URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [rs6000/] [predicates.md] - Rev 324
Go to most recent revision | Compare with Previous | Blame | View Log
;; Predicate definitions for POWER and PowerPC.
;; Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;; Return 1 for anything except PARALLEL.
(define_predicate "any_operand"
(match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem"))
;; Return 1 for any PARALLEL.
(define_predicate "any_parallel_operand"
(match_code "parallel"))
;; Return 1 if op is COUNT register.
(define_predicate "count_register_operand"
(and (match_code "reg")
(match_test "REGNO (op) == CTR_REGNO
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
;; Return 1 if op is an Altivec register.
(define_predicate "altivec_register_operand"
(and (match_operand 0 "register_operand")
(match_test "GET_CODE (op) != REG
|| ALTIVEC_REGNO_P (REGNO (op))
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
;; Return 1 if op is a VSX register.
(define_predicate "vsx_register_operand"
(and (match_operand 0 "register_operand")
(match_test "GET_CODE (op) != REG
|| VSX_REGNO_P (REGNO (op))
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
;; Return 1 if op is a vector register that operates on floating point vectors
;; (either altivec or VSX).
(define_predicate "vfloat_operand"
(and (match_operand 0 "register_operand")
(match_test "GET_CODE (op) != REG
|| VFLOAT_REGNO_P (REGNO (op))
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
;; Return 1 if op is a vector register that operates on integer vectors
;; (only altivec, VSX doesn't support integer vectors)
(define_predicate "vint_operand"
(and (match_operand 0 "register_operand")
(match_test "GET_CODE (op) != REG
|| VINT_REGNO_P (REGNO (op))
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
;; Return 1 if op is a vector register to do logical operations on (and, or,
;; xor, etc.)
(define_predicate "vlogical_operand"
(and (match_operand 0 "register_operand")
(match_test "GET_CODE (op) != REG
|| VLOGICAL_REGNO_P (REGNO (op))
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
;; Return 1 if op is XER register.
(define_predicate "xer_operand"
(and (match_code "reg")
(match_test "XER_REGNO_P (REGNO (op))")))
;; Return 1 if op is a signed 5-bit constant integer.
(define_predicate "s5bit_cint_operand"
(and (match_code "const_int")
(match_test "INTVAL (op) >= -16 && INTVAL (op) <= 15")))
;; Return 1 if op is a unsigned 5-bit constant integer.
(define_predicate "u5bit_cint_operand"
(and (match_code "const_int")
(match_test "INTVAL (op) >= 0 && INTVAL (op) <= 31")))
;; Return 1 if op is a signed 8-bit constant integer.
;; Integer multiplication complete more quickly
(define_predicate "s8bit_cint_operand"
(and (match_code "const_int")
(match_test "INTVAL (op) >= -128 && INTVAL (op) <= 127")))
;; Return 1 if op is a constant integer that can fit in a D field.
(define_predicate "short_cint_operand"
(and (match_code "const_int")
(match_test "satisfies_constraint_I (op)")))
;; Return 1 if op is a constant integer that can fit in an unsigned D field.
(define_predicate "u_short_cint_operand"
(and (match_code "const_int")
(match_test "satisfies_constraint_K (op)")))
;; Return 1 if op is a constant integer that cannot fit in a signed D field.
(define_predicate "non_short_cint_operand"
(and (match_code "const_int")
(match_test "(unsigned HOST_WIDE_INT)
(INTVAL (op) + 0x8000) >= 0x10000")))
;; Return 1 if op is a positive constant integer that is an exact power of 2.
(define_predicate "exact_log2_cint_operand"
(and (match_code "const_int")
(match_test "INTVAL (op) > 0 && exact_log2 (INTVAL (op)) >= 0")))
;; Return 1 if op is a register that is not special.
(define_predicate "gpc_reg_operand"
(and (match_operand 0 "register_operand")
(match_test "(GET_CODE (op) != REG
|| (REGNO (op) >= ARG_POINTER_REGNUM
&& !XER_REGNO_P (REGNO (op)))
|| REGNO (op) < MQ_REGNO)
&& !((TARGET_E500_DOUBLE || TARGET_SPE)
&& invalid_e500_subreg (op, mode))")))
;; Return 1 if op is a register that is a condition register field.
(define_predicate "cc_reg_operand"
(and (match_operand 0 "register_operand")
(match_test "GET_CODE (op) != REG
|| REGNO (op) > LAST_VIRTUAL_REGISTER
|| CR_REGNO_P (REGNO (op))")))
;; Return 1 if op is a register that is a condition register field not cr0.
(define_predicate "cc_reg_not_cr0_operand"
(and (match_operand 0 "register_operand")
(match_test "GET_CODE (op) != REG
|| REGNO (op) > LAST_VIRTUAL_REGISTER
|| CR_REGNO_NOT_CR0_P (REGNO (op))")))
;; Return 1 if op is a register that is a condition register field and if generating microcode, not cr0.
(define_predicate "cc_reg_not_micro_cr0_operand"
(and (match_operand 0 "register_operand")
(match_test "GET_CODE (op) != REG
|| REGNO (op) > LAST_VIRTUAL_REGISTER
|| (rs6000_gen_cell_microcode && CR_REGNO_NOT_CR0_P (REGNO (op)))
|| (!rs6000_gen_cell_microcode && CR_REGNO_P (REGNO (op)))")))
;; Return 1 if op is a constant integer valid for D field
;; or non-special register register.
(define_predicate "reg_or_short_operand"
(if_then_else (match_code "const_int")
(match_operand 0 "short_cint_operand")
(match_operand 0 "gpc_reg_operand")))
;; Return 1 if op is a constant integer valid whose negation is valid for
;; D field or non-special register register.
