MIPS_ISA_LEVEL_SPEC has been applied. */ #define MIPS_32BIT_OPTION_SPEC \ "mips1|mips2|mips32*|mgp32" #if MIPS_ABI_DEFAULT == ABI_O64 \ || MIPS_ABI_DEFAULT == ABI_N32 \ || MIPS_ABI_DEFAULT == ABI_64 #define OPT_ARCH64 "mabi=32|mgp32:;" #define OPT_ARCH32 "mabi=32|mgp32" #else #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64" #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;" #endif /* Support for a compile-time default CPU, et cetera. The rules are: --with-arch is ignored if -march is specified or a -mips is specified (other than -mips16); likewise --with-arch-32 and --with-arch-64. --with-tune is ignored if -mtune is specified; likewise --with-tune-32 and --with-tune-64. --with-abi is ignored if -mabi is specified. --with-float is ignored if -mhard-float or -msoft-float are specified. --with-divide is ignored if -mdivide-traps or -mdivide-breaks are specified. */ #define OPTION_DEFAULT_SPECS \ {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \ {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \ {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \ {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \ {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \ {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \ {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \ {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \ {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \ {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \ {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \ {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" } /* A spec that infers the -mdsp setting from an -march argument. */ #define BASE_DRIVER_SELF_SPECS \ "%{!mno-dsp:%{march=24ke*|march=34k*|march=74k*|march=1004k*: -mdsp}}" #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \ && ISA_HAS_COND_TRAP) #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16) /* True if the ABI can only work with 64-bit integer registers. We generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but otherwise floating-point registers must also be 64-bit. */ #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64) /* Likewise for 32-bit regs. */ #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32) /* True if the file format uses 64-bit symbols. At present, this is only true for n64, which uses 64-bit ELF. */ #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64) /* True if symbols are 64 bits wide. This is usually determined by the ABI's file format, but it can be overridden by -msym32. Note that overriding the size with -msym32 changes the ABI of relocatable objects, although it doesn't change the ABI of a fully-linked object. */ #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS && !TARGET_SYM32) /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */ #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \ || ISA_MIPS4 \ || ISA_MIPS64 \ || ISA_MIPS64R2) /* ISA has branch likely instructions (e.g. mips2). */ /* Disable branchlikely for tx39 until compare rewrite. They haven't been generated up to this point. */ #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1) /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */ #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \ || TARGET_MIPS5400 \ || TARGET_MIPS5500 \ || TARGET_MIPS7000 \ || TARGET_MIPS9000 \ || TARGET_MAD \ || ISA_MIPS32 \ || ISA_MIPS32R2 \ || ISA_MIPS64 \ || ISA_MIPS64R2) \ && !TARGET_MIPS16) /* ISA has a three-operand multiplication instruction. */ #define ISA_HAS_DMUL3 (TARGET_64BIT \ && TARGET_OCTEON \ && !TARGET_MIPS16) /* ISA has the floating-point conditional move instructions introduced in mips4. */ #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \ || ISA_MIPS32 \ || ISA_MIPS32R2 \ || ISA_MIPS64 \ || ISA_MIPS64R2) \ && !TARGET_MIPS5500 \ && !TARGET_MIPS16) /* ISA has the integer conditional move instructions introduced in mips4 and ST Loongson 2E/2F. */ #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE || TARGET_LOONGSON_2EF) /* ISA has LDC1 and SDC1. */ #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 && !TARGET_MIPS16) /* ISA has the mips4 FP condition code instructions: FP-compare to CC, branch on CC, and move (both FP and non-FP) on CC. */ #define ISA_HAS_8CC (ISA_MIPS4 \ || ISA_MIPS32 \ || ISA_MIPS32R2 \ || ISA_MIPS64 \ || ISA_MIPS64R2) /* This is a catch all for other mips4 instructions: indexed load, the FP madd and msub instructions, and the FP recip and recip sqrt instructions. */ #define ISA_HAS_FP4 ((ISA_MIPS4 \ || (ISA_MIPS32R2 && TARGET_FLOAT64) \ || ISA_MIPS64 \ || ISA_MIPS64R2) \ && !TARGET_MIPS16) /* ISA has paired-single instructions. */ #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2) /* ISA has conditional trap instructions. */ #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \ && !TARGET_MIPS16) /* ISA has integer multiply-accumulate instructions, madd and msub. */ #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \ || ISA_MIPS32R2 \ || ISA_MIPS64 \ || ISA_MIPS64R2) \ && !TARGET_MIPS16) /* Integer multiply-accumulate instructions should be generated. */ #define GENERATE_MADD_MSUB (ISA_HAS_MADD_MSUB && !TUNE_74K) /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */ #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */ #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF /* ISA has floating-point nmadd and nmsub instructions 'd = -((a * b) [+-] c)'. */ #define ISA_HAS_NMADD4_NMSUB4(MODE) \ ((ISA_MIPS4 \ || (ISA_MIPS32R2 && (MODE) == V2SFmode) \ || ISA_MIPS64 \ || ISA_MIPS64R2) \ && (!TARGET_MIPS5400 || TARGET_MAD) \ && !TARGET_MIPS16) /* ISA has floating-point nmadd and nmsub instructions 'c = -((a * b) [+-] c)'. */ #define ISA_HAS_NMADD3_NMSUB3(MODE) \ TARGET_LOONGSON_2EF /* ISA has count leading zeroes/ones instruction (not implemented). */ #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \ || ISA_MIPS32R2 \ || ISA_MIPS64 \ || ISA_MIPS64R2) \ && !TARGET_MIPS16) /* ISA has three operand multiply instructions that put the high part in an accumulator: mulhi or mulhiu. */ #define ISA_HAS_MULHI ((TARGET_MIPS5400 \ || TARGET_MIPS5500 \ || TARGET_SR71K) \ && !TARGET_MIPS16) /* ISA has three operand multiply instructions that negates the result and puts the result in an accumulator. */ #define ISA_HAS_MULS ((TARGET_MIPS5400 \ || TARGET_MIPS5500 \ || TARGET_SR71K) \ && !TARGET_MIPS16) /* ISA has three operand multiply instructions that subtracts the result from a 4th operand and puts the result in an accumulator. */ #define ISA_HAS_MSAC ((TARGET_MIPS5400 \ || TARGET_MIPS5500 \ || TARGET_SR71K) \ && !TARGET_MIPS16) /* ISA has three operand multiply instructions that the result from a 4th operand and puts the result in an accumulator. */ #define ISA_HAS_MACC ((TARGET_MIPS4120 \ || TARGET_MIPS4130 \ || TARGET_MIPS5400 \ || TARGET_MIPS5500 \ || TARGET_SR71K) \ && !TARGET_MIPS16) /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */ #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \ || TARGET_MIPS4130) \ && !TARGET_MIPS16) /* ISA has the "ror" (rotate right) instructions. */ #define ISA_HAS_ROR ((ISA_MIPS32R2 \ || ISA_MIPS64R2 \ || TARGET_MIPS5400 \ || TARGET_MIPS5500 \ || TARGET_SR71K \ || TARGET_SMARTMIPS) \ && !TARGET_MIPS16) /* ISA has data prefetch instructions. This controls use of 'pref'. */ #define ISA_HAS_PREFETCH ((ISA_MIPS4 \ || TARGET_LOONGSON_2EF \ || ISA_MIPS32 \ || ISA_MIPS32R2 \ || ISA_MIPS64 \ || ISA_MIPS64R2) \ && !TARGET_MIPS16) /* ISA has data indexed prefetch instructions. This controls use of 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT. (prefx is a cop1x instruction, so can only be used if FP is enabled.) */ #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \ || ISA_MIPS32R2 \ || ISA_MIPS64 \ || ISA_MIPS64R2) \ && !TARGET_MIPS16) /* True if trunc.w.s and trunc.w.d are real (not synthetic) instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d also requires TARGET_DOUBLE_FLOAT. */ #define ISA_HAS_TRUNC_W (!ISA_MIPS1) /* ISA includes the MIPS32r2 seb and seh instructions. */ #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \ || ISA_MIPS64R2) \ && !TARGET_MIPS16) /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */ #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \ || ISA_MIPS64R2) \ && !TARGET_MIPS16) /* ISA has instructions for accessing top part of 64-bit fp regs. */ #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \ && (ISA_MIPS32R2 \ || ISA_MIPS64R2)) /* ISA has lwxs instruction (load w/scaled index address. */ #define ISA_HAS_LWXS (TARGET_SMARTMIPS && !TARGET_MIPS16) /* The DSP ASE is available. */ #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16) /* Revision 2 of the DSP ASE is available. */ #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16) /* True if the result of a load is not available to the next instruction. A nop will then be needed between instructions like "lw $4,..." and "addiu $4,$4,1". */ #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \ && !TARGET_MIPS3900 \ && !TARGET_MIPS16) /* Likewise mtc1 and mfc1. */ #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \ && !TARGET_LOONGSON_2EF) /* Likewise floating-point comparisons. */ #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \ && !TARGET_LOONGSON_2EF) /* True if mflo and mfhi can be immediately followed by instructions which write to the HI and LO registers. According to MIPS specifications, MIPS ISAs I, II, and III need (at least) two instructions between the reads of HI/LO and instructions which write them, and later ISAs do not. Contradicting the MIPS specifications, some MIPS IV processor user manuals (e.g. the UM for the NEC Vr5000) document needing the instructions between HI/LO reads and writes, as well. Therefore, we declare only MIPS32, MIPS64 and later ISAs to have the interlocks, plus any specific earlier-ISA CPUs for which CPU documentation declares that the instructions are really interlocked. */ #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \ || ISA_MIPS32R2 \ || ISA_MIPS64 \ || ISA_MIPS64R2 \ || TARGET_MIPS5500 \ || TARGET_LOONGSON_2EF) /* ISA includes synci, jr.hb and jalr.hb. */ #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \ || ISA_MIPS64R2) \ && !TARGET_MIPS16) /* ISA includes sync. */ #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16) #define GENERATE_SYNC \ (target_flags_explicit & MASK_LLSC \ ? TARGET_LLSC && !TARGET_MIPS16 \ : ISA_HAS_SYNC) /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC instructions. */ #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS16) #define GENERATE_LL_SC \ (target_flags_explicit & MASK_LLSC \ ? TARGET_LLSC && !TARGET_MIPS16 \ : ISA_HAS_LL_SC) /* ISA includes the baddu instruction. */ #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16) /* ISA includes the bbit* instructions. */ #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16) /* ISA includes the cins instruction. */ #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16) /* ISA includes the exts instruction. */ #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16) /* ISA includes the seq and sne instructions. */ #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16) /* ISA includes the pop instruction. */ #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16) /* The CACHE instruction is available in non-MIPS16 code. */ #define TARGET_CACHE_BUILTIN (mips_isa >= 3) /* The CACHE instruction is available. */ #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16) /* Add -G xx support. */ #undef SWITCH_TAKES_ARG #define SWITCH_TAKES_ARG(CHAR) \ (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G') #define OVERRIDE_OPTIONS mips_override_options () #define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage () /* Show we can debug even without a frame pointer. */ #define CAN_DEBUG_WITHOUT_FP /* Tell collect what flags to pass to nm. */ #ifndef NM_FLAGS #define NM_FLAGS "-Bn" #endif /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options to the assembler. It may be overridden by subtargets. */ #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC #define SUBTARGET_ASM_OPTIMIZING_SPEC "\ %{noasmopt:-O0} \ %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}" #endif /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to the assembler. It may be overridden by subtargets. Beginning with gas 2.13, -mdebug must be passed to correctly handle COFF debugging info. */ #ifndef SUBTARGET_ASM_DEBUGGING_SPEC #define SUBTARGET_ASM_DEBUGGING_SPEC "\ %{g} %{g0} %{g1} %{g2} %{g3} \ %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \ %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \ %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \ %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \ %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}" #endif /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be overridden by subtargets. */ #ifndef SUBTARGET_ASM_SPEC #define SUBTARGET_ASM_SPEC "" #endif #undef ASM_SPEC #define ASM_SPEC "\ %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \ %{mips32*} %{mips64*} \ %{mips16} %{mno-mips16:-no-mips16} \ %{mips3d} %{mno-mips3d:-no-mips3d} \ %{mdmx} %{mno-mdmx:-no-mdmx} \ %{mdsp} %{mno-dsp} \ %{mdspr2} %{mno-dspr2} \ %{msmartmips} %{mno-smartmips} \ %{mmt} %{mno-mt} \ %{mfix-vr4120} %{mfix-vr4130} \ %(subtarget_asm_optimizing_spec) \ %(subtarget_asm_debugging_spec) \ %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \ %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \ %{mfp32} %{mfp64} \ %{mshared} %{mno-shared} \ %{msym32} %{mno-sym32} \ %{mtune=*} %{v} \ %(subtarget_asm_spec)" /* Extra switches sometimes passed to the linker. */ /* ??? The bestGnum will never be passed to the linker, because the gcc driver will interpret it as a -b option. */ #ifndef LINK_SPEC #define LINK_SPEC "\ %(endian_spec) \ %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \ %{bestGnum} %{shared} %{non_shared}" #endif /* LINK_SPEC defined */ /* Specs for the compiler proper */ /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be overridden by subtargets. */ #ifndef SUBTARGET_CC1_SPEC #define SUBTARGET_CC1_SPEC "" #endif /* CC1_SPEC is the set of arguments to pass to the compiler proper. */ #undef CC1_SPEC #define CC1_SPEC "\ %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \ %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \ %{save-temps: } \ %(subtarget_cc1_spec)" /* Preprocessor specs. */ /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be overridden by subtargets. */ #ifndef SUBTARGET_CPP_SPEC #define SUBTARGET_CPP_SPEC "" #endif #define CPP_SPEC "%(subtarget_cpp_spec)" /* This macro defines names of additional specifications to put in the specs that can be used in various specifications like CC1_SPEC. Its definition is an initializer with a subgrouping for each command option. Each subgrouping contains a string constant, that defines the specification name, and a string constant that used by the GCC driver program. Do not define this macro if it does not need to do anything. */ #define EXTRA_SPECS \ { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \ { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \ { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \ { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \ { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \ { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \ { "endian_spec", ENDIAN_SPEC }, \ SUBTARGET_EXTRA_SPECS #ifndef SUBTARGET_EXTRA_SPECS #define SUBTARGET_EXTRA_SPECS #endif #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */ #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */ #ifndef PREFERRED_DEBUGGING_TYPE #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG #endif /* The size of DWARF addresses should be the same as the size of symbols in the target file format. They shouldn't depend on things like -msym32, because many DWARF consumers do not allow the mixture of address sizes that one would then get from linking -msym32 code with -msym64 code. Note that the default POINTER_SIZE test is not appropriate for MIPS. EABI64 has 64-bit pointers but uses 32-bit ELF. */ #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4) /* By default, turn on GDB extensions. */ #define DEFAULT_GDB_EXTENSIONS 1 /* Local compiler-generated symbols must have a prefix that the assembler understands. By default, this is $, although some targets (e.g., NetBSD-ELF) need to override this. */ #ifndef LOCAL_LABEL_PREFIX #define LOCAL_LABEL_PREFIX "$" #endif /* By default on the mips, external symbols do not have an underscore prepended, but some targets (e.g., NetBSD) require this. */ #ifndef USER_LABEL_PREFIX #define USER_LABEL_PREFIX "" #endif /* On Sun 4, this limit is 2048. We use 1500 to be safe, since the length can run past this up to a continuation point. */ #undef DBX_CONTIN_LENGTH #define DBX_CONTIN_LENGTH 1500 /* How to renumber registers for dbx and gdb. */ #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO] /* The mapping from gcc register number to DWARF 2 CFA column number. */ #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO] /* The DWARF 2 CFA column which tracks the return address. */ #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM /* Before the prologue, RA lives in r31. */ #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM) /* Describe how we implement __builtin_eh_return. */ #define EH_RETURN_DATA_REGNO(N) \ ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM) #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3) #define EH_USES(N) mips_eh_uses (N) /* Offsets recorded in opcodes are a multiple of this alignment factor. The default for this in 64-bit mode is 8, which causes problems with SFmode register saves. */ #define DWARF_CIE_DATA_ALIGNMENT -4 /* Correct the offset of automatic variables and arguments. Note that the MIPS debug format wants all automatic variables and arguments to be in terms of the virtual frame pointer (stack pointer before any adjustment in the function), while the MIPS 3.0 linker wants the frame pointer to be the stack pointer after the initial adjustment. */ #define DEBUGGER_AUTO_OFFSET(X) \ mips_debugger_offset (X, (HOST_WIDE_INT) 0) #define DEBUGGER_ARG_OFFSET(OFFSET, X) \ mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET) /* Target machine storage layout */ #define BITS_BIG_ENDIAN 0 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) /* Define this to set the endianness to use in libgcc2.c, which can not depend on target_flags. */ #if !defined(MIPSEL) && !defined(__MIPSEL__) #define LIBGCC2_WORDS_BIG_ENDIAN 1 #else #define LIBGCC2_WORDS_BIG_ENDIAN 0 #endif #define MAX_BITS_PER_WORD 64 /* Width of a word, in units (bytes). */ #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) #ifndef IN_LIBGCC2 #define MIN_UNITS_PER_WORD 4 #endif /* For MIPS, width of a floating point register. */ #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4) /* The number of consecutive floating-point registers needed to store the largest format supported by the FPU. */ #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2) /* The number of consecutive floating-point registers needed to store the smallest format supported by the FPU. */ #define MIN_FPRS_PER_FMT \ (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \ ? 1 : MAX_FPRS_PER_FMT) /* The largest size of value that can be held in floating-point registers and moved with a single instruction. */ #define UNITS_PER_HWFPVALUE \ (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG) /* The largest size of value that can be held in floating-point registers. */ #define UNITS_PER_FPVALUE \ (TARGET_SOFT_FLOAT_ABI ? 