URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [moxie/] [moxie.h] - Rev 315
Go to most recent revision | Compare with Previous | Blame | View Log
/* Target Definitions for moxie. Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by Anthony Green. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #ifndef GCC_MOXIE_H #define GCC_MOXIE_H /* This is defined by svr4.h, which is included prior to this file. However, we should undefine it for moxie-elf, since we don't provide functions like access() and mkdir() in newlib. This will have to be defined again for a Linux port. */ #undef TARGET_POSIX_IO /* Another C string constant used much like `LINK_SPEC'. The difference between the two is that `STARTFILE_SPEC' is used at the very beginning of the command given to the linker. If this macro is not defined, a default is provided that loads the standard C startup file from the usual place. See `gcc.c'. Defined in svr4.h. */ #undef STARTFILE_SPEC #define STARTFILE_SPEC "crt0%O%s crti.o%s crtbegin.o%s" /* Provide an ENDFILE_SPEC appropriate for svr4. Here we tack on our own magical crtend.o file (see crtstuff.c) which provides part of the support for getting C++ file-scope static object constructed before entering `main', followed by the normal svr3/svr4 "finalizer" file, which is either `gcrtn.o' or `crtn.o'. */ #undef ENDFILE_SPEC #define ENDFILE_SPEC "crtend.o%s crtn.o%s" /* Provide a LIB_SPEC appropriate for svr4. Here we tack on the default standard C library (unless we are building a shared library) and the simulator BSP code. */ #undef LIB_SPEC #define LIB_SPEC "%{!shared:%{!symbolic:-lc}}" /* Layout of Source Language Data Types */ #define INT_TYPE_SIZE 32 #define SHORT_TYPE_SIZE 16 #define LONG_TYPE_SIZE 32 #define LONG_LONG_TYPE_SIZE 64 #define FLOAT_TYPE_SIZE 32 #define DOUBLE_TYPE_SIZE 64 #define LONG_DOUBLE_TYPE_SIZE 64 #define DEFAULT_SIGNED_CHAR 1 /* Registers... $fp - frame pointer $sp - stack pointer $r0 - general purpose 32-bit register. $r1 - general purpose 32-bit register. $r2 - general purpose 32-bit register. $r3 - general purpose 32-bit register. $r4 - general purpose 32-bit register. $r5 - general purpose 32-bit register. $r6 - general purpose 32-bit register. $r7 - general purpose 32-bit register. $r8 - general purpose 32-bit register. $r9 - general purpose 32-bit register. $r10 - general purpose 32-bit register. $r11 - general purpose 32-bit register. $r12 - general purpose 32-bit register. $r13 - reserved for execution environment. Special Registers... $pc - 32-bit program counter. */ #define REGISTER_NAMES { \ "$fp", "$sp", "$r0", "$r1", \ "$r2", "$r3", "$r4", "$r5", \ "$r6", "$r7", "$r8", "$r9", \ "$r10", "$r11", "$r12", "$r13", \ "?fp", "?ap", "$pc", "?cc" } #define MOXIE_FP 0 #define MOXIE_SP 1 #define MOXIE_R0 2 #define MOXIE_R1 3 #define MOXIE_R2 4 #define MOXIE_R3 5 #define MOXIE_R4 6 #define MOXIE_R5 7 #define MOXIE_R6 8 #define MOXIE_R7 9 #define MOXIE_R8 10 #define MOXIE_R9 11 #define MOXIE_R10 12 #define MOXIE_R11 13 #define MOXIE_R12 14 #define MOXIE_R13 15 #define MOXIE_QFP 16 #define MOXIE_QAP 17 #define MOXIE_PC 18 #define MOXIE_CC 19 #define FIRST_PSEUDO_REGISTER 20 enum reg_class { NO_REGS, GENERAL_REGS, SPECIAL_REGS, CC_REGS, ALL_REGS, LIM_REG_CLASSES }; /* The following macro defines cover classes for Integrated Register Allocator. Cover classes is a set of non-intersected register classes covering all hard registers used for register allocation purpose. Any move between two registers of a cover class should be cheaper than load or store of the registers. The macro value is array of register classes with LIM_REG_CLASSES used as the end marker. */ #define IRA_COVER_CLASSES { GENERAL_REGS, LIM_REG_CLASSES } #define REG_CLASS_CONTENTS \ { { 0x00000000 }, /* Empty */ \ { 0x0003FFFF }, /* $fp, $sp, $r0 to $r13, ?fp */ \ { 0x00040000 }, /* $pc */ \ { 0x00080000 }, /* ?cc */ \ { 0x000FFFFF } /* All registers */ \ } #define N_REG_CLASSES LIM_REG_CLASSES #define REG_CLASS_NAMES {\ "NO_REGS", \ "GENERAL_REGS", \ "SPECIAL_REGS", \ "CC_REGS", \ "ALL_REGS" } #define FIXED_REGISTERS { 1, 1, 0, 0, \ 0, 0, 0, 0, \ 0, 0, 0, 0, \ 0, 0, 0, 1, \ 1, 1, 1, 1 } #define CALL_USED_REGISTERS { 1, 1, 1, 1, \ 1, 1, 1, 1, \ 0, 0, 0, 0, \ 0, 0, 1, 1, \ 1, 1, 1, 1 } /* We can't copy to or from our CC register. */ #define AVOID_CCMODE_COPIES 1 /* A C expression that is nonzero if it is permissible to store a value of mode MODE in hard register number REGNO (or in several registers starting with that one). All gstore registers are equivalent, so we can set this to 1. */ #define HARD_REGNO_MODE_OK(R,M) 1 /* A C expression whose value is a register class containing hard register REGNO. */ #define REGNO_REG_CLASS(R) ((R < MOXIE_PC) ? GENERAL_REGS : \ (R == MOXIE_CC ? CC_REGS : SPECIAL_REGS)) /* A C expression for the number of consecutive hard registers, starting at register number REGNO, required to hold a value of mode MODE. */ #define HARD_REGNO_NREGS(REGNO, MODE) \ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \ / UNITS_PER_WORD) /* A C expression that is nonzero if a value of mode MODE1 is accessible in mode MODE2 without copying. */ #define MODES_TIEABLE_P(MODE1, MODE2) 1 /* A C expression for the maximum number of consecutive registers of class CLASS needed to hold a value of mode MODE. */ #define CLASS_MAX_NREGS(CLASS, MODE) \ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) /* A C expression that places additional restrictions on the register class to use when it is necessary to copy value X into a register in class CLASS. */ #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS /* The Overall Framework of an Assembler File */ #undef ASM_SPEC #define ASM_COMMENT_START "#" #define ASM_APP_ON "" #define ASM_APP_OFF "" #define FILE_ASM_OP "\t.file\n" /* Switch to the text or data segment. */ #define TEXT_SECTION_ASM_OP "\t.text" #define DATA_SECTION_ASM_OP "\t.data" /* Assembler Commands for Alignment */ #define ASM_OUTPUT_ALIGN(STREAM,POWER) \ fprintf (STREAM, "\t.p2align\t%d\n", POWER); /* A C compound statement to output to stdio stream STREAM the assembler syntax for an instruction operand X. */ #define PRINT_OPERAND(STREAM, X, CODE) moxie_print_operand (STREAM, X, CODE) #define PRINT_OPERAND_ADDRESS(STREAM ,X) moxie_print_operand_address (STREAM, X) /* Output and Generation of Labels */ #define GLOBAL_ASM_OP "\t.global\t" /* Passing Arguments in Registers */ /* A C expression that controls whether a function argument is passed in a register, and which register. */ #define FUNCTION_ARG(CUM,MODE,TYPE,NAMED) \ moxie_function_arg(CUM,MODE,TYPE,NAMED) /* A C type for declaring a variable that is used as the first argument of `FUNCTION_ARG' and other related values. */ #define CUMULATIVE_ARGS unsigned int /* If defined, the maximum amount of space required for outgoing arguments will be computed and placed into the variable `current_function_outgoing_args_size'. No space will be pushed onto the stack for each call; instead, the function prologue should increase the stack frame size by this amount. */ #define ACCUMULATE_OUTGOING_ARGS 1 /* A C statement (sans semicolon) for initializing the variable CUM for the state at the beginning of the argument list. For moxie, the first arg is passed in register 2 (aka $r0). */ #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,FNDECL,N_NAMED_ARGS) \ (CUM = MOXIE_R0) #define MOXIE_FUNCTION_ARG_SIZE(MODE, TYPE) \ ((MODE) != BLKmode ? GET_MODE_SIZE (MODE) \ : (unsigned) int_size_in_bytes (TYPE)) #define FUNCTION_ARG_ADVANCE(CUM,MODE,TYPE,NAMED) \ (CUM = (CUM < MOXIE_R6 ? \ CUM + ((3 + MOXIE_FUNCTION_ARG_SIZE(MODE,TYPE))/4) : CUM )) /* How Scalar Function Values Are Returned */ /* These macros are deprecated, but we still need them for now since the version of gcc we're using doesn't fully support TARGET_FUNCTION_VALUE. */ #define FUNCTION_VALUE(VALTYPE, FUNC) \ moxie_function_value (VALTYPE, FUNC, 0) #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \ moxie_function_value (VALTYPE, FUNC, 1) /* A C