;; Do not allow a constant zero because all patterns that call this
;; predicate use "addic r1,r2,-const" to set carry when r2 is greater than
;; or equal to const, which does not work for zero.
(define_predicate "reg_or_neg_short_operand"
(if_then_else (match_code "const_int")
(match_test "satisfies_constraint_P (op)
&& INTVAL (op) != 0")
(match_operand 0 "gpc_reg_operand")))
;; Return 1 if op is a constant integer valid for DS field
;; or non-special register.
(define_predicate "reg_or_aligned_short_operand"
(if_then_else (match_code "const_int")
(and (match_operand 0 "short_cint_operand")
(match_test "!(INTVAL (op) & 3)"))
(match_operand 0 "gpc_reg_operand")))
;; Return 1 if op is a constant integer whose high-order 16 bits are zero
;; or non-special register.
(define_predicate "reg_or_u_short_operand"
(if_then_else (match_code "const_int")
(match_operand 0 "u_short_cint_operand")
(match_operand 0 "gpc_reg_operand")))
;; Return 1 if op is any constant integer
;; or non-special register.
(define_predicate "reg_or_cint_operand"
(ior (match_code "const_int")
(match_operand 0 "gpc_reg_operand")))
;; Return 1 if op is a constant integer valid for addition
;; or non-special register.
(define_predicate "reg_or_add_cint_operand"
(if_then_else (match_code "const_int")
(match_test "(HOST_BITS_PER_WIDE_INT == 32
&& (mode == SImode || INTVAL (op) < 0x7fff8000))
|| ((unsigned HOST_WIDE_INT) (INTVAL (op) + 0x80008000)
< (unsigned HOST_WIDE_INT) 0x100000000ll)")
(match_operand 0 "gpc_reg_operand")))
;; Return 1 if op is a constant integer valid for subtraction
;; or non-special register.
(define_predicate "reg_or_sub_cint_operand"
(if_then_else (match_code "const_int")
(match_test "(HOST_BITS_PER_WIDE_INT == 32
&& (mode == SImode || - INTVAL (op) < 0x7fff8000))
|| ((unsigned HOST_WIDE_INT) (- INTVAL (op)
+ (mode == SImode
? 0x80000000 : 0x80008000))
< (unsigned HOST_WIDE_INT) 0x100000000ll)")
(match_operand 0 "gpc_reg_operand")))
;; Return 1 if op is any 32-bit unsigned constant integer
;; or non-special register.
(define_predicate "reg_or_logical_cint_operand"
(if_then_else (match_code "const_int")
(match_test "(GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
&& INTVAL (op) >= 0)
|| ((INTVAL (op) & GET_MODE_MASK (mode)
& (~ (unsigned HOST_WIDE_INT) 0xffffffff)) == 0)")
(if_then_else (match_code "const_double")
(match_test "GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
&& mode == DImode
&& CONST_DOUBLE_HIGH (op) == 0")
(match_operand 0 "gpc_reg_operand"))))
;; Return 1 if operand is a CONST_DOUBLE that can be set in a register
;; with no more than one instruction per word.
(define_predicate "easy_fp_constant"
(match_code "const_double")
{
long k[4];
REAL_VALUE_TYPE rv;
if (GET_MODE (op) != mode
|| (!SCALAR_FLOAT_MODE_P (mode) && mode != DImode))
return 0;
/* Consider all constants with -msoft-float to be easy. */
if ((TARGET_SOFT_FLOAT || TARGET_E500_SINGLE
|| (TARGET_HARD_FLOAT && (TARGET_SINGLE_FLOAT && ! TARGET_DOUBLE_FLOAT)))
&& mode != DImode)
return 1;
if (DECIMAL_FLOAT_MODE_P (mode))
return 0;
/* If we are using V.4 style PIC, consider all constants to be hard. */
if (flag_pic && DEFAULT_ABI == ABI_V4)
return 0;
#ifdef TARGET_RELOCATABLE
/* Similarly if we are using -mrelocatable, consider all constants
to be hard. */
if (TARGET_RELOCATABLE)
return 0;
#endif
switch (mode)
{
case TFmode:
if (TARGET_E500_DOUBLE)
return 0;
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
&& num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1
&& num_insns_constant_wide ((HOST_WIDE_INT) k[2]) == 1
&& num_insns_constant_wide ((HOST_WIDE_INT) k[3]) == 1);
case DFmode:
/* The constant 0.f is easy under VSX. */
if (op == CONST0_RTX (DFmode) && VECTOR_UNIT_VSX_P (DFmode))
return 1;
/* Force constants to memory before reload to utilize
compress_float_constant.
Avoid this when flag_unsafe_math_optimizations is enabled
because RDIV division to reciprocal optimization is not able
to regenerate the division. */
if (TARGET_E500_DOUBLE
|| (!reload_in_progress && !reload_completed
&& !flag_unsafe_math_optimizations))
return 0;
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
&& num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1);
case SFmode:
/* The constant 0.f is easy. */
if (op == CONST0_RTX (SFmode))
return 1;
/* Force constants to memory before reload to utilize
compress_float_constant.
Avoid this when flag_unsafe_math_optimizations is enabled
because RDIV division to reciprocal optimization is not able
to regenerate the division. */
if (!reload_in_progress && !reload_completed
&& !flag_unsafe_math_optimizations)
return 0;
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
REAL_VALUE_TO_TARGET_SINGLE (rv, k[0]);
return num_insns_constant_wide (k[0]) == 1;
case DImode:
return ((TARGET_POWERPC64
&& GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_LOW (op) == 0)
|| (num_insns_constant (op, DImode) <= 2));
case SImode:
return 1;
default:
gcc_unreachable ();
}
})
;; Return 1 if the operand is a CONST_VECTOR and can be loaded into a
;; vector register without using memory.