0 \ : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \ : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT) /* The number of bytes in a double. */ #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT) #define UNITS_PER_SIMD_WORD(MODE) \ (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD) /* Set the sizes of the core types. */ #define SHORT_TYPE_SIZE 16 #define INT_TYPE_SIZE 32 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32) #define LONG_LONG_TYPE_SIZE 64 #define FLOAT_TYPE_SIZE 32 #define DOUBLE_TYPE_SIZE 64 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64) /* Define the sizes of fixed-point types. */ #define SHORT_FRACT_TYPE_SIZE 8 #define FRACT_TYPE_SIZE 16 #define LONG_FRACT_TYPE_SIZE 32 #define LONG_LONG_FRACT_TYPE_SIZE 64 #define SHORT_ACCUM_TYPE_SIZE 16 #define ACCUM_TYPE_SIZE 32 #define LONG_ACCUM_TYPE_SIZE 64 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC doesn't support 128-bit integers for MIPS32 currently. */ #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64) /* long double is not a fixed mode, but the idea is that, if we support long double, we also want a 128-bit integer type. */ #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE #ifdef IN_LIBGCC2 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \ || (defined _ABI64 && _MIPS_SIM == _ABI64) # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128 # else # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64 # endif #endif /* Width in bits of a pointer. */ #ifndef POINTER_SIZE #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32) #endif /* Allocation boundary (in *bits*) for storing arguments in argument list. */ #define PARM_BOUNDARY BITS_PER_WORD /* Allocation boundary (in *bits*) for the code of a function. */ #define FUNCTION_BOUNDARY 32 /* Alignment of field after `int : 0' in a structure. */ #define EMPTY_FIELD_BOUNDARY 32 /* Every structure's size must be a multiple of this. */ /* 8 is observed right on a DECstation and on riscos 4.02. */ #define STRUCTURE_SIZE_BOUNDARY 8 /* There is no point aligning anything to a rounder boundary than this. */ #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE /* All accesses must be aligned. */ #define STRICT_ALIGNMENT 1 /* Define this if you wish to imitate the way many other C compilers handle alignment of bitfields and the structures that contain them. The behavior is that the type written for a bit-field (`int', `short', or other integer type) imposes an alignment for the entire structure, as if the structure really did contain an ordinary field of that type. In addition, the bit-field is placed within the structure so that it would fit within such a field, not crossing a boundary for it. Thus, on most machines, a bit-field whose type is written as `int' would not cross a four-byte boundary, and would force four-byte alignment for the whole structure. (The alignment used may not be four bytes; it is controlled by the other alignment parameters.) If the macro is defined, its definition should be a C expression; a nonzero value for the expression enables this behavior. */ #define PCC_BITFIELD_TYPE_MATTERS 1 /* If defined, a C expression to compute the alignment given to a constant that is being placed in memory. CONSTANT is the constant and ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object. If this macro is not defined, then ALIGN is used. The typical use of this macro is to increase alignment for string constants to be word aligned so that `strcpy' calls that copy constants can be done inline. */ #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) /* If defined, a C expression to compute the alignment for a static variable. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object. If this macro is not defined, then ALIGN is used. One use of this macro is to increase alignment of medium-size data to make it all fit in fewer cache lines. Another is to cause character arrays to be word-aligned so that `strcpy' calls that copy constants to character arrays can be done inline. */ #undef DATA_ALIGNMENT #define DATA_ALIGNMENT(TYPE, ALIGN) \ ((((ALIGN) < BITS_PER_WORD) \ && (TREE_CODE (TYPE) == ARRAY_TYPE \ || TREE_CODE (TYPE) == UNION_TYPE \ || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN)) /* We need this for the same reason as DATA_ALIGNMENT, namely to cause character arrays to be word-aligned so that `strcpy' calls that copy constants to character arrays can be done inline, and 'strcmp' can be optimised to use word loads. */ #define LOCAL_ALIGNMENT(TYPE, ALIGN) \ DATA_ALIGNMENT (TYPE, ALIGN) #define PAD_VARARGS_DOWN \ (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward) /* Define if operations between registers always perform the operation on the full register even if a narrower mode is specified. */ #define WORD_REGISTER_OPERATIONS /* When in 64-bit mode, move insns will sign extend SImode and CCmode moves. All other references are zero extended. */ #define LOAD_EXTEND_OP(MODE) \ (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \ ? SIGN_EXTEND : ZERO_EXTEND) /* Define this macro if it is advisable to hold scalars in registers in a wider mode than that declared by the program. In such cases, the value is constrained to be within the bounds of the declared type, but kept valid in the wider mode. The signedness of the extension may differ from that of the type. */ #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ if (GET_MODE_CLASS (MODE) == MODE_INT \ && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ { \ if ((MODE) == SImode) \ (UNSIGNEDP) = 0; \ (MODE) = Pmode; \ } /* Pmode is always the same as ptr_mode, but not always the same as word_mode. Extensions of pointers to word_mode must be signed. */ #define POINTERS_EXTEND_UNSIGNED false /* Define if loading short immediate values into registers sign extends. */ #define SHORT_IMMEDIATES_SIGN_EXTEND /* The [d]clz instructions have the natural values at 0. */ #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ ((VALUE) = GET_MODE_BITSIZE (MODE), 2) /* Standard register usage. */ /* Number of hardware registers. We have: - 32 integer registers - 32 floating point registers - 8 condition code registers - 2 accumulator registers (hi and lo) - 32 registers each for coprocessors 0, 2 and 3 - 4 fake registers: - ARG_POINTER_REGNUM - FRAME_POINTER_REGNUM - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details) - CPRESTORE_SLOT_REGNUM - 2 dummy entries that were used at various times in the past. - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE - 6 DSP control registers */ #define FIRST_PSEUDO_REGISTER 188 /* By default, fix the kernel registers ($26 and $27), the global pointer ($28) and the stack pointer ($29). This can change depending on the command-line options. Regarding coprocessor registers: without evidence to the contrary, it's best to assume that each coprocessor register has a unique use. This can be overridden, in, e.g., mips_override_options or CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate for a particular target. */ #define FIXED_REGISTERS \ { \ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \ /* COP0 registers */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ /* COP2 registers */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ /* COP3 registers */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ /* 6 DSP accumulator registers & 6 control registers */ \ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \ } /* Set up this array for o32 by default. Note that we don't mark $31 as a call-clobbered register. The idea is that it's really the call instructions themselves which clobber $31. We don't care what the called function does with it afterwards. This approach makes it easier to implement sibcalls. Unlike normal calls, sibcalls don't clobber $31, so the register reaches the called function in tact. EPILOGUE_USES says that $31 is useful to the called function. */ #define CALL_USED_REGISTERS \ { \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ /* COP0 registers */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ /* COP2 registers */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ /* COP3 registers */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ /* 6 DSP accumulator registers & 6 control registers */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \ } /* Define this since $28, though fixed, is call-saved in many ABIs. */ #define CALL_REALLY_USED_REGISTERS \ { /* General registers. */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \ /* Floating-point registers. */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* Others. */ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \ /* COP0 registers */ \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* COP2 registers */ \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* COP3 registers */ \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ /* 6 DSP accumulator registers & 6 control registers */ \ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \ } /* Internal macros to classify a register number as to whether it's a general purpose register, a floating point register, a multiply/divide register, or a status register. */ #define GP_REG_FIRST 0 #define GP_REG_LAST 31 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1) #define GP_DBX_FIRST 0 #define K0_REG_NUM (GP_REG_FIRST + 26) #define K1_REG_NUM (GP_REG_FIRST + 27) #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM)) #define FP_REG_FIRST 32 #define FP_REG_LAST 63 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1) #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32) #define MD_REG_FIRST 64 #define MD_REG_LAST 65 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1) #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM) /* The DWARF 2 CFA column which tracks the return address from a signal handler context. This means that to maintain backwards compatibility, no hard register can be assigned this column if it would need to be handled by the DWARF unwinder. */ #define DWARF_ALT_FRAME_RETURN_COLUMN 66 #define ST_REG_FIRST 67 #define ST_REG_LAST 74 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1) /* FIXME: renumber. */ #define COP0_REG_FIRST 80 #define COP0_REG_LAST 111 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1) #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12) #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13) #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14) #define COP2_REG_FIRST 112 #define COP2_REG_LAST 143 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1) #define COP3_REG_FIRST 144 #define COP3_REG_LAST 175 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1) /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */ #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1) #define DSP_ACC_REG_FIRST 176 #define DSP_ACC_REG_LAST 181 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1) #define AT_REGNUM (GP_REG_FIRST + 1) #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1) #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST) /* A few bitfield locations for the coprocessor registers. */ /* Request Interrupt Priority Level is from bit 10 to bit 15 of the cause register for the EIC interrupt mode. */ #define CAUSE_IPL 10 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */ #define SR_IPL 10 /* Exception Level is at bit 1 of the status register. */ #define SR_EXL 1 /* Interrupt Enable is at bit 0 of the status register. */ #define SR_IE 0 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC. If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG should be used instead. */ #define FPSW_REGNUM ST_REG_FIRST #define GP_REG_P(REGNO) \ ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM) #define M16_REG_P(REGNO) \ (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17) #define FP_REG_P(REGNO) \ ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM) #define MD_REG_P(REGNO) \ ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM) #define ST_REG_P(REGNO) \ ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM) #define COP0_REG_P(REGNO) \ ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM) #define COP2_REG_P(REGNO) \ ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM) #define COP3_REG_P(REGNO) \ ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM) #define ALL_COP_REG_P(REGNO) \ ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM) /* Test if REGNO is one of the 6 new DSP accumulators. */ #define DSP_ACC_REG_P(REGNO) \ ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM) /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */ #define ACC_REG_P(REGNO) \ (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO)) #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X))) /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used to initialize the mips16 gp pseudo register. */ #define CONST_GP_P(X) \ (GET_CODE (X) == CONST \ && GET_CODE (XEXP (X, 0)) == UNSPEC \ && XINT (XEXP (X, 0), 1) == UNSPEC_GP) /* Return coprocessor number from register number. */ #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \ (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \ : COP3_REG_P (REGNO) ? '3' : '?') #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE) #define HARD_REGNO_MODE_OK(REGNO, MODE) \ mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ] #define MODES_TIEABLE_P mips_modes_tieable_p /* Register to use for pushing function arguments. */ #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29) /* These two registers don't really exist: they get eliminated to either the stack or hard frame pointer. */ #define ARG_POINTER_REGNUM 77 #define FRAME_POINTER_REGNUM 78 /* $30 is not available on the mips16, so we use $17 as the frame pointer. */ #define HARD_FRAME_POINTER_REGNUM \ (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30) /* Register in which static-chain is passed to a function. */ #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15) /* Registers used as temporaries in prologue/epilogue code: - If a MIPS16 PIC function needs access to _gp, it first loads the value into MIPS16_PIC_TEMP and then copies it to $gp. - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary register. The register must not conflict with MIPS16_PIC_TEMP. - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary register. If we're generating MIPS16 code, these registers must come from the core set of 8. The prologue registers mustn't conflict with any incoming arguments, the static chain pointer, or the frame pointer. The epilogue temporary mustn't conflict with the return registers, the PIC call register ($25), the frame pointer, the EH stack adjustment, or the EH data registers. If we're generating interrupt handlers, we use K0 as a temporary register in prologue/epilogue code. */ #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2) #define MIPS_PROLOGUE_TEMP_REGNUM \ (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3) #define MIPS_EPILOGUE_TEMP_REGNUM \ (cfun->machine->interrupt_handler_p \ ? K0_REG_NUM \ : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8)) #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM) #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM) #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM) /* Define this macro if it is as good or better to call a constant function address than to call an address kept in a register. */ #define NO_FUNCTION_CSE 1 /* The ABI-defined global pointer. Sometimes we use a different register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */ #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28) /* We normally use $28 as the global pointer. However, when generating n32/64 PIC, it is better for leaf functions to use a call-clobbered register instead. They can then avoid saving and restoring $28 and perhaps avoid using a frame at all. When a leaf function uses something other than $28, mips_expand_prologue will modify pic_offset_table_rtx in place. Take the register number from there after reload. */ #define PIC_OFFSET_TABLE_REGNUM \ (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM) #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25) /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. */ enum reg_class { NO_REGS, /* no registers in set */ M16_REGS, /* mips16 directly accessible registers */ T_REG, /* mips16 T register ($24) */ M16_T_REGS, /* mips16 registers plus T register */ PIC_FN_ADDR_REG, /* SVR4 PIC function address register */ V1_REG, /* Register $v1 ($3) used for TLS access. */ LEA_REGS, /* Every GPR except $25 */ GR_REGS, /* integer registers */ FP_REGS, /* floating point registers */ MD0_REG, /* first multiply/divide register */ MD1_REG, /* second multiply/divide register */ MD_REGS, /* multiply/divide registers (hi/lo) */ COP0_REGS, /* generic coprocessor classes */ COP2_REGS, COP3_REGS, ST_REGS, /* status registers (fp status) */ DSP_ACC_REGS, /* DSP accumulator registers */ ACC_REGS, /* Hi/Lo and DSP accumulator registers */ FRAME_REGS, /* $arg and $frame */ GR_AND_MD0_REGS, /* union classes */ GR_AND_MD1_REGS, GR_AND_MD_REGS, GR_AND_ACC_REGS, ALL_REGS, /* all registers */ LIM_REG_CLASSES /* max value + 1 */ }; #define N_REG_CLASSES (int) LIM_REG_CLASSES #define GENERAL_REGS GR_REGS /* An initializer containing the names of the register classes as C string constants. These names are used in writing some of the debugging dumps. */ #define REG_CLASS_NAMES \ { \ "NO_REGS", \ "M16_REGS", \ "T_REG", \ "M16_T_REGS", \ "PIC_FN_ADDR_REG", \ "V1_REG", \ "LEA_REGS", \ "GR_REGS", \ "FP_REGS", \ "MD0_REG", \ "MD1_REG", \ "MD_REGS", \ /* coprocessor registers */ \ "COP0_REGS", \ "COP2_REGS", \ "COP3_REGS", \ "ST_REGS", \ "DSP_ACC_REGS", \ "ACC_REGS", \ "FRAME_REGS", \ "GR_AND_MD0_REGS", \ "GR_AND_MD1_REGS", \ "GR_AND_MD_REGS", \ "GR_AND_ACC_REGS", \ "ALL_REGS" \ } /* An initializer containing the contents of the register classes, as integers which are bit masks. The Nth integer specifies the contents of class N. The way the integer MASK is interpreted is that register R is in the class if `MASK & (1 << R)' is 1. When the machine has more than 32 registers, an integer does not suffice. Then the integers are replaced by sub-initializers, braced groupings containing several integers. Each sub-initializer must be suitable as an initializer for the type `HARD_REG_SET' which is defined in `hard-reg-set.h'. */ #define REG_CLASS_CONTENTS \ { \ { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \ { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \ { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \ { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \ { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \ { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \ { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \ { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \ { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \ { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \ { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \ { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \ { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \ { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \ { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \ { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \ { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \ { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \ { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \ { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \ { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \ { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \ { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \ } /* A C expression whose value is a register class containing hard register REGNO. In general there is more that one such class; choose a class which is "minimal", meaning that no smaller class also contains the register. */ #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ] /* A macro whose definition is the name of the class to which a valid base register