expression to create an RTX representing the place where a library function returns a value of mode MODE. */ #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 2) /* STACK AND CALLING */ /* Define this macro if pushing a word onto the stack moves the stack pointer to a smaller address. */ #define STACK_GROWS_DOWNWARD #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0 /* Offset from the frame pointer to the first local variable slot to be allocated. */ #define STARTING_FRAME_OFFSET 0 /* Define this if the above stack space is to be considered part of the space allocated by the caller. */ #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 #define STACK_PARMS_IN_REG_PARM_AREA /* Define this if it is the responsibility of the caller to allocate the area reserved for arguments passed in registers. */ #define REG_PARM_STACK_SPACE(FNDECL) (6 * UNITS_PER_WORD) /* Offset from the argument pointer register to the first argument's address. On some machines it may depend on the data type of the function. */ #define FIRST_PARM_OFFSET(F) 12 /* Define this macro to nonzero value if the addresses of local variable slots are at negative offsets from the frame pointer. */ #define FRAME_GROWS_DOWNWARD 1 /* Define this macro as a C expression that is nonzero for registers that are used by the epilogue or the return pattern. The stack and frame pointer registers are already assumed to be used as needed. */ #define EPILOGUE_USES(R) (R == MOXIE_R5) #define OVERRIDE_OPTIONS moxie_override_options () /* Storage Layout */ #define BITS_BIG_ENDIAN 0 #define BYTES_BIG_ENDIAN 1 #define WORDS_BIG_ENDIAN 1 /* Alignment required for a function entry point, in bits. */ #define FUNCTION_BOUNDARY 16 /* Define this macro as a C expression which is nonzero if accessing less than a word of memory (i.e. a `char' or a `short') is no faster than accessing a word of memory. */ #define SLOW_BYTE_ACCESS 1 /* Number of storage units in a word; normally the size of a general-purpose register, a power of two from 1 or 8. */ #define UNITS_PER_WORD 4 /* Define this macro to the minimum alignment enforced by hardware for the stack pointer on this machine. The definition is a C expression for the desired alignment (measured in bits). */ #define STACK_BOUNDARY 32 /* Normal alignment required for function parameters on the stack, in bits. All stack parameters receive at least this much alignment regardless of data type. */ #define PARM_BOUNDARY 32 /* Alignment of field after `int : 0' in a structure. */ #define EMPTY_FIELD_BOUNDARY 32 /* No data type wants to be aligned rounder than this. */ #define BIGGEST_ALIGNMENT 32 /* The best alignment to use in cases where we have a choice. */ #define FASTEST_ALIGNMENT 32 /* Every structures size must be a multiple of 8 bits. */ #define STRUCTURE_SIZE_BOUNDARY 8 /* Look at the fundamental type that is used for a bit-field and use that to impose alignment on the enclosing structure. struct s {int a:8}; should have same alignment as "int", not "char". */ #define PCC_BITFIELD_TYPE_MATTERS 1 /* Largest integer machine mode for structures. If undefined, the default is GET_MODE_SIZE(DImode). */ #define MAX_FIXED_MODE_SIZE 32 /* Make strings word-aligned so strcpy from constants will be faster. */ #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ ((TREE_CODE (EXP) == STRING_CST \ && (ALIGN) < FASTEST_ALIGNMENT) \ ? FASTEST_ALIGNMENT : (ALIGN)) /* Make arrays of chars word-aligned for the same reasons. */ #define DATA_ALIGNMENT(TYPE, ALIGN) \ (TREE_CODE (TYPE) == ARRAY_TYPE \ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN)) /* Set this nonzero if move instructions will actually fail to work when given unaligned data. */ #define STRICT_ALIGNMENT 1 /* Generating Code for Profiling */ #define FUNCTION_PROFILER(FILE,LABELNO) (abort (), 0) /* Trampolines for Nested Functions. */ #define TRAMPOLINE_SIZE (2 + 6 + 6 + 2 + 2 + 6) /* Alignment required for trampolines, in bits. */ #define TRAMPOLINE_ALIGNMENT 32 /* An alias for the machine mode for