(define_predicate "easy_vector_constant"
(match_code "const_vector")
{
/* As the paired vectors are actually FPRs it seems that there is
no easy way to load a CONST_VECTOR without using memory. */
if (TARGET_PAIRED_FLOAT)
return false;
if ((VSX_VECTOR_MODE (mode) || mode == TImode) && zero_constant (op, mode))
return true;
if (ALTIVEC_VECTOR_MODE (mode))
{
if (zero_constant (op, mode))
return true;
return easy_altivec_constant (op, mode);
}
if (SPE_VECTOR_MODE (mode))
{
int cst, cst2;
if (zero_constant (op, mode))
return true;
if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
return false;
/* Limit SPE vectors to 15 bits signed. These we can generate with:
li r0, CONSTANT1
evmergelo r0, r0, r0
li r0, CONSTANT2
I don't know how efficient it would be to allow bigger constants,
considering we'll have an extra 'ori' for every 'li'. I doubt 5
instructions is better than a 64-bit memory load, but I don't
have the e500 timing specs. */
if (mode == V2SImode)
{
cst = INTVAL (CONST_VECTOR_ELT (op, 0));
cst2 = INTVAL (CONST_VECTOR_ELT (op, 1));
return cst >= -0x7fff && cst <= 0x7fff
&& cst2 >= -0x7fff && cst2 <= 0x7fff;
}
}
return false;
})
;; Same as easy_vector_constant but only for EASY_VECTOR_15_ADD_SELF.
(define_predicate "easy_vector_constant_add_self"
(and (match_code "const_vector")
(and (match_test "TARGET_ALTIVEC")
(match_test "easy_altivec_constant (op, mode)")))
{
HOST_WIDE_INT val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1);
val = ((val & 0xff) ^ 0x80) - 0x80;
return EASY_VECTOR_15_ADD_SELF (val);
})
;; Same as easy_vector_constant but only for EASY_VECTOR_MSB.
(define_predicate "easy_vector_constant_msb"
(and (match_code "const_vector")
(and (match_test "TARGET_ALTIVEC")
(match_test "easy_altivec_constant (op, mode)")))
{
HOST_WIDE_INT val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1);
return EASY_VECTOR_MSB (val, GET_MODE_INNER (mode));
})
;; Return 1 if operand is constant zero (scalars and vectors).
(define_predicate "zero_constant"
(and (match_code "const_int,const_double,const_vector")
(match_test "op == CONST0_RTX (mode)")))
;; Return 1 if operand is 0.0.
;; or non-special register register field no cr0
(define_predicate "zero_fp_constant"
(and (match_code "const_double")
(match_test "SCALAR_FLOAT_MODE_P (mode)
&& op == CONST0_RTX (mode)")))
;; Return 1 if the operand is in volatile memory. Note that during the
;; RTL generation phase, memory_operand does not return TRUE for volatile
;; memory references. So this function allows us to recognize volatile
;; references where it's safe.
(define_predicate "volatile_mem_operand"
(and (and (match_code "mem")
(match_test "MEM_VOLATILE_P (op)"))
(if_then_else (match_test "reload_completed")
(match_operand 0 "memory_operand")
(if_then_else (match_test "reload_in_progress")
(match_test "strict_memory_address_p (mode, XEXP (op, 0))")
(match_test "memory_address_p (mode, XEXP (op, 0))")))))
;; Return 1 if the operand is an offsettable memory operand.
(define_predicate "offsettable_mem_operand"
(and (match_operand 0 "memory_operand")
(match_test "offsettable_nonstrict_memref_p (op)")))
;; Return 1 if the operand is a memory operand with an address divisible by 4
(define_predicate "word_offset_memref_operand"
(match_operand 0 "memory_operand")
{
/* Address inside MEM. */
op = XEXP (op, 0);
/* Extract address from auto-inc/dec. */
if (GET_CODE (op) == PRE_INC
|| GET_CODE (op) == PRE_DEC)
op = XEXP (op, 0);
else if (GET_CODE (op) == PRE_MODIFY)
op = XEXP (op, 1);
return (GET_CODE (op) != PLUS
|| ! REG_P (XEXP (op, 0))
|| GET_CODE (XEXP (op, 1)) != CONST_INT
|| INTVAL (XEXP (op, 1)) % 4 == 0);
})
;; Return 1 if the operand is an indexed or indirect memory operand.
(define_predicate "indexed_or_indirect_operand"
(match_code "mem")
{
op = XEXP (op, 0);
if (VECTOR_MEM_ALTIVEC_P (mode)
&& GET_CODE (op) == AND
&& GET_CODE (XEXP (op, 1)) == CONST_INT
&& INTVAL (XEXP (op, 1)) == -16)
op = XEXP (op, 0);
return indexed_or_indirect_address (op, mode);
})
;; Return 1 if the operand is an indexed or indirect memory operand with an
;; AND -16 in it, used to recognize when we need to switch to Altivec loads
;; to realign loops instead of VSX (altivec silently ignores the bottom bits,
;; while VSX uses the full address and traps)
(define_predicate "altivec_indexed_or_indirect_operand"
(match_code "mem")
{
op = XEXP (op, 0);
if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
&& GET_CODE (op) == AND
&& GET_CODE (XEXP (op, 1)) == CONST_INT
&& INTVAL (XEXP (op, 1)) == -16)
return indexed_or_indirect_address (XEXP (op, 0), mode);
return 0;
})
;; Return 1 if the operand is an indexed or indirect address.