must belong. A base register is one used in an address which is the register value plus a displacement. */ #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS) /* A macro whose definition is the name of the class to which a valid index register must belong. An index register is one used in an address where its value is either multiplied by a scale factor or added to another register (as well as added to a displacement). */ #define INDEX_REG_CLASS NO_REGS /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows registers explicitly used in the rtl to be used as spill registers but prevents the compiler from extending the lifetime of these registers. */ #define SMALL_REGISTER_CLASSES (TARGET_MIPS16) /* We generally want to put call-clobbered registers ahead of call-saved ones. (IRA expects this.) */ #define REG_ALLOC_ORDER \ { /* Accumulator registers. When GPRs and accumulators have equal \ cost, we generally prefer to use accumulators. For example, \ a division of multiplication result is better allocated to LO, \ so that we put the MFLO at the point of use instead of at the \ point of definition. It's also needed if we're to take advantage \ of the extra accumulators available with -mdspr2. In some cases, \ it can also help to reduce register pressure. */ \ 64, 65,176,177,178,179,180,181, \ /* Call-clobbered GPRs. */ \ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \ 24, 25, 31, \ /* The global pointer. This is call-clobbered for o32 and o64 \ abicalls, call-saved for n32 and n64 abicalls, and a program \ invariant otherwise. Putting it between the call-clobbered \ and call-saved registers should cope with all eventualities. */ \ 28, \ /* Call-saved GPRs. */ \ 16, 17, 18, 19, 20, 21, 22, 23, 30, \ /* GPRs that can never be exposed to the register allocator. */ \ 0, 26, 27, 29, \ /* Call-clobbered FPRs. */ \ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \ 48, 49, 50, 51, \ /* FPRs that are usually call-saved. The odd ones are actually \ call-clobbered for n32, but listing them ahead of the even \ registers might encourage the register allocator to fragment \ the available FPR pairs. We need paired FPRs to store long \ doubles, so it isn't clear that using a different order \ for n32 would be a win. */ \ 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \ /* None of the remaining classes have defined call-saved \ registers. */ \ 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \ 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \ 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \ 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \ 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \ 182,183,184,185,186,187 \ } /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order to be rearranged based on a particular function. On the mips16, we want to allocate $24 (T_REG) before other registers for instructions for which it is possible. */ #define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc () /* True if VALUE is an unsigned 6-bit number. */ #define UIMM6_OPERAND(VALUE) \ (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0) /* True if VALUE is a signed 10-bit number. */ #define IMM10_OPERAND(VALUE) \ ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400) /* True if VALUE is a signed 16-bit number. */ #define SMALL_OPERAND(VALUE) \ ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000) /* True if VALUE is an unsigned 16-bit number. */ #define SMALL_OPERAND_UNSIGNED(VALUE) \ (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0) /* True if VALUE can be loaded into a register using LUI. */ #define LUI_OPERAND(VALUE) \ (((VALUE) | 0x7fff0000) == 0x7fff0000 \ || ((VALUE) | 0x7fff0000) + 0x10000 == 0) /* Return a value X with the low 16 bits clear, and such that VALUE - X is a signed 16-bit value. */ #define CONST_HIGH_PART(VALUE) \ (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff) #define CONST_LOW_PART(VALUE) \ ((VALUE) - CONST_HIGH_PART (VALUE)) #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X)) #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X)) #define LUI_INT(X) LUI_OPERAND (INTVAL (X)) #define PREFERRED_RELOAD_CLASS(X,CLASS) \ mips_preferred_reload_class (X, CLASS) /* The HI and LO registers can only be reloaded via the general registers. Condition code registers can only be loaded to the general registers, and from the floating point registers. */ #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \ mips_secondary_reload_class (CLASS, MODE, X, true) #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \ mips_secondary_reload_class (CLASS, MODE, X, false) /* Return the maximum number of consecutive registers needed to represent mode MODE in a register of class CLASS. */ #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE) #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ mips_cannot_change_mode_class (FROM, TO, CLASS) /* Stack layout; function entry, exit and calling. */ #define STACK_GROWS_DOWNWARD #define FRAME_GROWS_DOWNWARD flag_stack_protect /* Size of the area allocated in the frame to save the GP. */ #define MIPS_GP_SAVE_AREA_SIZE \ (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0) /* The offset of the first local variable from the frame pointer. See mips_compute_frame_info for details about the frame layout. */ #define STARTING_FRAME_OFFSET \ (FRAME_GROWS_DOWNWARD \ ? 0 \ : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE) #define RETURN_ADDR_RTX mips_return_addr /* Mask off the MIPS16 ISA bit in unwind addresses. The reason for this is a little subtle. When unwinding a call, we are given the call's return address, which on most targets is the address of the following instruction. However, what we actually want to find is the EH region for the call itself. The target-independent unwind code therefore searches for "RA - 1". In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address. RA - 1 is therefore the real (even-valued) start of the return instruction. EH region labels are usually odd-valued MIPS16 symbols too, so a search for an even address within a MIPS16 region would usually work. However, there is an exception. If the end of an EH region is also the end of a function, the end label is allowed to be even. This is necessary because a following non-MIPS16 function may also need EH information for its first instruction. Thus a MIPS16 region may be terminated by an ISA-encoded or a non-ISA-encoded address. This probably isn't ideal, but it is the traditional (legacy) behavior. It is therefore only safe to search MIPS EH regions for an _odd-valued_ address. Masking off the ISA bit means that the target-independent code will search for "(RA & -2) - 1", which is guaranteed to be odd. */ #define MASK_RETURN_ADDR GEN_INT (-2) /* Similarly, don't use the least-significant bit to tell pointers to code from vtable index. */ #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta /* The eliminations to $17 are only used for mips16 code. See the definition of HARD_FRAME_POINTER_REGNUM. */ #define ELIMINABLE_REGS \ {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \ { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \ { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}} #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ (OFFSET) = mips_initial_elimination_offset ((FROM), (TO)) /* Allocate stack space for arguments at the beginning of each function. */ #define ACCUMULATE_OUTGOING_ARGS 1 /* The argument pointer always points to the first argument. */ #define FIRST_PARM_OFFSET(FNDECL) 0 /* o32 and o64 reserve stack space for all argument registers. */ #define REG_PARM_STACK_SPACE(FNDECL) \ (TARGET_OLDABI \ ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \ : 0) /* Define this if it is the responsibility of the caller to allocate the area reserved for arguments passed in registers. If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect of this macro is to determine whether the space is included in `crtl->outgoing_args_size'. */ #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64) #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 /* Symbolic macros for the registers used to return integer and floating point values. */ #define GP_RETURN (GP_REG_FIRST + 2) #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0)) #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8) /* Symbolic macros for the first/last argument registers. */ #define GP_ARG_FIRST (GP_REG_FIRST + 4) #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1) #define FP_ARG_FIRST (FP_REG_FIRST + 12) #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1) #define LIBCALL_VALUE(MODE) \ mips_function_value (NULL_TREE, NULL_TREE, MODE) #define FUNCTION_VALUE(VALTYPE, FUNC) \ mips_function_value (VALTYPE, FUNC, VOIDmode) /* 1 if N is a possible register number for a function value. On the MIPS, R2 R3 and F0 F2 are the only register thus used. Currently, R2 and F0 are only implemented here (C has no complex type) */ #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \ || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \ && (N) == FP_RETURN + 2)) /* 1 if N is a possible register number for function argument passing. We have no FP argument registers when soft-float. When FP registers are 32 bits, we can't directly reference the odd numbered ones. */ #define FUNCTION_ARG_REGNO_P(N) \ ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \ || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \ && !fixed_regs[N]) /* This structure has to cope with two different argument allocation schemes. Most MIPS ABIs view the arguments as a structure, of which the first N words go in registers and the rest go on the stack. If I < N, the Ith word might go in Ith integer argument register or in a floating-point register. For these ABIs, we only need to remember the offset of the current argument into the structure. The EABI instead allocates the integer and floating-point