URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [s390/] [s390.c] - Rev 433
Go to most recent revision | Compare with Previous | Blame | View Log
/* Subroutines used for code generation on IBM S/390 and zSeries Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by Hartmut Penner (hpenner@de.ibm.com) and Ulrich Weigand (uweigand@de.ibm.com) and Andreas Krebbel (Andreas.Krebbel@de.ibm.com). This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "tm_p.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "except.h" #include "function.h" #include "recog.h" #include "expr.h" #include "reload.h" #include "toplev.h" #include "basic-block.h" #include "integrate.h" #include "ggc.h" #include "target.h" #include "target-def.h" #include "debug.h" #include "langhooks.h" #include "optabs.h" #include "gimple.h" #include "df.h" #include "params.h" /* Define the specific costs for a given cpu. */ struct processor_costs { /* multiplication */ const int m; /* cost of an M instruction. */ const int mghi; /* cost of an MGHI instruction. */ const int mh; /* cost of an MH instruction. */ const int mhi; /* cost of an MHI instruction. */ const int ml; /* cost of an ML instruction. */ const int mr; /* cost of an MR instruction. */ const int ms; /* cost of an MS instruction. */ const int msg; /* cost of an MSG instruction. */ const int msgf; /* cost of an MSGF instruction. */ const int msgfr; /* cost of an MSGFR instruction. */ const int msgr; /* cost of an MSGR instruction. */ const int msr; /* cost of an MSR instruction. */ const int mult_df; /* cost of multiplication in DFmode. */ const int mxbr; /* square root */ const int sqxbr; /* cost of square root in TFmode. */ const int sqdbr; /* cost of square root in DFmode. */ const int sqebr; /* cost of square root in SFmode. */ /* multiply and add */ const int madbr; /* cost of multiply and add in DFmode. */ const int maebr; /* cost of multiply and add in SFmode. */ /* division */ const int dxbr; const int ddbr; const int debr; const int dlgr; const int dlr; const int dr; const int dsgfr; const int dsgr; }; const struct processor_costs *s390_cost; static const struct processor_costs z900_cost = { COSTS_N_INSNS (5), /* M */ COSTS_N_INSNS (10), /* MGHI */ COSTS_N_INSNS (5), /* MH */ COSTS_N_INSNS (4), /* MHI */ COSTS_N_INSNS (5), /* ML */ COSTS_N_INSNS (5), /* MR */ COSTS_N_INSNS (4), /* MS */ COSTS_N_INSNS (15), /* MSG */ COSTS_N_INSNS (7), /* MSGF */ COSTS_N_INSNS (7), /* MSGFR */ COSTS_N_INSNS (10), /* MSGR */ COSTS_N_INSNS (4), /* MSR */ COSTS_N_INSNS (7), /* multiplication in DFmode */ COSTS_N_INSNS (13), /* MXBR */ COSTS_N_INSNS (136), /* SQXBR */ COSTS_N_INSNS (44), /* SQDBR */ COSTS_N_INSNS (35), /* SQEBR */ COSTS_N_INSNS (18), /* MADBR */ COSTS_N_INSNS (13), /* MAEBR */ COSTS_N_INSNS (134), /* DXBR */ COSTS_N_INSNS (30), /* DDBR */ COSTS_N_INSNS (27), /* DEBR */ COSTS_N_INSNS (220), /* DLGR */ COSTS_N_INSNS (34), /* DLR */ COSTS_N_INSNS (34), /* DR */ COSTS_N_INSNS (32), /* DSGFR */ COSTS_N_INSNS (32), /* DSGR */ }; static const struct processor_costs z990_cost = { COSTS_N_INSNS (4), /* M */ COSTS_N_INSNS (2), /* MGHI */ COSTS_N_INSNS (2), /* MH */ COSTS_N_INSNS (2), /* MHI */ COSTS_N_INSNS (4), /* ML */ COSTS_N_INSNS (4), /* MR */ COSTS_N_INSNS (5), /* MS */ COSTS_N_INSNS (6), /* MSG */ COSTS_N_INSNS (4), /* MSGF */ COSTS_N_INSNS (4), /* MSGFR */ COSTS_N_INSNS (4), /* MSGR */ COSTS_N_INSNS (4), /* MSR */ COSTS_N_INSNS (1), /* multiplication in DFmode */ COSTS_N_INSNS (28), /* MXBR */ COSTS_N_INSNS (130), /* SQXBR */ COSTS_N_INSNS (66), /* SQDBR */ COSTS_N_INSNS (38), /* SQEBR */ COSTS_N_INSNS (1), /* MADBR */ COSTS_N_INSNS (1), /* MAEBR */ COSTS_N_INSNS (60), /* DXBR */ COSTS_N_INSNS (40), /* DDBR */ COSTS_N_INSNS (26), /* DEBR */ COSTS_N_INSNS (176), /* DLGR */ COSTS_N_INSNS (31), /* DLR */ COSTS_N_INSNS (31), /* DR */ COSTS_N_INSNS (31), /* DSGFR */ COSTS_N_INSNS (31), /* DSGR */ }; static const struct processor_costs z9_109_cost = { COSTS_N_INSNS (4), /* M */ COSTS_N_INSNS (2), /* MGHI */ COSTS_N_INSNS (2), /* MH */ COSTS_N_INSNS (2), /* MHI */ COSTS_N_INSNS (4), /* ML */ COSTS_N_INSNS (4), /* MR */ COSTS_N_INSNS (5), /* MS */ COSTS_N_INSNS (6), /* MSG */ COSTS_N_INSNS (4), /* MSGF */ COSTS_N_INSNS (4), /* MSGFR */ COSTS_N_INSNS (4), /* MSGR */ COSTS_N_INSNS (4), /* MSR */ COSTS_N_INSNS (1), /* multiplication in DFmode */ COSTS_N_INSNS (28), /* MXBR */ COSTS_N_INSNS (130), /* SQXBR */ COSTS_N_INSNS (66), /* SQDBR */ COSTS_N_INSNS (38), /* SQEBR */ COSTS_N_INSNS (1), /* MADBR */ COSTS_N_INSNS (1), /* MAEBR */ COSTS_N_INSNS (60), /* DXBR */ COSTS_N_INSNS (40), /* DDBR */ COSTS_N_INSNS (26), /* DEBR */ COSTS_N_INSNS (30), /* DLGR */ COSTS_N_INSNS (23), /* DLR */ COSTS_N_INSNS (23), /* DR */ COSTS_N_INSNS (24), /* DSGFR */ COSTS_N_INSNS (24), /* DSGR */ }; static const struct processor_costs z10_cost = { COSTS_N_INSNS (10), /* M */ COSTS_N_INSNS (10), /* MGHI */ COSTS_N_INSNS (10), /* MH */ COSTS_N_INSNS (10), /* MHI */ COSTS_N_INSNS (10), /* ML */ COSTS_N_INSNS (10), /* MR */ COSTS_N_INSNS (10), /* MS */ COSTS_N_INSNS (10), /* MSG */ COSTS_N_INSNS (10), /* MSGF */ COSTS_N_INSNS (10), /* MSGFR */ COSTS_N_INSNS (10), /* MSGR */ COSTS_N_INSNS (10), /* MSR */ COSTS_N_INSNS (1) , /* multiplication in DFmode */ COSTS_N_INSNS (50), /* MXBR */ COSTS_N_INSNS (120), /* SQXBR */ COSTS_N_INSNS (52), /* SQDBR */ COSTS_N_INSNS (38), /* SQEBR */ COSTS_N_INSNS (1), /* MADBR */ COSTS_N_INSNS (1), /* MAEBR */ COSTS_N_INSNS (111), /* DXBR */ COSTS_N_INSNS (39), /* DDBR */ COSTS_N_INSNS (32), /* DEBR */ COSTS_N_INSNS (160), /* DLGR */ COSTS_N_INSNS (71), /* DLR */ COSTS_N_INSNS (71), /* DR */ COSTS_N_INSNS (71), /* DSGFR */ COSTS_N_INSNS (71), /* DSGR */ }; extern int reload_completed; /* Kept up to date using the SCHED_VARIABLE_ISSUE hook. */ static rtx last_scheduled_insn; /* Structure used to hold the components of a S/390 memory address. A legitimate address on S/390 is of the general form base + index + displacement where any of the components is optional. base and index are registers of the class ADDR_REGS, displacement is an unsigned 12-bit immediate constant. */ struct s390_address { rtx base; rtx indx; rtx disp; bool pointer; bool literal_pool; }; /* Which cpu are we tuning for. */ enum processor_type s390_tune = PROCESSOR_max; int s390_tune_flags; /* Which instruction set architecture to use. */ enum processor_type s390_arch; int s390_arch_flags; HOST_WIDE_INT s390_warn_framesize = 0; HOST_WIDE_INT s390_stack_size = 0; HOST_WIDE_INT s390_stack_guard = 0; /* The following structure is embedded in the machine specific part of struct function. */ struct GTY (()) s390_frame_layout { /* Offset within stack frame. */ HOST_WIDE_INT gprs_offset; HOST_WIDE_INT f0_offset; HOST_WIDE_INT f4_offset; HOST_WIDE_INT f8_offset; HOST_WIDE_INT backchain_offset; /* Number of first and last gpr where slots in the register save area are reserved for. */ int first_save_gpr_slot; int last_save_gpr_slot; /* Number of first and last gpr to be saved, restored. */ int first_save_gpr; int first_restore_gpr; int last_save_gpr; int last_restore_gpr; /* Bits standing for floating point registers. Set, if the respective register has to be saved. Starting with reg 16 (f0) at the rightmost bit. Bit 15 - 8 7 6 5 4 3 2 1 0 fpr 15 - 8 7 5 3 1 6 4 2 0 reg 31 - 24 23 22 21 20 19 18 17 16 */ unsigned int fpr_bitmap; /* Number of floating point registers f8-f15 which must be saved. */ int high_fprs; /* Set if return address needs to be saved. This flag is set by s390_return_addr_rtx if it could not use the initial value of r14 and therefore depends on r14 saved to the stack. */ bool save_return_addr_p; /* Size of stack frame. */ HOST_WIDE_INT frame_size; }; /* Define the structure for the machine field in struct function. */ struct GTY(()) machine_function { struct s390_frame_layout frame_layout; /* Literal pool base register. */ rtx base_reg; /* True if we may need to perform branch splitting. */ bool split_branches_pending_p; /* Some local-dynamic TLS symbol name. */ const char *some_ld_name; bool has_landing_pad_p; }; /* Few accessor macros for struct cfun->machine->s390_frame_layout. */ #define cfun_frame_layout (cfun->machine->frame_layout) #define cfun_save_high_fprs_p (!!cfun_frame_layout.high_fprs) #define cfun_gprs_save_area_size ((cfun_frame_layout.last_save_gpr_slot - \ cfun_frame_layout.first_save_gpr_slot + 1) * UNITS_PER_WORD) #define cfun_set_fpr_bit(BITNUM) (cfun->machine->frame_layout.fpr_bitmap |= \ (1 << (BITNUM))) #define cfun_fpr_bit_p(BITNUM) (!!(cfun->machine->frame_layout.fpr_bitmap & \ (1 << (BITNUM)))) /* Number of GPRs and FPRs used for argument passing. */ #define GP_ARG_NUM_REG 5 #define FP_ARG_NUM_REG (TARGET_64BIT? 4 : 2) /* A couple of shortcuts. */ #define CONST_OK_FOR_J(x) \ CONST_OK_FOR_CONSTRAINT_P((x), 'J', "J") #define CONST_OK_FOR_K(x) \ CONST_OK_FOR_CONSTRAINT_P((x), 'K', "K") #define CONST_OK_FOR_Os(x) \ CONST_OK_FOR_CONSTRAINT_P((x), 'O', "Os") #define CONST_OK_FOR_Op(x) \ CONST_OK_FOR_CONSTRAINT_P((x), 'O', "Op") #define CONST_OK_FOR_On(x) \ CONST_OK_FOR_CONSTRAINT_P((x), 'O', "On") #define REGNO_PAIR_OK(REGNO, MODE) \ (HARD_REGNO_NREGS ((REGNO), (MODE)) == 1 || !((REGNO) & 1)) /* That's the read ahead of the dynamic branch prediction unit in bytes on a z10 CPU. */ #define Z10_PREDICT_DISTANCE 384 static enum machine_mode s390_libgcc_cmp_return_mode (void) { return TARGET_64BIT ? DImode : SImode; } static enum machine_mode s390_libgcc_shift_count_mode (void) { return TARGET_64BIT ? DImode : SImode; } /* Return true if the back end supports mode MODE. */ static bool s390_scalar_mode_supported_p (enum machine_mode mode) { if (DECIMAL_FLOAT_MODE_P (mode)) return default_decimal_float_supported_p (); else return default_scalar_mode_supported_p (mode); } /* Set the has_landing_pad_p flag in struct machine_function to VALUE. */ void s390_set_has_landing_pad_p (bool value) { cfun->machine->has_landing_pad_p = value; } /* If two condition code modes are compatible, return a condition code mode which is compatible with both. Otherwise, return VOIDmode. */ static enum machine_mode s390_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2) { if (m1 == m2) return m1; switch (m1) { case CCZmode: if (m2 == CCUmode || m2 == CCTmode || m2 == CCZ1mode || m2 == CCSmode || m2 == CCSRmode || m2 == CCURmode) return m2; return VOIDmode; case CCSmode: case CCUmode: case CCTmode: case CCSRmode: case CCURmode: case CCZ1mode: if (m2 == CCZmode) return m1; return VOIDmode; default: return VOIDmode; } return VOIDmode; } /* Return true if SET either doesn't set the CC register, or else the source and destination have matching CC modes and that CC mode is at least as constrained as REQ_MODE. */ static bool s390_match_ccmode_set (rtx set, enum machine_mode req_mode) { enum machine_mode set_mode; gcc_assert (GET_CODE (set) == SET); if (GET_CODE (SET_DEST (set)) != REG || !CC_REGNO_P (REGNO (SET_DEST (set)))) return 1; set_mode = GET_MODE (SET_DEST (set)); switch (set_mode) { case CCSmode: case CCSRmode: case CCUmode: case CCURmode: case CCLmode: case CCL1mode: case CCL2mode: case CCL3mode: case CCT1mode: case CCT2mode: case CCT3mode: if (req_mode != set_mode) return 0; break; case CCZmode: if (req_mode != CCSmode && req_mode != CCUmode && req_mode != CCTmode && req_mode != CCSRmode && req_mode != CCURmode) return 0; break; case CCAPmode: case CCANmode: if (req_mode != CCAmode) return 0; break; default: gcc_unreachable (); } return (GET_MODE (SET_SRC (set)) == set_mode); } /* Return true if every SET in INSN that sets the CC register has source and destination with matching CC modes and that CC mode is at least as constrained as REQ_MODE. If REQ_MODE is VOIDmode, always return false. */ bool s390_match_ccmode (rtx insn, enum machine_mode req_mode) { int i; /* s390_tm_ccmode returns VOIDmode to indicate failure. */ if (req_mode == VOIDmode) return false; if (GET_CODE (PATTERN (insn)) == SET) return s390_match_ccmode_set (PATTERN (insn), req_mode); if (GET_CODE (PATTERN (insn)) == PARALLEL) for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) { rtx set = XVECEXP (PATTERN (insn), 0, i); if (GET_CODE (set) == SET) if (!s390_match_ccmode_set (set, req_mode)) return false; } return true; } /* If a test-under-mask instruction can be used to implement (compare (and ... OP1) OP2), return the CC mode required to do that. Otherwise, return VOIDmode. MIXED is true if the instruction can distinguish between CC1 and CC2 for mixed selected bits (TMxx), it is false if the instruction cannot (TM). */ enum machine_mode s390_tm_ccmode (rtx op1, rtx op2, bool mixed) { int bit0, bit1; /* ??? Fixme: should work on CONST_DOUBLE as well. */ if (GET_CODE (op1) != CONST_INT || GET_CODE (op2) != CONST_INT) return VOIDmode; /* Selected bits all zero: CC0. e.g.: int a; if ((a & (16 + 128)) == 0) */ if (INTVAL (op2) == 0) return CCTmode; /* Selected bits all one: CC3. e.g.: int a; if ((a & (16 + 128)) == 16 + 128) */ if (INTVAL (op2) == INTVAL (op1)) return CCT3mode; /* Exactly two bits selected, mixed zeroes and ones: CC1 or CC2. e.g.: int a; if ((a & (16 + 128)) == 16) -> CCT1 if ((a & (16 + 128)) == 128) -> CCT2 */ if (mixed) { bit1 = exact_log2 (INTVAL (op2)); bit0 = exact_log2 (INTVAL (op1) ^ INTVAL (op2)); if (bit0 != -1 && bit1 != -1) return bit0 > bit1 ? CCT1mode : CCT2mode; } return VOIDmode; } /* Given a comparison code OP (EQ, NE, etc.) and the operands OP0 and OP1 of a COMPARE, return the mode to be used for the comparison. */ enum machine_mode s390_select_ccmode (enum rtx_code code, rtx op0, rtx op1) { switch (code) { case EQ: case NE: if ((GET_CODE (op0) == NEG || GET_CODE (op0) == ABS) && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT) return CCAPmode; if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 1)) == CONST_INT && CONST_OK_FOR_K (INTVAL (XEXP (op0, 1)))) return CCAPmode; if ((GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS || GET_CODE (op1) == NEG) && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT) return CCLmode; if (GET_CODE (op0) == AND) { /* Check whether we can potentially do it via TM. */ enum machine_mode ccmode; ccmode = s390_tm_ccmode (XEXP (op0, 1), op1, 1); if (ccmode != VOIDmode) { /* Relax CCTmode to CCZmode to allow fall-back to AND if that turns out to be beneficial. */ return ccmode == CCTmode ? CCZmode : ccmode; } } if (register_operand (op0, HImode) && GET_CODE (op1) == CONST_INT && (INTVAL (op1) == -1 || INTVAL (op1) == 65535)) return CCT3mode; if (register_operand (op0, QImode) && GET_CODE (op1) == CONST_INT && (INTVAL (op1) == -1 || INTVAL (op1) == 255)) return CCT3mode; return CCZmode; case LE: case LT: case GE: case GT: /* The only overflow condition of NEG and ABS happens when -INT_MAX is used as parameter, which stays negative. So we have an overflow from a positive value to a negative. Using CCAP mode the resulting cc can be used for comparisons. */ if ((GET_CODE (op0) == NEG || GET_CODE (op0) == ABS) && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT) return CCAPmode; /* If constants are involved in an add instruction it is possible to use the resulting cc for comparisons with zero. Knowing the sign of the constant the overflow behavior gets predictable. e.g.: int a, b; if ((b = a + c) > 0) with c as a constant value: c < 0 -> CCAN and c >= 0 -> CCAP */ if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 1)) == CONST_INT && CONST_OK_FOR_K (INTVAL (XEXP (op0, 1)))) { if (INTVAL (XEXP((op0), 1)) < 0) return CCANmode; else return CCAPmode; } /* Fall through. */ case UNORDERED: case ORDERED: case UNEQ: case UNLE: case UNLT: case UNGE: case UNGT: case LTGT: if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND) && GET_CODE (op1) != CONST_INT) return CCSRmode; return CCSmode; case LTU: case GEU: if (GET_CODE (op0) == PLUS && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT) return CCL1mode; if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND) && GET_CODE (op1) != CONST_INT) return CCURmode; return CCUmode; case LEU: case GTU: if (GET_CODE (op0) == MINUS && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT) return CCL2mode; if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND) && GET_CODE (op1) != CONST_INT) return CCURmode; return CCUmode; default: gcc_unreachable (); } } /* Replace the comparison OP0 CODE OP1 by a semantically equivalent one that we can implement more efficiently. */ void s390_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1) { /* Convert ZERO_EXTRACT back to AND to enable TM patterns. */ if ((*code == EQ || *code == NE) && *op1 == const0_rtx && GET_CODE (*op0) == ZERO_EXTRACT && GET_CODE (XEXP (*op0, 1)) == CONST_INT && GET_CODE (XEXP (*op0, 2)) == CONST_INT && SCALAR_INT_MODE_P (GET_MODE (XEXP (*op0, 0)))) { rtx inner = XEXP (*op0, 0); HOST_WIDE_INT modesize = GET_MODE_BITSIZE (GET_MODE (inner)); HOST_WIDE_INT len = INTVAL (XEXP (*op0, 1)); HOST_WIDE_INT pos = INTVAL (XEXP (*op0, 2)); if (len > 0 && len < modesize && pos >= 0 && pos + len <= modesize && modesize <= HOST_BITS_PER_WIDE_INT) { unsigned HOST_WIDE_INT block; block = ((unsigned HOST_WIDE_INT) 1 << len) - 1; block <<= modesize - pos - len; *op0 = gen_rtx_AND (GET_MODE (inner), inner, gen_int_mode (block, GET_MODE (inner))); } } /* Narrow AND of memory against immediate to enable TM. */ if ((*code == EQ || *code == NE) && *op1 == const0_rtx && GET_CODE (*op0) == AND && GET_CODE (XEXP (*op0, 1)) == CONST_INT && SCALAR_INT_MODE_P (GET_MODE (XEXP (*op0, 0)))) { rtx inner = XEXP (*op0, 0); rtx mask = XEXP (*op0, 1); /* Ignore paradoxical SUBREGs if all extra bits are masked out. */ if (GET_CODE (inner) == SUBREG && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (inner))) && (GET_MODE_SIZE (GET_MODE (inner)) >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner)))) && ((INTVAL (mask) & GET_MODE_MASK (GET_MODE (inner)) & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (inner)))) == 0)) inner = SUBREG_REG (inner); /* Do not change volatile MEMs. */ if (MEM_P (inner) && !MEM_VOLATILE_P (inner)) { int part = s390_single_part (XEXP (*op0, 1), GET_MODE (inner), QImode, 0); if (part >= 0) { mask = gen_int_mode (s390_extract_part (mask, QImode, 0), QImode); inner = adjust_address_nv (inner, QImode, part); *op0 = gen_rtx_AND (QImode, inner, mask); } } } /* Narrow comparisons against 0xffff to HImode if possible. */ if ((*code == EQ || *code == NE) && GET_CODE (*op1) == CONST_INT && INTVAL (*op1) == 0xffff && SCALAR_INT_MODE_P (GET_MODE (*op0)) && (nonzero_bits (*op0, GET_MODE (*op0)) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0) { *op0 = gen_lowpart (HImode, *op0); *op1 = constm1_rtx; } /* Remove redundant UNSPEC_CCU_TO_INT conversions if possible. */ if (GET_CODE (*op0) == UNSPEC && XINT (*op0, 1) == UNSPEC_CCU_TO_INT && XVECLEN (*op0, 0) == 1 && GET_MODE (XVECEXP (*op0, 0, 0)) == CCUmode && GET_CODE (XVECEXP (*op0, 0, 0)) == REG && REGNO (XVECEXP (*op0, 0, 0)) == CC_REGNUM && *op1 == const0_rtx) { enum rtx_code new_code = UNKNOWN; switch (*code) { case EQ: new_code = EQ; break; case NE: new_code = NE; break; case LT: new_code = GTU; break; case GT: new_code = LTU; break; case LE: new_code = GEU; break; case GE: new_code = LEU; break; default: break; } if (new_code != UNKNOWN) { *op0 = XVECEXP (*op0, 0, 0); *code = new_code; } } /* Remove redundant UNSPEC_CCZ_TO_INT conversions if possible. */ if (GET_CODE (*op0) == UNSPEC && XINT (*op0, 1) == UNSPEC_CCZ_TO_INT && XVECLEN (*op0, 0) == 1 && GET_MODE (XVECEXP (*op0, 0, 0)) == CCZmode && GET_CODE (XVECEXP (*op0, 0, 0)) == REG && REGNO (XVECEXP (*op0, 0, 0)) == CC_REGNUM && *op1 == const0_rtx) { enum rtx_code new_code = UNKNOWN; switch (*code) { case EQ: new_code = EQ; break; case NE: new_code = NE; break; default: break; } if (new_code != UNKNOWN) { *op0 = XVECEXP (*op0, 0, 0); *code = new_code; } } /* Simplify cascaded EQ, NE with const0_rtx. */ if ((*code == NE || *code == EQ) && (GET_CODE (*op0) == EQ || GET_CODE (*op0) == NE) && GET_MODE (*op0) == SImode && GET_MODE (XEXP (*op0, 0)) == CCZ1mode && REG_P (XEXP (*op0, 0)) && XEXP (*op0, 1) == const0_rtx && *op1 == const0_rtx) { if ((*code == EQ && GET_CODE (*op0) == NE) || (*code == NE && GET_CODE (*op0) == EQ)) *code = EQ; else *code = NE; *op0 = XEXP (*op0, 0); } /* Prefer register over memory as first operand. */ if (MEM_P (*op0) && REG_P (*op1)) { rtx tem = *op0; *op0 = *op1; *op1 = tem; *code = swap_condition (*code); } } /* Emit a compare instruction suitable to implement the comparison OP0 CODE OP1. Return the correct condition RTL to be placed in the IF_THEN_ELSE of the conditional branch testing the result. */ rtx s390_emit_compare (enum rtx_code code, rtx op0, rtx op1) { enum machine_mode mode = s390_select_ccmode (code, op0, op1); rtx cc; /* Do not output a redundant compare instruction if a compare_and_swap pattern already computed the result and the machine modes are compatible. */ if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC) { gcc_assert (s390_cc_modes_compatible (GET_MODE (op0), mode) == GET_MODE (op0)); cc = op0; } else { cc = gen_rtx_REG (mode, CC_REGNUM); emit_insn (gen_rtx_SET (VOIDmode, cc, gen_rtx_COMPARE (mode, op0, op1))); } return gen_rtx_fmt_ee (code, VOIDmode, cc, const0_rtx); } /* Emit a SImode compare and swap instruction setting MEM to NEW_RTX if OLD matches CMP. Return the correct condition RTL to be placed in the IF_THEN_ELSE of the conditional branch testing the result. */ static rtx s390_emit_compare_and_swap (enum rtx_code code, rtx old, rtx mem, rtx cmp, rtx new_rtx) { emit_insn (gen_sync_compare_and_swapsi (old, mem, cmp, new_rtx)); return s390_emit_compare (code, gen_rtx_REG (CCZ1mode, CC_REGNUM), const0_rtx); } /* Emit a jump instruction to TARGET. If COND is NULL_RTX, emit an unconditional jump, else a conditional jump under condition COND. */ void s390_emit_jump (rtx target, rtx cond) { rtx insn; target = gen_rtx_LABEL_REF (VOIDmode, target); if (cond) target = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, target, pc_rtx); insn = gen_rtx_SET (VOIDmode, pc_rtx, target); emit_jump_insn (insn); } /* Return branch condition mask to implement a branch specified by CODE. Return -1 for invalid comparisons. */ int s390_branch_condition_mask (rtx code) { const int CC0 = 1 << 3; const int CC1 = 1 << 2; const int CC2 = 1 << 1; const int CC3 = 1 << 0; gcc_assert (GET_CODE (XEXP (code, 0)) == REG); gcc_assert (REGNO (XEXP (code, 0)) == CC_REGNUM); gcc_assert (XEXP (code, 1) == const0_rtx); switch (GET_MODE (XEXP (code, 0))) { case CCZmode: case CCZ1mode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC1 | CC2 | CC3; default: return -1; } break; case CCT1mode: switch (GET_CODE (code)) { case EQ: return CC1; case NE: return CC0 | CC2 | CC3; default: return -1; } break; case CCT2mode: switch (GET_CODE (code)) { case EQ: return CC2; case NE: return CC0 | CC1 | CC3; default: return -1; } break; case CCT3mode: switch (GET_CODE (code)) { case EQ: return CC3; case NE: return CC0 | CC1 | CC2; default: return -1; } break; case CCLmode: switch (GET_CODE (code)) { case EQ: return CC0 | CC2; case NE: return CC1 | CC3; default: return -1; } break; case CCL1mode: switch (GET_CODE (code)) { case LTU: return CC2 | CC3; /* carry */ case GEU: return CC0 | CC1; /* no carry */ default: return -1; } break; case CCL2mode: switch (GET_CODE (code)) { case GTU: return CC0 | CC1; /* borrow */ case LEU: return CC2 | CC3; /* no borrow */ default: return -1; } break; case CCL3mode: switch (GET_CODE (code)) { case EQ: return CC0 | CC2; case NE: return CC1 | CC3; case LTU: return CC1; case GTU: return CC3; case LEU: return CC1 | CC2; case GEU: return CC2 | CC3; default: return -1; } case CCUmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC1 | CC2 | CC3; case LTU: return CC1; case GTU: return CC2; case LEU: return CC0 | CC1; case GEU: return CC0 | CC2; default: return -1; } break; case CCURmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC2 | CC1 | CC3; case LTU: return CC2; case GTU: return CC1; case LEU: return CC0 | CC2; case GEU: return CC0 | CC1; default: return -1; } break; case CCAPmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC1 | CC2 | CC3; case LT: return CC1 | CC3; case GT: return CC2; case LE: return CC0 | CC1 | CC3; case GE: return CC0 | CC2; default: return -1; } break; case CCANmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC1 | CC2 | CC3; case LT: return CC1; case GT: return CC2 | CC3; case LE: return CC0 | CC1; case GE: return CC0 | CC2 | CC3; default: return -1; } break; case CCSmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC1 | CC2 | CC3; case LT: return CC1; case GT: return CC2; case LE: return CC0 | CC1; case GE: return CC0 | CC2; case UNORDERED: return CC3; case ORDERED: return CC0 | CC1 | CC2; case UNEQ: return CC0 | CC3; case UNLT: return CC1 | CC3; case UNGT: return CC2 | CC3; case UNLE: return CC0 | CC1 | CC3; case UNGE: return CC0 | CC2 | CC3; case LTGT: return CC1 | CC2; default: return -1; } break; case CCSRmode: switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC2 | CC1 | CC3; case LT: return CC2; case GT: return CC1; case LE: return CC0 | CC2; case GE: return CC0 | CC1; case UNORDERED: return CC3; case ORDERED: return CC0 | CC2 | CC1; case UNEQ: return CC0 | CC3; case UNLT: return CC2 | CC3; case UNGT: return CC1 | CC3; case UNLE: return CC0 | CC2 | CC3; case UNGE: return CC0 | CC1 | CC3; case LTGT: return CC2 | CC1; default: return -1; } break; default: return -1; } } /* Return branch condition mask to implement a compare and branch specified by CODE. Return -1 for invalid comparisons. */ int s390_compare_and_branch_condition_mask (rtx code) { const int CC0 = 1 << 3; const int CC1 = 1 << 2; const int CC2 = 1 << 1; switch (GET_CODE (code)) { case EQ: return CC0; case NE: return CC1 | CC2; case LT: case LTU: return CC1; case GT: case GTU: return CC2; case LE: case LEU: return CC0 | CC1; case GE: case GEU: return CC0 | CC2; default: gcc_unreachable (); } return -1; } /* If INV is false, return assembler mnemonic string to implement a branch specified by CODE. If INV is true, return mnemonic for the corresponding inverted branch. */ static const char * s390_branch_condition_mnemonic (rtx code, int inv) { int mask; static const char *const mnemonic[16] = { NULL, "o", "h", "nle", "l", "nhe", "lh", "ne", "e", "nlh", "he", "nl", "le", "nh", "no", NULL }; if (GET_CODE (XEXP (code, 0)) == REG && REGNO (XEXP (code, 0)) == CC_REGNUM && XEXP (code, 1) == const0_rtx) mask = s390_branch_condition_mask (code); else mask = s390_compare_and_branch_condition_mask (code); gcc_assert (mask >= 0); if (inv) mask ^= 15; gcc_assert (mask >= 1 && mask <= 14); return mnemonic[mask]; } /* Return the part of op which has a value different from def. The size of the part is determined by mode. Use this function only if you already know that op really contains such a part. */ unsigned HOST_WIDE_INT s390_extract_part (rtx op, enum machine_mode mode, int def) { unsigned HOST_WIDE_INT value = 0; int max_parts = HOST_BITS_PER_WIDE_INT / GET_MODE_BITSIZE (mode); int part_bits = GET_MODE_BITSIZE (mode); unsigned HOST_WIDE_INT part_mask = ((unsigned HOST_WIDE_INT)1 << part_bits) - 1; int i; for (i = 0; i < max_parts; i++) { if (i == 0) value = (unsigned HOST_WIDE_INT) INTVAL (op); else value >>= part_bits; if ((value & part_mask) != (def & part_mask)) return value & part_mask; } gcc_unreachable (); } /* If OP is an integer constant of mode MODE with exactly one part of mode PART_MODE unequal to DEF, return the number of that part. Otherwise, return -1. */ int s390_single_part (rtx op, enum machine_mode mode, enum machine_mode part_mode, int def) { unsigned HOST_WIDE_INT value = 0; int n_parts = GET_MODE_SIZE (mode) / GET_MODE_SIZE (part_mode); unsigned HOST_WIDE_INT part_mask = ((unsigned HOST_WIDE_INT)1 << GET_MODE_BITSIZE (part_mode)) - 1; int i, part = -1; if (GET_CODE (op) != CONST_INT) return -1; for (i = 0; i < n_parts; i++) { if (i == 0) value = (unsigned HOST_WIDE_INT) INTVAL (op); else value >>= GET_MODE_BITSIZE (part_mode); if ((value & part_mask) != (def & part_mask)) { if (part != -1) return -1; else part = i; } } return part == -1 ? -1 : n_parts - 1 - part; } /* Return true if IN contains a contiguous bitfield in the lower SIZE bits and no other bits are set in IN. POS and LENGTH can be used to obtain the start position and the length of the bitfield. POS gives the position of the first bit of the bitfield counting from the lowest order bit starting with zero. In order to use this value for S/390 instructions this has to be converted to "bits big endian" style. */ bool s390_contiguous_bitmask_p (unsigned HOST_WIDE_INT in, int size, int *pos, int *length) { int tmp_pos = 0; int tmp_length = 0; int i; unsigned HOST_WIDE_INT mask = 1ULL; bool contiguous = false; for (i = 0; i < size; mask <<= 1, i++) { if (contiguous) { if (mask & in) tmp_length++; else break; } else { if (mask & in) { contiguous = true; tmp_length++; } else tmp_pos++; } } if (!tmp_length) return false; /* Calculate a mask for all bits beyond the contiguous bits. */ mask = (-1LL & ~(((1ULL << (tmp_length + tmp_pos - 1)) << 1) - 1)); if (mask & in) return false; if (tmp_length + tmp_pos - 1 > size) return false; if (length) *length = tmp_length; if (pos) *pos = tmp_pos; return true; } /* Check whether we can (and want to) split a double-word move in mode MODE from SRC to DST into two single-word moves, moving the subword FIRST_SUBWORD first. */ bool s390_split_ok_p (rtx dst, rtx src, enum machine_mode mode, int first_subword) { /* Floating point registers cannot be split. */ if (FP_REG_P (src) || FP_REG_P (dst)) return false; /* We don't need to split if operands are directly accessible. */ if (s_operand (src, mode) || s_operand (dst, mode)) return false; /* Non-offsettable memory references cannot be split. */ if ((GET_CODE (src) == MEM && !offsettable_memref_p (src)) || (GET_CODE (dst) == MEM && !offsettable_memref_p (dst))) return false; /* Moving the first subword must not clobber a register needed to move the second subword. */ if (register_operand (dst, mode)) { rtx subreg = operand_subword (dst, first_subword, 0, mode); if (reg_overlap_mentioned_p (subreg, src)) return false; } return true; } /* Return true if it can be proven that [MEM1, MEM1 + SIZE] and [MEM2, MEM2 + SIZE] do overlap and false otherwise. */ bool s390_overlap_p (rtx mem1, rtx mem2, HOST_WIDE_INT size) { rtx addr1, addr2, addr_delta; HOST_WIDE_INT delta; if (GET_CODE (mem1) != MEM || GET_CODE (mem2) != MEM) return true; if (size == 0) return false; addr1 = XEXP (mem1, 0); addr2 = XEXP (mem2, 0); addr_delta = simplify_binary_operation (MINUS, Pmode, addr2, addr1); /* This overlapping check is used by peepholes merging memory block operations. Overlapping operations would otherwise be recognized by the S/390 hardware and would fall back to a slower implementation. Allowing overlapping operations would lead to slow code but not to wrong code. Therefore we are somewhat optimistic if we cannot prove that the memory blocks are overlapping. That's why we return false here although this may accept operations on overlapping memory areas. */ if (!addr_delta || GET_CODE (addr_delta) != CONST_INT) return false; delta = INTVAL (addr_delta); if (delta == 0 || (delta > 0 && delta < size) || (delta < 0 && -delta < size)) return true; return false; } /* Check whether the address of memory reference MEM2 equals exactly the address of memory reference MEM1 plus DELTA. Return true if we can prove this to be the case, false otherwise. */ bool s390_offset_p (rtx mem1, rtx mem2, rtx delta) { rtx addr1, addr2, addr_delta; if (GET_CODE (mem1) != MEM || GET_CODE (mem2) != MEM) return false; addr1 = XEXP (mem1, 0); addr2 = XEXP (mem2, 0); addr_delta = simplify_binary_operation (MINUS, Pmode, addr2, addr1); if (!addr_delta || !rtx_equal_p (addr_delta, delta)) return false; return true; } /* Expand logical operator CODE in mode MODE with operands OPERANDS. */ void s390_expand_logical_operator (enum rtx_code code, enum machine_mode mode, rtx *operands) { enum machine_mode wmode = mode; rtx dst = operands[0]; rtx src1 = operands[1]; rtx src2 = operands[2]; rtx op, clob, tem; /* If we cannot handle the operation directly, use a temp register. */ if (!s390_logical_operator_ok_p (operands)) dst = gen_reg_rtx (mode); /* QImode and HImode patterns make sense only if we have a destination in memory. Otherwise perform the operation in SImode. */ if ((mode == QImode || mode == HImode) && GET_CODE (dst) != MEM) wmode = SImode; /* Widen operands if required. */ if (mode != wmode) { if (GET_CODE (dst) == SUBREG && (tem = simplify_subreg (wmode, dst, mode, 0)) != 0) dst = tem; else if (REG_P (dst)) dst = gen_rtx_SUBREG (wmode, dst, 0); else dst = gen_reg_rtx (wmode); if (GET_CODE (src1) == SUBREG && (tem = simplify_subreg (wmode, src1, mode, 0)) != 0) src1 = tem; else if (GET_MODE (src1) != VOIDmode) src1 = gen_rtx_SUBREG (wmode, force_reg (mode, src1), 0); if (GET_CODE (src2) == SUBREG && (tem = simplify_subreg (wmode, src2, mode, 0)) != 0) src2 = tem; else if (GET_MODE (src2) != VOIDmode) src2 = gen_rtx_SUBREG (wmode, force_reg (mode, src2), 0); } /* Emit the instruction. */ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, wmode, src1, src2)); clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); /* Fix up the destination if needed. */ if (dst != operands[0]) emit_move_insn (operands[0], gen_lowpart (mode, dst)); } /* Check whether OPERANDS are OK for a logical operation (AND, IOR, XOR). */ bool s390_logical_operator_ok_p (rtx *operands) { /* If the destination operand is in memory, it needs to coincide with one of the source operands. After reload, it has to be the first source operand. */ if (GET_CODE (operands[0]) == MEM) return rtx_equal_p (operands[0], operands[1]) || (!reload_completed && rtx_equal_p (operands[0], operands[2])); return true; } /* Narrow logical operation CODE of memory operand MEMOP with immediate operand IMMOP to switch from SS to SI type instructions. */ void s390_narrow_logical_operator (enum rtx_code code, rtx *memop, rtx *immop) { int def = code == AND ? -1 : 0; HOST_WIDE_INT mask; int part; gcc_assert (GET_CODE (*memop) == MEM); gcc_assert (!MEM_VOLATILE_P (*memop)); mask = s390_extract_part (*immop, QImode, def); part = s390_single_part (*immop, GET_MODE (*memop), QImode, def); gcc_assert (part >= 0); *memop = adjust_address (*memop, QImode, part); *immop = gen_int_mode (mask, QImode); } /* How to allocate a 'struct machine_function'. */ static struct machine_function * s390_init_machine_status (void) { return GGC_CNEW (struct machine_function); } /* Change optimizations to be performed, depending on the optimization level. LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if `-O' is specified, and 0 if neither is specified. SIZE is nonzero if `-Os' is specified and zero otherwise. */ void optimization_options (int level ATTRIBUTE_UNUSED, int size ATTRIBUTE_UNUSED) { /* ??? There are apparently still problems with -fcaller-saves. */ flag_caller_saves = 0; /* By default, always emit DWARF-2 unwind info. This allows debugging without maintaining a stack frame back-chain. */ flag_asynchronous_unwind_tables = 1; /* Use MVCLE instructions to decrease code size if requested. */ if (size != 0) target_flags |= MASK_MVCLE; } /* Return true if ARG is the name of a processor. Set *TYPE and *FLAGS to the associated processor_type and processor_flags if so. */ static bool s390_handle_arch_option (const char *arg, enum processor_type *type, int *flags) { static struct pta { const char *const name; /* processor name or nickname. */ const enum processor_type processor; const int flags; /* From enum processor_flags. */ } const processor_alias_table[] = { {"g5", PROCESSOR_9672_G5, PF_IEEE_FLOAT}, {"g6", PROCESSOR_9672_G6, PF_IEEE_FLOAT}, {"z900", PROCESSOR_2064_Z900, PF_IEEE_FLOAT | PF_ZARCH}, {"z990", PROCESSOR_2084_Z990, PF_IEEE_FLOAT | PF_ZARCH | PF_LONG_DISPLACEMENT}, {"z9-109", PROCESSOR_2094_Z9_109, PF_IEEE_FLOAT | PF_ZARCH | PF_LONG_DISPLACEMENT | PF_EXTIMM}, {"z9-ec", PROCESSOR_2094_Z9_109, PF_IEEE_FLOAT | PF_ZARCH | PF_LONG_DISPLACEMENT | PF_EXTIMM | PF_DFP }, {"z10", PROCESSOR_2097_Z10, PF_IEEE_FLOAT | PF_ZARCH | PF_LONG_DISPLACEMENT | PF_EXTIMM | PF_DFP | PF_Z10}, }; size_t i; for (i = 0; i < ARRAY_SIZE (processor_alias_table); i++) if (strcmp (arg, processor_alias_table[i].name) == 0) { *type = processor_alias_table[i].processor; *flags = processor_alias_table[i].flags; return true; } return false; } /* Implement TARGET_HANDLE_OPTION. */ static bool s390_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED) { switch (code) { case OPT_march_: return s390_handle_arch_option (arg, &s390_arch, &s390_arch_flags); case OPT_mstack_guard_: if (sscanf (arg, HOST_WIDE_INT_PRINT_DEC, &s390_stack_guard) != 1) return false; if (exact_log2 (s390_stack_guard) == -1) error ("stack guard value must be an exact power of 2"); return true; case OPT_mstack_size_: if (sscanf (arg, HOST_WIDE_INT_PRINT_DEC, &s390_stack_size) != 1) return false; if (exact_log2 (s390_stack_size) == -1) error ("stack size must be an exact power of 2"); return true; case OPT_mtune_: return s390_handle_arch_option (arg, &s390_tune, &s390_tune_flags); case OPT_mwarn_framesize_: return sscanf (arg, HOST_WIDE_INT_PRINT_DEC, &s390_warn_framesize) == 1; default: return true; } } void override_options (void) { /* Set up function hooks. */ init_machine_status = s390_init_machine_status; /* Architecture mode defaults according to ABI. */ if (!(target_flags_explicit & MASK_ZARCH)) { if (TARGET_64BIT) target_flags |= MASK_ZARCH; else target_flags &= ~MASK_ZARCH; } /* Determine processor architectural level. */ if (!s390_arch_string) { s390_arch_string = TARGET_ZARCH? "z900" : "g5"; s390_handle_arch_option (s390_arch_string, &s390_arch, &s390_arch_flags); } /* Determine processor to tune for. */ if (s390_tune == PROCESSOR_max) { s390_tune = s390_arch; s390_tune_flags = s390_arch_flags; } /* Sanity checks. */ if (TARGET_ZARCH && !TARGET_CPU_ZARCH) error ("z/Architecture mode not supported on %s", s390_arch_string); if (TARGET_64BIT && !TARGET_ZARCH) error ("64-bit ABI not supported in ESA/390 mode"); if (TARGET_HARD_DFP && !TARGET_DFP) { if (target_flags_explicit & MASK_HARD_DFP) { if (!TARGET_CPU_DFP) error ("Hardware decimal floating point instructions" " not available on %s", s390_arch_string); if (!TARGET_ZARCH) error ("Hardware decimal floating point instructions" " not available in ESA/390 mode"); } else target_flags &= ~MASK_HARD_DFP; } if ((target_flags_explicit & MASK_SOFT_FLOAT) && TARGET_SOFT_FLOAT) { if ((target_flags_explicit & MASK_HARD_DFP) && TARGET_HARD_DFP) error ("-mhard-dfp can't be used in conjunction with -msoft-float"); target_flags &= ~MASK_HARD_DFP; } /* Set processor cost function. */ switch (s390_tune) { case PROCESSOR_2084_Z990: s390_cost = &z990_cost; break; case PROCESSOR_2094_Z9_109: s390_cost = &z9_109_cost; break; case PROCESSOR_2097_Z10: s390_cost = &z10_cost; break; default: s390_cost = &z900_cost; } if (TARGET_BACKCHAIN && TARGET_PACKED_STACK && TARGET_HARD_FLOAT) error ("-mbackchain -mpacked-stack -mhard-float are not supported " "in combination"); if (s390_stack_size) { if (s390_stack_guard >= s390_stack_size) error ("stack size must be greater than the stack guard value"); else if (s390_stack_size > 1 << 16) error ("stack size must not be greater than 64k"); } else if (s390_stack_guard) error ("-mstack-guard implies use of -mstack-size"); #ifdef TARGET_DEFAULT_LONG_DOUBLE_128 if (!(target_flags_explicit & MASK_LONG_DOUBLE_128)) target_flags |= MASK_LONG_DOUBLE_128; #endif if (s390_tune == PROCESSOR_2097_Z10) { if (!PARAM_SET_P (PARAM_MAX_UNROLLED_INSNS)) set_param_value ("max-unrolled-insns", 100); if (!PARAM_SET_P (PARAM_MAX_UNROLL_TIMES)) set_param_value ("max-unroll-times", 32); if (!PARAM_SET_P (PARAM_MAX_COMPLETELY_PEELED_INSNS)) set_param_value ("max-completely-peeled-insns", 2000); if (!PARAM_SET_P (PARAM_MAX_COMPLETELY_PEEL_TIMES)) set_param_value ("max-completely-peel-times", 64); } set_param_value ("max-pending-list-length", 256); } /* Map for smallest class containing reg regno. */ const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER] = { GENERAL_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, ADDR_REGS, CC_REGS, ADDR_REGS, ADDR_REGS, ACCESS_REGS, ACCESS_REGS }; /* Return attribute type of insn. */ static enum attr_type s390_safe_attr_type (rtx insn) { if (recog_memoized (insn) >= 0) return get_attr_type (insn); else return TYPE_NONE; } /* Return true if DISP is a valid short displacement. */ static bool s390_short_displacement (rtx disp) { /* No displacement is OK. */ if (!disp) return true; /* Without the long displacement facility we don't need to distingiush between long and short displacement. */ if (!TARGET_LONG_DISPLACEMENT) return true; /* Integer displacement in range. */ if (GET_CODE (disp) == CONST_INT) return INTVAL (disp) >= 0 && INTVAL (disp) < 4096; /* GOT offset is not OK, the GOT can be large. */ if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == UNSPEC && (XINT (XEXP (disp, 0), 1) == UNSPEC_GOT || XINT (XEXP (disp, 0), 1) == UNSPEC_GOTNTPOFF)) return false; /* All other symbolic constants are literal pool references, which are OK as the literal pool must be small. */ if (GET_CODE (disp) == CONST) return true; return false; } /* Decompose a RTL expression ADDR for a memory address into its components, returned in OUT. Returns false if ADDR is not a valid memory address, true otherwise. If OUT is NULL, don't return the components, but check for validity only. Note: Only addresses in canonical form are recognized. LEGITIMIZE_ADDRESS should convert non-canonical forms to the canonical form so that they will be recognized. */ static int s390_decompose_address (rtx addr, struct s390_address *out) { HOST_WIDE_INT offset = 0; rtx base = NULL_RTX; rtx indx = NULL_RTX; rtx disp = NULL_RTX; rtx orig_disp; bool pointer = false; bool base_ptr = false; bool indx_ptr = false; bool literal_pool = false; /* We may need to substitute the literal pool base register into the address below. However, at this point we do not know which register is going to be used as base, so we substitute the arg pointer register. This is going to be treated as holding a pointer below -- it shouldn't be used for any other purpose. */ rtx fake_pool_base = gen_rtx_REG (Pmode, ARG_POINTER_REGNUM); /* Decompose address into base + index + displacement. */ if (GET_CODE (addr) == REG || GET_CODE (addr) == UNSPEC) base = addr; else if (GET_CODE (addr) == PLUS) { rtx op0 = XEXP (addr, 0); rtx op1 = XEXP (addr, 1); enum rtx_code code0 = GET_CODE (op0); enum rtx_code code1 = GET_CODE (op1); if (code0 == REG || code0 == UNSPEC) { if (code1 == REG || code1 == UNSPEC) { indx = op0; /* index + base */ base = op1; } else { base = op0; /* base + displacement */ disp = op1; } } else if (code0 == PLUS) { indx = XEXP (op0, 0); /* index + base + disp */ base = XEXP (op0, 1); disp = op1; } else { return false; } } else disp = addr; /* displacement */ /* Extract integer part of displacement. */ orig_disp = disp; if (disp) { if (GET_CODE (disp) == CONST_INT) { offset = INTVAL (disp); disp = NULL_RTX; } else if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT) { offset = INTVAL (XEXP (XEXP (disp, 0), 1)); disp = XEXP (XEXP (disp, 0), 0); } } /* Strip off CONST here to avoid special case tests later. */ if (disp && GET_CODE (disp) == CONST) disp = XEXP (disp, 0); /* We can convert literal pool addresses to displacements by basing them off the base register. */ if (disp && GET_CODE (disp) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (disp)) { /* Either base or index must be free to hold the base register. */ if (!base) base = fake_pool_base, literal_pool = true; else if (!indx) indx = fake_pool_base, literal_pool = true; else return false; /* Mark up the displacement. */ disp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, disp), UNSPEC_LTREL_OFFSET); } /* Validate base register. */ if (base) { if (GET_CODE (base) == UNSPEC) switch (XINT (base, 1)) { case UNSPEC_LTREF: if (!disp) disp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XVECEXP (base, 0, 0)), UNSPEC_LTREL_OFFSET); else return false; base = XVECEXP (base, 0, 1); break; case UNSPEC_LTREL_BASE: if (XVECLEN (base, 0) == 1) base = fake_pool_base, literal_pool = true; else base = XVECEXP (base, 0, 1); break; default: return false; } if (!REG_P (base) || (GET_MODE (base) != SImode && GET_MODE (base) != Pmode)) return false; if (REGNO (base) == STACK_POINTER_REGNUM || REGNO (base) == FRAME_POINTER_REGNUM || ((reload_completed || reload_in_progress) && frame_pointer_needed && REGNO (base) == HARD_FRAME_POINTER_REGNUM) || REGNO (base) == ARG_POINTER_REGNUM || (flag_pic && REGNO (base) == PIC_OFFSET_TABLE_REGNUM)) pointer = base_ptr = true; if ((reload_completed || reload_in_progress) && base == cfun->machine->base_reg) pointer = base_ptr = literal_pool = true; } /* Validate index register. */ if (indx) { if (GET_CODE (indx) == UNSPEC) switch (XINT (indx, 1)) { case UNSPEC_LTREF: if (!disp) disp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XVECEXP (indx, 0, 0)), UNSPEC_LTREL_OFFSET); else return false; indx = XVECEXP (indx, 0, 1); break; case UNSPEC_LTREL_BASE: if (XVECLEN (indx, 0) == 1) indx = fake_pool_base, literal_pool = true; else indx = XVECEXP (indx, 0, 1); break; default: return false; } if (!REG_P (indx) || (GET_MODE (indx) != SImode && GET_MODE (indx) != Pmode)) return false; if (REGNO (indx) == STACK_POINTER_REGNUM || REGNO (indx) == FRAME_POINTER_REGNUM || ((reload_completed || reload_in_progress) && frame_pointer_needed && REGNO (indx) == HARD_FRAME_POINTER_REGNUM) || REGNO (indx) == ARG_POINTER_REGNUM || (flag_pic && REGNO (indx) == PIC_OFFSET_TABLE_REGNUM)) pointer = indx_ptr = true; if ((reload_completed || reload_in_progress) && indx == cfun->machine->base_reg) pointer = indx_ptr = literal_pool = true; } /* Prefer to use pointer as base, not index. */ if (base && indx && !base_ptr && (indx_ptr || (!REG_POINTER (base) && REG_POINTER (indx)))) { rtx tmp = base; base = indx; indx = tmp; } /* Validate displacement. */ if (!disp) { /* If virtual registers are involved, the displacement will change later anyway as the virtual registers get eliminated. This could make a valid displacement invalid, but it is more likely to make an invalid displacement valid, because we sometimes access the register save area via negative offsets to one of those registers. Thus we don't check the displacement for validity here. If after elimination the displacement turns out to be invalid after all, this is fixed up by reload in any case. */ if (base != arg_pointer_rtx && indx != arg_pointer_rtx && base != return_address_pointer_rtx && indx != return_address_pointer_rtx && base != frame_pointer_rtx && indx != frame_pointer_rtx && base != virtual_stack_vars_rtx && indx != virtual_stack_vars_rtx) if (!DISP_IN_RANGE (offset)) return false; } else { /* All the special cases are pointers. */ pointer = true; /* In the small-PIC case, the linker converts @GOT and @GOTNTPOFF offsets to possible displacements. */ if (GET_CODE (disp) == UNSPEC && (XINT (disp, 1) == UNSPEC_GOT || XINT (disp, 1) == UNSPEC_GOTNTPOFF) && flag_pic == 1) { ; } /* Accept pool label offsets. */ else if (GET_CODE (disp) == UNSPEC && XINT (disp, 1) == UNSPEC_POOL_OFFSET) ; /* Accept literal pool references. */ else if (GET_CODE (disp) == UNSPEC && XINT (disp, 1) == UNSPEC_LTREL_OFFSET) { orig_disp = gen_rtx_CONST (Pmode, disp); if (offset) { /* If we have an offset, make sure it does not exceed the size of the constant pool entry. */ rtx sym = XVECEXP (disp, 0, 0); if (offset >= GET_MODE_SIZE (get_pool_mode (sym))) return false; orig_disp = plus_constant (orig_disp, offset); } } else return false; } if (!base && !indx) pointer = true; if (out) { out->base = base; out->indx = indx; out->disp = orig_disp; out->pointer = pointer; out->literal_pool = literal_pool; } return true; } /* Decompose a RTL expression OP for a shift count into its components, and return the base register in BASE and the offset in OFFSET. Return true if OP is a valid shift count, false if not. */ bool s390_decompose_shift_count (rtx op, rtx *base, HOST_WIDE_INT *offset) { HOST_WIDE_INT off = 0; /* We can have an integer constant, an address register, or a sum of the two. */ if (GET_CODE (op) == CONST_INT) { off = INTVAL (op); op = NULL_RTX; } if (op && GET_CODE (op) == PLUS && GET_CODE (XEXP (op, 1)) == CONST_INT) { off = INTVAL (XEXP (op, 1)); op = XEXP (op, 0); } while (op && GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (op && GET_CODE (op) != REG) return false; if (offset) *offset = off; if (base) *base = op; return true; } /* Return true if CODE is a valid address without index. */ bool s390_legitimate_address_without_index_p (rtx op) { struct s390_address addr; if (!s390_decompose_address (XEXP (op, 0), &addr)) return false; if (addr.indx) return false; return true; } /* Return true if ADDR is of kind symbol_ref or symbol_ref + const_int and return these parts in SYMREF and ADDEND. You can pass NULL in SYMREF and/or ADDEND if you are not interested in these values. */ static bool s390_symref_operand_p (rtx addr, rtx *symref, HOST_WIDE_INT *addend) { HOST_WIDE_INT tmpaddend = 0; if (GET_CODE (addr) == CONST) addr = XEXP (addr, 0); if (GET_CODE (addr) == PLUS) { if (GET_CODE (XEXP (addr, 0)) == SYMBOL_REF && CONST_INT_P (XEXP (addr, 1))) { tmpaddend = INTVAL (XEXP (addr, 1)); addr = XEXP (addr, 0); } else return false; } else if (GET_CODE (addr) != SYMBOL_REF) return false; if (symref) *symref = addr; if (addend) *addend = tmpaddend; return true; } /* Return true if the address in OP is valid for constraint letter C if wrapped in a MEM rtx. Set LIT_POOL_OK to true if it literal pool MEMs should be accepted. Only the Q, R, S, T constraint letters are allowed for C. */ static int s390_check_qrst_address (char c, rtx op, bool lit_pool_ok) { struct s390_address addr; bool decomposed = false; /* This check makes sure that no symbolic address (except literal pool references) are accepted by the R or T constraints. */ if (s390_symref_operand_p (op, NULL, NULL)) { if (!lit_pool_ok) return 0; if (!s390_decompose_address (op, &addr)) return 0; if (!addr.literal_pool) return 0; decomposed = true; } switch (c) { case 'Q': /* no index short displacement */ if (!decomposed && !s390_decompose_address (op, &addr)) return 0; if (addr.indx) return 0; if (!s390_short_displacement (addr.disp)) return 0; break; case 'R': /* with index short displacement */ if (TARGET_LONG_DISPLACEMENT) { if (!decomposed && !s390_decompose_address (op, &addr)) return 0; if (!s390_short_displacement (addr.disp)) return 0; } /* Any invalid address here will be fixed up by reload, so accept it for the most generic constraint. */ break; case 'S': /* no index long displacement */ if (!TARGET_LONG_DISPLACEMENT) return 0; if (!decomposed && !s390_decompose_address (op, &addr)) return 0; if (addr.indx) return 0; if (s390_short_displacement (addr.disp)) return 0; break; case 'T': /* with index long displacement */ if (!TARGET_LONG_DISPLACEMENT) return 0; /* Any invalid address here will be fixed up by reload, so accept it for the most generic constraint. */ if ((decomposed || s390_decompose_address (op, &addr)) && s390_short_displacement (addr.disp)) return 0; break; default: return 0; } return 1; } /* Evaluates constraint strings described by the regular expression ([A|B|Z](Q|R|S|T))|U|W|Y and returns 1 if OP is a valid operand for the constraint given in STR, or 0 else. */ int s390_mem_constraint (const char *str, rtx op) { char c = str[0]; switch (c) { case 'A': /* Check for offsettable variants of memory constraints. */ if (!MEM_P (op) || MEM_VOLATILE_P (op)) return 0; if ((reload_completed || reload_in_progress) ? !offsettable_memref_p (op) : !offsettable_nonstrict_memref_p (op)) return 0; return s390_check_qrst_address (str[1], XEXP (op, 0), true); case 'B': /* Check for non-literal-pool variants of memory constraints. */ if (!MEM_P (op)) return 0; return s390_check_qrst_address (str[1], XEXP (op, 0), false); case 'Q': case 'R': case 'S': case 'T': if (GET_CODE (op) != MEM) return 0; return s390_check_qrst_address (c, XEXP (op, 0), true); case 'U': return (s390_check_qrst_address ('Q', op, true) || s390_check_qrst_address ('R', op, true)); case 'W': return (s390_check_qrst_address ('S', op, true) || s390_check_qrst_address ('T', op, true)); case 'Y': /* Simply check for the basic form of a shift count. Reload will take care of making sure we have a proper base register. */ if (!s390_decompose_shift_count (op, NULL, NULL)) return 0; break; case 'Z': return s390_check_qrst_address (str[1], op, true); default: return 0; } return 1; } /* Evaluates constraint strings starting with letter O. Input parameter C is the second letter following the "O" in the constraint string. Returns 1 if VALUE meets the respective constraint and 0 otherwise. */ int s390_O_constraint_str (const char c, HOST_WIDE_INT value) { if (!TARGET_EXTIMM) return 0; switch (c) { case 's': return trunc_int_for_mode (value, SImode) == value; case 'p': return value == 0 || s390_single_part (GEN_INT (value), DImode, SImode, 0) == 1; case 'n': return s390_single_part (GEN_INT (value - 1), DImode, SImode, -1) == 1; default: gcc_unreachable (); } } /* Evaluates constraint strings starting with letter N. Parameter STR contains the letters following letter "N" in the constraint string. Returns true if VALUE matches the constraint. */ int s390_N_constraint_str (const char *str, HOST_WIDE_INT value) { enum machine_mode mode, part_mode; int def; int part, part_goal; if (str[0] == 'x') part_goal = -1; else part_goal = str[0] - '0'; switch (str[1]) { case 'Q': part_mode = QImode; break; case 'H': part_mode = HImode; break; case 'S': part_mode = SImode; break; default: return 0; } switch (str[2]) { case 'H': mode = HImode; break; case 'S': mode = SImode; break; case 'D': mode = DImode; break; default: return 0; } switch (str[3]) { case '0': def = 0; break; case 'F': def = -1; break; default: return 0; } if (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (part_mode)) return 0; part = s390_single_part (GEN_INT (value), mode, part_mode, def); if (part < 0) return 0; if (part_goal != -1 && part_goal != part) return 0; return 1; } /* Returns true if the input parameter VALUE is a float zero. */ int s390_float_const_zero_p (rtx value) { return (GET_MODE_CLASS (GET_MODE (value)) == MODE_FLOAT && value == CONST0_RTX (GET_MODE (value))); } /* Compute a (partial) cost for rtx X. Return true if the complete cost has been computed, and false if subexpressions should be scanned. In either case, *TOTAL contains the cost result. CODE contains GET_CODE (x), OUTER_CODE contains the code of the superexpression of x. */ static bool s390_rtx_costs (rtx x, int code, int outer_code, int *total, bool speed ATTRIBUTE_UNUSED) { switch (code) { case CONST: case CONST_INT: case LABEL_REF: case SYMBOL_REF: case CONST_DOUBLE: case MEM: *total = 0; return true; case ASHIFT: case ASHIFTRT: case LSHIFTRT: case ROTATE: case ROTATERT: case AND: case IOR: case XOR: case NEG: case NOT: *total = COSTS_N_INSNS (1); return false; case PLUS: case MINUS: /* Check for multiply and add. */ if ((GET_MODE (x) == DFmode || GET_MODE (x) == SFmode) && GET_CODE (XEXP (x, 0)) == MULT && TARGET_HARD_FLOAT && TARGET_FUSED_MADD) { /* This is the multiply and add case. */ if (GET_MODE (x) == DFmode) *total = s390_cost->madbr; else *total = s390_cost->maebr; *total += (rtx_cost (XEXP (XEXP (x, 0), 0), MULT, speed) + rtx_cost (XEXP (XEXP (x, 0), 1), MULT, speed) + rtx_cost (XEXP (x, 1), (enum rtx_code) code, speed)); return true; /* Do not do an additional recursive descent. */ } *total = COSTS_N_INSNS (1); return false; case MULT: switch (GET_MODE (x)) { case SImode: { rtx left = XEXP (x, 0); rtx right = XEXP (x, 1); if (GET_CODE (right) == CONST_INT && CONST_OK_FOR_K (INTVAL (right))) *total = s390_cost->mhi; else if (GET_CODE (left) == SIGN_EXTEND) *total = s390_cost->mh; else *total = s390_cost->ms; /* msr, ms, msy */ break; } case DImode: { rtx left = XEXP (x, 0); rtx right = XEXP (x, 1); if (TARGET_64BIT) { if (GET_CODE (right) == CONST_INT && CONST_OK_FOR_K (INTVAL (right))) *total = s390_cost->mghi; else if (GET_CODE (left) == SIGN_EXTEND) *total = s390_cost->msgf; else *total = s390_cost->msg; /* msgr, msg */ } else /* TARGET_31BIT */ { if (GET_CODE (left) == SIGN_EXTEND && GET_CODE (right) == SIGN_EXTEND) /* mulsidi case: mr, m */ *total = s390_cost->m; else if (GET_CODE (left) == ZERO_EXTEND && GET_CODE (right) == ZERO_EXTEND && TARGET_CPU_ZARCH) /* umulsidi case: ml, mlr */ *total = s390_cost->ml; else /* Complex calculation is required. */ *total = COSTS_N_INSNS (40); } break; } case SFmode: case DFmode: *total = s390_cost->mult_df; break; case TFmode: *total = s390_cost->mxbr; break; default: return false; } return false; case UDIV: case UMOD: if (GET_MODE (x) == TImode) /* 128 bit division */ *total = s390_cost->dlgr; else if (GET_MODE (x) == DImode) { rtx right = XEXP (x, 1); if (GET_CODE (right) == ZERO_EXTEND) /* 64 by 32 bit division */ *total = s390_cost->dlr; else /* 64 by 64 bit division */ *total = s390_cost->dlgr; } else if (GET_MODE (x) == SImode) /* 32 bit division */ *total = s390_cost->dlr; return false; case DIV: case MOD: if (GET_MODE (x) == DImode) { rtx right = XEXP (x, 1); if (GET_CODE (right) == ZERO_EXTEND) /* 64 by 32 bit division */ if (TARGET_64BIT) *total = s390_cost->dsgfr; else *total = s390_cost->dr; else /* 64 by 64 bit division */ *total = s390_cost->dsgr; } else if (GET_MODE (x) == SImode) /* 32 bit division */ *total = s390_cost->dlr; else if (GET_MODE (x) == SFmode) { *total = s390_cost->debr; } else if (GET_MODE (x) == DFmode) { *total = s390_cost->ddbr; } else if (GET_MODE (x) == TFmode) { *total = s390_cost->dxbr; } return false; case SQRT: if (GET_MODE (x) == SFmode) *total = s390_cost->sqebr; else if (GET_MODE (x) == DFmode) *total = s390_cost->sqdbr; else /* TFmode */ *total = s390_cost->sqxbr; return false; case SIGN_EXTEND: case ZERO_EXTEND: if (outer_code == MULT || outer_code == DIV || outer_code == MOD || outer_code == PLUS || outer_code == MINUS || outer_code == COMPARE) *total = 0; return false; case COMPARE: *total = COSTS_N_INSNS (1); if (GET_CODE (XEXP (x, 0)) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT) { rtx op0 = XEXP (XEXP (x, 0), 0); rtx op1 = XEXP (XEXP (x, 0), 1); rtx op2 = XEXP (x, 1); if (memory_operand (op0, GET_MODE (op0)) && s390_tm_ccmode (op1, op2, 0) != VOIDmode) return true; if (register_operand (op0, GET_MODE (op0)) && s390_tm_ccmode (op1, op2, 1) != VOIDmode) return true; } return false; default: return false; } } /* Return the cost of an address rtx ADDR. */ static int s390_address_cost (rtx addr, bool speed ATTRIBUTE_UNUSED) { struct s390_address ad; if (!s390_decompose_address (addr, &ad)) return 1000; return ad.indx? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (1); } /* If OP is a SYMBOL_REF of a thread-local symbol, return its TLS mode, otherwise return 0. */ int tls_symbolic_operand (rtx op) { if (GET_CODE (op) != SYMBOL_REF) return 0; return SYMBOL_REF_TLS_MODEL (op); } /* Split DImode access register reference REG (on 64-bit) into its constituent low and high parts, and store them into LO and HI. Note that gen_lowpart/ gen_highpart cannot be used as they assume all registers are word-sized, while our access registers have only half that size. */ void s390_split_access_reg (rtx reg, rtx *lo, rtx *hi) { gcc_assert (TARGET_64BIT); gcc_assert (ACCESS_REG_P (reg)); gcc_assert (GET_MODE (reg) == DImode); gcc_assert (!(REGNO (reg) & 1)); *lo = gen_rtx_REG (SImode, REGNO (reg) + 1); *hi = gen_rtx_REG (SImode, REGNO (reg)); } /* Return true if OP contains a symbol reference */ bool symbolic_reference_mentioned_p (rtx op) { const char *fmt; int i; if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) return 1; fmt = GET_RTX_FORMAT (GET_CODE (op)); for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--) { if (fmt[i] == 'E') { int j; for (j = XVECLEN (op, i) - 1; j >= 0; j--) if (symbolic_reference_mentioned_p (XVECEXP (op, i, j))) return 1; } else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i))) return 1; } return 0; } /* Return true if OP contains a reference to a thread-local symbol. */ bool tls_symbolic_reference_mentioned_p (rtx op) { const char *fmt; int i; if (GET_CODE (op) == SYMBOL_REF) return tls_symbolic_operand (op); fmt = GET_RTX_FORMAT (GET_CODE (op)); for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--) { if (fmt[i] == 'E') { int j; for (j = XVECLEN (op, i) - 1; j >= 0; j--) if (tls_symbolic_reference_mentioned_p (XVECEXP (op, i, j))) return true; } else if (fmt[i] == 'e' && tls_symbolic_reference_mentioned_p (XEXP (op, i))) return true; } return false; } /* Return true if OP is a legitimate general operand when generating PIC code. It is given that flag_pic is on and that OP satisfies CONSTANT_P or is a CONST_DOUBLE. */ int legitimate_pic_operand_p (rtx op) { /* Accept all non-symbolic constants. */ if (!SYMBOLIC_CONST (op)) return 1; /* Reject everything else; must be handled via emit_symbolic_move. */ return 0; } /* Returns true if the constant value OP is a legitimate general operand. It is given that OP satisfies CONSTANT_P or is a CONST_DOUBLE. */ int legitimate_constant_p (rtx op) { /* Accept all non-symbolic constants. */ if (!SYMBOLIC_CONST (op)) return 1; /* Accept immediate LARL operands. */ if (TARGET_CPU_ZARCH && larl_operand (op, VOIDmode)) return 1; /* Thread-local symbols are never legal constants. This is so that emit_call knows that computing such addresses might require a function call. */ if (TLS_SYMBOLIC_CONST (op)) return 0; /* In the PIC case, symbolic constants must *not* be forced into the literal pool. We accept them here, so that they will be handled by emit_symbolic_move. */ if (flag_pic) return 1; /* All remaining non-PIC symbolic constants are forced into the literal pool. */ return 0; } /* Determine if it's legal to put X into the constant pool. This is not possible if X contains the address of a symbol that is not constant (TLS) or not known at final link time (PIC). */ static bool s390_cannot_force_const_mem (rtx x) { switch (GET_CODE (x)) { case CONST_INT: case CONST_DOUBLE: /* Accept all non-symbolic constants. */ return false; case LABEL_REF: /* Labels are OK iff we are non-PIC. */ return flag_pic != 0; case SYMBOL_REF: /* 'Naked' TLS symbol references are never OK, non-TLS symbols are OK iff we are non-PIC. */ if (tls_symbolic_operand (x)) return true; else return flag_pic != 0; case CONST: return s390_cannot_force_const_mem (XEXP (x, 0)); case PLUS: case MINUS: return s390_cannot_force_const_mem (XEXP (x, 0)) || s390_cannot_force_const_mem (XEXP (x, 1)); case UNSPEC: switch (XINT (x, 1)) { /* Only lt-relative or GOT-relative UNSPECs are OK. */ case UNSPEC_LTREL_OFFSET: case UNSPEC_GOT: case UNSPEC_GOTOFF: case UNSPEC_PLTOFF: case UNSPEC_TLSGD: case UNSPEC_TLSLDM: case UNSPEC_NTPOFF: case UNSPEC_DTPOFF: case UNSPEC_GOTNTPOFF: case UNSPEC_INDNTPOFF: return false; /* If the literal pool shares the code section, be put execute template placeholders into the pool as well. */ case UNSPEC_INSN: return TARGET_CPU_ZARCH; default: return true; } break; default: gcc_unreachable (); } } /* Returns true if the constant value OP is a legitimate general operand during and after reload. The difference to legitimate_constant_p is that this function will not accept a constant that would need to be forced to the literal pool before it can be used as operand. */ bool legitimate_reload_constant_p (rtx op) { /* Accept la(y) operands. */ if (GET_CODE (op) == CONST_INT && DISP_IN_RANGE (INTVAL (op))) return true; /* Accept l(g)hi/l(g)fi operands. */ if (GET_CODE (op) == CONST_INT && (CONST_OK_FOR_K (INTVAL (op)) || CONST_OK_FOR_Os (INTVAL (op)))) return true; /* Accept lliXX operands. */ if (TARGET_ZARCH && GET_CODE (op) == CONST_INT && trunc_int_for_mode (INTVAL (op), word_mode) == INTVAL (op) && s390_single_part (op, word_mode, HImode, 0) >= 0) return true; if (TARGET_EXTIMM && GET_CODE (op) == CONST_INT && trunc_int_for_mode (INTVAL (op), word_mode) == INTVAL (op) && s390_single_part (op, word_mode, SImode, 0) >= 0) return true; /* Accept larl operands. */ if (TARGET_CPU_ZARCH && larl_operand (op, VOIDmode)) return true; /* Accept double-word operands that can be split. */ if (GET_CODE (op) == CONST_INT && trunc_int_for_mode (INTVAL (op), word_mode) != INTVAL (op)) { enum machine_mode dword_mode = word_mode == SImode ? DImode : TImode; rtx hi = operand_subword (op, 0, 0, dword_mode); rtx lo = operand_subword (op, 1, 0, dword_mode); return legitimate_reload_constant_p (hi) && legitimate_reload_constant_p (lo); } /* Everything else cannot be handled without reload. */ return false; } /* Given an rtx OP being reloaded into a reg required to be in class RCLASS, return the class of reg to actually use. */ enum reg_class s390_preferred_reload_class (rtx op, enum reg_class rclass) { switch (GET_CODE (op)) { /* Constants we cannot reload must be forced into the literal pool. */ case CONST_DOUBLE: case CONST_INT: if (legitimate_reload_constant_p (op)) return rclass; else return NO_REGS; /* If a symbolic constant or a PLUS is reloaded, it is most likely being used as an address, so prefer ADDR_REGS. If 'class' is not a superset of ADDR_REGS, e.g. FP_REGS, reject this reload. */ case PLUS: case LABEL_REF: case SYMBOL_REF: case CONST: if (reg_class_subset_p (ADDR_REGS, rclass)) return ADDR_REGS; else return NO_REGS; default: break; } return rclass; } /* Return true if ADDR is SYMBOL_REF + addend with addend being a multiple of ALIGNMENT and the SYMBOL_REF being naturally aligned. */ bool s390_check_symref_alignment (rtx addr, HOST_WIDE_INT alignment) { HOST_WIDE_INT addend; rtx symref; if (!s390_symref_operand_p (addr, &symref, &addend)) return false; return (!SYMBOL_REF_NOT_NATURALLY_ALIGNED_P (symref) && !(addend & (alignment - 1))); } /* ADDR is moved into REG using larl. If ADDR isn't a valid larl operand SCRATCH is used to reload the even part of the address and adding one. */ void s390_reload_larl_operand (rtx reg, rtx addr, rtx scratch) { HOST_WIDE_INT addend; rtx symref; if (!s390_symref_operand_p (addr, &symref, &addend)) gcc_unreachable (); if (!(addend & 1)) /* Easy case. The addend is even so larl will do fine. */ emit_move_insn (reg, addr); else { /* We can leave the scratch register untouched if the target register is a valid base register. */ if (REGNO (reg) < FIRST_PSEUDO_REGISTER && REGNO_REG_CLASS (REGNO (reg)) == ADDR_REGS) scratch = reg; gcc_assert (REGNO (scratch) < FIRST_PSEUDO_REGISTER); gcc_assert (REGNO_REG_CLASS (REGNO (scratch)) == ADDR_REGS); if (addend != 1) emit_move_insn (scratch, gen_rtx_CONST (Pmode, gen_rtx_PLUS (Pmode, symref, GEN_INT (addend - 1)))); else emit_move_insn (scratch, symref); /* Increment the address using la in order to avoid clobbering cc. */ emit_move_insn (reg, gen_rtx_PLUS (Pmode, scratch, const1_rtx)); } } /* Generate what is necessary to move between REG and MEM using SCRATCH. The direction is given by TOMEM. */ void s390_reload_symref_address (rtx reg, rtx mem, rtx scratch, bool tomem) { /* Reload might have pulled a constant out of the literal pool. Force it back in. */ if (CONST_INT_P (mem) || GET_CODE (mem) == CONST_DOUBLE || GET_CODE (mem) == CONST) mem = force_const_mem (GET_MODE (reg), mem); gcc_assert (MEM_P (mem)); /* For a load from memory we can leave the scratch register untouched if the target register is a valid base register. */ if (!tomem && REGNO (reg) < FIRST_PSEUDO_REGISTER && REGNO_REG_CLASS (REGNO (reg)) == ADDR_REGS && GET_MODE (reg) == GET_MODE (scratch)) scratch = reg; /* Load address into scratch register. Since we can't have a secondary reload for a secondary reload we have to cover the case where larl would need a secondary reload here as well. */ s390_reload_larl_operand (scratch, XEXP (mem, 0), scratch); /* Now we can use a standard load/store to do the move. */ if (tomem) emit_move_insn (replace_equiv_address (mem, scratch), reg); else emit_move_insn (reg, replace_equiv_address (mem, scratch)); } /* Inform reload about cases where moving X with a mode MODE to a register in RCLASS requires an extra scratch or immediate register. Return the class needed for the immediate register. */ static enum reg_class s390_secondary_reload (bool in_p, rtx x, enum reg_class rclass, enum machine_mode mode, secondary_reload_info *sri) { /* Intermediate register needed. */ if (reg_classes_intersect_p (CC_REGS, rclass)) return GENERAL_REGS; if (TARGET_Z10) { /* On z10 several optimizer steps may generate larl operands with an odd addend. */ if (in_p && s390_symref_operand_p (x, NULL, NULL) && mode == Pmode && !s390_check_symref_alignment (x, 2)) sri->icode = ((mode == DImode) ? CODE_FOR_reloaddi_larl_odd_addend_z10 : CODE_FOR_reloadsi_larl_odd_addend_z10); /* On z10 we need a scratch register when moving QI, TI or floating point mode values from or to a memory location with a SYMBOL_REF or if the symref addend of a SI or DI move is not aligned to the width of the access. */ if (MEM_P (x) && s390_symref_operand_p (XEXP (x, 0), NULL, NULL) && (mode == QImode || mode == TImode || FLOAT_MODE_P (mode) || (!TARGET_64BIT && mode == DImode) || ((mode == HImode || mode == SImode || mode == DImode) && (!s390_check_symref_alignment (XEXP (x, 0), GET_MODE_SIZE (mode)))))) { #define __SECONDARY_RELOAD_CASE(M,m) \ case M##mode: \ if (TARGET_64BIT) \ sri->icode = in_p ? CODE_FOR_reload##m##di_toreg_z10 : \ CODE_FOR_reload##m##di_tomem_z10; \ else \ sri->icode = in_p ? CODE_FOR_reload##m##si_toreg_z10 : \ CODE_FOR_reload##m##si_tomem_z10; \ break; switch (GET_MODE (x)) { __SECONDARY_RELOAD_CASE (QI, qi); __SECONDARY_RELOAD_CASE (HI, hi); __SECONDARY_RELOAD_CASE (SI, si); __SECONDARY_RELOAD_CASE (DI, di); __SECONDARY_RELOAD_CASE (TI, ti); __SECONDARY_RELOAD_CASE (SF, sf); __SECONDARY_RELOAD_CASE (DF, df); __SECONDARY_RELOAD_CASE (TF, tf); __SECONDARY_RELOAD_CASE (SD, sd); __SECONDARY_RELOAD_CASE (DD, dd); __SECONDARY_RELOAD_CASE (TD, td); default: gcc_unreachable (); } #undef __SECONDARY_RELOAD_CASE } } /* We need a scratch register when loading a PLUS expression which is not a legitimate operand of the LOAD ADDRESS instruction. */ if (in_p && s390_plus_operand (x, mode)) sri->icode = (TARGET_64BIT ? CODE_FOR_reloaddi_plus : CODE_FOR_reloadsi_plus); /* Performing a multiword move from or to memory we have to make sure the second chunk in memory is addressable without causing a displacement overflow. If that would be the case we calculate the address in a scratch register. */ if (MEM_P (x) && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && !DISP_IN_RANGE (INTVAL (XEXP (XEXP (x, 0), 1)) + GET_MODE_SIZE (mode) - 1)) { /* For GENERAL_REGS a displacement overflow is no problem if occurring in a s_operand address since we may fallback to lm/stm. So we only have to care about overflows in the b+i+d case. */ if ((reg_classes_intersect_p (GENERAL_REGS, rclass) && s390_class_max_nregs (GENERAL_REGS, mode) > 1 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS) /* For FP_REGS no lm/stm is available so this check is triggered for displacement overflows in b+i+d and b+d like addresses. */ || (reg_classes_intersect_p (FP_REGS, rclass) && s390_class_max_nregs (FP_REGS, mode) > 1)) { if (in_p) sri->icode = (TARGET_64BIT ? CODE_FOR_reloaddi_nonoffmem_in : CODE_FOR_reloadsi_nonoffmem_in); else sri->icode = (TARGET_64BIT ? CODE_FOR_reloaddi_nonoffmem_out : CODE_FOR_reloadsi_nonoffmem_out); } } /* A scratch address register is needed when a symbolic constant is copied to r0 compiling with -fPIC. In other cases the target register might be used as temporary (see legitimize_pic_address). */ if (in_p && SYMBOLIC_CONST (x) && flag_pic == 2 && rclass != ADDR_REGS) sri->icode = (TARGET_64BIT ? CODE_FOR_reloaddi_PIC_addr : CODE_FOR_reloadsi_PIC_addr); /* Either scratch or no register needed. */ return NO_REGS; } /* Generate code to load SRC, which is PLUS that is not a legitimate operand for the LA instruction, into TARGET. SCRATCH may be used as scratch register. */ void s390_expand_plus_operand (rtx target, rtx src, rtx scratch) { rtx sum1, sum2; struct s390_address ad; /* src must be a PLUS; get its two operands. */ gcc_assert (GET_CODE (src) == PLUS); gcc_assert (GET_MODE (src) == Pmode); /* Check if any of the two operands is already scheduled for replacement by reload. This can happen e.g. when float registers occur in an address. */ sum1 = find_replacement (&XEXP (src, 0)); sum2 = find_replacement (&XEXP (src, 1)); src = gen_rtx_PLUS (Pmode, sum1, sum2); /* If the address is already strictly valid, there's nothing to do. */ if (!s390_decompose_address (src, &ad) || (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base))) || (ad.indx && !REGNO_OK_FOR_INDEX_P (REGNO (ad.indx)))) { /* Otherwise, one of the operands cannot be an address register; we reload its value into the scratch register. */ if (true_regnum (sum1) < 1 || true_regnum (sum1) > 15) { emit_move_insn (scratch, sum1); sum1 = scratch; } if (true_regnum (sum2) < 1 || true_regnum (sum2) > 15) { emit_move_insn (scratch, sum2); sum2 = scratch; } /* According to the way these invalid addresses are generated in reload.c, it should never happen (at least on s390) that *neither* of the PLUS components, after find_replacements was applied, is an address register. */ if (sum1 == scratch && sum2 == scratch) { debug_rtx (src); gcc_unreachable (); } src = gen_rtx_PLUS (Pmode, sum1, sum2); } /* Emit the LOAD ADDRESS pattern. Note that reload of PLUS is only ever performed on addresses, so we can mark the sum as legitimate for LA in any case. */ s390_load_address (target, src); } /* Return true if ADDR is a valid memory address. STRICT specifies whether strict register checking applies. */ static bool s390_legitimate_address_p (enum machine_mode mode, rtx addr, bool strict) { struct s390_address ad; if (TARGET_Z10 && larl_operand (addr, VOIDmode) && (mode == VOIDmode || s390_check_symref_alignment (addr, GET_MODE_SIZE (mode)))) return true; if (!s390_decompose_address (addr, &ad)) return false; if (strict) { if (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base))) return false; if (ad.indx && !REGNO_OK_FOR_INDEX_P (REGNO (ad.indx))) return false; } else { if (ad.base && !(REGNO (ad.base) >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (REGNO (ad.base)) == ADDR_REGS)) return false; if (ad.indx && !(REGNO (ad.indx) >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (REGNO (ad.indx)) == ADDR_REGS)) return false; } return true; } /* Return true if OP is a valid operand for the LA instruction. In 31-bit, we need to prove that the result is used as an address, as LA performs only a 31-bit addition. */ bool legitimate_la_operand_p (rtx op) { struct s390_address addr; if (!s390_decompose_address (op, &addr)) return false; return (TARGET_64BIT || addr.pointer); } /* Return true if it is valid *and* preferable to use LA to compute the sum of OP1 and OP2. */ bool preferred_la_operand_p (rtx op1, rtx op2) { struct s390_address addr; if (op2 != const0_rtx) op1 = gen_rtx_PLUS (Pmode, op1, op2); if (!s390_decompose_address (op1, &addr)) return false; if (addr.base && !REGNO_OK_FOR_BASE_P (REGNO (addr.base))) return false; if (addr.indx && !REGNO_OK_FOR_INDEX_P (REGNO (addr.indx))) return false; if (!TARGET_64BIT && !addr.pointer) return false; if (addr.pointer) return true; if ((addr.base && REG_P (addr.base) && REG_POINTER (addr.base)) || (addr.indx && REG_P (addr.indx) && REG_POINTER (addr.indx))) return true; return false; } /* Emit a forced load-address operation to load SRC into DST. This will use the LOAD ADDRESS instruction even in situations where legitimate_la_operand_p (SRC) returns false. */ void s390_load_address (rtx dst, rtx src) { if (TARGET_64BIT) emit_move_insn (dst, src); else emit_insn (gen_force_la_31 (dst, src)); } /* Return a legitimate reference for ORIG (an address) using the register REG. If REG is 0, a new pseudo is generated. There are two types of references that must be handled: 1. Global data references must load the address from the GOT, via the PIC reg. An insn is emitted to do this load, and the reg is returned. 