(define_special_predicate "indexed_or_indirect_address"
(and (match_test "REG_P (op)
|| (GET_CODE (op) == PLUS
/* Omit testing REG_P (XEXP (op, 0)). */
&& REG_P (XEXP (op, 1)))")
(match_operand 0 "address_operand")))
;; Used for the destination of the fix_truncdfsi2 expander.
;; If stfiwx will be used, the result goes to memory; otherwise,
;; we're going to emit a store and a load of a subreg, so the dest is a
;; register.
(define_predicate "fix_trunc_dest_operand"
(if_then_else (match_test "! TARGET_E500_DOUBLE && TARGET_PPC_GFXOPT")
(match_operand 0 "memory_operand")
(match_operand 0 "gpc_reg_operand")))
;; Return 1 if the operand is either a non-special register or can be used
;; as the operand of a `mode' add insn.
(define_predicate "add_operand"
(if_then_else (match_code "const_int")
(match_test "satisfies_constraint_I (op)
|| satisfies_constraint_L (op)")
(match_operand 0 "gpc_reg_operand")))
;; Return 1 if OP is a constant but not a valid add_operand.
(define_predicate "non_add_cint_operand"
(and (match_code "const_int")
(match_test "!satisfies_constraint_I (op)
&& !satisfies_constraint_L (op)")))
;; Return 1 if the operand is a constant that can be used as the operand
;; of an OR or XOR.
(define_predicate "logical_const_operand"
(match_code "const_int,const_double")
{
HOST_WIDE_INT opl, oph;
if (GET_CODE (op) == CONST_INT)
{
opl = INTVAL (op) & GET_MODE_MASK (mode);
if (HOST_BITS_PER_WIDE_INT <= 32
&& GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT && opl < 0)
return 0;
}
else if (GET_CODE (op) == CONST_DOUBLE)
{
gcc_assert (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT);
opl = CONST_DOUBLE_LOW (op);
oph = CONST_DOUBLE_HIGH (op);
if (oph != 0)
return 0;
}
else
return 0;
return ((opl & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0
|| (opl & ~ (unsigned HOST_WIDE_INT) 0xffff0000) == 0);
})
;; Return 1 if the operand is a non-special register or a constant that
;; can be used as the operand of an OR or XOR.
(define_predicate "logical_operand"
(ior (match_operand 0 "gpc_reg_operand")
(match_operand 0 "logical_const_operand")))
;; Return 1 if op is a constant that is not a logical operand, but could
;; be split into one.
(define_predicate "non_logical_cint_operand"
(and (match_code "const_int,const_double")
(and (not (match_operand 0 "logical_operand"))
(match_operand 0 "reg_or_logical_cint_operand"))))
;; Return 1 if op is a constant that can be encoded in a 32-bit mask,
;; suitable for use with rlwinm (no more than two 1->0 or 0->1
;; transitions). Reject all ones and all zeros, since these should have
;; been optimized away and confuse the making of MB and ME.
(define_predicate "mask_operand"
(match_code "const_int")
{
HOST_WIDE_INT c, lsb;
c = INTVAL (op);
if (TARGET_POWERPC64)
{
/* Fail if the mask is not 32-bit. */
if (mode == DImode && (c & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0)
return 0;
/* Fail if the mask wraps around because the upper 32-bits of the
mask will all be 1s, contrary to GCC's internal view. */
if ((c & 0x80000001) == 0x80000001)
return 0;
}
/* We don't change the number of transitions by inverting,
so make sure we start with the LS bit zero. */
if (c & 1)
c = ~c;
/* Reject all zeros or all ones. */
if (c == 0)
return 0;
/* Find the first transition. */
lsb = c & -c;
/* Invert to look for a second transition. */
c = ~c;
/* Erase first transition. */
c &= -lsb;
/* Find the second transition (if any). */
lsb = c & -c;
/* Match if all the bits above are 1's (or c is zero). */
return c == -lsb;
})
;; Return 1 for the PowerPC64 rlwinm corner case.
(define_predicate "mask_operand_wrap"
(match_code "const_int")
{
HOST_WIDE_INT c, lsb;
c = INTVAL (op);
if ((c & 0x80000001) != 0x80000001)
return 0;
c = ~c;
if (c == 0)
return 0;
lsb = c & -c;
c = ~c;
c &= -lsb;
lsb = c & -c;
return c == -lsb;
})
;; Return 1 if the operand is a constant that is a PowerPC64 mask
;; suitable for use with rldicl or rldicr (no more than one 1->0 or 0->1
;; transition). Reject all zeros, since zero should have been
;; optimized away and confuses the making of MB and ME.
(define_predicate "mask64_operand"
(match_code "const_int")
{
HOST_WIDE_INT c, lsb;
c = INTVAL (op);
/* Reject all zeros. */
if (c == 0)
return 0;
/* We don't change the number of transitions by inverting,
so make sure we start with the LS bit zero. */
if (c & 1)
c = ~c;
/* Find the first transition. */
lsb = c & -c;
/* Match if all the bits above are 1's (or c is zero). */
return c == -lsb;
})
;; Like mask64_operand, but allow up to three transitions. This
;; predicate is used by insn patterns that generate two rldicl or
;; rldicr machine insns.