arguments separately. The first N words of FP arguments go in FP registers, the rest go on the stack. Likewise, the first N words of the other arguments go in integer registers, and the rest go on the stack. We need to maintain three counts: the number of integer registers used, the number of floating-point registers used, and the number of words passed on the stack. We could keep separate information for the two ABIs (a word count for the standard ABIs, and three separate counts for the EABI). But it seems simpler to view the standard ABIs as forms of EABI that do not allocate floating-point registers. So for the standard ABIs, the first N words are allocated to integer registers, and mips_function_arg decides on an argument-by-argument basis whether that argument should really go in an integer register, or in a floating-point one. */ typedef struct mips_args { /* Always true for varargs functions. Otherwise true if at least one argument has been passed in an integer register. */ int gp_reg_found; /* The number of arguments seen so far. */ unsigned int arg_number; /* The number of integer registers used so far. For all ABIs except EABI, this is the number of words that have been added to the argument structure, limited to MAX_ARGS_IN_REGISTERS. */ unsigned int num_gprs; /* For EABI, the number of floating-point registers used so far. */ unsigned int num_fprs; /* The number of words passed on the stack. */ unsigned int stack_words; /* On the mips16, we need to keep track of which floating point arguments were passed in general registers, but would have been passed in the FP regs if this were a 32-bit function, so that we can move them to the FP regs if we wind up calling a 32-bit function. We record this information in fp_code, encoded in base four. A zero digit means no floating point argument, a one digit means an SFmode argument, and a two digit means a DFmode argument, and a three digit is not used. The low order digit is the first argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by an SFmode argument. ??? A more sophisticated approach will be needed if MIPS_ABI != ABI_32. */ int fp_code; /* True if the function has a prototype. */ int prototype; } CUMULATIVE_ARGS; /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \ mips_init_cumulative_args (&CUM, FNTYPE) /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ mips_function_arg_advance (&CUM, MODE, TYPE, NAMED) /* Determine where to put an argument to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ mips_function_arg (&CUM, MODE, TYPE, NAMED) #define FUNCTION_ARG_BOUNDARY mips_function_arg_boundary #define FUNCTION_ARG_PADDING(MODE, TYPE) \ (mips_pad_arg_upward (MODE, TYPE) ? upward : downward) #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \ (mips_pad_reg_upward (MODE, TYPE) ? upward : downward) /* True if using EABI and varargs can be passed in floating-point registers. Under these conditions, we need a more complex form of va_list, which tracks GPR, FPR and stack arguments separately. */ #define EABI_FLOAT_VARARGS_P \ (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE) #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO) /* Treat LOC as a byte offset from the stack pointer and round it up to the next fully-aligned offset. */ #define MIPS_STACK_ALIGN(LOC) \ (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8) /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE)) /* The profiler preserves all interesting registers, including $31. */ #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false /* No mips port has ever used the profiler counter word, so don't emit it or the label for it. */ #define NO_PROFILE_COUNTERS 1 /* Define this macro if the code for function profiling should come before the function prologue. Normally, the profiling code comes after. */ /* #define PROFILE_BEFORE_PROLOGUE */ /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. The value is tested only in functions that have frame pointers. No definition is equivalent to always zero. */ #define EXIT_IGNORE_STACK 1 /* Trampolines are a block of code followed by two pointers. */ #define TRAMPOLINE_SIZE \ (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2) /* Forcing a 64-bit alignment for 32-bit targets allows us to load two pointers from a single LUI base. */ #define TRAMPOLINE_ALIGNMENT 64 /* mips_trampoline_init calls this library function to flush program and data caches. */ #ifndef CACHE_FLUSH_FUNC #define CACHE_FLUSH_FUNC "_flush_cache" #endif #define MIPS_ICACHE_SYNC(ADDR, SIZE) \ /* Flush both caches. We need to flush the data cache in case \ the system has a write-back cache. */ \ emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \ LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \ GEN_INT (3), TYPE_MODE (integer_type_node)) /* Addressing modes, and classification of registers for them. */ #define REGNO_OK_FOR_INDEX_P(REGNO) 0 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \ mips_regno_mode_ok_for_base_p (REGNO, MODE, 1) /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its validity for a certain class. We have two alternate definitions for each of them. The usual definition accepts all pseudo regs; the other rejects them all. The symbol REG_OK_STRICT causes the latter definition to be used. Most source files want to accept pseudo regs in the hope that they will get allocated to the class that the insn wants them to be in. Some source files that are used after register allocation need to be strict. */ #ifndef REG_OK_STRICT #define REG_MODE_OK_FOR_BASE_P(X, MODE) \ mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0) #else #define REG_MODE_OK_FOR_BASE_P(X, MODE) \ mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1) #endif #define REG_OK_FOR_INDEX_P(X) 0 /* Maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 1 /* Check for constness inline but use mips_legitimate_address_p to check whether a constant really is an address. */ #define CONSTANT_ADDRESS_P(X) \ (CONSTANT_P (X) && memory_address_p (SImode, X)) #define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0) /* This handles the magic '..CURRENT_FUNCTION' symbol, which means 'the start of the function that this code is output in'. */ #define ASM_OUTPUT_LABELREF(FILE,NAME) \ if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \ asm_fprintf ((FILE), "%U%s", \ XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \ else \ asm_fprintf ((FILE), "%U%s", (NAME)) /* Flag to mark a function decl symbol that requires a long call. */ #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0) #define SYMBOL_REF_LONG_CALL_P(X) \ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0) /* This flag marks functions that cannot be lazily bound. */ #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1) #define SYMBOL_REF_BIND_NOW_P(RTX) \ ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0) /* True if we're generating a form of MIPS16 code in which jump tables are stored in the text section and encoded as 16-bit PC-relative offsets. This is only possible when general text loads are allowed, since the table access itself will be an "lh" instruction. */ /* ??? 16-bit offsets can overflow in large functions. */ #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? HImode : ptr_mode) #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES /* Define this as 1 if `char' should by default be signed; else as 0. */ #ifndef DEFAULT_SIGNED_CHAR #define DEFAULT_SIGNED_CHAR 1 #endif /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets, we generally don't want to use them for copying arbitrary data. A single N-word move is usually the same cost as N single-word moves. */ #define MOVE_MAX UNITS_PER_WORD #define MAX_MOVE_MAX 8 /* Define this macro as a C expression which is nonzero if accessing less than a word of memory (i.e. a `char' or a `short') is no faster than accessing a word of memory, i.e., if such access require more than one instruction or if there is no difference in cost between byte and (aligned) word loads. On RISC machines, it tends to generate better code to define this as 1, since it avoids making a QI or HI mode register. But, generating word accesses for -mips16 is generally bad as shifts (often extended) would be needed for byte accesses. */ #define SLOW_BYTE_ACCESS (!TARGET_MIPS16) /* Define this to be nonzero if shift instructions ignore all but the low-order few bits. */ #define SHIFT_COUNT_TRUNCATED 1 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */ #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \ (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1) /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ #ifndef Pmode #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode) #endif /* Give call MEMs SImode since it is the "most permissive" mode for both 32-bit and 64-bit targets. */ #define FUNCTION_MODE SImode /* A C expression for the cost of moving data from a register in class FROM to one in class TO. The classes are expressed using the enumeration values such as `GENERAL_REGS'. A value of 2 is the default; other values are interpreted relative to that. It is not required that the cost always equal 2 when FROM is the same as TO; on some machines it is expensive to move between registers if they are not general registers. If reload sees an insn consisting of a single `set' between two hard registers, and if `REGISTER_MOVE_COST' applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You should do this if the `movM' pattern's constraints do not allow such copying. */ #define REGISTER_MOVE_COST(MODE, FROM, TO) \ mips_register_move_cost (MODE, FROM, TO) #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \ (mips_cost->memory_latency \ + memory_move_secondary_cost ((MODE), (CLASS), (TO_P))) /* Define if copies to/from condition code registers should be avoided. This is needed for the MIPS because reload_outcc is not complete; it needs to handle cases where the source is a general or another condition code register. */ #define AVOID_CCMODE_COPIES /* A C expression for the cost of a branch instruction. A value of 1 is the default; other values are interpreted relative to that. */ #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost #define LOGICAL_OP_NON_SHORT_CIRCUIT 0 /* If defined, modifies the length assigned to instruction INSN as a function of the context in which it is used. LENGTH is an lvalue that contains the initially computed length of the insn and should be updated with the correct length of the insn. */ #define ADJUST_INSN_LENGTH(INSN, LENGTH) \ ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH))) /* Return the asm template for a non-MIPS16 conditional branch instruction. OPCODE is the opcode's mnemonic and OPERANDS is the asm template for its operands. */ #define MIPS_BRANCH(OPCODE, OPERANDS) \ "%*" OPCODE "%?