2. Static data references, constant pool addresses, and code labels compute the address as an offset from the GOT, whose base is in the PIC reg. Static data objects have SYMBOL_FLAG_LOCAL set to differentiate them from global data objects. The returned address is the PIC reg + an unspec constant. TARGET_LEGITIMIZE_ADDRESS_P rejects symbolic references unless the PIC reg also appears in the address. */ rtx legitimize_pic_address (rtx orig, rtx reg) { rtx addr = orig; rtx new_rtx = orig; rtx base; gcc_assert (!TLS_SYMBOLIC_CONST (addr)); if (GET_CODE (addr) == LABEL_REF || (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (addr))) { /* This is a local symbol. */ if (TARGET_CPU_ZARCH && larl_operand (addr, VOIDmode)) { /* Access local symbols PC-relative via LARL. This is the same as in the non-PIC case, so it is handled automatically ... */ } else { /* Access local symbols relative to the GOT. */ rtx temp = reg? reg : gen_reg_rtx (Pmode); if (reload_in_progress || reload_completed) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF); addr = gen_rtx_CONST (Pmode, addr); addr = force_const_mem (Pmode, addr); emit_move_insn (temp, addr); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp); if (reg != 0) { s390_load_address (reg, new_rtx); new_rtx = reg; } } } else if (GET_CODE (addr) == SYMBOL_REF) { if (reg == 0) reg = gen_reg_rtx (Pmode); if (flag_pic == 1) { /* Assume GOT offset < 4k. This is handled the same way in both 31- and 64-bit code (@GOT). */ if (reload_in_progress || reload_completed) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); new_rtx = gen_const_mem (Pmode, new_rtx); emit_move_insn (reg, new_rtx); new_rtx = reg; } else if (TARGET_CPU_ZARCH) { /* If the GOT offset might be >= 4k, we determine the position of the GOT entry via a PC-relative LARL (@GOTENT). */ rtx temp = reg ? reg : gen_reg_rtx (Pmode); gcc_assert (REGNO (temp) >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (REGNO (temp)) == ADDR_REGS); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTENT); new_rtx = gen_rtx_CONST (Pmode, new_rtx); emit_move_insn (temp, new_rtx); new_rtx = gen_const_mem (Pmode, temp); emit_move_insn (reg, new_rtx); new_rtx = reg; } else { /* If the GOT offset might be >= 4k, we have to load it from the literal pool (@GOT). */ rtx temp = reg ? reg : gen_reg_rtx (Pmode); gcc_assert (REGNO (temp) >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (REGNO (temp)) == ADDR_REGS); if (reload_in_progress || reload_completed) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT); addr = gen_rtx_CONST (Pmode, addr); addr = force_const_mem (Pmode, addr); emit_move_insn (temp, addr); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp); new_rtx = gen_const_mem (Pmode, new_rtx); emit_move_insn (reg, new_rtx); new_rtx = reg; } } else { if (GET_CODE (addr) == CONST) { addr = XEXP (addr, 0); if (GET_CODE (addr) == UNSPEC) { gcc_assert (XVECLEN (addr, 0) == 1); switch (XINT (addr, 1)) { /* If someone moved a GOT-relative UNSPEC out of the literal pool, force them back in. */ case UNSPEC_GOTOFF: case UNSPEC_PLTOFF: new_rtx = force_const_mem (Pmode, orig); break; /* @GOT is OK as is if small. */ case UNSPEC_GOT: if (flag_pic == 2) new_rtx = force_const_mem (Pmode, orig); break; /* @GOTENT is OK as is. */ case UNSPEC_GOTENT: break; /* @PLT is OK as is on 64-bit, must be converted to GOT-relative @PLTOFF on 31-bit. */ case UNSPEC_PLT: if (!TARGET_CPU_ZARCH) { rtx temp = reg? reg : gen_reg_rtx (Pmode); if (reload_in_progress || reload_completed) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); addr = XVECEXP (addr, 0, 0); addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_PLTOFF); addr = gen_rtx_CONST (Pmode, addr); addr = force_const_mem (Pmode, addr); emit_move_insn (temp, addr); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp); if (reg != 0) { s390_load_address (reg, new_rtx); new_rtx = reg; } } break; /* Everything else cannot happen. */ default: gcc_unreachable (); } } else gcc_assert (GET_CODE (addr) == PLUS); } if (GET_CODE (addr) == PLUS) { rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1); gcc_assert (!TLS_SYMBOLIC_CONST (op0)); gcc_assert (!TLS_SYMBOLIC_CONST (op1)); /* Check first to see if this is a constant offset from a local symbol reference. */ if ((GET_CODE (op0) == LABEL_REF || (GET_CODE (op0) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op0))) && GET_CODE (op1) == CONST_INT) { if (TARGET_CPU_ZARCH && larl_operand (op0, VOIDmode) && INTVAL (op1) < (HOST_WIDE_INT)1 << 31 && INTVAL (op1) >= -((HOST_WIDE_INT)1 << 31)) { if (INTVAL (op1) & 1) { /* LARL can't handle odd offsets, so emit a pair of LARL and LA. */ rtx temp = reg? reg : gen_reg_rtx (Pmode); if (!DISP_IN_RANGE (INTVAL (op1))) { HOST_WIDE_INT even = INTVAL (op1) - 1; op0 = gen_rtx_PLUS (Pmode, op0, GEN_INT (even)); op0 = gen_rtx_CONST (Pmode, op0); op1 = const1_rtx; } emit_move_insn (temp, op0); new_rtx = gen_rtx_PLUS (Pmode, temp, op1); if (reg != 0) { s390_load_address (reg, new_rtx); new_rtx = reg; } } else { /* If the offset is even, we can just use LARL. This will happen automatically. */ } } else { /* Access local symbols relative to the GOT. */ rtx temp = reg? reg : gen_reg_rtx (Pmode); if (reload_in_progress || reload_completed) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0), UNSPEC_GOTOFF); addr = gen_rtx_PLUS (Pmode, addr, op1); addr = gen_rtx_CONST (Pmode, addr); addr = force_const_mem (Pmode, addr); emit_move_insn (temp, addr); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp); if (reg != 0) { s390_load_address (reg, new_rtx); new_rtx = reg; } } } /* Now, check whether it is a GOT relative symbol plus offset that was pulled out of the literal pool. Force it back in. */ else if (GET_CODE (op0) == UNSPEC && GET_CODE (op1) == CONST_INT && XINT (op0, 1) == UNSPEC_GOTOFF) { gcc_assert (XVECLEN (op0, 0) == 1); new_rtx = force_const_mem (Pmode, orig); } /* Otherwise, compute the sum. */ else { base = legitimize_pic_address (XEXP (addr, 0), reg); new_rtx = legitimize_pic_address (XEXP (addr, 1), base == reg ? NULL_RTX : reg); if (GET_CODE (new_rtx) == CONST_INT) new_rtx = plus_constant (base, INTVAL (new_rtx)); else { if (GET_CODE (new_rtx) == PLUS && CONSTANT_P (XEXP (new_rtx, 1))) { base = gen_rtx_PLUS (Pmode, base, XEXP (new_rtx, 0)); new_rtx = XEXP (new_rtx, 1); } new_rtx = gen_rtx_PLUS (Pmode, base, new_rtx); } if (GET_CODE (new_rtx) == CONST) new_rtx = XEXP (new_rtx, 0); new_rtx = force_operand (new_rtx, 0); } } } return new_rtx; } /* Load the thread pointer into a register. */ rtx s390_get_thread_pointer (void) { rtx tp = gen_reg_rtx (Pmode); emit_move_insn (tp, gen_rtx_REG (Pmode, TP_REGNUM)); mark_reg_pointer (tp, BITS_PER_WORD); return tp; } /* Emit a tls call insn. The call target is the SYMBOL_REF stored in s390_tls_symbol which always refers to __tls_get_offset. The returned offset is written to RESULT_REG and an USE rtx is generated for TLS_CALL. */ static GTY(()) rtx s390_tls_symbol; static void s390_emit_tls_call_insn (rtx result_reg, rtx tls_call) { rtx insn; gcc_assert (flag_pic); if (!s390_tls_symbol) s390_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tls_get_offset"); insn = s390_emit_call (s390_tls_symbol, tls_call, result_reg, gen_rtx_REG (Pmode, RETURN_REGNUM)); use_reg (&CALL_INSN_FUNCTION_USAGE (insn), result_reg); RTL_CONST_CALL_P (insn) = 1; } /* ADDR contains a thread-local SYMBOL_REF. Generate code to compute this (thread-local) address. REG may be used as temporary. */ static rtx legitimize_tls_address (rtx addr, rtx reg) { rtx new_rtx, tls_call, temp, base, r2, insn; if (GET_CODE (addr) == SYMBOL_REF) switch (tls_symbolic_operand (addr)) { case TLS_MODEL_GLOBAL_DYNAMIC: start_sequence (); r2 = gen_rtx_REG (Pmode, 2); tls_call = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_TLSGD); new_rtx = gen_rtx_CONST (Pmode, tls_call); new_rtx = force_const_mem (Pmode, new_rtx); emit_move_insn (r2, new_rtx); s390_emit_tls_call_insn (r2, tls_call); insn = get_insns (); end_sequence (); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_NTPOFF); temp = gen_reg_rtx (Pmode); emit_libcall_block (insn, temp, r2, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp); if (reg != 0) { s390_load_address (reg, new_rtx); new_rtx = reg; } break; case TLS_MODEL_LOCAL_DYNAMIC: start_sequence (); r2 = gen_rtx_REG (Pmode, 2); tls_call = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLSLDM); new_rtx = gen_rtx_CONST (Pmode, tls_call); new_rtx = force_const_mem (Pmode, new_rtx); emit_move_insn (r2, new_rtx); s390_emit_tls_call_insn (r2, tls_call); insn = get_insns (); end_sequence (); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLSLDM_NTPOFF); temp = gen_reg_rtx (Pmode); emit_libcall_block (insn, temp, r2, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp); base = gen_reg_rtx (Pmode); s390_load_address (base, new_rtx); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_DTPOFF); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = force_const_mem (Pmode, new_rtx); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, base, temp); if (reg != 0) { s390_load_address (reg, new_rtx); new_rtx = reg; } break; case TLS_MODEL_INITIAL_EXEC: if (flag_pic == 1) { /* Assume GOT offset < 4k. This is handled the same way in both 31- and 64-bit code. */ if (reload_in_progress || reload_completed) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTNTPOFF); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); new_rtx = gen_const_mem (Pmode, new_rtx); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new_rtx); } else if (TARGET_CPU_ZARCH) { /* If the GOT offset might be >= 4k, we determine the position of the GOT entry via a PC-relative LARL. */ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_INDNTPOFF); new_rtx = gen_rtx_CONST (Pmode, new_rtx); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new_rtx); new_rtx = gen_const_mem (Pmode, temp); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new_rtx); } else if (flag_pic) { /* If the GOT offset might be >= 4k, we have to load it from the literal pool. */ if (reload_in_progress || reload_completed) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTNTPOFF); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = force_const_mem (Pmode, new_rtx); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp); new_rtx = gen_const_mem (Pmode, new_rtx); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, new_rtx, addr), UNSPEC_TLS_LOAD); temp = gen_reg_rtx (Pmode); emit_insn (gen_rtx_SET (Pmode, temp, new_rtx)); } else { /* In position-dependent code, load the absolute address of the GOT entry from the literal pool. */ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_INDNTPOFF); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = force_const_mem (Pmode, new_rtx); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new_rtx); new_rtx = temp; new_rtx = gen_const_mem (Pmode, new_rtx); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, new_rtx, addr), UNSPEC_TLS_LOAD); temp = gen_reg_rtx (Pmode); emit_insn (gen_rtx_SET (Pmode, temp, new_rtx)); } new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp); if (reg != 0) { s390_load_address (reg, new_rtx); new_rtx = reg; } break; case TLS_MODEL_LOCAL_EXEC: new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_NTPOFF); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = force_const_mem (Pmode, new_rtx); temp = gen_reg_rtx (Pmode); emit_move_insn (temp, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp); if (reg != 0) { s390_load_address (reg, new_rtx); new_rtx = reg; } break; default: gcc_unreachable (); } else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == UNSPEC) { switch (XINT (XEXP (addr, 0), 1)) { case UNSPEC_INDNTPOFF: gcc_assert (TARGET_CPU_ZARCH); new_rtx = addr; break; default: gcc_unreachable (); } } else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT) { new_rtx = XEXP (XEXP (addr, 0), 0); if (GET_CODE (new_rtx) != SYMBOL_REF) new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = legitimize_tls_address (new_rtx, reg); new_rtx = plus_constant (new_rtx, INTVAL (XEXP (XEXP (addr, 0), 1))); new_rtx = force_operand (new_rtx, 0); } else gcc_unreachable (); /* for now ... */ return new_rtx; } /* Emit insns making the address in operands[1] valid for a standard move to operands[0]. operands[1] is replaced by an address which should be used instead of the former RTX to emit the move pattern. */ void emit_symbolic_move (rtx *operands) { rtx temp = !can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode); if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (Pmode, operands[1]); else if (TLS_SYMBOLIC_CONST (operands[1])) operands[1] = legitimize_tls_address (operands[1], temp); else if (flag_pic) operands[1] = legitimize_pic_address (operands[1], temp); } /* Try machine-dependent ways of modifying an illegitimate address X to be legitimate. If we find one, return the new, valid address. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. MODE is the mode of the operand pointed to by X. When -fpic is used, special handling is needed for symbolic references. See comments by legitimize_pic_address for details. */ static rtx s390_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED) { rtx constant_term = const0_rtx; if (TLS_SYMBOLIC_CONST (x)) { x = legitimize_tls_address (x, 0); if (s390_legitimate_address_p (mode, x, FALSE)) return x; } else if (GET_CODE (x) == PLUS && (TLS_SYMBOLIC_CONST (XEXP (x, 0)) || TLS_SYMBOLIC_CONST (XEXP (x, 1)))) { return x; } else if (flag_pic) { if (SYMBOLIC_CONST (x) || (GET_CODE (x) == PLUS && (SYMBOLIC_CONST (XEXP (x, 0)) || SYMBOLIC_CONST (XEXP (x, 1))))) x = legitimize_pic_address (x, 0); if (s390_legitimate_address_p (mode, x, FALSE)) return x; } x = eliminate_constant_term (x, &constant_term); /* Optimize loading of large displacements by splitting them into the multiple of 4K and the rest; this allows the former to be CSE'd if possible. Don't do this if the displacement is added to a register pointing into the stack frame, as the offsets will change later anyway. */ if (GET_CODE (constant_term) == CONST_INT && !TARGET_LONG_DISPLACEMENT && !DISP_IN_RANGE (INTVAL (constant_term)) && !(REG_P (x) && REGNO_PTR_FRAME_P (REGNO (x)))) { HOST_WIDE_INT lower = INTVAL (constant_term) & 0xfff; HOST_WIDE_INT upper = INTVAL (constant_term) ^ lower; rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (GEN_INT (upper), temp); if (val != temp) emit_move_insn (temp, val); x = gen_rtx_PLUS (Pmode, x, temp); constant_term = GEN_INT (lower); } if (GET_CODE (x) == PLUS) { if (GET_CODE (XEXP (x, 0)) == REG) { rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (XEXP (x, 1), temp); if (val != temp) emit_move_insn (temp, val); x = gen_rtx_PLUS (Pmode, XEXP (x, 0), temp); } else if (GET_CODE (XEXP (x, 1)) == REG) { rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (XEXP (x, 0), temp); if (val != temp) emit_move_insn (temp, val); x = gen_rtx_PLUS (Pmode, temp, XEXP (x, 1)); } } if (constant_term != const0_rtx) x = gen_rtx_PLUS (Pmode, x, constant_term); return x; } /* Try a machine-dependent way of reloading an illegitimate address AD operand. If we find one, push the reload and and return the new address. MODE is the mode of the enclosing MEM. OPNUM is the operand number and TYPE is the reload type of the current reload. */ rtx legitimize_reload_address (rtx ad, enum machine_mode mode ATTRIBUTE_UNUSED, int opnum, int type) { if (!optimize || TARGET_LONG_DISPLACEMENT) return NULL_RTX; if (GET_CODE (ad) == PLUS) { rtx tem = simplify_binary_operation (PLUS, Pmode, XEXP (ad, 0), XEXP (ad, 1)); if (tem) ad = tem; } if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 0)) == REG && GET_CODE (XEXP (ad, 1)) == CONST_INT && !DISP_IN_RANGE (INTVAL (XEXP (ad, 1)))) { HOST_WIDE_INT lower = INTVAL (XEXP (ad, 1)) & 0xfff; HOST_WIDE_INT upper = INTVAL (XEXP (ad, 1)) ^ lower; rtx cst, tem, new_rtx; cst = GEN_INT (upper); if (!legitimate_reload_constant_p (cst)) cst = force_const_mem (Pmode, cst); tem = gen_rtx_PLUS (Pmode, XEXP (ad, 0), cst); new_rtx = gen_rtx_PLUS (Pmode, tem, GEN_INT (lower)); push_reload (XEXP (tem, 1), 0, &XEXP (tem, 1), 0, BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, (enum reload_type) type); return new_rtx; } return NULL_RTX; } /* Emit code to move LEN bytes from DST to SRC. */ void s390_expand_movmem (rtx dst, rtx src, rtx len) { if (GET_CODE (len) == CONST_INT && INTVAL (len) >= 0 && INTVAL (len) <= 256) { if (INTVAL (len) > 0) emit_insn (gen_movmem_short (dst, src, GEN_INT (INTVAL (len) - 1))); } else if (TARGET_MVCLE) { emit_insn (gen_movmem_long (dst, src, convert_to_mode (Pmode, len, 1))); } else { rtx dst_addr, src_addr, count, blocks, temp; rtx loop_start_label = gen_label_rtx (); rtx loop_end_label = gen_label_rtx (); rtx end_label = gen_label_rtx (); enum machine_mode mode; mode = GET_MODE (len); if (mode == VOIDmode) mode = Pmode; dst_addr = gen_reg_rtx (Pmode); src_addr = gen_reg_rtx (Pmode); count = gen_reg_rtx (mode); blocks = gen_reg_rtx (mode); convert_move (count, len, 1); emit_cmp_and_jump_insns (count, const0_rtx, EQ, NULL_RTX, mode, 1, end_label); emit_move_insn (dst_addr, force_operand (XEXP (dst, 0), NULL_RTX)); emit_move_insn (src_addr, force_operand (XEXP (src, 0), NULL_RTX)); dst = change_address (dst, VOIDmode, dst_addr); src = change_address (src, VOIDmode, src_addr); temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1, OPTAB_DIRECT); if (temp != count) emit_move_insn (count, temp); temp = expand_binop (mode, lshr_optab, count, GEN_INT (8), blocks, 1, OPTAB_DIRECT); if (temp != blocks) emit_move_insn (blocks, temp); emit_cmp_and_jump_insns (blocks, const0_rtx, EQ, NULL_RTX, mode, 1, loop_end_label); emit_label (loop_start_label); emit_insn (gen_movmem_short (dst, src, GEN_INT (255))); s390_load_address (dst_addr, gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (256))); s390_load_address (src_addr, gen_rtx_PLUS (Pmode, src_addr, GEN_INT (256))); temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1, OPTAB_DIRECT); if (temp != blocks) emit_move_insn (blocks, temp); emit_cmp_and_jump_insns (blocks, const0_rtx, EQ, NULL_RTX, mode, 1, loop_end_label); emit_jump (loop_start_label); emit_label (loop_end_label); emit_insn (gen_movmem_short (dst, src, convert_to_mode (Pmode, count, 1))); emit_label (end_label); } } /* Emit code to set LEN bytes at DST to VAL. Make use of clrmem if VAL is zero. */ void s390_expand_setmem (rtx dst, rtx len, rtx val) { if (GET_CODE (len) == CONST_INT && INTVAL (len) == 0) return; gcc_assert (GET_CODE (val) == CONST_INT || GET_MODE (val) == QImode); if (GET_CODE (len) == CONST_INT && INTVAL (len) > 0 && INTVAL (len) <= 257) { if (val == const0_rtx && INTVAL (len) <= 256) emit_insn (gen_clrmem_short (dst, GEN_INT (INTVAL (len) - 1))); else { /* Initialize memory by storing the first byte. */ emit_move_insn (adjust_address (dst, QImode, 0), val); if (INTVAL (len) > 1) { /* Initiate 1 byte overlap move. The first byte of DST is propagated through DSTP1. Prepare a movmem for: DST+1 = DST (length = LEN - 1). DST is set to size 1 so the rest of the memory location does not count as source operand. */ rtx dstp1 = adjust_address (dst, VOIDmode, 1); set_mem_size (dst, const1_rtx); emit_insn (gen_movmem_short (dstp1, dst, GEN_INT (INTVAL (len) - 2))); } } } else if (TARGET_MVCLE) { val = force_not_mem (convert_modes (Pmode, QImode, val, 1)); emit_insn (gen_setmem_long (dst, convert_to_mode (Pmode, len, 1), val)); } else { rtx dst_addr, src_addr, count, blocks, temp, dstp1 = NULL_RTX; rtx loop_start_label = gen_label_rtx (); rtx loop_end_label = gen_label_rtx (); rtx end_label = gen_label_rtx (); enum machine_mode mode; mode = GET_MODE (len); if (mode == VOIDmode) mode = Pmode; dst_addr = gen_reg_rtx (Pmode); src_addr = gen_reg_rtx (Pmode); count = gen_reg_rtx (mode); blocks = gen_reg_rtx (mode); convert_move (count, len, 1); emit_cmp_and_jump_insns (count, const0_rtx, EQ, NULL_RTX, mode, 1, end_label); emit_move_insn (dst_addr, force_operand (XEXP (dst, 0), NULL_RTX)); dst = change_address (dst, VOIDmode, dst_addr); if (val == const0_rtx) temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1, OPTAB_DIRECT); else { dstp1 = adjust_address (dst, VOIDmode, 1); set_mem_size (dst, const1_rtx); /* Initialize memory by storing the first byte. */ emit_move_insn (adjust_address (dst, QImode, 0), val); /* If count is 1 we are done. */ emit_cmp_and_jump_insns (count, const1_rtx, EQ, NULL_RTX, mode, 1, end_label); temp = expand_binop (mode, add_optab, count, GEN_INT (-2), count, 1, OPTAB_DIRECT); } if (temp != count) emit_move_insn (count, temp); temp = expand_binop (mode, lshr_optab, count, GEN_INT (8), blocks, 1, OPTAB_DIRECT); if (temp != blocks) emit_move_insn (blocks, temp); emit_cmp_and_jump_insns (blocks, const0_rtx, EQ, NULL_RTX, mode, 1, loop_end_label); emit_label (loop_start_label); if (val == const0_rtx) emit_insn (gen_clrmem_short (dst, GEN_INT (255))); else emit_insn (gen_movmem_short (dstp1, dst, GEN_INT (255))); s390_load_address (dst_addr, gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (256))); temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1, OPTAB_DIRECT); if (temp != blocks) emit_move_insn (blocks, temp); emit_cmp_and_jump_insns (blocks, const0_rtx, EQ, NULL_RTX, mode, 1, loop_end_label); emit_jump (loop_start_label); emit_label (loop_end_label); if (val == const0_rtx) emit_insn (gen_clrmem_short (dst, convert_to_mode (Pmode, count, 1))); else emit_insn (gen_movmem_short (dstp1, dst, convert_to_mode (Pmode, count, 1))); emit_label (end_label); } } /* Emit code to compare LEN bytes at OP0 with those at OP1, and return the result in TARGET. */ void s390_expand_cmpmem (rtx target, rtx op0, rtx op1, rtx len) { rtx ccreg = gen_rtx_REG (CCUmode, CC_REGNUM); rtx tmp; /* As the result of CMPINT is inverted compared to what we need, we have to swap the operands. */ tmp = op0; op0 = op1; op1 = tmp; if (GET_CODE (len) == CONST_INT && INTVAL (len) >= 0 && INTVAL (len) <= 256) { if (INTVAL (len) > 0) { emit_insn (gen_cmpmem_short (op0, op1, GEN_INT (INTVAL (len) - 1))); emit_insn (gen_cmpint (target, ccreg)); } else emit_move_insn (target, const0_rtx); } else if (TARGET_MVCLE) { emit_insn (gen_cmpmem_long (op0, op1, convert_to_mode (Pmode, len, 1))); emit_insn (gen_cmpint (target, ccreg)); } else { rtx addr0, addr1, count, blocks, temp; rtx loop_start_label = gen_label_rtx (); rtx loop_end_label = gen_label_rtx (); rtx end_label = gen_label_rtx (); enum machine_mode mode; mode = GET_MODE (len); if (mode == VOIDmode) mode = Pmode; addr0 = gen_reg_rtx (Pmode); addr1 = gen_reg_rtx (Pmode); count = gen_reg_rtx (mode); blocks = gen_reg_rtx (mode); convert_move (count, len, 1); emit_cmp_and_jump_insns (count, const0_rtx, EQ, NULL_RTX, mode, 1, end_label); emit_move_insn (addr0, force_operand (XEXP (op0, 0), NULL_RTX)); emit_move_insn (addr1, force_operand (XEXP (op1, 0), NULL_RTX)); op0 = change_address (op0, VOIDmode, addr0); op1 = change_address (op1, VOIDmode, addr1); temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1, OPTAB_DIRECT); if (temp != count) emit_move_insn (count, temp); temp = expand_binop (mode, lshr_optab, count, GEN_INT (8), blocks, 1, OPTAB_DIRECT); if (temp != blocks) emit_move_insn (blocks, temp); emit_cmp_and_jump_insns (blocks, const0_rtx, EQ, NULL_RTX, mode, 1, loop_end_label); emit_label (loop_start_label); emit_insn (gen_cmpmem_short (op0, op1, GEN_INT (255))); temp = gen_rtx_NE (VOIDmode, ccreg, const0_rtx); temp = gen_rtx_IF_THEN_ELSE (VOIDmode, temp, gen_rtx_LABEL_REF (VOIDmode, end_label), pc_rtx); temp = gen_rtx_SET (VOIDmode, pc_rtx, temp); emit_jump_insn (temp); s390_load_address (addr0, gen_rtx_PLUS (Pmode, addr0, GEN_INT (256))); s390_load_address (addr1, gen_rtx_PLUS (Pmode, addr1, GEN_INT (256))); temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1, OPTAB_DIRECT); if (temp != blocks) emit_move_insn (blocks, temp); emit_cmp_and_jump_insns (blocks, const0_rtx, EQ, NULL_RTX, mode, 1, loop_end_label); emit_jump (loop_start_label); emit_label (loop_end_label); emit_insn (gen_cmpmem_short (op0, op1, convert_to_mode (Pmode, count, 1))); emit_label (end_label); emit_insn (gen_cmpint (target, ccreg)); } } /* Expand conditional increment or decrement using alc/slb instructions. Should generate code setting DST to either SRC or SRC + INCREMENT, depending on the result of the comparison CMP_OP0 CMP_CODE CMP_OP1. Returns true if successful, false otherwise. That makes it possible to implement some if-constructs without jumps e.g.: (borrow = CC0 | CC1 and carry = CC2 | CC3) unsigned int a, b, c; if (a < b) c++; -> CCU b > a -> CC2; c += carry; if (a < b) c--; -> CCL3 a - b -> borrow; c -= borrow; if (a <= b) c++; -> CCL3 b - a -> borrow; c += carry; if (a <= b) c--; -> CCU a <= b -> borrow; c -= borrow; Checks for EQ and NE with a nonzero value need an additional xor e.g.: if (a == b) c++; -> CCL3 a ^= b; 0 - a -> borrow; c += carry; if (a == b) c--; -> CCU a ^= b; a <= 0 -> CC0 | CC1; c -= borrow; if (a != b) c++; -> CCU a ^= b; a > 0 -> CC2; c += carry; if (a != b) c--; -> CCL3 a ^= b; 0 - a -> borrow; c -= borrow; */ bool s390_expand_addcc (enum rtx_code cmp_code, rtx cmp_op0, rtx cmp_op1, rtx dst, rtx src, rtx increment) { enum machine_mode cmp_mode; enum machine_mode cc_mode; rtx op_res; rtx insn; rtvec p; int ret; if ((GET_MODE (cmp_op0) == SImode || GET_MODE (cmp_op0) == VOIDmode) && (GET_MODE (cmp_op1) == SImode || GET_MODE (cmp_op1) == VOIDmode)) cmp_mode = SImode; else if ((GET_MODE (cmp_op0) == DImode || GET_MODE (cmp_op0) == VOIDmode) && (GET_MODE (cmp_op1) == DImode || GET_MODE (cmp_op1) == VOIDmode)) cmp_mode = DImode; else return false; /* Try ADD LOGICAL WITH CARRY. */ if (increment == const1_rtx) { /* Determine CC mode to use. */ if (cmp_code == EQ || cmp_code == NE) { if (cmp_op1 != const0_rtx) { cmp_op0 = expand_simple_binop (cmp_mode, XOR, cmp_op0, cmp_op1, NULL_RTX, 0, OPTAB_WIDEN); cmp_op1 = const0_rtx; } cmp_code = cmp_code == EQ ? LEU : GTU; } if (cmp_code == LTU || cmp_code == LEU) { rtx tem = cmp_op0; cmp_op0 = cmp_op1; cmp_op1 = tem; cmp_code = swap_condition (cmp_code); } switch (cmp_code) { case GTU: cc_mode = CCUmode; break; case GEU: cc_mode = CCL3mode; break; default: return false; } /* Emit comparison instruction pattern. */ if (!register_operand (cmp_op0, cmp_mode)) cmp_op0 = force_reg (cmp_mode, cmp_op0); insn = gen_rtx_SET (VOIDmode, gen_rtx_REG (cc_mode, CC_REGNUM), gen_rtx_COMPARE (cc_mode, cmp_op0, cmp_op1)); /* We use insn_invalid_p here to add clobbers if required. */ ret = insn_invalid_p (emit_insn (insn)); gcc_assert (!ret); /* Emit ALC instruction pattern. */ op_res = gen_rtx_fmt_ee (cmp_code, GET_MODE (dst), gen_rtx_REG (cc_mode, CC_REGNUM), const0_rtx); if (src != const0_rtx) { if (!register_operand (src, GET_MODE (dst))) src = force_reg (GET_MODE (dst), src); op_res = gen_rtx_PLUS (GET_MODE (dst), op_res, src); op_res = gen_rtx_PLUS (GET_MODE (dst), op_res, const0_rtx); } p = rtvec_alloc (2); RTVEC_ELT (p, 0) = gen_rtx_SET (VOIDmode, dst, op_res); RTVEC_ELT (p, 1) = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM)); emit_insn (gen_rtx_PARALLEL (VOIDmode, p)); return true; } /* Try SUBTRACT LOGICAL WITH BORROW. */ if (increment == constm1_rtx) { /* Determine CC mode to use. */ if (cmp_code == EQ || cmp_code == NE) { if (cmp_op1 != const0_rtx) { cmp_op0 = expand_simple_binop (cmp_mode, XOR, cmp_op0, cmp_op1, NULL_RTX, 0, OPTAB_WIDEN); cmp_op1 = const0_rtx; } cmp_code = cmp_code == EQ ? LEU : GTU; } if (cmp_code == GTU || cmp_code == GEU) { rtx tem = cmp_op0; cmp_op0 = cmp_op1; cmp_op1 = tem; cmp_code = swap_condition (cmp_code); } switch (cmp_code) { case LEU: cc_mode = CCUmode; break; case LTU: cc_mode = CCL3mode; break; default: return false; } /* Emit comparison instruction pattern. */ if (!register_operand (cmp_op0, cmp_mode)) cmp_op0 = force_reg (cmp_mode, cmp_op0); insn = gen_rtx_SET (VOIDmode, gen_rtx_REG (cc_mode, CC_REGNUM), gen_rtx_COMPARE (cc_mode, cmp_op0, cmp_op1)); /* We use insn_invalid_p here to add clobbers if required. */ ret = insn_invalid_p (emit_insn (insn)); gcc_assert (!ret); /* Emit SLB instruction pattern. */ if (!register_operand (src, GET_MODE (dst))) src = force_reg (GET_MODE (dst), src); op_res = gen_rtx_MINUS (GET_MODE (dst), gen_rtx_MINUS (GET_MODE (dst), src, const0_rtx), gen_rtx_fmt_ee (cmp_code, GET_MODE (dst), gen_rtx_REG (cc_mode, CC_REGNUM), const0_rtx)); p = rtvec_alloc (2); RTVEC_ELT (p, 0) = gen_rtx_SET (VOIDmode, dst, op_res); RTVEC_ELT (p, 1) = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM)); emit_insn (gen_rtx_PARALLEL (VOIDmode, p)); return true; } return false; } /* Expand code for the insv template. Return true if successful. */ bool s390_expand_insv (rtx dest, rtx op1, rtx op2, rtx src) { int bitsize = INTVAL (op1); int bitpos = INTVAL (op2); /* On z10 we can use the risbg instruction to