(define_predicate "mask64_2_operand"
(match_code "const_int")
{
HOST_WIDE_INT c, lsb;
c = INTVAL (op);
/* Disallow all zeros. */
if (c == 0)
return 0;
/* We don't change the number of transitions by inverting,
so make sure we start with the LS bit zero. */
if (c & 1)
c = ~c;
/* Find the first transition. */
lsb = c & -c;
/* Invert to look for a second transition. */
c = ~c;
/* Erase first transition. */
c &= -lsb;
/* Find the second transition. */
lsb = c & -c;
/* Invert to look for a third transition. */
c = ~c;
/* Erase second transition. */
c &= -lsb;
/* Find the third transition (if any). */
lsb = c & -c;
/* Match if all the bits above are 1's (or c is zero). */
return c == -lsb;
})
;; Like and_operand, but also match constants that can be implemented
;; with two rldicl or rldicr insns.
(define_predicate "and64_2_operand"
(ior (match_operand 0 "mask64_2_operand")
(if_then_else (match_test "fixed_regs[CR0_REGNO]")
(match_operand 0 "gpc_reg_operand")
(match_operand 0 "logical_operand"))))
;; Return 1 if the operand is either a non-special register or a
;; constant that can be used as the operand of a logical AND.
(define_predicate "and_operand"
(ior (match_operand 0 "mask_operand")
(ior (and (match_test "TARGET_POWERPC64 && mode == DImode")
(match_operand 0 "mask64_operand"))
(if_then_else (match_test "fixed_regs[CR0_REGNO]")
(match_operand 0 "gpc_reg_operand")
(match_operand 0 "logical_operand")))))
;; Return 1 if the operand is either a logical operand or a short cint operand.
(define_predicate "scc_eq_operand"
(ior (match_operand 0 "logical_operand")
(match_operand 0 "short_cint_operand")))
;; Return 1 if the operand is a general non-special register or memory operand.
(define_predicate "reg_or_mem_operand"
(ior (match_operand 0 "memory_operand")
(ior (and (match_code "mem")
(match_test "macho_lo_sum_memory_operand (op, mode)"))
(ior (match_operand 0 "volatile_mem_operand")
(match_operand 0 "gpc_reg_operand")))))
;; Return 1 if the operand is either an easy FP constant or memory or reg.
(define_predicate "reg_or_none500mem_operand"
(if_then_else (match_code "mem")
(and (match_test "!TARGET_E500_DOUBLE")
(ior (match_operand 0 "memory_operand")
(ior (match_test "macho_lo_sum_memory_operand (op, mode)")
(match_operand 0 "volatile_mem_operand"))))
(match_operand 0 "gpc_reg_operand")))
;; Return 1 if the operand is CONST_DOUBLE 0, register or memory operand.
(define_predicate "zero_reg_mem_operand"
(ior (match_operand 0 "zero_fp_constant")
(match_operand 0 "reg_or_mem_operand")))
;; Return 1 if the operand is a general register or memory operand without
;; pre_inc or pre_dec or pre_modify, which produces invalid form of PowerPC
;; lwa instruction.
(define_predicate "lwa_operand"
(match_code "reg,subreg,mem")
{
rtx inner = op;
if (reload_completed && GET_CODE (inner) == SUBREG)
inner = SUBREG_REG (inner);
return gpc_reg_operand (inner, mode)
|| (memory_operand (inner, mode)
&& GET_CODE (XEXP (inner, 0)) != PRE_INC
&& GET_CODE (XEXP (inner, 0)) != PRE_DEC
&& (GET_CODE (XEXP (inner, 0)) != PRE_MODIFY
|| legitimate_indexed_address_p (XEXP (XEXP (inner, 0), 1), 0))
&& (GET_CODE (XEXP (inner, 0)) != PLUS
|| GET_CODE (XEXP (XEXP (inner, 0), 1)) != CONST_INT
|| INTVAL (XEXP (XEXP (inner, 0), 1)) % 4 == 0));
})
;; Return 1 if the operand, used inside a MEM, is a SYMBOL_REF.
(define_predicate "symbol_ref_operand"
(and (match_code "symbol_ref")
(match_test "(mode == VOIDmode || GET_MODE (op) == mode)
&& (DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))")))
;; Return 1 if op is an operand that can be loaded via the GOT.
;; or non-special register register field no cr0
(define_predicate "got_operand"
(match_code "symbol_ref,const,label_ref"))
;; Return 1 if op is a simple reference that can be loaded via the GOT,
;; excluding labels involving addition.
(define_predicate "got_no_const_operand"
(match_code "symbol_ref,label_ref"))
;; Return 1 if op is a SYMBOL_REF for a TLS symbol.
(define_predicate "rs6000_tls_symbol_ref"
(and (match_code "symbol_ref")
(match_test "RS6000_SYMBOL_REF_TLS_P (op)")))
;; Return 1 if the operand, used inside a MEM, is a valid first argument
;; to CALL. This is a SYMBOL_REF, a pseudo-register, LR or CTR.
(define_predicate "call_operand"
(if_then_else (match_code "reg")
(match_test "REGNO (op) == LR_REGNO
|| REGNO (op) == CTR_REGNO
|| REGNO (op) >= FIRST_PSEUDO_REGISTER")
(match_code "symbol_ref")))
;; Return 1 if the operand is a SYMBOL_REF for a function known to be in
;; this file.
(define_predicate "current_file_function_operand"
(and (match_code "symbol_ref")
(match_test "(DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))
&& ((SYMBOL_REF_LOCAL_P (op)
&& (DEFAULT_ABI != ABI_AIX
|| !SYMBOL_REF_EXTERNAL_P (op)))
|| (op == XEXP (DECL_RTL (current_function_decl),
0)))")))
;; Return 1 if this operand is a valid input for a move insn.