\t" OPERANDS "%/" /* Return an asm string that forces INSN to be treated as an absolute J or JAL instruction instead of an assembler macro. */ #define MIPS_ABSOLUTE_JUMP(INSN) \ (TARGET_ABICALLS_PIC2 \ ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \ : INSN) /* Return the asm template for a call. INSN is the instruction's mnemonic ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand number of the target. SIZE_OPNO is the operand number of the argument size operand that can optionally hold the call attributes. If SIZE_OPNO is not -1 and the call is indirect, use the function symbol from the call attributes to attach a R_MIPS_JALR relocation to the call. When generating GOT code without explicit relocation operators, all calls should use assembly macros. Otherwise, all indirect calls should use "jr" or "jalr"; we will arrange to restore $gp afterwards if necessary. Finally, we can only generate direct calls for -mabicalls by temporarily switching to non-PIC mode. */ #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \ (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \ ? "%*" INSN "\t%" #TARGET_OPNO "%/" \ : (REG_P (OPERANDS[TARGET_OPNO]) \ && mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO)) \ ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \ "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \ : REG_P (OPERANDS[TARGET_OPNO]) \ ? "%*" INSN "r\t%" #TARGET_OPNO "%/" \ : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/")) /* Control the assembler format that we output. */ /* Output to assembler file text saying following lines may contain character constants, extra white space, comments, etc. */ #ifndef ASM_APP_ON #define ASM_APP_ON " #APP\n" #endif /* Output to assembler file text saying following lines no longer contain unusual constructs. */ #ifndef ASM_APP_OFF #define ASM_APP_OFF " #NO_APP\n" #endif #define REGISTER_NAMES \ { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \ "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \ "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \ "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \ "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \ "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \ "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \ "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \ "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \ "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \ "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \ "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \ "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \ "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \ "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \ "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \ "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \ "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \ "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \ "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \ "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \ "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \ "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \ "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" } /* List the "software" names for each register. Also list the numerical names for $fp and $sp. */ #define ADDITIONAL_REGISTER_NAMES \ { \ { "$29", 29 + GP_REG_FIRST }, \ { "$30", 30 + GP_REG_FIRST }, \ { "at", 1 + GP_REG_FIRST }, \ { "v0", 2 + GP_REG_FIRST }, \ { "v1", 3 + GP_REG_FIRST }, \ { "a0", 4 + GP_REG_FIRST }, \ { "a1", 5 + GP_REG_FIRST }, \ { "a2", 6 + GP_REG_FIRST }, \ { "a3", 7 + GP_REG_FIRST }, \ { "t0", 8 + GP_REG_FIRST }, \ { "t1", 9 + GP_REG_FIRST }, \ { "t2", 10 + GP_REG_FIRST }, \ { "t3", 11 + GP_REG_FIRST }, \ { "t4", 12 + GP_REG_FIRST }, \ { "t5", 13 + GP_REG_FIRST }, \ { "t6", 14 + GP_REG_FIRST }, \ { "t7", 15 + GP_REG_FIRST }, \ { "s0", 16 + GP_REG_FIRST }, \ { "s1", 17 + GP_REG_FIRST }, \ { "s2", 18 + GP_REG_FIRST }, \ { "s3", 19 + GP_REG_FIRST }, \ { "s4", 20 + GP_REG_FIRST }, \ { "s5", 21 + GP_REG_FIRST }, \ { "s6", 22 + GP_REG_FIRST }, \ { "s7", 23 + GP_REG_FIRST }, \ { "t8", 24 + GP_REG_FIRST }, \ { "t9", 25 + GP_REG_FIRST }, \ { "k0", 26 + GP_REG_FIRST }, \ { "k1", 27 + GP_REG_FIRST }, \ { "gp", 28 + GP_REG_FIRST }, \ { "sp", 29 + GP_REG_FIRST }, \ { "fp", 30 + GP_REG_FIRST }, \ { "ra", 31 + GP_REG_FIRST }, \ ALL_COP_ADDITIONAL_REGISTER_NAMES \ } /* This is meant to be redefined in the host dependent files. It is a set of alternative names and regnums for mips coprocessors. */ #define ALL_COP_ADDITIONAL_REGISTER_NAMES #define PRINT_OPERAND mips_print_operand #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE] #define PRINT_OPERAND_ADDRESS mips_print_operand_address #define DBR_OUTPUT_SEQEND(STREAM) \ do \ { \ /* Undo the effect of '%*'. */ \ mips_pop_asm_switch (&mips_nomacro); \ mips_pop_asm_switch (&mips_noreorder); \ /* Emit a blank line after the delay slot for emphasis. */ \ fputs ("\n", STREAM); \ } \ while (0) /* How to tell the debugger about changes of source files. */ #define ASM_OUTPUT_SOURCE_FILENAME mips_output_filename /* mips-tfile does not understand .stabd directives. */ #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \ dbxout_begin_stabn_sline (LINE); \ dbxout_stab_value_internal_label ("LM", &COUNTER); \ } while (0) /* Use .loc directives for SDB line numbers. */ #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \ fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE) /* The MIPS implementation uses some labels for its own purpose. The following lists what labels are created, and are all formed by the pattern $L[a-z].*. The machine independent portion of GCC creates labels matching: $L[A-Z][0-9]+ and $L[0-9]+. LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt. $Lb[0-9]+ Begin blocks for MIPS debug support $Lc[0-9]+ Label for use in s<xx> operation. $Le[0-9]+ End blocks for MIPS debug support */ #undef ASM_DECLARE_OBJECT_NAME #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \ mips_declare_object (STREAM, NAME, "", ":\n") /* Globalizing directive for a label. */ #define GLOBAL_ASM_OP "\t.globl\t" /* This says how to define a global common symbol. */ #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common /* This says how to define a local common symbol (i.e., not visible to linker). */ #ifndef ASM_OUTPUT_ALIGNED_LOCAL #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \ mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false) #endif /* This says how to output an external. It would be possible not to output anything and let undefined symbol become external. However the assembler uses length information on externals to allocate in data/sdata bss/sbss, thereby saving exec time. */ #undef ASM_OUTPUT_EXTERNAL #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \ mips_output_external(STREAM,DECL,NAME) /* This is how to declare a function name. The actual work of emitting the label is moved to function_prologue, so that we can get the line number correctly emitted before the .ent directive, and after any .file directives. Define as empty so that the function is not declared before the .ent directive elsewhere. */ #undef ASM_DECLARE_FUNCTION_NAME #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) /* This is how to store into the string LABEL the symbol_ref name of an internal numbered label where PREFIX is the class of label and NUM is the number within the class. This is suitable for output with `assemble_name'. */ #undef ASM_GENERATE_INTERNAL_LABEL #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM)) /* Print debug labels as "foo = ." rather than "foo:" because they should represent a byte pointer rather than an ISA-encoded address. This is particularly important for code like: $LFBxxx = . .cfi_startproc ... .section .gcc_except_table,... ... .uleb128 foo-$LFBxxx The .uleb128 requies $LFBxxx to match the FDE start address, which is likewise a byte pointer rather than an ISA-encoded address. At the time of writing, this hook is not used for the function end label: $LFExxx: .end foo But this doesn't matter, because GAS doesn't treat a pre-.end label as a MIPS16 one anyway. */ #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \ fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM) /* This is how to output an element of a case-vector that is absolute. */ #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \ fprintf (STREAM, "\t%s\t%sL%d\n", \ ptr_mode == DImode ? ".dword" : ".word", \ LOCAL_LABEL_PREFIX, \ VALUE) /* This is how to output an element of a case-vector. We can make the entries PC-relative in MIPS16 code and GP-relative when .gp(d)word is supported. */ #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \ do { \ if (TARGET_MIPS16_SHORT_JUMP_TABLES) \ fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \ LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \ else if (TARGET_GPWORD) \ fprintf (STREAM, "\t%s\t%sL%d\n", \ ptr_mode == DImode ? ".gpdword" : ".gpword", \ LOCAL_LABEL_PREFIX, VALUE); \ else if (TARGET_RTP_PIC) \ { \ /* Make the entry relative to the start of the function. */ \ rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \ fprintf (STREAM, "\t%s\t%sL%d-", \ Pmode == DImode ? ".dword" : ".word", \ LOCAL_LABEL_PREFIX, VALUE); \ assemble_name (STREAM, XSTR (fnsym, 0)); \ fprintf (STREAM, "\n"); \ } \ else \ fprintf (STREAM, "\t%s\t%sL%d\n", \ ptr_mode == DImode ? ".dword" : ".word", \ LOCAL_LABEL_PREFIX, VALUE); \ } while (0) /* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */ #define ASM_OUTPUT_ALIGN(STREAM,LOG) \ fprintf (STREAM, "\t.align\t%d\n", (LOG)) /* This is how to output an assembler line to advance the location counter by SIZE bytes. */ #undef ASM_OUTPUT_SKIP #define ASM_OUTPUT_SKIP(STREAM,SIZE) \ fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)) /* This is how to output a string. */ #undef ASM_OUTPUT_ASCII #define ASM_OUTPUT_ASCII mips_output_ascii /* Output #ident as a in the read-only data section. */ #undef ASM_OUTPUT_IDENT #define ASM_OUTPUT_IDENT(FILE, STRING) \ { \ const char *p = STRING; \ int size = strlen (p) + 1; \ switch_to_section (readonly_data_section); \ assemble_string (p, size); \ } /* Default to -G 8 */ #ifndef MIPS_DEFAULT_GVALUE #define MIPS_DEFAULT_GVALUE 8 #endif /* Define the strings to put out for each section in the object file. */ #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */ #define DATA_SECTION_ASM_OP "\t.data" /* large data */ #undef READONLY_DATA_SECTION_ASM_OP #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */ #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \ do \ { \ fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \ TARGET_64BIT ? "daddiu" : "addiu", \ reg_names[STACK_POINTER_REGNUM], \ reg_names[STACK_POINTER_REGNUM], \ TARGET_64BIT ? "sd" : "sw", \ reg_names[REGNO], \ reg_names[STACK_POINTER_REGNUM]); \ } \ while (0) #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \ do \ { \ mips_push_asm_switch (&mips_noreorder); \ fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \ TARGET_64BIT ? "ld" : "lw", \ reg_names[REGNO], \ reg_names[STACK_POINTER_REGNUM], \ TARGET_64BIT ? "daddu" : "addu", \ reg_names[STACK_POINTER_REGNUM], \ reg_names[STACK_POINTER_REGNUM]); \ mips_pop_asm_switch (&mips_noreorder); \ } \ while (0) /* How to start an assembler comment. The leading space is important (the mips native assembler requires it). */ #ifndef ASM_COMMENT_START #define ASM_COMMENT_START " #" #endif /* Default definitions for size_t and ptrdiff_t. We must override the definitions from ../svr4.h on mips-*-linux-gnu. */ #undef SIZE_TYPE #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int") #undef PTRDIFF_TYPE #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int") /* The maximum number of bytes that can be copied by one iteration of a movmemsi loop; see mips_block_move_loop. */ #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \ (UNITS_PER_WORD * 4) /* The maximum number of bytes that can be copied by a straight-line implementation of movmemsi; see mips_block_move_straight. We want to make sure that any loop-based implementation will iterate at least twice. */ #define MIPS_MAX_MOVE_BYTES_STRAIGHT \ (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2) /* The base cost of a memcpy call, for MOVE_RATIO and friends. These values were determined experimentally by benchmarking with CSiBE. In theory, the call overhead is higher for TARGET_ABICALLS (especially for o32 where we have to restore $gp afterwards as well as make an indirect call), but in practice, bumping this up higher for TARGET_ABICALLS doesn't make much difference to code size. */ #define MIPS_CALL_RATIO 8 /* Any loop-based implementation of movmemsi will have at least MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory moves, so allow individual copies of fewer elements. When movmemsi is not available, use a value approximating the length of a memcpy call sequence, so that move_by_pieces will generate inline code if it is shorter than a function call. Since move_by_pieces_ninsns counts memory-to-memory moves, but we'll have to generate a load/store pair for each, halve the value of MIPS_CALL_RATIO to take that into account. */ #define MOVE_RATIO(speed) \ (HAVE_movmemsi \ ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \ : MIPS_CALL_RATIO / 2) /* movmemsi is meant to generate code that is at least as good as move_by_pieces. However, movmemsi effectively uses a by-pieces implementation both for moves smaller than a word and for word-aligned moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT bytes. We should allow the tree-level optimisers to do such moves by pieces, as it often exposes other optimization opportunities. We might as well continue to use movmemsi at the rtl level though, as it produces better code when scheduling is disabled (such as at -O). */ #define MOVE_BY_PIECES_P(SIZE, ALIGN) \ (HAVE_movmemsi \ ? (!currently_expanding_to_rtl \ && ((ALIGN) < BITS_PER_WORD \ ? (SIZE) < UNITS_PER_WORD \ : (SIZE) <= MIPS_MAX_MOVE_BYTES_STRAIGHT)) \ : (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \ < (unsigned int) MOVE_RATIO (false))) /* For CLEAR_RATIO, when optimizing for size, give a better estimate of the length of a memset call, but use the default otherwise. */ #define CLEAR_RATIO(speed)\ ((speed) ? 15 : MIPS_CALL_RATIO) /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when optimizing for size adjust the ratio to account for the overhead of loading the constant and replicating it across the word. */ #define SET_RATIO(speed) \ ((speed) ? 15 : MIPS_CALL_RATIO - 2) /* STORE_BY_PIECES_P can be used when copying a constant string, but in that case each word takes 3 insns (lui, ori, sw), or more in 64-bit mode, instead of 2 (lw, sw). For now we always fail this and let the move_by_pieces code copy the string from read-only memory. In the future, this could be tuned further for multi-issue CPUs that can issue stores down one pipe and arithmetic instructions down another; in that case, the lui/ori/sw combination would be a win for long enough strings. */ #define STORE_BY_PIECES_P(SIZE, ALIGN) 0 #ifndef __mips16 /* Since the bits of the _init and _fini function is spread across many object files, each potentially with its own GP, we must assume we need to load our GP. We don't preserve $gp or $ra, since each init/fini chunk is supposed to initialize $gp, and crti/crtn already take care of preserving $ra and, when appropriate, $gp. */ #if (defined _ABIO32 && _MIPS_SIM == _ABIO32) #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ asm (SECTION_OP "\n\ .set noreorder\n\ bal 1f\n\ nop\n\ 1: .cpload $31\n\ .set reorder\n\ jal " USER_LABEL_PREFIX #FUNC "\n\ " TEXT_SECTION_ASM_OP); #endif /* Switch to #elif when we're no longer limited by K&R C. */ #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \ || (defined _ABI64 && _MIPS_SIM == _ABI64) #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ asm (SECTION_OP "\n\ .set noreorder\n\ bal 1f\n\ nop\n\ 1: .set reorder\n\ .cpsetup $31, $2, 1b\n\ jal " USER_LABEL_PREFIX #FUNC "\n\ " TEXT_SECTION_ASM_OP); #endif #endif #ifndef HAVE_AS_TLS #define HAVE_AS_TLS 0 #endif #ifndef USED_FOR_TARGET /* Information about ".set noFOO; ...; .set FOO" blocks. */ struct mips_asm_switch { /* The FOO in the description above. */ const char *name; /* The current block nesting level, or 0 if we aren't in a block. */ int nesting_level; }; extern const enum reg_class mips_regno_to_class[]; extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER]; extern bool mips_print_operand_punct[256]; extern const char *current_function_file; /* filename current function is in */ extern int num_source_filenames; /* current .file # */ extern struct mips_asm_switch mips_noreorder; extern struct mips_asm_switch mips_nomacro; extern struct mips_asm_switch mips_noat; extern int mips_dbx_regno[]; extern int mips_dwarf_regno[]; extern bool mips_split_p[]; extern bool mips_split_hi_p[]; extern enum processor_type mips_arch; /* which cpu to codegen for */ extern enum processor_type mips_tune; /* which cpu to schedule for */ extern int mips_isa; /* architectural level */ extern int mips_abi; /* which ABI to use */ extern const struct mips_cpu_info *mips_arch_info; extern const struct mips_cpu_info *mips_tune_info; extern const struct mips_rtx_cost_data *mips_cost; extern bool mips_base_mips16; extern enum mips_code_readable_setting mips_code_readable; #endif /* Enable querying of DFA units. */ #define CPU_UNITS_QUERY 1 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \ mips_final_prescan_insn (INSN, OPVEC, NOPERANDS) /* This is necessary to avoid a warning about comparing different enum types. */ #define mips_tune_attr ((enum attr_cpu) mips_tune) /* As on most targets, we want the .eh_frame section to be read-only where possible. And as on most targets, this means two things: (a) Non-locally-binding pointers must have an indirect encoding, so that the addresses in the .eh_frame section itself become locally-binding. (b) A shared library's .eh_frame section must encode locally-binding pointers in a relative (relocation-free) form. However, MIPS has traditionally not allowed directives like: .long x-. in cases where "x" is in a different section, or is not defined in the same assembly file. We are therefore unable to emit the PC-relative form required by (b) at assembly time. Fortunately, the linker is able to convert absolute addresses into PC-relative addresses on our behalf. Unfortunately, only certain versions of the linker know how to do this for indirect pointers, and for personality data. We must fall back on using writable .eh_frame sections for shared libraries if the linker does not support this feature. */ #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \ (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
Go to most recent revision | Compare with Previous | Blame | View Log