implement insv. */ if (TARGET_Z10 && ((GET_MODE (dest) == DImode && GET_MODE (src) == DImode) || (GET_MODE (dest) == SImode && GET_MODE (src) == SImode))) { rtx op; rtx clobber; op = gen_rtx_SET (GET_MODE(src), gen_rtx_ZERO_EXTRACT (GET_MODE (dest), dest, op1, op2), src); clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clobber))); return true; } /* We need byte alignment. */ if (bitsize % BITS_PER_UNIT) return false; if (bitpos == 0 && memory_operand (dest, VOIDmode) && (register_operand (src, word_mode) || const_int_operand (src, VOIDmode))) { /* Emit standard pattern if possible. */ enum machine_mode mode = smallest_mode_for_size (bitsize, MODE_INT); if (GET_MODE_BITSIZE (mode) == bitsize) emit_move_insn (adjust_address (dest, mode, 0), gen_lowpart (mode, src)); /* (set (ze (mem)) (const_int)). */ else if (const_int_operand (src, VOIDmode)) { int size = bitsize / BITS_PER_UNIT; rtx src_mem = adjust_address (force_const_mem (word_mode, src), BLKmode, GET_MODE_SIZE (word_mode) - size); dest = adjust_address (dest, BLKmode, 0); set_mem_size (dest, GEN_INT (size)); s390_expand_movmem (dest, src_mem, GEN_INT (size)); } /* (set (ze (mem)) (reg)). */ else if (register_operand (src, word_mode)) { if (bitsize <= GET_MODE_BITSIZE (SImode)) emit_move_insn (gen_rtx_ZERO_EXTRACT (word_mode, dest, op1, const0_rtx), src); else { /* Emit st,stcmh sequence. */ int stcmh_width = bitsize - GET_MODE_BITSIZE (SImode); int size = stcmh_width / BITS_PER_UNIT; emit_move_insn (adjust_address (dest, SImode, size), gen_lowpart (SImode, src)); set_mem_size (dest, GEN_INT (size)); emit_move_insn (gen_rtx_ZERO_EXTRACT (word_mode, dest, GEN_INT (stcmh_width), const0_rtx), gen_rtx_LSHIFTRT (word_mode, src, GEN_INT (GET_MODE_BITSIZE (SImode)))); } } else return false; return true; } /* (set (ze (reg)) (const_int)). */ if (TARGET_ZARCH && register_operand (dest, word_mode) && (bitpos % 16) == 0 && (bitsize % 16) == 0 && const_int_operand (src, VOIDmode)) { HOST_WIDE_INT val = INTVAL (src); int regpos = bitpos + bitsize; while (regpos > bitpos) { enum machine_mode putmode; int putsize; if (TARGET_EXTIMM && (regpos % 32 == 0) && (regpos >= bitpos + 32)) putmode = SImode; else putmode = HImode; putsize = GET_MODE_BITSIZE (putmode); regpos -= putsize; emit_move_insn (gen_rtx_ZERO_EXTRACT (word_mode, dest, GEN_INT (putsize), GEN_INT (regpos)), gen_int_mode (val, putmode)); val >>= putsize; } gcc_assert (regpos == bitpos); return true; } return false; } /* A subroutine of s390_expand_cs_hqi and s390_expand_atomic which returns a register that holds VAL of mode MODE shifted by COUNT bits. */ static inline rtx s390_expand_mask_and_shift (rtx val, enum machine_mode mode, rtx count) { val = expand_simple_binop (SImode, AND, val, GEN_INT (GET_MODE_MASK (mode)), NULL_RTX, 1, OPTAB_DIRECT); return expand_simple_binop (SImode, ASHIFT, val, count, NULL_RTX, 1, OPTAB_DIRECT); } /* Structure to hold the initial parameters for a compare_and_swap operation in HImode and QImode. */ struct alignment_context { rtx memsi; /* SI aligned memory location. */ rtx shift; /* Bit offset with regard to lsb. */ rtx modemask; /* Mask of the HQImode shifted by SHIFT bits. */ rtx modemaski; /* ~modemask */ bool aligned; /* True if memory is aligned, false else. */ }; /* A subroutine of s390_expand_cs_hqi and s390_expand_atomic to initialize structure AC for transparent simplifying, if the memory alignment is known to be at least 32bit. MEM is the memory location for the actual operation and MODE its mode. */ static void init_alignment_context (struct alignment_context *ac, rtx mem, enum machine_mode mode) { ac->shift = GEN_INT (GET_MODE_SIZE (SImode) - GET_MODE_SIZE (mode)); ac->aligned = (MEM_ALIGN (mem) >= GET_MODE_BITSIZE (SImode)); if (ac->aligned) ac->memsi = adjust_address (mem, SImode, 0); /* Memory is aligned. */ else { /* Alignment is unknown. */ rtx byteoffset, addr, align; /* Force the address into a register. */ addr = force_reg (Pmode, XEXP (mem, 0)); /* Align it to SImode. */ align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-GET_MODE_SIZE (SImode)), NULL_RTX, 1, OPTAB_DIRECT); /* Generate MEM. */ ac->memsi = gen_rtx_MEM (SImode, align); MEM_VOLATILE_P (ac->memsi) = MEM_VOLATILE_P (mem); set_mem_alias_set (ac->memsi, ALIAS_SET_MEMORY_BARRIER); set_mem_align (ac->memsi, GET_MODE_BITSIZE (SImode)); /* Calculate shiftcount. */ byteoffset = expand_simple_binop (Pmode, AND, addr, GEN_INT (GET_MODE_SIZE (SImode) - 1), NULL_RTX, 1, OPTAB_DIRECT); /* As we already have some offset, evaluate the remaining distance. */ ac->shift = expand_simple_binop (SImode, MINUS, ac->shift, byteoffset, NULL_RTX, 1, OPTAB_DIRECT); } /* Shift is the byte count, but we need the bitcount. */ ac->shift = expand_simple_binop (SImode, MULT, ac->shift, GEN_INT (BITS_PER_UNIT), NULL_RTX, 1, OPTAB_DIRECT); /* Calculate masks. */ ac->modemask = expand_simple_binop (SImode, ASHIFT, GEN_INT (GET_MODE_MASK (mode)), ac->shift, NULL_RTX, 1, OPTAB_DIRECT); ac->modemaski = expand_simple_unop (SImode, NOT, ac->modemask, NULL_RTX, 1); } /* Expand an atomic compare and swap operation for HImode and QImode. MEM is the memory location, CMP the old value to compare MEM with and NEW_RTX the value to set if CMP == MEM. CMP is never in memory for compare_and_swap_cc because expand_bool_compare_and_swap puts it into a register for later compare. */ void s390_expand_cs_hqi (enum machine_mode mode, rtx target, rtx mem, rtx cmp, rtx new_rtx) { struct alignment_context ac; rtx cmpv, newv, val, resv, cc; rtx res = gen_reg_rtx (SImode); rtx csloop = gen_label_rtx (); rtx csend = gen_label_rtx (); gcc_assert (register_operand (target, VOIDmode)); gcc_assert (MEM_P (mem)); init_alignment_context (&ac, mem, mode); /* Shift the values to the correct bit positions. */ if (!(ac.aligned && MEM_P (cmp))) cmp = s390_expand_mask_and_shift (cmp, mode, ac.shift); if (!(ac.aligned && MEM_P (new_rtx))) new_rtx = s390_expand_mask_and_shift (new_rtx, mode, ac.shift); /* Load full word. Subsequent loads are performed by CS. */ val = expand_simple_binop (SImode, AND, ac.memsi, ac.modemaski, NULL_RTX, 1, OPTAB_DIRECT); /* Start CS loop. */ emit_label (csloop); /* val = "<mem>00..0<mem>" * cmp = "00..0<cmp>00..0" * new = "00..0<new>00..0" */ /* Patch cmp and new with val at correct position. */ if (ac.aligned && MEM_P (cmp)) { cmpv = force_reg (SImode, val); store_bit_field (cmpv, GET_MODE_BITSIZE (mode), 0, SImode, cmp); } else cmpv = force_reg (SImode, expand_simple_binop (SImode, IOR, cmp, val, NULL_RTX, 1, OPTAB_DIRECT)); if (ac.aligned && MEM_P (new_rtx)) { newv = force_reg (SImode, val); store_bit_field (newv, GET_MODE_BITSIZE (mode), 0, SImode, new_rtx); } else newv = force_reg (SImode, expand_simple_binop (SImode, IOR, new_rtx, val, NULL_RTX, 1, OPTAB_DIRECT)); /* Jump to end if we're done (likely?). */ s390_emit_jump (csend, s390_emit_compare_and_swap (EQ, res, ac.memsi, cmpv, newv)); /* Check for changes outside mode. */ resv = expand_simple_binop (SImode, AND, res, ac.modemaski, NULL_RTX, 1, OPTAB_DIRECT); cc = s390_emit_compare (NE, resv, val); emit_move_insn (val, resv); /* Loop internal if so. */ s390_emit_jump (csloop, cc); emit_label (csend); /* Return the correct part of the bitfield. */ convert_move (target, expand_simple_binop (SImode, LSHIFTRT, res, ac.shift, NULL_RTX, 1, OPTAB_DIRECT), 1); } /* Expand an atomic operation CODE of mode MODE. MEM is the memory location and VAL the value to play with. If AFTER is true then store the value MEM holds after the operation, if AFTER is false then store the value MEM holds before the operation. If TARGET is zero then discard that value, else store it to TARGET. */ void s390_expand_atomic (enum machine_mode mode, enum rtx_code code, rtx target, rtx mem, rtx val, bool after) { struct alignment_context ac; rtx cmp; rtx new_rtx = gen_reg_rtx (SImode); rtx orig = gen_reg_rtx (SImode); rtx csloop = gen_label_rtx (); gcc_assert (!target || register_operand (target, VOIDmode)); gcc_assert (MEM_P (mem)); init_alignment_context (&ac, mem, mode); /* Shift val to the correct bit positions. Preserve "icm", but prevent "ex icm". */ if (!(ac.aligned && code == SET && MEM_P (val))) val = s390_expand_mask_and_shift (val, mode, ac.shift); /* Further preparation insns. */ if (code == PLUS || code == MINUS) emit_move_insn (orig, val); else if (code == MULT || code == AND) /* val = "11..1<val>11..1" */ val = expand_simple_binop (SImode, XOR, val, ac.modemaski, NULL_RTX, 1, OPTAB_DIRECT); /* Load full word. Subsequent loads are performed by CS. */ cmp = force_reg (SImode, ac.memsi); /* Start CS loop. */ emit_label (csloop); emit_move_insn (new_rtx, cmp); /* Patch new with val at correct position. */ switch (code) { case PLUS: case MINUS: val = expand_simple_binop (SImode, code, new_rtx, orig, NULL_RTX, 1, OPTAB_DIRECT); val = expand_simple_binop (SImode, AND, val, ac.modemask, NULL_RTX, 1, OPTAB_DIRECT); /* FALLTHRU */ case SET: if (ac.aligned && MEM_P (val)) store_bit_field (new_rtx, GET_MODE_BITSIZE (mode), 0, SImode, val); else { new_rtx = expand_simple_binop (SImode, AND, new_rtx, ac.modemaski, NULL_RTX, 1, OPTAB_DIRECT); new_rtx = expand_simple_binop (SImode, IOR, new_rtx, val, NULL_RTX, 1, OPTAB_DIRECT); } break; case AND: case IOR: case XOR: new_rtx = expand_simple_binop (SImode, code, new_rtx, val, NULL_RTX, 1, OPTAB_DIRECT); break; case MULT: /* NAND */ new_rtx = expand_simple_binop (SImode, AND, new_rtx, val, NULL_RTX, 1, OPTAB_DIRECT); new_rtx = expand_simple_binop (SImode, XOR, new_rtx, ac.modemask, NULL_RTX, 1, OPTAB_DIRECT); break; default: gcc_unreachable (); } s390_emit_jump (csloop, s390_emit_compare_and_swap (NE, cmp, ac.memsi, cmp, new_rtx)); /* Return the correct part of the bitfield. */ if (target) convert_move (target, expand_simple_binop (SImode, LSHIFTRT, after ? new_rtx : cmp, ac.shift, NULL_RTX, 1, OPTAB_DIRECT), 1); } /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL. We need to emit DTP-relative relocations. */ static void s390_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED; static void s390_output_dwarf_dtprel (FILE *file, int size, rtx x) { switch (size) { case 4: fputs ("\t.long\t", file); break; case 8: fputs ("\t.quad\t", file); break; default: gcc_unreachable (); } output_addr_const (file, x); fputs ("@DTPOFF", file); } #ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING /* Implement TARGET_MANGLE_TYPE. */ static const char * s390_mangle_type (const_tree type) { if (TYPE_MAIN_VARIANT (type) == long_double_type_node && TARGET_LONG_DOUBLE_128) return "g"; /* For all other types, use normal C++ mangling. */ return NULL; } #endif /* In the name of slightly smaller debug output, and to cater to general assembler lossage, recognize various UNSPEC sequences and turn them back into a direct symbol reference. */ static rtx s390_delegitimize_address (rtx orig_x) { rtx x, y; orig_x = delegitimize_mem_from_attrs (orig_x); x = orig_x; if (GET_CODE (x) != MEM) return orig_x; x = XEXP (x, 0); if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST && GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) == PIC_OFFSET_TABLE_REGNUM) { y = XEXP (XEXP (x, 1), 0); if (GET_CODE (y) == UNSPEC && XINT (y, 1) == UNSPEC_GOT) return XVECEXP (y, 0, 0); return orig_x; } if (GET_CODE (x) == CONST) { y = XEXP (x, 0); if (GET_CODE (y) == UNSPEC && XINT (y, 1) == UNSPEC_GOTENT) return XVECEXP (y, 0, 0); return orig_x; } return orig_x; } /* Output operand OP to stdio stream FILE. OP is an address (register + offset) which is not used to address data; instead the rightmost bits are interpreted as the value. */ static void print_shift_count_operand (FILE *file, rtx op) { HOST_WIDE_INT offset; rtx base; /* Extract base register and offset. */ if (!s390_decompose_shift_count (op, &base, &offset)) gcc_unreachable (); /* Sanity check. */ if (base) { gcc_assert (GET_CODE (base) == REG); gcc_assert (REGNO (base) < FIRST_PSEUDO_REGISTER); gcc_assert (REGNO_REG_CLASS (REGNO (base)) == ADDR_REGS); } /* Offsets are constricted to twelve bits. */ fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset & ((1 << 12) - 1)); if (base) fprintf (file, "(%s)", reg_names[REGNO (base)]); } /* See 'get_some_local_dynamic_name'. */ static int get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED) { rtx x = *px; if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x)) { x = get_pool_constant (x); return for_each_rtx (&x, get_some_local_dynamic_name_1, 0); } if (GET_CODE (x) == SYMBOL_REF && tls_symbolic_operand (x) == TLS_MODEL_LOCAL_DYNAMIC) { cfun->machine->some_ld_name = XSTR (x, 0); return 1; } return 0; } /* Locate some local-dynamic symbol still in use by this function so that we can print its name in local-dynamic base patterns. */ static const char * get_some_local_dynamic_name (void) { rtx insn; if (cfun->machine->some_ld_name) return cfun->machine->some_ld_name; for (insn = get_insns (); insn ; insn = NEXT_INSN (insn)) if (INSN_P (insn) && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0)) return cfun->machine->some_ld_name; gcc_unreachable (); } /* Output machine-dependent UNSPECs occurring in address constant X in assembler syntax to stdio stream FILE. Returns true if the constant X could be recognized, false otherwise. */ bool s390_output_addr_const_extra (FILE *file, rtx x) { if (GET_CODE (x) == UNSPEC && XVECLEN (x, 0) == 1) switch (XINT (x, 1)) { case UNSPEC_GOTENT: output_addr_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@GOTENT"); return true; case UNSPEC_GOT: output_addr_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@GOT"); return true; case UNSPEC_GOTOFF: output_addr_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@GOTOFF"); return true; case UNSPEC_PLT: output_addr_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@PLT"); return true; case UNSPEC_PLTOFF: output_addr_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@PLTOFF"); return true; case UNSPEC_TLSGD: output_addr_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@TLSGD"); return true; case UNSPEC_TLSLDM: assemble_name (file, get_some_local_dynamic_name ()); fprintf (file, "@TLSLDM"); return true; case UNSPEC_DTPOFF: output_addr_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@DTPOFF"); return true; case UNSPEC_NTPOFF: output_addr_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@NTPOFF"); return true; case UNSPEC_GOTNTPOFF: output_addr_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@GOTNTPOFF"); return true; case UNSPEC_INDNTPOFF: output_addr_const (file, XVECEXP (x, 0, 0)); fprintf (file, "@INDNTPOFF"); return true; } if (GET_CODE (x) == UNSPEC && XVECLEN (x, 0) == 2) switch (XINT (x, 1)) { case UNSPEC_POOL_OFFSET: x = gen_rtx_MINUS (GET_MODE (x), XVECEXP (x, 0, 0), XVECEXP (x, 0, 1)); output_addr_const (file, x); return true; } return false; } /* Output address operand ADDR in assembler syntax to stdio stream FILE. */ void print_operand_address (FILE *file, rtx addr) { struct s390_address ad; if (s390_symref_operand_p (addr, NULL, NULL)) { gcc_assert (TARGET_Z10); output_addr_const (file, addr); return; } if (!s390_decompose_address (addr, &ad) || (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base))) || (ad.indx && !REGNO_OK_FOR_INDEX_P (REGNO (ad.indx)))) output_operand_lossage ("cannot decompose address"); if (ad.disp) output_addr_const (file, ad.disp); else fprintf (file, "0"); if (ad.base && ad.indx) fprintf (file, "(%s,%s)", reg_names[REGNO (ad.indx)], reg_names[REGNO (ad.base)]); else if (ad.base) fprintf (file, "(%s)", reg_names[REGNO (ad.base)]); } /* Output operand X in assembler syntax to stdio stream FILE. CODE specified the format flag. The following format flags are recognized: 'C': print opcode suffix for branch condition. 'D': print opcode suffix for inverse branch condition. 'E': print opcode suffix for branch on index instruction. 'J': print tls_load/tls_gdcall/tls_ldcall suffix 'G': print the size of the operand in bytes. 'O': print only the displacement of a memory reference. 'R': print only the base register of a memory reference. 'S': print S-type memory reference (base+displacement). 'N': print the second word of a DImode operand. 'M': print the second word of a TImode operand. 'Y': print shift count operand. 'b': print integer X as if it's an unsigned byte. 'c': print integer X as if it's an signed byte. 'x': print integer X as if it's an unsigned halfword. 'h': print integer X as if it's a signed halfword. 'i': print the first nonzero HImode part of X. 'j': print the first HImode part unequal to -1 of X. 'k': print the first nonzero SImode part of X. 'm': print the first SImode part unequal to -1 of X. 'o': print integer X as if it's an unsigned 32bit word. */ void print_operand (FILE *file, rtx x, int code) { switch (code) { case 'C': fprintf (file, s390_branch_condition_mnemonic (x, FALSE)); return; case 'D': fprintf (file, s390_branch_condition_mnemonic (x, TRUE)); return; case 'E': if (GET_CODE (x) == LE) fprintf (file, "l"); else if (GET_CODE (x) == GT) fprintf (file, "h"); else gcc_unreachable (); return; case 'J': if (GET_CODE (x) == SYMBOL_REF) { fprintf (file, "%s", ":tls_load:"); output_addr_const (file, x); } else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD) { fprintf (file, "%s", ":tls_gdcall:"); output_addr_const (file, XVECEXP (x, 0, 0)); } else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSLDM) { fprintf (file, "%s", ":tls_ldcall:"); assemble_name (file, get_some_local_dynamic_name ()); } else gcc_unreachable (); return; case 'G': fprintf (file, "%u", GET_MODE_SIZE (GET_MODE (x))); return; case 'O': { struct s390_address ad; int ret; gcc_assert (GET_CODE (x) == MEM); ret = s390_decompose_address (XEXP (x, 0), &ad); gcc_assert (ret); gcc_assert (!ad.base || REGNO_OK_FOR_BASE_P (REGNO (ad.base))); gcc_assert (!ad.indx); if (ad.disp) output_addr_const (file, ad.disp); else fprintf (file, "0"); } return; case 'R': { struct s390_address ad; int ret; gcc_assert (GET_CODE (x) == MEM); ret = s390_decompose_address (XEXP (x, 0), &ad); gcc_assert (ret); gcc_assert (!ad.base || REGNO_OK_FOR_BASE_P (REGNO (ad.base))); gcc_assert (!ad.indx); if (ad.base) fprintf (file, "%s", reg_names[REGNO (ad.base)]); else fprintf (file, "0"); } return; case 'S': { struct s390_address ad; int ret; gcc_assert (GET_CODE (x) == MEM); ret = s390_decompose_address (XEXP (x, 0), &ad); gcc_assert (ret); gcc_assert (!ad.base || REGNO_OK_FOR_BASE_P (REGNO (ad.base))); gcc_assert (!ad.indx); if (ad.disp) output_addr_const (file, ad.disp); else fprintf (file, "0"); if (ad.base) fprintf (file, "(%s)", reg_names[REGNO (ad.base)]); } return; case 'N': if (GET_CODE (x) == REG) x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1); else if (GET_CODE (x) == MEM) x = change_address (x, VOIDmode, plus_constant (XEXP (x, 0), 4)); else gcc_unreachable (); break; case 'M': if (GET_CODE (x) == REG) x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1); else if (GET_CODE (x) == MEM) x = change_address (x, VOIDmode, plus_constant (XEXP (x, 0), 8)); else gcc_unreachable (); break; case 'Y': print_shift_count_operand (file, x); return; } switch (GET_CODE (x)) { case REG: fprintf (file, "%s", reg_names[REGNO (x)]); break; case MEM: output_address (XEXP (x, 0)); break; case CONST: case CODE_LABEL: case LABEL_REF: case SYMBOL_REF: output_addr_const (file, x); break; case CONST_INT: if (code == 'b') fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0xff); else if (code == 'c') fprintf (file, HOST_WIDE_INT_PRINT_DEC, ((INTVAL (x) & 0xff) ^ 0x80) - 0x80); else if (code == 'x') fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0xffff); else if (code == 'h') fprintf (file, HOST_WIDE_INT_PRINT_DEC, ((INTVAL (x) & 0xffff) ^ 0x8000) - 0x8000); else if (code == 'i') fprintf (file, HOST_WIDE_INT_PRINT_DEC, s390_extract_part (x, HImode, 0)); else if (code == 'j') fprintf (file, HOST_WIDE_INT_PRINT_DEC, s390_extract_part (x, HImode, -1)); else if (code == 'k') fprintf (file, HOST_WIDE_INT_PRINT_DEC, s390_extract_part (x, SImode, 0)); else if (code == 'm') fprintf (file, HOST_WIDE_INT_PRINT_DEC, s390_extract_part (x, SImode, -1)); else if (code == 'o') fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0xffffffff); else fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); break; case CONST_DOUBLE: gcc_assert (GET_MODE (x) == VOIDmode); if (code == 'b') fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x) & 0xff); else if (code == 'x') fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x) & 0xffff); else if (code == 'h') fprintf (file, HOST_WIDE_INT_PRINT_DEC, ((CONST_DOUBLE_LOW (x) & 0xffff) ^ 0x8000) - 0x8000); else gcc_unreachable (); break; default: fatal_insn ("UNKNOWN in print_operand !?", x); break; } } /* Target hook for assembling integer objects. We need to define it here to work a round a bug in some versions of GAS, which couldn't handle values smaller than INT_MIN when printed in decimal. */ static bool s390_assemble_integer (rtx x, unsigned int size, int aligned_p) { if (size == 8 && aligned_p && GET_CODE (x) == CONST_INT && INTVAL (x) < INT_MIN) { fprintf (asm_out_file, "\t.quad\t" HOST_WIDE_INT_PRINT_HEX "\n", INTVAL (x)); return true; } return default_assemble_integer (x, size, aligned_p); } /* Returns true if register REGNO is used for forming a memory address in expression X. */ static bool reg_used_in_mem_p (int regno, rtx x) { enum rtx_code code = GET_CODE (x); int i, j; const char *fmt; if (code == MEM) { if (refers_to_regno_p (regno, regno+1, XEXP (x, 0), 0)) return true; } else if (code == SET && GET_CODE (SET_DEST (x)) == PC) { if (refers_to_regno_p (regno, regno+1, SET_SRC (x), 0)) return true; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e' && reg_used_in_mem_p (regno, XEXP (x, i))) return true; else if (fmt[i] == 'E') for (j = 0; j < XVECLEN (x, i); j++) if (reg_used_in_mem_p (regno, XVECEXP (x, i, j))) return true; } return false; } /* Returns true if expression DEP_RTX sets an address register used by instruction INSN to address memory. */ static bool addr_generation_dependency_p (rtx dep_rtx, rtx insn) { rtx target, pat; if (GET_CODE (dep_rtx) == INSN) dep_rtx = PATTERN (dep_rtx); if (GET_CODE (dep_rtx) == SET) { target = SET_DEST (dep_rtx); if (GET_CODE (target) == STRICT_LOW_PART) target = XEXP (target, 0); while (GET_CODE (target) == SUBREG) target = SUBREG_REG (target); if (GET_CODE (target) == REG) { int regno = REGNO (target); if (s390_safe_attr_type (insn) == TYPE_LA) { pat = PATTERN (insn); if (GET_CODE (pat) == PARALLEL) { gcc_assert (XVECLEN (pat, 0) == 2); pat = XVECEXP (pat, 0, 0); } gcc_assert (GET_CODE (pat) == SET); return refers_to_regno_p (regno, regno+1, SET_SRC (pat), 0); } else if (get_attr_atype (insn) == ATYPE_AGEN) return reg_used_in_mem_p (regno, PATTERN (insn)); } } return false; } /* Return 1, if dep_insn sets register used in insn in the agen unit. */ int s390_agen_dep_p (rtx dep_insn, rtx insn) { rtx dep_rtx = PATTERN (dep_insn); int i; if (GET_CODE (dep_rtx) == SET && addr_generation_dependency_p (dep_rtx, insn)) return 1; else if (GET_CODE (dep_rtx) == PARALLEL) { for (i = 0; i < XVECLEN (dep_rtx, 0); i++) { if (addr_generation_dependency_p (XVECEXP (dep_rtx, 0, i), insn)) return 1; } } return 0; } /* A C statement (sans semicolon) to update the integer scheduling priority INSN_PRIORITY (INSN). Increase the priority to execute the INSN earlier, reduce the priority to execute INSN later. Do not define this macro if you do not need to adjust the scheduling priorities of insns. A STD instruction should be scheduled earlier, in order to use the bypass. */ static int s390_adjust_priority (rtx insn ATTRIBUTE_UNUSED, int priority) { if (! INSN_P (insn)) return priority; if (s390_tune != PROCESSOR_2084_Z990 && s390_tune != PROCESSOR_2094_Z9_109 && s390_tune != PROCESSOR_2097_Z10) return priority; switch (s390_safe_attr_type (insn)) { case TYPE_FSTOREDF: case TYPE_FSTORESF: priority = priority << 3; break; case TYPE_STORE: case TYPE_STM: priority = priority << 1; break; default: break; } return priority; } /* The number of instructions that can be issued per cycle. */ static int s390_issue_rate (void) { switch (s390_tune) { case PROCESSOR_2084_Z990: case PROCESSOR_2094_Z9_109: return 3; case PROCESSOR_2097_Z10: return 2; default: return 1; } } static int s390_first_cycle_multipass_dfa_lookahead (void) { return 4; } /* Annotate every literal pool reference in X by an UNSPEC_LTREF expression. Fix up MEMs as required. */ static void annotate_constant_pool_refs (rtx *x) { int i, j; const char *fmt; gcc_assert (GET_CODE (*x) != SYMBOL_REF || !CONSTANT_POOL_ADDRESS_P (*x)); /* Literal pool references can only occur inside a MEM ... */ if (GET_CODE (*x) == MEM) { rtx memref = XEXP (*x, 0); if (GET_CODE (memref) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (memref)) { rtx base = cfun->machine->base_reg; rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, memref, base), UNSPEC_LTREF); *x = replace_equiv_address (*x, addr); return; } if (GET_CODE (memref) == CONST && GET_CODE (XEXP (memref, 0)) == PLUS && GET_CODE (XEXP (XEXP (memref, 0), 1)) == CONST_INT && GET_CODE (XEXP (XEXP (memref, 0), 0)) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (memref, 0), 0))) { HOST_WIDE_INT off = INTVAL (XEXP (XEXP (memref, 0), 1)); rtx sym = XEXP (XEXP (memref, 0), 0); rtx base = cfun->machine->base_reg; rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, sym, base), UNSPEC_LTREF); *x = replace_equiv_address (*x, plus_constant (addr, off)); return; } } /* ... or a load-address type pattern. */ if (GET_CODE (*x) == SET) { rtx addrref = SET_SRC (*x); if (GET_CODE (addrref) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (addrref)) { rtx base = cfun->machine->base_reg; rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, addrref, base), UNSPEC_LTREF); SET_SRC (*x) = addr; return; } if (GET_CODE (addrref) == CONST && GET_CODE (XEXP (addrref, 0)) == PLUS && GET_CODE (XEXP (XEXP (addrref, 0), 1)) == CONST_INT && GET_CODE (XEXP (XEXP (addrref, 0), 0)) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addrref, 0), 0))) { HOST_WIDE_INT off = INTVAL (XEXP (XEXP (addrref, 0), 1)); rtx sym = XEXP (XEXP (addrref, 0), 0); rtx base = cfun->machine->base_reg; rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, sym, base), UNSPEC_LTREF); SET_SRC (*x) = plus_constant (addr, off); return; } } /* Annotate LTREL_BASE as well. */ if (GET_CODE (*x) == UNSPEC && XINT (*x, 1) == UNSPEC_LTREL_BASE) { rtx base = cfun->machine->base_reg; *x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, XVECEXP (*x, 0, 0), base), UNSPEC_LTREL_BASE); return; } fmt = GET_RTX_FORMAT (GET_CODE (*x)); for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') { annotate_constant_pool_refs (&XEXP (*x, i)); } else if (fmt[i] == 'E') { for (j = 0; j < XVECLEN (*x, i); j++) annotate_constant_pool_refs (&XVECEXP (*x, i, j)); } } } /* Split all branches that exceed the maximum distance. Returns true if this created a new literal pool entry. */ static int s390_split_branches (void) { rtx temp_reg = gen_rtx_REG (Pmode, RETURN_REGNUM); int new_literal = 0, ret; rtx insn, pat, tmp, target; rtx *label; /* We need correct insn addresses. */ shorten_branches (get_insns ()); /* Find all branches that exceed 64KB, and split them. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) != JUMP_INSN) continue; pat = PATTERN (insn); if (GET_CODE (pat) == PARALLEL && XVECLEN (pat, 0) > 2) pat = XVECEXP (pat, 0, 0); if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx) continue; if (GET_CODE (SET_SRC (pat)) == LABEL_REF) { label = &SET_SRC (pat); } else if (GET_CODE (SET_SRC (pat)) == IF_THEN_ELSE) { if (GET_CODE (XEXP (SET_SRC (pat), 1)) == LABEL_REF) label = &XEXP (SET_SRC (pat), 1); else if (GET_CODE (XEXP (SET_SRC (pat), 2)) == LABEL_REF) label = &XEXP (SET_SRC (pat), 2); else continue; } else continue; if (get_attr_length (insn) <= 4) continue; /* We are going to use the return register as scratch register, make sure it will be saved/restored by the prologue/epilogue. */ cfun_frame_layout.save_return_addr_p = 1; if (!flag_pic) { new_literal = 1; tmp = force_const_mem (Pmode, *label); tmp = emit_insn_before (gen_rtx_SET (Pmode, temp_reg, tmp), insn); INSN_ADDRESSES_NEW (tmp, -1); annotate_constant_pool_refs (&PATTERN (tmp)); target = temp_reg; } else { new_literal = 1; target = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, *label), UNSPEC_LTREL_OFFSET); target = gen_rtx_CONST (Pmode, target); target = force_const_mem (Pmode, target); tmp = emit_insn_before (gen_rtx_SET (Pmode, temp_reg, target), insn); INSN_ADDRESSES_NEW (tmp, -1); annotate_constant_pool_refs (&PATTERN (tmp)); target = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, XEXP (target, 0), cfun->machine->base_reg), UNSPEC_LTREL_BASE); target = gen_rtx_PLUS (Pmode, temp_reg, target); } ret = validate_change (insn, label, target, 0); gcc_assert (ret); } return new_literal; } /* Find an annotated literal pool symbol referenced in RTX X, and store it at REF. Will abort if X contains references to more than one such pool symbol; multiple references to the same symbol are allowed, however. The rtx pointed to by REF must be initialized to NULL_RTX by the caller before calling this routine. */ static void find_constant_pool_ref (rtx x, rtx *ref) { int i, j; const char *fmt; /* Ignore LTREL_BASE references. */ if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_LTREL_BASE) return; /* Likewise POOL_ENTRY insns. */ if (GET_CODE (x) == UNSPEC_VOLATILE && XINT (x, 1) == UNSPECV_POOL_ENTRY) return; gcc_assert (GET_CODE (x) != SYMBOL_REF || !CONSTANT_POOL_ADDRESS_P (x)); if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_LTREF) { rtx sym = XVECEXP (x, 0, 0); gcc_assert (GET_CODE (sym) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (sym)); if (*ref == NULL_RTX) *ref = sym; else gcc_assert (*ref == sym); return; } fmt = GET_RTX_FORMAT (GET_CODE (x)); for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') { find_constant_pool_ref (XEXP (x, i), ref); } else if (fmt[i] == 'E') { for (j = 0; j < XVECLEN (x, i); j++) find_constant_pool_ref (XVECEXP (x, i, j), ref); } } } /* Replace every reference to the annotated literal pool symbol REF in X by its base plus OFFSET. */ static void replace_constant_pool_ref (rtx *x, rtx ref, rtx offset) { int i, j; const char *fmt; gcc_assert (*x != ref); if (GET_CODE (*x) == UNSPEC && XINT (*x, 1) == UNSPEC_LTREF && XVECEXP (*x, 0, 0) == ref) { *x = gen_rtx_PLUS (Pmode, XVECEXP (*x, 0, 1), offset); return; } if (GET_CODE (*x) == PLUS && GET_CODE (XEXP (*x, 1)) == CONST_INT && GET_CODE (XEXP (*x, 0)) == UNSPEC && XINT (XEXP (*x, 0), 1) == UNSPEC_LTREF && XVECEXP (XEXP (*x, 0), 0, 0) == ref) { rtx addr = gen_rtx_PLUS (Pmode, XVECEXP (XEXP (*x, 0), 0, 1), offset); *x = plus_constant (addr, INTVAL (XEXP (*x, 1))); return; } fmt = GET_RTX_FORMAT (GET_CODE (*x)); for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') { replace_constant_pool_ref (&XEXP (*x, i), ref, offset); } else if (fmt[i] == 'E') { for (j = 0; j < XVECLEN (*x, i); j++) replace_constant_pool_ref (&XVECEXP (*x, i, j), ref, offset); } } } /* Check whether X contains an UNSPEC_LTREL_BASE. Return its constant pool symbol if found, NULL_RTX otherwise. */ static rtx find_ltrel_base (rtx x) { int i, j; const char *fmt; if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_LTREL_BASE) return XVECEXP (x, 0, 0); fmt = GET_RTX_FORMAT (GET_CODE (x)); for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') { rtx fnd = find_ltrel_base (XEXP (x, i)); if (fnd) return fnd; } else if (fmt[i] == 'E') { for (j = 0; j < XVECLEN (x, i); j++) { rtx fnd = find_ltrel_base (XVECEXP (x, i, j)); if (fnd) return fnd; } } } return NULL_RTX; } /* Replace any occurrence of UNSPEC_LTREL_BASE in X with its base. */ static void replace_ltrel_base (rtx *x) { int i, j; const char *fmt; if (GET_CODE (*x) == UNSPEC && XINT (*x, 1) == UNSPEC_LTREL_BASE) { *x = XVECEXP (*x, 0, 1); return; } fmt = GET_RTX_FORMAT (GET_CODE (*x)); for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') { replace_ltrel_base (&XEXP (*x, i)); } else if (fmt[i] == 'E') { for (j = 0; j < XVECLEN (*x, i); j++) replace_ltrel_base (&XVECEXP (*x, i, j)); } } } /* We keep a list of constants which we have to add to internal constant tables in the middle of large functions. */ #define NR_C_MODES 11 enum machine_mode constant_modes[NR_C_MODES] = { TFmode, TImode, TDmode, DFmode, DImode, DDmode, SFmode, SImode, SDmode, HImode, QImode }; struct constant { struct constant *next; rtx value; rtx label; }; struct constant_pool { struct constant_pool *next; rtx first_insn; rtx pool_insn; bitmap insns; rtx emit_pool_after; struct constant *constants[NR_C_MODES]; struct constant *execute; rtx label; int size; }; /* Allocate new constant_pool structure. */ static struct constant_pool * s390_alloc_pool (void) { struct constant_pool *pool; int i; pool = (struct constant_pool *) xmalloc (sizeof *pool); pool->next = NULL; for (i = 0; i < NR_C_MODES; i++) pool->constants[i] = NULL; pool->execute = NULL; pool->label = gen_label_rtx (); pool->first_insn = NULL_RTX; pool->pool_insn = NULL_RTX; pool->insns = BITMAP_ALLOC (NULL); pool->size = 0; pool->emit_pool_after = NULL_RTX; return pool; } /* Create new constant pool covering instructions starting at INSN and chain it to the end of POOL_LIST. */ static struct constant_pool * s390_start_pool (struct constant_pool **pool_list, rtx insn) { struct constant_pool *pool, **prev; pool = s390_alloc_pool (); pool->first_insn = insn; for (prev = pool_list; *prev; prev = &(*prev)->next) ; *prev = pool; return pool; } /* End range of instructions covered by POOL at INSN and emit placeholder insn representing the pool. */ static void s390_end_pool (struct constant_pool *pool, rtx insn) { rtx pool_size = GEN_INT (pool->size + 8 /* alignment slop */); if (!insn) insn = get_last_insn (); pool->pool_insn = emit_insn_after (gen_pool (pool_size), insn); INSN_ADDRESSES_NEW (pool->pool_insn, -1); } /* Add INSN to the list of insns covered by POOL. */ static void s390_add_pool_insn (struct constant_pool *pool, rtx insn) { bitmap_set_bit (pool->insns, INSN_UID (insn)); } /* Return pool out of POOL_LIST that covers INSN. */ static struct constant_pool * s390_find_pool (struct constant_pool *pool_list, rtx insn) { struct constant_pool *pool; for (pool = pool_list; pool; pool = pool->next) if (bitmap_bit_p (pool->insns, INSN_UID (insn))) break; return pool; } /* Add constant VAL of mode MODE to the constant pool POOL. */ static void s390_add_constant (struct constant_pool *pool, rtx val, enum machine_mode mode) { struct constant *c; int i; for (i = 0; i < NR_C_MODES; i++) if (constant_modes[i] == mode) break; gcc_assert (i != NR_C_MODES); for (c = pool->constants[i]; c != NULL; c = c->next) if (rtx_equal_p (val, c->value)) break; if (c == NULL) { c = (struct constant *) xmalloc (sizeof *c); c->value = val; c->label = gen_label_rtx (); c->next = pool->constants[i]; pool->constants[i] = c; pool->size += GET_MODE_SIZE (mode); } } /* Return an rtx that represents the offset of X from the start of pool POOL. */ static rtx s390_pool_offset (struct constant_pool *pool, rtx x) { rtx label; label = gen_rtx_LABEL_REF (GET_MODE (x), pool->label); x = gen_rtx_UNSPEC (GET_MODE (x), gen_rtvec (2, x, label), UNSPEC_POOL_OFFSET); return gen_rtx_CONST (GET_MODE (x), x); } /* Find constant VAL of mode MODE in the constant pool POOL. Return an RTX describing the distance from the start of the pool to the location of the new constant. */ static rtx s390_find_constant (struct constant_pool *pool, rtx val, enum machine_mode mode) { struct constant *c; int i; for (i = 0; i < NR_C_MODES; i++) if (constant_modes[i] == mode) break; gcc_assert (i != NR_C_MODES); for (c = pool->constants[i]; c != NULL; c = c->next) if (rtx_equal_p (val, c->value)) break; gcc_assert (c); return s390_pool_offset (pool, gen_rtx_LABEL_REF (Pmode, c->label)); } /* Check whether INSN is an execute. Return the label_ref to its execute target template if so, NULL_RTX otherwise. */ static rtx s390_execute_label (rtx insn) { if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == PARALLEL && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == UNSPEC && XINT (XVECEXP (PATTERN (insn), 0, 0), 1) == UNSPEC_EXECUTE) return XVECEXP (XVECEXP (PATTERN (insn), 0, 0), 0, 2); return NULL_RTX; } /* Add execute target for INSN to the constant pool POOL. */ static void s390_add_execute (struct constant_pool *pool, rtx insn) { struct constant *c; for (c = pool->execute; c != NULL; c = c->next) if (INSN_UID (insn) == INSN_UID (c->value)) break; if (c == NULL) { c = (struct constant *) xmalloc (sizeof *c); c->value = insn; c->label = gen_label_rtx (); c->next = pool->execute; pool->execute = c; pool->size += 6; } } /* Find execute target for INSN in the constant pool POOL. Return an RTX describing the distance from the start of the pool to the location of the execute target. */ static rtx s390_find_execute (struct constant_pool *pool, rtx insn) { struct constant *c; for (c = pool->execute; c != NULL; c = c->next) if (INSN_UID (insn) == INSN_UID (c->value)) break; gcc_assert (c); return s390_pool_offset (pool, gen_rtx_LABEL_REF (Pmode, c->label)); } /* For an execute INSN, extract the execute target template. */ static rtx s390_execute_target (rtx insn) { rtx pattern = PATTERN (insn); gcc_assert (s390_execute_label (insn)); if (XVECLEN (pattern, 0) == 2) { pattern = copy_rtx (XVECEXP (pattern, 0, 1)); } else { rtvec vec = rtvec_alloc (XVECLEN (pattern, 0) - 1); int i; for (i = 0; i < XVECLEN (pattern, 0) - 1; i++) RTVEC_ELT (vec, i) = copy_rtx (XVECEXP (pattern, 0, i + 1)); pattern = gen_rtx_PARALLEL (VOIDmode, vec); } return pattern; } /* Indicate that INSN cannot be duplicated. This is the case for execute insns that carry a unique label. */ static bool s390_cannot_copy_insn_p (rtx insn) { rtx label = s390_execute_label (insn); return label && label != const0_rtx; } /* Dump out the constants in POOL. If REMOTE_LABEL is true, do not emit the pool base label. */ static void s390_dump_pool (struct constant_pool *pool, bool remote_label) { struct constant *c; rtx insn = pool->pool_insn; int i; /* Switch to rodata section. */ if (TARGET_CPU_ZARCH) { insn = emit_insn_after (gen_pool_section_start (), insn); INSN_ADDRESSES_NEW (insn, -1); } /* Ensure minimum pool alignment. */ if (TARGET_CPU_ZARCH) insn = emit_insn_after (gen_pool_align (GEN_INT (8)), insn); else insn = emit_insn_after (gen_pool_align (GEN_INT (4)), insn); INSN_ADDRESSES_NEW (insn, -1); /* Emit pool base label. */ if (!remote_label) { insn = emit_label_after (pool->label, insn); INSN_ADDRESSES_NEW (insn, -1); } /* Dump constants in descending alignment requirement order, ensuring proper alignment for every constant. */ for (i = 0; i < NR_C_MODES; i++) for (c = pool->constants[i]; c; c = c->next) { /* Convert UNSPEC_LTREL_OFFSET unspecs to pool-relative references. */ rtx value = copy_rtx (c->value); if (GET_CODE (value) == CONST && GET_CODE (XEXP (value, 0)) == UNSPEC && XINT (XEXP (value, 0), 1) == UNSPEC_LTREL_OFFSET && XVECLEN (XEXP (value, 0), 0) == 1) value = s390_pool_offset (pool, XVECEXP (XEXP (value, 0), 0, 0)); insn = emit_label_after (c->label, insn); INSN_ADDRESSES_NEW (insn, -1); value = gen_rtx_UNSPEC_VOLATILE (constant_modes[i], gen_rtvec (1, value), UNSPECV_POOL_ENTRY); insn = emit_insn_after (value, insn); INSN_ADDRESSES_NEW (insn, -1); } /* Ensure minimum alignment for instructions. */ insn = emit_insn_after (gen_pool_align (GEN_INT (2)), insn); INSN_ADDRESSES_NEW (insn, -1); /* Output in-pool execute template insns. */ for (c = pool->execute; c; c = c->next) { insn = emit_label_after (c->label, insn); INSN_ADDRESSES_NEW (insn, -1); insn = emit_insn_after (s390_execute_target (c->value), insn); INSN_ADDRESSES_NEW (insn, -1); } /* Switch back to previous section. */ if (TARGET_CPU_ZARCH) { insn = emit_insn_after (gen_pool_section_end (), insn); INSN_ADDRESSES_NEW (insn, -1); } insn = emit_barrier_after (insn); INSN_ADDRESSES_NEW (insn, -1); /* Remove placeholder insn. */ remove_insn (pool->pool_insn); } /* Free all memory used by POOL. */ static void s390_free_pool (struct constant_pool *pool) { struct constant *c, *next; int i; for (i = 0; i < NR_C_MODES; i++) for (c = pool->constants[i]; c; c = next) { next = c->next; free (c); } for (c = pool->execute; c; c = next) { next = c->next; free (c); } BITMAP_FREE (pool->insns); free (pool); } /* Collect main literal pool. Return NULL on overflow. */ static struct constant_pool * s390_mainpool_start (void) { struct constant_pool *pool; rtx insn; pool = s390_alloc_pool (); for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET && GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC_VOLATILE && XINT (SET_SRC (PATTERN (insn)), 1) == UNSPECV_MAIN_POOL) { gcc_assert (!pool->pool_insn); pool->pool_insn = insn; } if (!TARGET_CPU_ZARCH && s390_execute_label (insn)) { s390_add_execute (pool, insn); } else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN) { rtx pool_ref = NULL_RTX; find_constant_pool_ref (PATTERN (insn), &pool_ref); if (pool_ref) { rtx constant = get_pool_constant (pool_ref); enum machine_mode mode = get_pool_mode (pool_ref); s390_add_constant (pool, constant, mode); } } /* If hot/cold partitioning is enabled we have to make sure that the literal pool is emitted in the same section where the initialization of the literal pool base pointer takes place. emit_pool_after is only used in the non-overflow case on non Z cpus where we can emit the literal pool at the end of the function body within the text section. */ if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS && !pool->emit_pool_after) pool->emit_pool_after = PREV_INSN (insn); } gcc_assert (pool->pool_insn || pool->size == 0); if (pool->size >= 4096) { /* We're going to chunkify the pool, so remove the main pool placeholder insn. */ remove_insn (pool->pool_insn); s390_free_pool (pool); pool = NULL; } /* If the functions ends with the section where the literal pool should be emitted set the marker to its end. */ if (pool && !pool->emit_pool_after) pool->emit_pool_after = get_last_insn (); return pool; } /* POOL holds the main literal pool as collected by s390_mainpool_start. Modify the current function to output the pool constants as well as the pool register setup instruction. */ static void s390_mainpool_finish (struct constant_pool *pool) { rtx base_reg = cfun->machine->base_reg; rtx insn; /* If the pool is empty, we're done. */ if (pool->size == 0) { /* We don't actually need a base register after all. */ cfun->machine->base_reg = NULL_RTX; if (pool->pool_insn) remove_insn (pool->pool_insn); s390_free_pool (pool); return; } /* We need correct insn addresses. */ shorten_branches (get_insns ()); /* On zSeries, we use a LARL to load the pool register. The pool is located in the .rodata section, so we emit it after the function. */ if (TARGET_CPU_ZARCH) { insn = gen_main_base_64 (base_reg, pool->label); insn = emit_insn_after (insn, pool->pool_insn); INSN_ADDRESSES_NEW (insn, -1); remove_insn (pool->pool_insn); insn = get_last_insn (); pool->pool_insn = emit_insn_after (gen_pool (const0_rtx), insn); INSN_ADDRESSES_NEW (pool->pool_insn, -1); s390_dump_pool (pool, 0); } /* On S/390, if the total size of the function's code plus literal pool does not exceed 4096 bytes, we use BASR to set up a function base pointer, and emit the literal pool at the end of the function. */ else if (INSN_ADDRESSES (INSN_UID (pool->emit_pool_after)) + pool->size + 8 /* alignment slop */ < 4096) { insn = gen_main_base_31_small (base_reg, pool->label); insn = emit_insn_after (insn, pool->pool_insn); INSN_ADDRESSES_NEW (insn, -1); remove_insn (pool->pool_insn); insn = emit_label_after (pool->label, insn); INSN_ADDRESSES_NEW (insn, -1); /* emit_pool_after will be set by s390_mainpool_start to the last insn of the section where the literal pool should be emitted. */ insn = pool->emit_pool_after; pool->pool_insn = emit_insn_after (gen_pool (const0_rtx), insn); INSN_ADDRESSES_NEW (pool->pool_insn, -1); s390_dump_pool (pool, 1); } /* Otherwise, we emit an inline literal pool and use BASR to branch over it, setting up the pool register at the same time. */ else { rtx pool_end = gen_label_rtx (); insn = gen_main_base_31_large (base_reg, pool->label, pool_end); insn = emit_insn_after (insn, pool->pool_insn); INSN_ADDRESSES_NEW (insn, -1); remove_insn (pool->pool_insn); insn = emit_label_after (pool->label, insn); INSN_ADDRESSES_NEW (insn, -1); pool->pool_insn = emit_insn_after (gen_pool (const0_rtx), insn); INSN_ADDRESSES_NEW (pool->pool_insn, -1); insn = emit_label_after (pool_end, pool->pool_insn); INSN_ADDRESSES_NEW (insn, -1); s390_dump_pool (pool, 1); } /* Replace all literal pool references. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (INSN_P (insn)) replace_ltrel_base (&PATTERN (insn)); if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN) { rtx addr, pool_ref = NULL_RTX; find_constant_pool_ref (PATTERN (insn), &pool_ref); if (pool_ref) { if (s390_execute_label (insn)) addr = s390_find_execute (pool, insn); else addr = s390_find_constant (pool, get_pool_constant (pool_ref), get_pool_mode (pool_ref)); replace_constant_pool_ref (&PATTERN (insn), pool_ref, addr); INSN_CODE (insn) = -1; } } } /* Free the pool. */ s390_free_pool (pool); } /* POOL holds the main literal pool as collected by s390_mainpool_start. We have decided we cannot use this pool, so revert all changes to the current function that were done by s390_mainpool_start. */ static void s390_mainpool_cancel (struct constant_pool *pool) { /* We didn't actually change the instruction stream, so simply free the pool memory. */ s390_free_pool (pool); } /* Chunkify the literal pool. */ #define S390_POOL_CHUNK_MIN 0xc00 #define S390_POOL_CHUNK_MAX 0xe00 static struct constant_pool * s390_chunkify_start (void) { struct constant_pool *curr_pool = NULL, *pool_list = NULL; int extra_size = 0; bitmap far_labels; rtx pending_ltrel = NULL_RTX; rtx insn; rtx (*gen_reload_base) (rtx, rtx) = TARGET_CPU_ZARCH? gen_reload_base_64 : gen_reload_base_31; /* We need correct insn addresses. */ shorten_branches (get_insns ()); /* Scan all insns and move literals to pool chunks. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { bool section_switch_p = false; /* Check for pending LTREL_BASE. */ if (INSN_P (insn)) { rtx ltrel_base = find_ltrel_base (PATTERN (insn)); if (ltrel_base) { gcc_assert (ltrel_base == pending_ltrel); pending_ltrel = NULL_RTX; } } if (!TARGET_CPU_ZARCH && s390_execute_label (insn)) { if (!curr_pool) curr_pool = s390_start_pool (&pool_list, insn); s390_add_execute (curr_pool, insn); s390_add_pool_insn (curr_pool, insn); } else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN) { rtx pool_ref = NULL_RTX; find_constant_pool_ref (PATTERN (insn), &pool_ref); if (pool_ref) { rtx constant = get_pool_constant (pool_ref); enum machine_mode mode = get_pool_mode (pool_ref); if (!curr_pool) curr_pool = s390_start_pool (&pool_list, insn); s390_add_constant (curr_pool, constant, mode); s390_add_pool_insn (curr_pool, insn); /* Don't split the pool chunk between a LTREL_OFFSET load and the corresponding LTREL_BASE. */ if (GET_CODE (constant) == CONST && GET_CODE (XEXP (constant, 0)) == UNSPEC && XINT (XEXP (constant, 0), 1) == UNSPEC_LTREL_OFFSET) { gcc_assert (!pending_ltrel); pending_ltrel = pool_ref; } } } if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CODE_LABEL) { if (curr_pool) s390_add_pool_insn (curr_pool, insn); /* An LTREL_BASE must follow within the same basic block. */ gcc_assert (!pending_ltrel); } if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS) section_switch_p = true; if (!curr_pool || INSN_ADDRESSES_SIZE () <= (size_t) INSN_UID (insn) || INSN_ADDRESSES (INSN_UID (insn)) == -1) continue; if (TARGET_CPU_ZARCH) { if (curr_pool->size < S390_POOL_CHUNK_MAX) continue; s390_end_pool (curr_pool, NULL_RTX); curr_pool = NULL; } else { int chunk_size = INSN_ADDRESSES (INSN_UID (insn)) - INSN_ADDRESSES (INSN_UID (curr_pool->first_insn)) + extra_size; /* We will later have to insert base register reload insns. Those will have an effect on code size, which we need to consider here. This calculation makes rather pessimistic worst-case assumptions. */ if (GET_CODE (insn) == CODE_LABEL) extra_size += 6; if (chunk_size < S390_POOL_CHUNK_MIN && curr_pool->size < S390_POOL_CHUNK_MIN && !section_switch_p) continue; /* Pool chunks can only be inserted after BARRIERs ... */ if (GET_CODE (insn) == BARRIER) { s390_end_pool (curr_pool, insn); curr_pool = NULL; extra_size = 0; } /* ... so if we don't find one in time, create one. */ else if (chunk_size > S390_POOL_CHUNK_MAX || curr_pool->size > S390_POOL_CHUNK_MAX || section_switch_p) { rtx label, jump, barrier; if (!section_switch_p) { /* We can insert the barrier only after a 'real' insn. */ if (GET_CODE (insn) != INSN && GET_CODE (insn) != CALL_INSN) continue; if (get_attr_length (insn) == 0) continue; /* Don't separate LTREL_BASE from the corresponding LTREL_OFFSET load. */ if (pending_ltrel) continue; } else { gcc_assert (!pending_ltrel); /* The old pool has to end before the section switch note in order to make it part of the current section. */ insn = PREV_INSN (insn); } label = gen_label_rtx (); jump = emit_jump_insn_after (gen_jump (label), insn); barrier = emit_barrier_after (jump); insn = emit_label_after (label, barrier); JUMP_LABEL (jump) = label; LABEL_NUSES (label) = 1; INSN_ADDRESSES_NEW (jump, -1); INSN_ADDRESSES_NEW (barrier, -1); INSN_ADDRESSES_NEW (insn, -1); s390_end_pool (curr_pool, barrier); curr_pool = NULL; extra_size = 0; } } } if (curr_pool) s390_end_pool (curr_pool, NULL_RTX); gcc_assert (!pending_ltrel); /* Find all labels that are branched into from an insn belonging to a different chunk. */ far_labels = BITMAP_ALLOC (NULL); for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { /* Labels marked with LABEL_PRESERVE_P can be target of non-local jumps, so we have to mark them. The same holds for named labels. Don't do that, however, if it is the label before a jump table. */ if (GET_CODE (insn) == CODE_LABEL && (LABEL_PRESERVE_P (insn) || LABEL_NAME (insn))) { rtx vec_insn = next_real_insn (insn); rtx vec_pat = vec_insn && GET_CODE (vec_insn) == JUMP_INSN ? PATTERN (vec_insn) : NULL_RTX; if (!vec_pat || !(GET_CODE (vec_pat) == ADDR_VEC || GET_CODE (vec_pat) == ADDR_DIFF_VEC)) bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (insn)); } /* If we have a direct jump (conditional or unconditional) or a casesi jump, check all potential targets. */ else if (GET_CODE (insn) == JUMP_INSN) { rtx pat = PATTERN (insn); if (GET_CODE (pat) == PARALLEL && XVECLEN (pat, 0) > 2) pat = XVECEXP (pat, 0, 0); if (GET_CODE (pat) == SET) { rtx label = JUMP_LABEL (insn); if (label) { if (s390_find_pool (pool_list, label) != s390_find_pool (pool_list, insn)) bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label)); } } else if (GET_CODE (pat) == PARALLEL && XVECLEN (pat, 0) == 2 && GET_CODE (XVECEXP (pat, 0, 0)) == SET && GET_CODE (XVECEXP (pat, 0, 1)) == USE && GET_CODE (XEXP (XVECEXP (pat, 0, 1), 0)) == LABEL_REF) { /* Find the jump table used by this casesi jump. */ rtx vec_label = XEXP (XEXP (XVECEXP (pat, 0, 1), 0), 0); rtx vec_insn = next_real_insn (vec_label); rtx vec_pat = vec_insn && GET_CODE (vec_insn) == JUMP_INSN ? PATTERN (vec_insn) : NULL_RTX; if (vec_pat && (GET_CODE (vec_pat) == ADDR_VEC || GET_CODE (vec_pat) == ADDR_DIFF_VEC)) { int i, diff_p = GET_CODE (vec_pat) == ADDR_DIFF_VEC; for (i = 0; i < XVECLEN (vec_pat, diff_p); i++) { rtx label = XEXP (XVECEXP (vec_pat, diff_p, i), 0); if (s390_find_pool (pool_list, label) != s390_find_pool (pool_list, insn)) bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label)); } } } } } /* Insert base register reload insns before every pool. */ for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next) { rtx new_insn = gen_reload_base (cfun->machine->base_reg, curr_pool->label); rtx insn = curr_pool->first_insn; INSN_ADDRESSES_NEW (emit_insn_before (new_insn, insn), -1); } /* Insert base register reload insns at every far label. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == CODE_LABEL && bitmap_bit_p (far_labels, CODE_LABEL_NUMBER (insn))) { struct constant_pool *pool = s390_find_pool (pool_list, insn); if (pool) { rtx new_insn = gen_reload_base (cfun->machine->base_reg, pool->label); INSN_ADDRESSES_NEW (emit_insn_after (new_insn, insn), -1); } } BITMAP_FREE (far_labels); /* Recompute insn addresses. */ init_insn_lengths (); shorten_branches (get_insns ()); return pool_list; } /* POOL_LIST is a chunk list as prepared by s390_chunkify_start. After we have decided to use this list, finish implementing all changes to the current function as required. */ static void s390_chunkify_finish (struct constant_pool *pool_list) { struct constant_pool *curr_pool = NULL; rtx insn; /* Replace all literal pool references. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (INSN_P (insn)) replace_ltrel_base (&PATTERN (insn)); curr_pool = s390_find_pool (pool_list, insn); if (!curr_pool) continue; if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN) { rtx addr, pool_ref = NULL_RTX; find_constant_pool_ref (PATTERN (insn), &pool_ref); if (pool_ref) { if (s390_execute_label (insn)) addr = s390_find_execute (curr_pool, insn); else addr = s390_find_constant (curr_pool, get_pool_constant (pool_ref), get_pool_mode (pool_ref)); replace_constant_pool_ref (&PATTERN (insn), pool_ref, addr); INSN_CODE (insn) = -1; } } } /* Dump out all literal pools. */ for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next) s390_dump_pool (curr_pool, 0); /* Free pool list. */ while (pool_list) { struct constant_pool *next = pool_list->next; s390_free_pool (pool_list); pool_list = next; } } /* POOL_LIST is a chunk list as prepared by s390_chunkify_start. We have decided we cannot use this list, so revert all changes to the current function that were done by s390_chunkify_start. */ static void s390_chunkify_cancel (struct constant_pool *pool_list) { struct constant_pool *curr_pool = NULL; rtx insn; /* Remove all pool placeholder insns. */ for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next) { /* Did we insert an extra barrier? Remove it. */ rtx barrier = PREV_INSN (curr_pool->pool_insn); rtx jump = barrier? PREV_INSN (barrier) : NULL_RTX; rtx label = NEXT_INSN (curr_pool->pool_insn); if (jump && GET_CODE (jump) == JUMP_INSN && barrier && GET_CODE (barrier) == BARRIER && label && GET_CODE (label) == CODE_LABEL && GET_CODE (PATTERN (jump)) == SET && SET_DEST (PATTERN (jump)) == pc_rtx && GET_CODE (SET_SRC (PATTERN (jump))) == LABEL_REF && XEXP (SET_SRC (PATTERN (jump)), 0) == label) { remove_insn (jump); remove_insn (barrier); remove_insn (label); } remove_insn (curr_pool->pool_insn); } /* Remove all base register reload insns. */ for (insn = get_insns (); insn; ) { rtx next_insn = NEXT_INSN (insn); if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET && GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC && XINT (SET_SRC (PATTERN (insn)), 1) == UNSPEC_RELOAD_BASE) remove_insn (insn); insn = next_insn; } /* Free pool list. */ while (pool_list) { struct constant_pool *next = pool_list->next; s390_free_pool (pool_list); pool_list = next; } } /* Output the constant pool entry EXP in mode MODE with alignment ALIGN. */ void s390_output_pool_entry (rtx exp, enum machine_mode mode, unsigned int align) { REAL_VALUE_TYPE r; switch (GET_MODE_CLASS (mode)) { case MODE_FLOAT: case MODE_DECIMAL_FLOAT: gcc_assert (GET_CODE (exp) == CONST_DOUBLE); REAL_VALUE_FROM_CONST_DOUBLE (r, exp); assemble_real (r, mode, align); break; case MODE_INT: assemble_integer (exp, GET_MODE_SIZE (mode), align, 1); mark_symbol_refs_as_used (exp); break; default: gcc_unreachable (); } } /* Return an RTL expression representing the value of the return address for the frame COUNT steps up from the current frame. FRAME is the frame pointer of that frame. */ rtx s390_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED) { int offset; rtx addr; /* Without backchain, we fail for all but the current frame. */ if (!TARGET_BACKCHAIN && count > 0) return NULL_RTX; /* For the current frame, we need to make sure the initial value of RETURN_REGNUM is actually saved. */ if (count == 0) { /* On non-z architectures branch splitting could overwrite r14. */ if (TARGET_CPU_ZARCH) return get_hard_reg_initial_val (Pmode, RETURN_REGNUM); else { cfun_frame_layout.save_return_addr_p = true; return gen_rtx_MEM (Pmode, return_address_pointer_rtx); } } if (TARGET_PACKED_STACK) offset = -2 * UNITS_PER_WORD; else offset = RETURN_REGNUM * UNITS_PER_WORD; addr = plus_constant (frame, offset); addr = memory_address (Pmode, addr); return gen_rtx_MEM (Pmode, addr); } /* Return an RTL expression representing the back chain stored in the current stack frame. */ rtx s390_back_chain_rtx (void) { rtx chain; gcc_assert (TARGET_BACKCHAIN); if (TARGET_PACKED_STACK) chain = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET - UNITS_PER_WORD); else chain = stack_pointer_rtx; chain = gen_rtx_MEM (Pmode, chain); return chain; } /* Find first call clobbered register unused in a function. This could be used as base register in a leaf function or for holding the return address before epilogue. */ static int find_unused_clobbered_reg (void) { int i; for (i = 0; i < 6; i++) if (!df_regs_ever_live_p (i)) return i; return 0; } /* Helper function for s390_regs_ever_clobbered. Sets the fields in DATA for all clobbered hard regs in SETREG. */ static void s390_reg_clobbered_rtx (rtx setreg, const_rtx set_insn ATTRIBUTE_UNUSED, void *data) { int *regs_ever_clobbered = (int *)data; unsigned int i, regno; enum machine_mode mode = GET_MODE (setreg); if (GET_CODE (setreg) == SUBREG) { rtx inner = SUBREG_REG (setreg); if (!GENERAL_REG_P (inner)) return; regno = subreg_regno (setreg); } else if (GENERAL_REG_P (setreg)) regno = REGNO (setreg); else return; for (i = regno; i < regno + HARD_REGNO_NREGS (regno, mode); i++) regs_ever_clobbered[i] = 1; } /* Walks through all basic blocks of the current function looking for clobbered hard regs using s390_reg_clobbered_rtx. The fields of the passed integer array REGS_EVER_CLOBBERED are set to one for each of those regs. */ static void s390_regs_ever_clobbered (int *regs_ever_clobbered) { basic_block cur_bb; rtx cur_insn; unsigned int i; memset (regs_ever_clobbered, 0, 16 * sizeof (int)); /* For non-leaf functions we have to consider all call clobbered regs to be clobbered. */ if (!current_function_is_leaf) { for (i = 0; i < 16; i++) regs_ever_clobbered[i] = call_really_used_regs[i]; } /* Make the "magic" eh_return registers live if necessary. For regs_ever_live this work is done by liveness analysis (mark_regs_live_at_end). Special care is needed for functions containing landing pads. Landing pads may use the eh registers, but the code which sets these registers is not contained in that function. Hence s390_regs_ever_clobbered is not able to deal with this automatically. */ if (crtl->calls_eh_return || cfun->machine->has_landing_pad_p) for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM ; i++) if (crtl->calls_eh_return || (cfun->machine->has_landing_pad_p && df_regs_ever_live_p (EH_RETURN_DATA_REGNO (i)))) regs_ever_clobbered[EH_RETURN_DATA_REGNO (i)] = 1; /* For nonlocal gotos all call-saved registers have to be saved. This flag is also set for the unwinding code in libgcc. See expand_builtin_unwind_init. For regs_ever_live this is done by reload. */ if (cfun->has_nonlocal_label) for (i = 0; i < 16; i++) if (!call_really_used_regs[i]) regs_ever_clobbered[i] = 1; FOR_EACH_BB (cur_bb) { FOR_BB_INSNS (cur_bb, cur_insn) { if (INSN_P (cur_insn)) note_stores (PATTERN (cur_insn), s390_reg_clobbered_rtx, regs_ever_clobbered); } } } /* Determine the frame area which actually has to be accessed in the function epilogue. The values are stored at the given pointers AREA_BOTTOM (address of the lowest used stack address) and AREA_TOP (address of the first item which does not belong to the stack frame). */ static void s390_frame_area (int *area_bottom, int *area_top) { int b, t; int i; b = INT_MAX; t = INT_MIN; if (cfun_frame_layout.first_restore_gpr != -1) { b = (cfun_frame_layout.gprs_offset + cfun_frame_layout.first_restore_gpr * UNITS_PER_WORD); t = b + (cfun_frame_layout.last_restore_gpr - cfun_frame_layout.first_restore_gpr + 1) * UNITS_PER_WORD; } if (TARGET_64BIT && cfun_save_high_fprs_p) { b = MIN (b, cfun_frame_layout.f8_offset); t = MAX (t, (cfun_frame_layout.f8_offset + cfun_frame_layout.high_fprs * 8)); } if (!TARGET_64BIT) for (i = 2; i < 4; i++) if (cfun_fpr_bit_p (i)) { b = MIN (b, cfun_frame_layout.f4_offset + (i - 2) * 8); t = MAX (t, cfun_frame_layout.f4_offset + (i - 1) * 8); } *area_bottom = b; *area_top = t; } /* Fill cfun->machine with info about register usage of current function. Return in CLOBBERED_REGS which GPRs are currently considered set. */ static void s390_register_info (int clobbered_regs[]) { int i, j; /* fprs 8 - 15 are call saved for 64 Bit ABI. */ cfun_frame_layout.fpr_bitmap = 0; cfun_frame_layout.high_fprs = 0; if (TARGET_64BIT) for (i = 24; i < 32; i++) if (df_regs_ever_live_p (i) && !global_regs[i]) { cfun_set_fpr_bit (i - 16); cfun_frame_layout.high_fprs++; } /* Find first and last gpr to be saved. We trust regs_ever_live data, except that we don't save and restore global registers. Also, all registers with special meaning to the compiler need to be handled extra. */ s390_regs_ever_clobbered (clobbered_regs); for (i = 0; i < 16; i++) clobbered_regs[i] = clobbered_regs[i] && !global_regs[i] && !fixed_regs[i]; if (frame_pointer_needed) clobbered_regs[HARD_FRAME_POINTER_REGNUM] = 1; if (flag_pic) clobbered_regs[PIC_OFFSET_TABLE_REGNUM] |= df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM); clobbered_regs[BASE_REGNUM] |= (cfun->machine->base_reg && REGNO (cfun->machine->base_reg) == BASE_REGNUM); clobbered_regs[RETURN_REGNUM] |= (!current_function_is_leaf || TARGET_TPF_PROFILING || cfun->machine->split_branches_pending_p || cfun_frame_layout.save_return_addr_p || crtl->calls_eh_return || cfun->stdarg); clobbered_regs[STACK_POINTER_REGNUM] |= (!current_function_is_leaf || TARGET_TPF_PROFILING || cfun_save_high_fprs_p || get_frame_size () > 0 || cfun->calls_alloca || cfun->stdarg); for (i = 6; i < 16; i++) if (df_regs_ever_live_p (i) || clobbered_regs[i]) break; for (j = 15; j > i; j--) if (df_regs_ever_live_p (j) || clobbered_regs[j]) break; if (i == 16) { /* Nothing to save/restore. */ cfun_frame_layout.first_save_gpr_slot = -1; cfun_frame_layout.last_save_gpr_slot = -1; cfun_frame_layout.first_save_gpr = -1; cfun_frame_layout.first_restore_gpr = -1; cfun_frame_layout.last_save_gpr = -1; cfun_frame_layout.last_restore_gpr = -1; } else { /* Save slots for gprs from i to j. */ cfun_frame_layout.first_save_gpr_slot = i; cfun_frame_layout.last_save_gpr_slot = j; for (i = cfun_frame_layout.first_save_gpr_slot; i < cfun_frame_layout.last_save_gpr_slot + 1; i++) if (clobbered_regs[i]) break; for (j = cfun_frame_layout.last_save_gpr_slot; j > i; j--) if (clobbered_regs[j]) break; if (i == cfun_frame_layout.last_save_gpr_slot + 1) { /* Nothing to save/restore. */ cfun_frame_layout.first_save_gpr = -1; cfun_frame_layout.first_restore_gpr = -1; cfun_frame_layout.last_save_gpr = -1; cfun_frame_layout.last_restore_gpr = -1; } else { /* Save / Restore from gpr i to j. */ cfun_frame_layout.first_save_gpr = i; cfun_frame_layout.first_restore_gpr = i; cfun_frame_layout.last_save_gpr = j; cfun_frame_layout.last_restore_gpr = j; } } if (cfun->stdarg) { /* Varargs functions need to save gprs 2 to 6. */ if (cfun->va_list_gpr_size && crtl->args.info.gprs < GP_ARG_NUM_REG) { int min_gpr = crtl->args.info.gprs; int max_gpr = min_gpr + cfun->va_list_gpr_size; if (max_gpr > GP_ARG_NUM_REG) max_gpr = GP_ARG_NUM_REG; if (cfun_frame_layout.first_save_gpr == -1 || cfun_frame_layout.first_save_gpr > 2 + min_gpr) { cfun_frame_layout.first_save_gpr = 2 + min_gpr; cfun_frame_layout.first_save_gpr_slot = 2 + min_gpr; } if (cfun_frame_layout.last_save_gpr == -1 || cfun_frame_layout.last_save_gpr < 2 + max_gpr - 1) { cfun_frame_layout.last_save_gpr = 2 + max_gpr - 1; cfun_frame_layout.last_save_gpr_slot = 2 + max_gpr - 1; } } /* Mark f0, f2 for 31 bit and f0-f4 for 64 bit to be saved. */ if (TARGET_HARD_FLOAT && cfun->va_list_fpr_size && crtl->args.info.fprs < FP_ARG_NUM_REG) { int min_fpr = crtl->args.info.fprs; int max_fpr = min_fpr + cfun->va_list_fpr_size; if (max_fpr > FP_ARG_NUM_REG) max_fpr = FP_ARG_NUM_REG; /* ??? This is currently required to ensure proper location of the fpr save slots within the va_list save area. */ if (TARGET_PACKED_STACK) min_fpr = 0; for (i = min_fpr; i < max_fpr; i++) cfun_set_fpr_bit (i); } } if (!TARGET_64BIT) for (i = 2; i < 4; i++) if (df_regs_ever_live_p (i + 16) && !global_regs[i + 16]) cfun_set_fpr_bit (i); } /* Fill cfun->machine with info about frame of current function. */ static void s390_frame_info (void) { int i; cfun_frame_layout.frame_size = get_frame_size (); if (!TARGET_64BIT && cfun_frame_layout.frame_size > 0x7fff0000) fatal_error ("total size of local variables exceeds architecture limit"); if (!TARGET_PACKED_STACK) { cfun_frame_layout.backchain_offset = 0; cfun_frame_layout.f0_offset = 16 * UNITS_PER_WORD; cfun_frame_layout.f4_offset = cfun_frame_layout.f0_offset + 2 * 8; cfun_frame_layout.f8_offset = -cfun_frame_layout.high_fprs * 8; cfun_frame_layout.gprs_offset = (cfun_frame_layout.first_save_gpr_slot * UNITS_PER_WORD); } else if (TARGET_BACKCHAIN) /* kernel stack layout */ { cfun_frame_layout.backchain_offset = (STACK_POINTER_OFFSET - UNITS_PER_WORD); cfun_frame_layout.gprs_offset = (cfun_frame_layout.backchain_offset - (STACK_POINTER_REGNUM - cfun_frame_layout.first_save_gpr_slot + 1) * UNITS_PER_WORD); if (TARGET_64BIT) { cfun_frame_layout.f4_offset = (cfun_frame_layout.gprs_offset - 8 * (cfun_fpr_bit_p (2) + cfun_fpr_bit_p (3))); cfun_frame_layout.f0_offset = (cfun_frame_layout.f4_offset - 8 * (cfun_fpr_bit_p (0) + cfun_fpr_bit_p (1))); } else { /* On 31 bit we have to care about alignment of the floating point regs to provide fastest access. */ cfun_frame_layout.f0_offset = ((cfun_frame_layout.gprs_offset & ~(STACK_BOUNDARY / BITS_PER_UNIT - 1)) - 8 * (cfun_fpr_bit_p (0) + cfun_fpr_bit_p (1))); cfun_frame_layout.f4_offset = (cfun_frame_layout.f0_offset - 8 * (cfun_fpr_bit_p (2) + cfun_fpr_bit_p (3))); } } else /* no backchain */ { cfun_frame_layout.f4_offset = (STACK_POINTER_OFFSET - 8 * (cfun_fpr_bit_p (2) + cfun_fpr_bit_p (3))); cfun_frame_layout.f0_offset = (cfun_frame_layout.f4_offset - 8 * (cfun_fpr_bit_p (0) + cfun_fpr_bit_p (1))); cfun_frame_layout.gprs_offset = cfun_frame_layout.f0_offset - cfun_gprs_save_area_size; } if (current_function_is_leaf && !TARGET_TPF_PROFILING && cfun_frame_layout.frame_size == 0 && !cfun_save_high_fprs_p && !cfun->calls_alloca && !cfun->stdarg) return; if (!TARGET_PACKED_STACK) cfun_frame_layout.frame_size += (STACK_POINTER_OFFSET + crtl->outgoing_args_size + cfun_frame_layout.high_fprs * 8); else { if (TARGET_BACKCHAIN) cfun_frame_layout.frame_size += UNITS_PER_WORD; /* No alignment trouble here because f8-f15 are only saved under 64 bit. */ cfun_frame_layout.f8_offset = (MIN (MIN (cfun_frame_layout.f0_offset, cfun_frame_layout.f4_offset), cfun_frame_layout.gprs_offset) - cfun_frame_layout.high_fprs * 8); cfun_frame_layout.frame_size += cfun_frame_layout.high_fprs * 8; for (i = 0; i < 8; i++) if (cfun_fpr_bit_p (i)) cfun_frame_layout.frame_size += 8; cfun_frame_layout.frame_size += cfun_gprs_save_area_size; /* If under 31 bit an odd number of gprs has to be saved we have to adjust the frame size to sustain 8 byte alignment of stack frames. */ cfun_frame_layout.frame_size = ((cfun_frame_layout.frame_size + STACK_BOUNDARY / BITS_PER_UNIT - 1) & ~(STACK_BOUNDARY / BITS_PER_UNIT - 1)); cfun_frame_layout.frame_size += crtl->outgoing_args_size; } } /* Generate frame layout. Fills in register and frame data for the current function in cfun->machine. This routine can be called multiple times; it will re-do the complete frame layout every time. */ static void s390_init_frame_layout (void) { HOST_WIDE_INT frame_size; int base_used; int clobbered_regs[16]; /* On S/390 machines, we may need to perform branch splitting, which will require both base and return address register. We have no choice but to assume we're going to need them until right at the end of the machine dependent reorg phase. */ if (!TARGET_CPU_ZARCH) cfun->machine->split_branches_pending_p = true; do { frame_size = cfun_frame_layout.frame_size; /* Try to predict whether we'll need the base register. */ base_used = cfun->machine->split_branches_pending_p || crtl->uses_const_pool || (!DISP_IN_RANGE (frame_size) && !CONST_OK_FOR_K (frame_size)); /* Decide which register to use as literal pool base. In small leaf functions, try to use an unused call-clobbered register as base register to avoid save/restore overhead. */ if (!base_used) cfun->machine->base_reg = NULL_RTX; else if (current_function_is_leaf && !df_regs_ever_live_p (5)) cfun->machine->base_reg = gen_rtx_REG (Pmode, 5); else cfun->machine->base_reg = gen_rtx_REG (Pmode, BASE_REGNUM); s390_register_info (clobbered_regs); s390_frame_info (); } while (frame_size != cfun_frame_layout.frame_size); } /* Update frame layout. Recompute actual register save data based on current info and update regs_ever_live for the special registers. May be called multiple times, but may never cause *more* registers to be saved than s390_init_frame_layout allocated room for. */ static void s390_update_frame_layout (void) { int clobbered_regs[16]; s390_register_info (clobbered_regs); df_set_regs_ever_live (BASE_REGNUM, clobbered_regs[BASE_REGNUM] ? true : false); df_set_regs_ever_live (RETURN_REGNUM, clobbered_regs[RETURN_REGNUM] ? true : false); df_set_regs_ever_live (STACK_POINTER_REGNUM, clobbered_regs[STACK_POINTER_REGNUM] ? true : false); if (cfun->machine->base_reg) df_set_regs_ever_live (REGNO (cfun->machine->base_reg), true); } /* Return true if it is legal to put a value with MODE into REGNO. */ bool s390_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode) { switch (REGNO_REG_CLASS (regno)) { case FP_REGS: if (REGNO_PAIR_OK (regno, mode)) { if (mode == SImode || mode == DImode) return true; if (FLOAT_MODE_P (mode) && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT) return true; } break; case ADDR_REGS: if (FRAME_REGNO_P (regno) && mode == Pmode) return true; /* fallthrough */ case GENERAL_REGS: if (REGNO_PAIR_OK (regno, mode)) { if (TARGET_64BIT || (mode != TFmode && mode != TCmode && mode != TDmode)) return true; } break; case CC_REGS: if (GET_MODE_CLASS (mode) == MODE_CC) return true; break; case ACCESS_REGS: if (REGNO_PAIR_OK (regno, mode)) { if (mode == SImode || mode == Pmode) return true; } break; default: return false; } return false; } /* Return nonzero if register OLD_REG can be renamed to register NEW_REG. */ bool s390_hard_regno_rename_ok (unsigned int old_reg, unsigned int new_reg) { /* Once we've decided upon a register to use as base register, it must no longer be used for any other purpose. */ if (cfun->machine->base_reg) if (REGNO (cfun->machine->base_reg) == old_reg || REGNO (cfun->machine->base_reg) == new_reg) return false; return true; } /* Maximum number of registers to represent a value of mode MODE in a register of class RCLASS. */ bool s390_class_max_nregs (enum reg_class rclass, enum machine_mode mode) { switch (rclass) { case FP_REGS: if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) return 2 * ((GET_MODE_SIZE (mode) / 2 + 8 - 1) / 8); else return (GET_MODE_SIZE (mode) + 8 - 1) / 8; case ACCESS_REGS: return (GET_MODE_SIZE (mode) + 4 - 1) / 4; default: break; } return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; } /* Return true if register FROM can be eliminated via register TO. */ static bool s390_can_eliminate (const int from, const int to) { /* On zSeries machines, we have not marked the base register as fixed. Instead, we have an elimination rule BASE_REGNUM -> BASE_REGNUM. If a function requires the base register, we say here that this elimination cannot be performed. This will cause reload to free up the base register (as if it were fixed). On the other hand, if the current function does *not* require the base register, we say here the elimination succeeds, which in turn allows reload to allocate the base register for any other purpose. */ if (from == BASE_REGNUM && to == BASE_REGNUM) { if (TARGET_CPU_ZARCH) { s390_init_frame_layout (); return cfun->machine->base_reg == NULL_RTX; } return false; } /* Everything else must point into the stack frame. */ gcc_assert (to == STACK_POINTER_REGNUM || to == HARD_FRAME_POINTER_REGNUM); gcc_assert (from == FRAME_POINTER_REGNUM || from == ARG_POINTER_REGNUM || from == RETURN_ADDRESS_POINTER_REGNUM); /* Make sure we actually saved the return address. */ if (from == RETURN_ADDRESS_POINTER_REGNUM) if (!crtl->calls_eh_return && !cfun->stdarg && !cfun_frame_layout.save_return_addr_p) return false; return true; } /* Return offset between register FROM and TO initially after prolog. */ HOST_WIDE_INT s390_initial_elimination_offset (int from, int to) { HOST_WIDE_INT offset; int index; /* ??? Why are we called for non-eliminable pairs? */ if (!s390_can_eliminate (from, to)) return 0; switch (from) { case FRAME_POINTER_REGNUM: offset = (get_frame_size() + STACK_POINTER_OFFSET + crtl->outgoing_args_size); break; case ARG_POINTER_REGNUM: s390_init_frame_layout (); offset = cfun_frame_layout.frame_size + STACK_POINTER_OFFSET; break; case RETURN_ADDRESS_POINTER_REGNUM: s390_init_frame_layout (); index = RETURN_REGNUM - cfun_frame_layout.first_save_gpr_slot; gcc_assert (index >= 0); offset = cfun_frame_layout.frame_size + cfun_frame_layout.gprs_offset; offset += index * UNITS_PER_WORD; break; case BASE_REGNUM: offset = 0; break; default: gcc_unreachable (); } return offset; } /* Emit insn to save fpr REGNUM at offset OFFSET relative to register BASE. Return generated insn. */ static rtx save_fpr (rtx base, int offset, int regnum) { rtx addr; addr = gen_rtx_MEM (DFmode, plus_constant (base, offset)); if (regnum >= 16 && regnum <= (16 + FP_ARG_NUM_REG)) set_mem_alias_set (addr, get_varargs_alias_set ()); else set_mem_alias_set (addr, get_frame_alias_set ()); return emit_move_insn (addr, gen_rtx_REG (DFmode, regnum)); } /* Emit insn to restore fpr REGNUM from offset OFFSET relative to register BASE. Return generated insn. */ static rtx restore_fpr (rtx base, int offset, int regnum) { rtx addr; addr = gen_rtx_MEM (DFmode, plus_constant (base, offset)); set_mem_alias_set (addr, get_frame_alias_set ()); return emit_move_insn (gen_rtx_REG (DFmode, regnum), addr); } /* Return true if REGNO is a global register, but not one of the special ones that need to be saved/restored in anyway. */ static inline bool global_not_special_regno_p (int regno) { return (global_regs[regno] /* These registers are special and need to be restored in any case. */ && !(regno == STACK_POINTER_REGNUM || regno == RETURN_REGNUM || regno == BASE_REGNUM || (flag_pic && regno == (int)PIC_OFFSET_TABLE_REGNUM))); } /* Generate insn to save registers FIRST to LAST into the register save area located at offset OFFSET relative to register BASE. */ static rtx save_gprs (rtx base, int offset, int first, int last) { rtx addr, insn, note; int i; addr = plus_constant (base, offset); addr = gen_rtx_MEM (Pmode, addr); set_mem_alias_set (addr, get_frame_alias_set ()); /* Special-case single register. */ if (first == last) { if (TARGET_64BIT) insn = gen_movdi (addr, gen_rtx_REG (Pmode, first)); else insn = gen_movsi (addr, gen_rtx_REG (Pmode, first)); if (!global_not_special_regno_p (first)) RTX_FRAME_RELATED_P (insn) = 1; return insn; } insn = gen_store_multiple (addr, gen_rtx_REG (Pmode, first), GEN_INT (last - first + 1)); if (first <= 6 && cfun->stdarg) for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) { rtx mem = XEXP (XVECEXP (PATTERN (insn), 0, i), 0); if (first + i <= 6) set_mem_alias_set (mem, get_varargs_alias_set ()); } /* We need to set the FRAME_RELATED flag on all SETs inside the store-multiple pattern. However, we must not emit DWARF records for registers 2..5 if they are stored for use by variable arguments ... ??? Unfortunately, it is not enough to simply not the FRAME_RELATED flags for those SETs, because the first SET of the PARALLEL is always treated as if it had the flag set, even if it does not. Therefore we emit a new pattern without those registers as REG_FRAME_RELATED_EXPR note. */ if (first >= 6 && !global_not_special_regno_p (first)) { rtx pat = PATTERN (insn); for (i = 0; i < XVECLEN (pat, 0); i++) if (GET_CODE (XVECEXP (pat, 0, i)) == SET && !global_not_special_regno_p (REGNO (SET_SRC (XVECEXP (pat, 0, i))))) RTX_FRAME_RELATED_P (XVECEXP (pat, 0, i)) = 1; RTX_FRAME_RELATED_P (insn) = 1; } else if (last >= 6) { int start; for (start = first >= 6 ? first : 6; start <= last; start++) if (!global_not_special_regno_p (start)) break; if (start > last) return insn; addr = plus_constant (base, offset + (start - first) * UNITS_PER_WORD); note = gen_store_multiple (gen_rtx_MEM (Pmode, addr), gen_rtx_REG (Pmode, start), GEN_INT (last - start + 1)); note = PATTERN (note); add_reg_note (insn, REG_FRAME_RELATED_EXPR, note); for (i = 0; i < XVECLEN (note, 0); i++) if (GET_CODE (XVECEXP (note, 0, i)) == SET && !global_not_special_regno_p (REGNO (SET_SRC (XVECEXP (note, 0, i))))) RTX_FRAME_RELATED_P (XVECEXP (note, 0, i)) = 1; RTX_FRAME_RELATED_P (insn) = 1; } return insn; } /* Generate insn to restore registers FIRST to LAST from the register save area located at offset OFFSET relative to register BASE. */ static rtx restore_gprs (rtx base, int offset, int first, int last) { rtx addr, insn; addr = plus_constant (base, offset); addr = gen_rtx_MEM (Pmode, addr); set_mem_alias_set (addr, get_frame_alias_set ()); /* Special-case single register. */ if (first == last) { if (TARGET_64BIT) insn = gen_movdi (gen_rtx_REG (Pmode, first), addr); else insn = gen_movsi (gen_rtx_REG (Pmode, first), addr); return insn; } insn = gen_load_multiple (gen_rtx_REG (Pmode, first), addr, GEN_INT (last - first + 1)); return insn; } /* Return insn sequence to load the GOT register. */ static GTY(()) rtx got_symbol; rtx s390_load_got (void) { rtx insns; if (!got_symbol) { got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); SYMBOL_REF_FLAGS (got_symbol) = SYMBOL_FLAG_LOCAL; } start_sequence (); if (TARGET_CPU_ZARCH) { emit_move_insn (pic_offset_table_rtx, got_symbol); } else { rtx offset; offset = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, got_symbol), UNSPEC_LTREL_OFFSET); offset = gen_rtx_CONST (Pmode, offset); offset = force_const_mem (Pmode, offset); emit_move_insn (pic_offset_table_rtx, offset); offset = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (offset, 0)), UNSPEC_LTREL_BASE); offset = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, offset); emit_move_insn (pic_offset_table_rtx, offset); } insns = get_insns (); end_sequence (); return insns; } /* This ties together stack memory (MEM with an alias set of frame_alias_set) and the change to the stack pointer. */ static void s390_emit_stack_tie (void) { rtx mem = gen_frame_mem (BLKmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM)); emit_insn (gen_stack_tie (mem)); } /* Expand the prologue into a bunch of separate insns. */ void s390_emit_prologue (void) { rtx insn, addr; rtx temp_reg; int i; int offset; int next_fpr = 0; /* Complete frame layout. */ s390_update_frame_layout (); /* Annotate all constant pool references to let the scheduler know they implicitly use the base register. */ push_topmost_sequence (); for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (INSN_P (insn)) { annotate_constant_pool_refs (&PATTERN (insn)); df_insn_rescan (insn); } pop_topmost_sequence (); /* Choose best register to use for temp use within prologue. See below for why TPF must use the register 1. */ if (!has_hard_reg_initial_val (Pmode, RETURN_REGNUM) && !current_function_is_leaf && !TARGET_TPF_PROFILING) temp_reg = gen_rtx_REG (Pmode, RETURN_REGNUM); else temp_reg = gen_rtx_REG (Pmode, 1); /* Save call saved gprs. */ if (cfun_frame_layout.first_save_gpr != -1) { insn = save_gprs (stack_pointer_rtx, cfun_frame_layout.gprs_offset + UNITS_PER_WORD * (cfun_frame_layout.first_save_gpr - cfun_frame_layout.first_save_gpr_slot), cfun_frame_layout.first_save_gpr, cfun_frame_layout.last_save_gpr); emit_insn (insn); } /* Dummy insn to mark literal pool slot. */ if (cfun->machine->base_reg) emit_insn (gen_main_pool (cfun->machine->base_reg)); offset = cfun_frame_layout.f0_offset; /* Save f0 and f2. */ for (i = 0; i < 2; i++) { if (cfun_fpr_bit_p (i)) { save_fpr (stack_pointer_rtx, offset, i + 16); offset += 8; } else if (!TARGET_PACKED_STACK) offset += 8; } /* Save f4 and f6. */ offset = cfun_frame_layout.f4_offset; for (i = 2; i < 4; i++) { if (cfun_fpr_bit_p (i)) { insn = save_fpr (stack_pointer_rtx, offset, i + 16); offset += 8; /* If f4 and f6 are call clobbered they are saved due to stdargs and therefore are not frame related. */ if (!call_really_used_regs[i + 16]) RTX_FRAME_RELATED_P (insn) = 1; } else if (!TARGET_PACKED_STACK) offset += 8; } if (TARGET_PACKED_STACK && cfun_save_high_fprs_p && cfun_frame_layout.f8_offset + cfun_frame_layout.high_fprs * 8 > 0) { offset = (cfun_frame_layout.f8_offset + (cfun_frame_layout.high_fprs - 1) * 8); for (i = 15; i > 7 && offset >= 0; i--) if (cfun_fpr_bit_p (i)) { insn = save_fpr (stack_pointer_rtx, offset, i + 16); RTX_FRAME_RELATED_P (insn) = 1; offset -= 8; } if (offset >= cfun_frame_layout.f8_offset) next_fpr = i + 16; } if (!TARGET_PACKED_STACK) next_fpr = cfun_save_high_fprs_p ? 