(define_predicate "input_operand"
(match_code "label_ref,symbol_ref,const,high,reg,subreg,mem,
const_double,const_vector,const_int,plus")
{
/* Memory is always valid. */
if (memory_operand (op, mode))
return 1;
/* For floating-point, easy constants are valid. */
if (SCALAR_FLOAT_MODE_P (mode)
&& CONSTANT_P (op)
&& easy_fp_constant (op, mode))
return 1;
/* Allow any integer constant. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& (GET_CODE (op) == CONST_INT
|| GET_CODE (op) == CONST_DOUBLE))
return 1;
/* Allow easy vector constants. */
if (GET_CODE (op) == CONST_VECTOR
&& easy_vector_constant (op, mode))
return 1;
/* Do not allow invalid E500 subregs. */
if ((TARGET_E500_DOUBLE || TARGET_SPE)
&& GET_CODE (op) == SUBREG
&& invalid_e500_subreg (op, mode))
return 0;
/* For floating-point or multi-word mode, the only remaining valid type
is a register. */
if (SCALAR_FLOAT_MODE_P (mode)
|| GET_MODE_SIZE (mode) > UNITS_PER_WORD)
return register_operand (op, mode);
/* The only cases left are integral modes one word or smaller (we
do not get called for MODE_CC values). These can be in any
register. */
if (register_operand (op, mode))
return 1;
/* A SYMBOL_REF referring to the TOC is valid. */
if (legitimate_constant_pool_address_p (op))
return 1;
/* A constant pool expression (relative to the TOC) is valid */
if (toc_relative_expr_p (op))
return 1;
/* V.4 allows SYMBOL_REFs and CONSTs that are in the small data region
to be valid. */
if (DEFAULT_ABI == ABI_V4
&& (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST)
&& small_data_operand (op, Pmode))
return 1;
return 0;
})
;; Return true if OP is an invalid SUBREG operation on the e500.
(define_predicate "rs6000_nonimmediate_operand"
(match_code "reg,subreg,mem")
{
if ((TARGET_E500_DOUBLE || TARGET_SPE)
&& GET_CODE (op) == SUBREG
&& invalid_e500_subreg (op, mode))
return 0;
return nonimmediate_operand (op, mode);
})
;; Return true if operand is boolean operator.
(define_predicate "boolean_operator"
(match_code "and,ior,xor"))
;; Return true if operand is OR-form of boolean operator.
(define_predicate "boolean_or_operator"
(match_code "ior,xor"))
;; Return true if operand is an equality operator.
(define_special_predicate "equality_operator"
(match_code "eq,ne"))
;; Return true if operand is MIN or MAX operator.
(define_predicate "min_max_operator"
(match_code "smin,smax,umin,umax"))
;; Return 1 if OP is a comparison operation that is valid for a branch
;; instruction. We check the opcode against the mode of the CC value.
;; validate_condition_mode is an assertion.
(define_predicate "branch_comparison_operator"
(and (match_operand 0 "comparison_operator")
(and (match_test "GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_CC")
(match_test "validate_condition_mode (GET_CODE (op),
GET_MODE (XEXP (op, 0))),
1"))))
(define_predicate "rs6000_cbranch_operator"
(if_then_else (match_test "TARGET_HARD_FLOAT && !TARGET_FPRS")
(match_operand 0 "ordered_comparison_operator")
(match_operand 0 "comparison_operator")))
;; Return 1 if OP is a comparison operation that is valid for an SCC insn --
;; it must be a positive comparison.
(define_predicate "scc_comparison_operator"
(and (match_operand 0 "branch_comparison_operator")
(match_code "eq,lt,gt,ltu,gtu,unordered")))
;; Return 1 if OP is a comparison operation that is valid for a branch
;; insn, which is true if the corresponding bit in the CC register is set.
(define_predicate "branch_positive_comparison_operator"
(and (match_operand 0 "branch_comparison_operator")
(match_code "eq,lt,gt,ltu,gtu,unordered")))
;; Return 1 if OP is a load multiple operation, known to be a PARALLEL.
(define_predicate "load_multiple_operation"
(match_code "parallel")
{
int count = XVECLEN (op, 0);
unsigned int dest_regno;
rtx src_addr;
int i;
/* Perform a quick check so we don't blow up below. */
if (count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
return 0;
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
for (i = 1; i < count; i++)
{
rtx elt = XVECEXP (op, 0, i);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != REG
|| GET_MODE (SET_DEST (elt)) != SImode
|| REGNO (SET_DEST (elt)) != dest_regno + i
|| GET_CODE (SET_SRC (elt)) != MEM
|| GET_MODE (SET_SRC (elt)) != SImode
|| GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
|| ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
|| GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
|| INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4)
return 0;
}
return 1;
})
;; Return 1 if OP is a store multiple operation, known to be a PARALLEL.
;; The second vector element is a CLOBBER.
(define_predicate "store_multiple_operation"
(match_code "parallel")
{
int count = XVECLEN (op, 0) - 1;
unsigned int src_regno;
rtx dest_addr;
int i;
/* Perform a quick check so we don't blow up below. */
if (count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
return 0;
src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
for (i = 1; i < count; i++)
{
rtx elt = XVECEXP (op, 0, i + 1);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_SRC (elt)) != REG
|| GET_MODE (SET_SRC (elt)) != SImode
|| REGNO (SET_SRC (elt)) != src_regno + i
|| GET_CODE (SET_DEST (elt)) != MEM
|| GET_MODE (SET_DEST (elt)) != SImode
|| GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
|| ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
|| GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
|| INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4)
return 0;
}
return 1;
})
;; Return 1 if OP is valid for a save_world call in prologue, known to be
;; a PARLLEL.