pointers. */ #define Pmode SImode /* An alias for the machine mode used for memory references to functions being called, in `call' RTL expressions. */ #define FUNCTION_MODE QImode /* The register number of the stack pointer register, which must also be a fixed register according to `FIXED_REGISTERS'. */ #define STACK_POINTER_REGNUM MOXIE_SP /* The register number of the frame pointer register, which is used to access automatic variables in the stack frame. */ #define FRAME_POINTER_REGNUM MOXIE_QFP /* The register number of the arg pointer register, which is used to access the function's argument list. */ #define ARG_POINTER_REGNUM MOXIE_QAP #define HARD_FRAME_POINTER_REGNUM MOXIE_FP #define ELIMINABLE_REGS \ {{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the initial difference between the specified pair of registers. This macro must be defined if `ELIMINABLE_REGS' is defined. */ #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ do { \ (OFFSET) = moxie_initial_elimination_offset ((FROM), (TO)); \ } while (0) /* A C expression that is nonzero if REGNO is the number of a hard register in which function arguments are sometimes passed. */ #define FUNCTION_ARG_REGNO_P(r) (r >= MOXIE_R0 && r <= MOXIE_R5) /* A C expression that is nonzero if REGNO is the number of a hard register in which the values of called function may come back. */ #define FUNCTION_VALUE_REGNO_P(r) (r == MOXIE_R0) /* A macro whose definition is the name of the class to which a valid base register must belong. A base register is one used in an address which is the register value plus a displacement. */ #define BASE_REG_CLASS GENERAL_REGS #define INDEX_REG_CLASS NO_REGS #define HARD_REGNO_OK_FOR_BASE_P(NUM) \ ((NUM) >= 0 && (NUM) < FIRST_PSEUDO_REGISTER \ && (REGNO_REG_CLASS(NUM) == GENERAL_REGS \ || (NUM) == HARD_FRAME_POINTER_REGNUM)) /* A C expression which is nonzero if register number NUM is suitable for use as a base register in operand addresses. */ #ifdef REG_OK_STRICT #define REGNO_OK_FOR_BASE_P(NUM) \ (HARD_REGNO_OK_FOR_BASE_P(NUM) \ || HARD_REGNO_OK_FOR_BASE_P(reg_renumber[(NUM)])) #else #define REGNO_OK_FOR_BASE_P(NUM) \ ((NUM) >= FIRST_PSEUDO_REGISTER || HARD_REGNO_OK_FOR_BASE_P(NUM)) #endif /* A C expression which is nonzero if register number NUM is suitable for use as an index register in operand addresses. */ #define REGNO_OK_FOR_INDEX_P(NUM) MOXIE_FP /* The maximum number of bytes that a single instruction can move quickly between memory and registers or between two memory locations. */ #define MOVE_MAX 4 #define TRULY_NOOP_TRUNCATION(op,ip) 1 /* All load operations zero extend. */ #define LOAD_EXTEND_OP(MEM) ZERO_EXTEND #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0 /* A C expression that is nonzero if X is a legitimate constant for an immediate operand on the target machine. */ #define LEGITIMATE_CONSTANT_P(X) 1 /* A number, the maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 1 #define TRULY_NOOP_TRUNCATION(op,ip) 1 /* An alias for a machine mode name. This is the machine mode that elements of a jump-table should have. */ #define CASE_VECTOR_MODE SImode /* A C compound statement with a conditional `goto LABEL;' executed if X (an RTX) is a legitimate memory address on the target machine for a memory operand of mode MODE. */ #define GO_IF_LEGITIMATE_ADDRESS(MODE,X,LABEL) \ do { \ if (GET_CODE(X) == PLUS) \ { \ rtx op1,op2; \ op1 = XEXP(X,0); \ op2 = XEXP(X,1); \ if (GET_CODE(op1) == REG \ && CONSTANT_ADDRESS_P(op2) \ && REGNO_OK_FOR_BASE_P(REGNO(op1))) \ goto LABEL; \ } \ if (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X))) \ goto LABEL; \ if (GET_CODE (X) == SYMBOL_REF \ || GET_CODE (X) == LABEL_REF \ || GET_CODE (X) == CONST) \ goto LABEL; \ } while (0) /* Run-time Target Specification */ #define TARGET_CPU_CPP_BUILTINS() \ { \ builtin_define_std ("moxie"); \ builtin_define_std ("MOXIE"); \ } #define HAS_LONG_UNCOND_BRANCH true #endif /* GCC_MOXIE_H */
Go to most recent revision | Compare with Previous | Blame | View Log