(define_predicate "save_world_operation"
(match_code "parallel")
{
int index;
int i;
rtx elt;
int count = XVECLEN (op, 0);
if (count != 54)
return 0;
index = 0;
if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|| GET_CODE (XVECEXP (op, 0, index++)) != USE)
return 0;
for (i=1; i <= 18; i++)
{
elt = XVECEXP (op, 0, index++);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != MEM
|| ! memory_operand (SET_DEST (elt), DFmode)
|| GET_CODE (SET_SRC (elt)) != REG
|| GET_MODE (SET_SRC (elt)) != DFmode)
return 0;
}
for (i=1; i <= 12; i++)
{
elt = XVECEXP (op, 0, index++);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != MEM
|| GET_CODE (SET_SRC (elt)) != REG
|| GET_MODE (SET_SRC (elt)) != V4SImode)
return 0;
}
for (i=1; i <= 19; i++)
{
elt = XVECEXP (op, 0, index++);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != MEM
|| ! memory_operand (SET_DEST (elt), Pmode)
|| GET_CODE (SET_SRC (elt)) != REG
|| GET_MODE (SET_SRC (elt)) != Pmode)
return 0;
}
elt = XVECEXP (op, 0, index++);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != MEM
|| ! memory_operand (SET_DEST (elt), Pmode)
|| GET_CODE (SET_SRC (elt)) != REG
|| REGNO (SET_SRC (elt)) != CR2_REGNO
|| GET_MODE (SET_SRC (elt)) != Pmode)
return 0;
if (GET_CODE (XVECEXP (op, 0, index++)) != SET
|| GET_CODE (XVECEXP (op, 0, index++)) != SET)
return 0;
return 1;
})
;; Return 1 if OP is valid for a restore_world call in epilogue, known to be
;; a PARLLEL.
(define_predicate "restore_world_operation"
(match_code "parallel")
{
int index;
int i;
rtx elt;
int count = XVECLEN (op, 0);
if (count != 59)
return 0;
index = 0;
if (GET_CODE (XVECEXP (op, 0, index++)) != RETURN
|| GET_CODE (XVECEXP (op, 0, index++)) != USE
|| GET_CODE (XVECEXP (op, 0, index++)) != USE
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER)
return 0;
elt = XVECEXP (op, 0, index++);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_SRC (elt)) != MEM
|| ! memory_operand (SET_SRC (elt), Pmode)
|| GET_CODE (SET_DEST (elt)) != REG
|| REGNO (SET_DEST (elt)) != CR2_REGNO
|| GET_MODE (SET_DEST (elt)) != Pmode)
return 0;
for (i=1; i <= 19; i++)
{
elt = XVECEXP (op, 0, index++);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_SRC (elt)) != MEM
|| ! memory_operand (SET_SRC (elt), Pmode)
|| GET_CODE (SET_DEST (elt)) != REG
|| GET_MODE (SET_DEST (elt)) != Pmode)
return 0;
}
for (i=1; i <= 12; i++)
{
elt = XVECEXP (op, 0, index++);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_SRC (elt)) != MEM
|| GET_CODE (SET_DEST (elt)) != REG
|| GET_MODE (SET_DEST (elt)) != V4SImode)
return 0;
}
for (i=1; i <= 18; i++)
{
elt = XVECEXP (op, 0, index++);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_SRC (elt)) != MEM
|| ! memory_operand (SET_SRC (elt), DFmode)
|| GET_CODE (SET_DEST (elt)) != REG
|| GET_MODE (SET_DEST (elt)) != DFmode)
return 0;
}
if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|| GET_CODE (XVECEXP (op, 0, index++)) != USE)
return 0;
return 1;
})
;; Return 1 if OP is valid for a vrsave call, known to be a PARALLEL.
(define_predicate "vrsave_operation"
(match_code "parallel")
{
int count = XVECLEN (op, 0);
unsigned int dest_regno, src_regno;
int i;
if (count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC_VOLATILE
|| XINT (SET_SRC (XVECEXP (op, 0, 0)), 1) != UNSPECV_SET_VRSAVE)
return 0;
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
src_regno = REGNO (XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 1));
if (dest_regno != VRSAVE_REGNO || src_regno != VRSAVE_REGNO)
return 0;
for (i = 1; i < count; i++)
{
rtx elt = XVECEXP (op, 0, i);
if (GET_CODE (elt) != CLOBBER
&& GET_CODE (elt) != SET)
return 0;
}
return 1;
})
;; Return 1 if OP is valid for mfcr insn, known to be a PARALLEL.
(define_predicate "mfcr_operation"
(match_code "parallel")
{
int count = XVECLEN (op, 0);
int i;
/* Perform a quick check so we don't blow up below. */
if (count < 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
|| XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
return 0;
for (i = 0; i < count; i++)
{
rtx exp = XVECEXP (op, 0, i);
rtx unspec;
int maskval;
rtx src_reg;
src_reg = XVECEXP (SET_SRC (exp), 0, 0);
if (GET_CODE (src_reg) != REG
|| GET_MODE (src_reg) != CCmode
|| ! CR_REGNO_P (REGNO (src_reg)))
return 0;
if (GET_CODE (exp) != SET
|| GET_CODE (SET_DEST (exp)) != REG
|| GET_MODE (SET_DEST (exp)) != SImode
|| ! INT_REGNO_P (REGNO (SET_DEST (exp))))
return 0;
unspec = SET_SRC (exp);
maskval = 1 << (MAX_CR_REGNO - REGNO (src_reg));
if (GET_CODE (unspec) != UNSPEC
|| XINT (unspec, 1) != UNSPEC_MOVESI_FROM_CR
|| XVECLEN (unspec, 0) != 2
|| XVECEXP (unspec, 0, 0) != src_reg
|| GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
|| INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
return 0;
}
return 1;
})
;; Return 1 if OP is valid for mtcrf insn, known to be a PARALLEL.
(define_predicate "mtcrf_operation"
(match_code "parallel")
{
int count = XVECLEN (op, 0);
int i;
rtx src_reg;
/* Perform a quick check so we don't blow up below. */
if (count < 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
|| XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
return 0;
src_reg = XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 0);
if (GET_CODE (src_reg) != REG
|| GET_MODE (src_reg) != SImode
|| ! INT_REGNO_P (REGNO (src_reg)))
return 0;
for (i = 0; i < count; i++)
{
rtx exp = XVECEXP (op, 0, i);
rtx unspec;
int maskval;
if (GET_CODE (exp) != SET
|| GET_CODE (SET_DEST (exp)) != REG
|| GET_MODE (SET_DEST (exp)) != CCmode
|| ! CR_REGNO_P (REGNO (SET_DEST (exp))))
return 0;
unspec = SET_SRC (exp);
maskval = 1 << (MAX_CR_REGNO - REGNO (SET_DEST (exp)));
if (GET_CODE (unspec) != UNSPEC
|| XINT (unspec, 1) != UNSPEC_MOVESI_TO_CR
|| XVECLEN (unspec, 0) != 2
|| XVECEXP (unspec, 0, 0) != src_reg
|| GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
|| INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
return 0;
}
return 1;
})
;; Return 1 if OP is valid for lmw insn, known to be a PARALLEL.
(define_predicate "lmw_operation"
(match_code "parallel")
{
int count = XVECLEN (op, 0);
unsigned int dest_regno;
rtx src_addr;
unsigned int base_regno;
HOST_WIDE_INT offset;
int i;
/* Perform a quick check so we don't blow up below. */
if (count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
return 0;
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
if (dest_regno > 31
|| count != 32 - (int) dest_regno)
return 0;
if (legitimate_indirect_address_p (src_addr, 0))
{
offset = 0;
base_regno = REGNO (src_addr);
if (base_regno == 0)
return 0;
}
else if (rs6000_legitimate_offset_address_p (SImode, src_addr, 0))
{
offset = INTVAL (XEXP (src_addr, 1));
base_regno = REGNO (XEXP (src_addr, 0));
}
else
return 0;
for (i = 0; i < count; i++)
{
rtx elt = XVECEXP (op, 0, i);
rtx newaddr;
rtx addr_reg;
HOST_WIDE_INT newoffset;
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != REG
|| GET_MODE (SET_DEST (elt)) != SImode
|| REGNO (SET_DEST (elt)) != dest_regno + i
|| GET_CODE (SET_SRC (elt)) != MEM
|| GET_MODE (SET_SRC (elt)) != SImode)
return 0;
newaddr = XEXP (SET_SRC (elt), 0);
if (legitimate_indirect_address_p (newaddr, 0))
{
newoffset = 0;
addr_reg = newaddr;
}
else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
{
addr_reg = XEXP (newaddr, 0);
newoffset = INTVAL (XEXP (newaddr, 1));
}
else
return 0;
if (REGNO (addr_reg) != base_regno
|| newoffset != offset + 4 * i)
return 0;
}
return 1;
})
;; Return 1 if OP is valid for stmw insn, known to be a PARALLEL.
(define_predicate "stmw_operation"
(match_code "parallel")
{
int count = XVECLEN (op, 0);
unsigned int src_regno;
rtx dest_addr;
unsigned int base_regno;
HOST_WIDE_INT offset;
int i;
/* Perform a quick check so we don't blow up below. */
if (count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
return 0;
src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
if (src_regno > 31
|| count != 32 - (int) src_regno)
return 0;
if (legitimate_indirect_address_p (dest_addr, 0))
{
offset = 0;
base_regno = REGNO (dest_addr);
if (base_regno == 0)
return 0;
}
else if (rs6000_legitimate_offset_address_p (SImode, dest_addr, 0))
{
offset = INTVAL (XEXP (dest_addr, 1));
base_regno = REGNO (XEXP (dest_addr, 0));
}
else
return 0;
for (i = 0; i < count; i++)
{
rtx elt = XVECEXP (op, 0, i);
rtx newaddr;
rtx addr_reg;
HOST_WIDE_INT newoffset;
if (GET_CODE (elt) != SET
|| GET_CODE (SET_SRC (elt)) != REG
|| GET_MODE (SET_SRC (elt)) != SImode
|| REGNO (SET_SRC (elt)) != src_regno + i
|| GET_CODE (SET_DEST (elt)) != MEM
|| GET_MODE (SET_DEST (elt)) != SImode)
return 0;
newaddr = XEXP (SET_DEST (elt), 0);
if (legitimate_indirect_address_p (newaddr, 0))
{
newoffset = 0;
addr_reg = newaddr;
}
else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
{
addr_reg = XEXP (newaddr, 0);
newoffset = INTVAL (XEXP (newaddr, 1));
}
else
return 0;
if (REGNO (addr_reg) != base_regno
|| newoffset != offset + 4 * i)
return 0;
}
return 1;
})
Go to most recent revision | Compare with Previous | Blame | View Log