31 : 0; /* Decrement stack pointer. */ if (cfun_frame_layout.frame_size > 0) { rtx frame_off = GEN_INT (-cfun_frame_layout.frame_size); rtx real_frame_off; if (s390_stack_size) { HOST_WIDE_INT stack_guard; if (s390_stack_guard) stack_guard = s390_stack_guard; else { /* If no value for stack guard is provided the smallest power of 2 larger than the current frame size is chosen. */ stack_guard = 1; while (stack_guard < cfun_frame_layout.frame_size) stack_guard <<= 1; } if (cfun_frame_layout.frame_size >= s390_stack_size) { warning (0, "frame size of function %qs is " HOST_WIDE_INT_PRINT_DEC " bytes exceeding user provided stack limit of " HOST_WIDE_INT_PRINT_DEC " bytes. " "An unconditional trap is added.", current_function_name(), cfun_frame_layout.frame_size, s390_stack_size); emit_insn (gen_trap ()); } else { /* stack_guard has to be smaller than s390_stack_size. Otherwise we would emit an AND with zero which would not match the test under mask pattern. */ if (stack_guard >= s390_stack_size) { warning (0, "frame size of function %qs is " HOST_WIDE_INT_PRINT_DEC " bytes which is more than half the stack size. " "The dynamic check would not be reliable. " "No check emitted for this function.", current_function_name(), cfun_frame_layout.frame_size); } else { HOST_WIDE_INT stack_check_mask = ((s390_stack_size - 1) & ~(stack_guard - 1)); rtx t = gen_rtx_AND (Pmode, stack_pointer_rtx, GEN_INT (stack_check_mask)); if (TARGET_64BIT) emit_insn (gen_ctrapdi4 (gen_rtx_EQ (VOIDmode, t, const0_rtx), t, const0_rtx, const0_rtx)); else emit_insn (gen_ctrapsi4 (gen_rtx_EQ (VOIDmode, t, const0_rtx), t, const0_rtx, const0_rtx)); } } } if (s390_warn_framesize > 0 && cfun_frame_layout.frame_size >= s390_warn_framesize) warning (0, "frame size of %qs is " HOST_WIDE_INT_PRINT_DEC " bytes", current_function_name (), cfun_frame_layout.frame_size); if (s390_warn_dynamicstack_p && cfun->calls_alloca) warning (0, "%qs uses dynamic stack allocation", current_function_name ()); /* Save incoming stack pointer into temp reg. */ if (TARGET_BACKCHAIN || next_fpr) insn = emit_insn (gen_move_insn (temp_reg, stack_pointer_rtx)); /* Subtract frame size from stack pointer. */ if (DISP_IN_RANGE (INTVAL (frame_off))) { insn = gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (Pmode, stack_pointer_rtx, frame_off)); insn = emit_insn (insn); } else { if (!CONST_OK_FOR_K (INTVAL (frame_off))) frame_off = force_const_mem (Pmode, frame_off); insn = emit_insn (gen_add2_insn (stack_pointer_rtx, frame_off)); annotate_constant_pool_refs (&PATTERN (insn)); } RTX_FRAME_RELATED_P (insn) = 1; real_frame_off = GEN_INT (-cfun_frame_layout.frame_size); add_reg_note (insn, REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (Pmode, stack_pointer_rtx, real_frame_off))); /* Set backchain. */ if (TARGET_BACKCHAIN) { if (cfun_frame_layout.backchain_offset) addr = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, cfun_frame_layout.backchain_offset)); else addr = gen_rtx_MEM (Pmode, stack_pointer_rtx); set_mem_alias_set (addr, get_frame_alias_set ()); insn = emit_insn (gen_move_insn (addr, temp_reg)); } /* If we support asynchronous exceptions (e.g. for Java), we need to make sure the backchain pointer is set up before any possibly trapping memory access. */ if (TARGET_BACKCHAIN && flag_non_call_exceptions) { addr = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)); emit_clobber (addr); } } /* Save fprs 8 - 15 (64 bit ABI). */ if (cfun_save_high_fprs_p && next_fpr) { /* If the stack might be accessed through a different register we have to make sure that the stack pointer decrement is not moved below the use of the stack slots. */ s390_emit_stack_tie (); insn = emit_insn (gen_add2_insn (temp_reg, GEN_INT (cfun_frame_layout.f8_offset))); offset = 0; for (i = 24; i <= next_fpr; i++) if (cfun_fpr_bit_p (i - 16)) { rtx addr = plus_constant (stack_pointer_rtx, cfun_frame_layout.frame_size + cfun_frame_layout.f8_offset + offset); insn = save_fpr (temp_reg, offset, i); offset += 8; RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, gen_rtx_MEM (DFmode, addr), gen_rtx_REG (DFmode, i))); } } /* Set frame pointer, if needed. */ if (frame_pointer_needed) { insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; } /* Set up got pointer, if needed. */ if (flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM)) { rtx insns = s390_load_got (); for (insn = insns; insn; insn = NEXT_INSN (insn)) annotate_constant_pool_refs (&PATTERN (insn)); emit_insn (insns); } if (TARGET_TPF_PROFILING) { /* Generate a BAS instruction to serve as a function entry intercept to facilitate the use of tracing algorithms located at the branch target. */ emit_insn (gen_prologue_tpf ()); /* Emit a blockage here so that all code lies between the profiling mechanisms. */ emit_insn (gen_blockage ()); } } /* Expand the epilogue into a bunch of separate insns. */ void s390_emit_epilogue (bool sibcall) { rtx frame_pointer, return_reg, cfa_restores = NULL_RTX; int area_bottom, area_top, offset = 0; int next_offset; rtvec p; int i; if (TARGET_TPF_PROFILING) { /* Generate a BAS instruction to serve as a function entry intercept to facilitate the use of tracing algorithms located at the branch target. */ /* Emit a blockage here so that all code lies between the profiling mechanisms. */ emit_insn (gen_blockage ()); emit_insn (gen_epilogue_tpf ()); } /* Check whether to use frame or stack pointer for restore. */ frame_pointer = (frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx); s390_frame_area (&area_bottom, &area_top); /* Check whether we can access the register save area. If not, increment the frame pointer as required. */ if (area_top <= area_bottom) { /* Nothing to restore. */ } else if (DISP_IN_RANGE (cfun_frame_layout.frame_size + area_bottom) && DISP_IN_RANGE (cfun_frame_layout.frame_size + area_top - 1)) { /* Area is in range. */ offset = cfun_frame_layout.frame_size; } else { rtx insn, frame_off, cfa; offset = area_bottom < 0 ? -area_bottom : 0; frame_off = GEN_INT (cfun_frame_layout.frame_size - offset); cfa = gen_rtx_SET (VOIDmode, frame_pointer, gen_rtx_PLUS (Pmode, frame_pointer, frame_off)); if (DISP_IN_RANGE (INTVAL (frame_off))) { insn = gen_rtx_SET (VOIDmode, frame_pointer, gen_rtx_PLUS (Pmode, frame_pointer, frame_off)); insn = emit_insn (insn); } else { if (!CONST_OK_FOR_K (INTVAL (frame_off))) frame_off = force_const_mem (Pmode, frame_off); insn = emit_insn (gen_add2_insn (frame_pointer, frame_off)); annotate_constant_pool_refs (&PATTERN (insn)); } add_reg_note (insn, REG_CFA_ADJUST_CFA, cfa); RTX_FRAME_RELATED_P (insn) = 1; } /* Restore call saved fprs. */ if (TARGET_64BIT) { if (cfun_save_high_fprs_p) { next_offset = cfun_frame_layout.f8_offset; for (i = 24; i < 32; i++) { if (cfun_fpr_bit_p (i - 16)) { restore_fpr (frame_pointer, offset + next_offset, i); cfa_restores = alloc_reg_note (REG_CFA_RESTORE, gen_rtx_REG (DFmode, i), cfa_restores); next_offset += 8; } } } } else { next_offset = cfun_frame_layout.f4_offset; for (i = 18; i < 20; i++) { if (cfun_fpr_bit_p (i - 16)) { restore_fpr (frame_pointer, offset + next_offset, i); cfa_restores = alloc_reg_note (REG_CFA_RESTORE, gen_rtx_REG (DFmode, i), cfa_restores); next_offset += 8; } else if (!TARGET_PACKED_STACK) next_offset += 8; } } /* Return register. */ return_reg = gen_rtx_REG (Pmode, RETURN_REGNUM); /* Restore call saved gprs. */ if (cfun_frame_layout.first_restore_gpr != -1) { rtx insn, addr; int i; /* Check for global register and save them to stack location from where they get restored. */ for (i = cfun_frame_layout.first_restore_gpr; i <= cfun_frame_layout.last_restore_gpr; i++) { if (global_not_special_regno_p (i)) { addr = plus_constant (frame_pointer, offset + cfun_frame_layout.gprs_offset + (i - cfun_frame_layout.first_save_gpr_slot) * UNITS_PER_WORD); addr = gen_rtx_MEM (Pmode, addr); set_mem_alias_set (addr, get_frame_alias_set ()); emit_move_insn (addr, gen_rtx_REG (Pmode, i)); } else cfa_restores = alloc_reg_note (REG_CFA_RESTORE, gen_rtx_REG (Pmode, i), cfa_restores); } if (! sibcall) { /* Fetch return address from stack before load multiple, this will do good for scheduling. */ if (cfun_frame_layout.save_return_addr_p || (cfun_frame_layout.first_restore_gpr < BASE_REGNUM && cfun_frame_layout.last_restore_gpr > RETURN_REGNUM)) { int return_regnum = find_unused_clobbered_reg(); if (!return_regnum) return_regnum = 4; return_reg = gen_rtx_REG (Pmode, return_regnum); addr = plus_constant (frame_pointer, offset + cfun_frame_layout.gprs_offset + (RETURN_REGNUM - cfun_frame_layout.first_save_gpr_slot) * UNITS_PER_WORD); addr = gen_rtx_MEM (Pmode, addr); set_mem_alias_set (addr, get_frame_alias_set ()); emit_move_insn (return_reg, addr); } } insn = restore_gprs (frame_pointer, offset + cfun_frame_layout.gprs_offset + (cfun_frame_layout.first_restore_gpr - cfun_frame_layout.first_save_gpr_slot) * UNITS_PER_WORD, cfun_frame_layout.first_restore_gpr, cfun_frame_layout.last_restore_gpr); insn = emit_insn (insn); REG_NOTES (insn) = cfa_restores; add_reg_note (insn, REG_CFA_DEF_CFA, plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET)); RTX_FRAME_RELATED_P (insn) = 1; } if (! sibcall) { /* Return to caller. */ p = rtvec_alloc (2); RTVEC_ELT (p, 0) = gen_rtx_RETURN (VOIDmode); RTVEC_ELT (p, 1) = gen_rtx_USE (VOIDmode, return_reg); emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p)); } } /* Return the size in bytes of a function argument of type TYPE and/or mode MODE. At least one of TYPE or MODE must be specified. */ static int s390_function_arg_size (enum machine_mode mode, const_tree type) { if (type) return int_size_in_bytes (type); /* No type info available for some library calls ... */ if (mode != BLKmode) return GET_MODE_SIZE (mode); /* If we have neither type nor mode, abort */ gcc_unreachable (); } /* Return true if a function argument of type TYPE and mode MODE is to be passed in a floating-point register, if available. */ static bool s390_function_arg_float (enum machine_mode mode, tree type) { int size = s390_function_arg_size (mode, type); if (size > 8) return false; /* Soft-float changes the ABI: no floating-point registers are used. */ if (TARGET_SOFT_FLOAT) return false; /* No type info available for some library calls ... */ if (!type) return mode == SFmode || mode == DFmode || mode == SDmode || mode == DDmode; /* The ABI says that record types with a single member are treated just like that member would be. */ while (TREE_CODE (type) == RECORD_TYPE) { tree field, single = NULL_TREE; for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) != FIELD_DECL) continue; if (single == NULL_TREE) single = TREE_TYPE (field); else return false; } if (single == NULL_TREE) return false; else type = single; } return TREE_CODE (type) == REAL_TYPE; } /* Return true if a function argument of type TYPE and mode MODE is to be passed in an integer register, or a pair of integer registers, if available. */ static bool s390_function_arg_integer (enum machine_mode mode, tree type) { int size = s390_function_arg_size (mode, type); if (size > 8) return false; /* No type info available for some library calls ... */ if (!type) return GET_MODE_CLASS (mode) == MODE_INT || (TARGET_SOFT_FLOAT && SCALAR_FLOAT_MODE_P (mode)); /* We accept small integral (and similar) types. */ if (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type) || TREE_CODE (type) == OFFSET_TYPE || (TARGET_SOFT_FLOAT && TREE_CODE (type) == REAL_TYPE)) return true; /* We also accept structs of size 1, 2, 4, 8 that are not passed in floating-point registers. */ if (AGGREGATE_TYPE_P (type) && exact_log2 (size) >= 0 && !s390_function_arg_float (mode, type)) return true; return false; } /* Return 1 if a function argument of type TYPE and mode MODE is to be passed by reference. The ABI specifies that only structures of size 1, 2, 4, or 8 bytes are passed by value, all other structures (and complex numbers) are passed by reference. */ static bool s390_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED, enum machine_mode mode, const_tree type, bool named ATTRIBUTE_UNUSED) { int size = s390_function_arg_size (mode, type); if (size > 8) return true; if (type) { if (AGGREGATE_TYPE_P (type) && exact_log2 (size) < 0) return 1; if (TREE_CODE (type) == COMPLEX_TYPE || TREE_CODE (type) == VECTOR_TYPE) return 1; } return 0; } /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.). The boolean NAMED specifies whether the argument is a named argument (as opposed to an unnamed argument matching an ellipsis). */ void s390_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, int named ATTRIBUTE_UNUSED) { if (s390_function_arg_float (mode, type)) { cum->fprs += 1; } else if (s390_function_arg_integer (mode, type)) { int size = s390_function_arg_size (mode, type); cum->gprs += ((size + UNITS_PER_WORD-1) / UNITS_PER_WORD); } else gcc_unreachable (); } /* Define where to put the arguments to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). On S/390, we use general purpose registers 2 through 6 to pass integer, pointer, and certain structure arguments, and floating point registers 0 and 2 (0, 2, 4, and 6 on 64-bit) to pass floating point arguments. All remaining arguments are pushed to the stack. */ rtx s390_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, int named ATTRIBUTE_UNUSED) { if (s390_function_arg_float (mode, type)) { if (cum->fprs + 1 > FP_ARG_NUM_REG) return 0; else return gen_rtx_REG (mode, cum->fprs + 16); } else if (s390_function_arg_integer (mode, type)) { int size = s390_function_arg_size (mode, type); int n_gprs = (size + UNITS_PER_WORD-1) / UNITS_PER_WORD; if (cum->gprs + n_gprs > GP_ARG_NUM_REG) return 0; else return gen_rtx_REG (mode, cum->gprs + 2); } /* After the real arguments, expand_call calls us once again with a void_type_node type. Whatever we return here is passed as operand 2 to the call expanders. We don't need this feature ... */ else if (type == void_type_node) return const0_rtx; gcc_unreachable (); } /* Return true if return values of type TYPE should be returned in a memory buffer whose address is passed by the caller as hidden first argument. */ static bool s390_return_in_memory (const_tree type, const_tree fundecl ATTRIBUTE_UNUSED) { /* We accept small integral (and similar) types. */ if (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type) || TREE_CODE (type) == OFFSET_TYPE || TREE_CODE (type) == REAL_TYPE) return int_size_in_bytes (type) > 8; /* Aggregates and similar constructs are always returned in memory. */ if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE || TREE_CODE (type) == VECTOR_TYPE) return true; /* ??? We get called on all sorts of random stuff from aggregate_value_p. We can't abort, but it's not clear what's safe to return. Pretend it's a struct I guess. */ return true; } /* Function arguments and return values are promoted to word size. */ static enum machine_mode s390_promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp, const_tree fntype ATTRIBUTE_UNUSED, int for_return ATTRIBUTE_UNUSED) { if (INTEGRAL_MODE_P (mode) && GET_MODE_SIZE (mode) < UNITS_PER_WORD) { if (POINTER_TYPE_P (type)) *punsignedp = POINTERS_EXTEND_UNSIGNED; return Pmode; } return mode; } /* Define where to return a (scalar) value of type TYPE. If TYPE is null, define where to return a (scalar) value of mode MODE from a libcall. */ rtx s390_function_value (const_tree type, const_tree fn, enum machine_mode mode) { if (type) { int unsignedp = TYPE_UNSIGNED (type); mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp, fn, 1); } gcc_assert (GET_MODE_CLASS (mode) == MODE_INT || SCALAR_FLOAT_MODE_P (mode)); gcc_assert (GET_MODE_SIZE (mode) <= 8); if (TARGET_HARD_FLOAT && SCALAR_FLOAT_MODE_P (mode)) return gen_rtx_REG (mode, 16); else return gen_rtx_REG (mode, 2); } /* Create and return the va_list datatype. On S/390, va_list is an array type equivalent to typedef struct __va_list_tag { long __gpr; long __fpr; void *__overflow_arg_area; void *__reg_save_area; } va_list[1]; where __gpr and __fpr hold the number of general purpose or floating point arguments used up to now, respectively, __overflow_arg_area points to the stack location of the next argument passed on the stack, and __reg_save_area always points to the start of the register area in the call frame of the current function. The function prologue saves all registers used for argument passing into this area if the function uses variable arguments. */ static tree s390_build_builtin_va_list (void) { tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl; record = lang_hooks.types.make_type (RECORD_TYPE); type_decl = build_decl (BUILTINS_LOCATION, TYPE_DECL, get_identifier ("__va_list_tag"), record); f_gpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__gpr"), long_integer_type_node); f_fpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__fpr"), long_integer_type_node); f_ovf = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__overflow_arg_area"), ptr_type_node); f_sav = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__reg_save_area"), ptr_type_node); va_list_gpr_counter_field = f_gpr; va_list_fpr_counter_field = f_fpr; DECL_FIELD_CONTEXT (f_gpr) = record; DECL_FIELD_CONTEXT (f_fpr) = record; DECL_FIELD_CONTEXT (f_ovf) = record; DECL_FIELD_CONTEXT (f_sav) = record; TREE_CHAIN (record) = type_decl; TYPE_NAME (record) = type_decl; TYPE_FIELDS (record) = f_gpr; TREE_CHAIN (f_gpr) = f_fpr; TREE_CHAIN (f_fpr) = f_ovf; TREE_CHAIN (f_ovf) = f_sav; layout_type (record); /* The correct type is an array type of one element. */ return build_array_type (record, build_index_type (size_zero_node)); } /* Implement va_start by filling the va_list structure VALIST. STDARG_P is always true, and ignored. NEXTARG points to the first anonymous stack argument. The following global variables are used to initialize the va_list structure: crtl->args.info: holds number of gprs and fprs used for named arguments. crtl->args.arg_offset_rtx: holds the offset of the first anonymous stack argument (relative to the virtual arg pointer). */ static void s390_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED) { HOST_WIDE_INT n_gpr, n_fpr; int off; tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, t; f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node)); f_fpr = TREE_CHAIN (f_gpr); f_ovf = TREE_CHAIN (f_fpr); f_sav = TREE_CHAIN (f_ovf); valist = build_va_arg_indirect_ref (valist); gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE); fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE); ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE); sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE); /* Count number of gp and fp argument registers used. */ n_gpr = crtl->args.info.gprs; n_fpr = crtl->args.info.fprs; if (cfun->va_list_gpr_size) { t = build2 (MODIFY_EXPR, TREE_TYPE (gpr), gpr, build_int_cst (NULL_TREE, n_gpr)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } if (cfun->va_list_fpr_size) { t = build2 (MODIFY_EXPR, TREE_TYPE (fpr), fpr, build_int_cst (NULL_TREE, n_fpr)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Find the overflow area. */ if (n_gpr + cfun->va_list_gpr_size > GP_ARG_NUM_REG || n_fpr + cfun->va_list_fpr_size > FP_ARG_NUM_REG) { t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx); off = INTVAL (crtl->args.arg_offset_rtx); off = off < 0 ? 0 : off; if (TARGET_DEBUG_ARG) fprintf (stderr, "va_start: n_gpr = %d, n_fpr = %d off %d\n", (int)n_gpr, (int)n_fpr, off); t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovf), t, size_int (off)); t = build2 (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Find the register save area. */ if ((cfun->va_list_gpr_size && n_gpr < GP_ARG_NUM_REG) || (cfun->va_list_fpr_size && n_fpr < FP_ARG_NUM_REG)) { t = make_tree (TREE_TYPE (sav), return_address_pointer_rtx); t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (sav), t, size_int (-RETURN_REGNUM * UNITS_PER_WORD)); t = build2 (MODIFY_EXPR, TREE_TYPE (sav), sav, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } } /* Implement va_arg by updating the va_list structure VALIST as required to retrieve an argument of type TYPE, and returning that argument. Generates code equivalent to: if (integral value) { if (size <= 4 && args.gpr < 5 || size > 4 && args.gpr < 4 ) ret = args.reg_save_area[args.gpr+8] else ret = *args.overflow_arg_area++; } else if (float value) { if (args.fgpr < 2) ret = args.reg_save_area[args.fpr+64] else ret = *args.overflow_arg_area++; } else if (aggregate value) { if (args.gpr < 5) ret = *args.reg_save_area[args.gpr] else ret = **args.overflow_arg_area++; } */ static tree s390_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p, gimple_seq *post_p ATTRIBUTE_UNUSED) { tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, reg, t, u; int indirect_p, size, n_reg, sav_ofs, sav_scale, max_reg; tree lab_false, lab_over, addr; f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node)); f_fpr = TREE_CHAIN (f_gpr); f_ovf = TREE_CHAIN (f_fpr); f_sav = TREE_CHAIN (f_ovf); valist = build_va_arg_indirect_ref (valist); gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE); fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE); sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE); /* The tree for args* cannot be shared between gpr/fpr and ovf since both appear on a lhs. */ valist = unshare_expr (valist); ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE); size = int_size_in_bytes (type); if (pass_by_reference (NULL, TYPE_MODE (type), type, false)) { if (TARGET_DEBUG_ARG) { fprintf (stderr, "va_arg: aggregate type"); debug_tree (type); } /* Aggregates are passed by reference. */ indirect_p = 1; reg = gpr; n_reg = 1; /* kernel stack layout on 31 bit: It is assumed here that no padding will be added by s390_frame_info because for va_args always an even number of gprs has to be saved r15-r2 = 14 regs. */ sav_ofs = 2 * UNITS_PER_WORD; sav_scale = UNITS_PER_WORD; size = UNITS_PER_WORD; max_reg = GP_ARG_NUM_REG - n_reg; } else if (s390_function_arg_float (TYPE_MODE (type), type)) { if (TARGET_DEBUG_ARG) { fprintf (stderr, "va_arg: float type"); debug_tree (type); } /* FP args go in FP registers, if present. */ indirect_p = 0; reg = fpr; n_reg = 1; sav_ofs = 16 * UNITS_PER_WORD; sav_scale = 8; max_reg = FP_ARG_NUM_REG - n_reg; } else { if (TARGET_DEBUG_ARG) { fprintf (stderr, "va_arg: other type"); debug_tree (type); } /* Otherwise into GP registers. */ indirect_p = 0; reg = gpr; n_reg = (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* kernel stack layout on 31 bit: It is assumed here that no padding will be added by s390_frame_info because for va_args always an even number of gprs has to be saved r15-r2 = 14 regs. */ sav_ofs = 2 * UNITS_PER_WORD; if (size < UNITS_PER_WORD) sav_ofs += UNITS_PER_WORD - size; sav_scale = UNITS_PER_WORD; max_reg = GP_ARG_NUM_REG - n_reg; } /* Pull the value out of the saved registers ... */ lab_false = create_artificial_label (UNKNOWN_LOCATION); lab_over = create_artificial_label (UNKNOWN_LOCATION); addr = create_tmp_var (ptr_type_node, "addr"); t = fold_convert (TREE_TYPE (reg), size_int (max_reg)); t = build2 (GT_EXPR, boolean_type_node, reg, t); u = build1 (GOTO_EXPR, void_type_node, lab_false); t = build3 (COND_EXPR, void_type_node, t, u, NULL_TREE); gimplify_and_add (t, pre_p); t = build2 (POINTER_PLUS_EXPR, ptr_type_node, sav, size_int (sav_ofs)); u = build2 (MULT_EXPR, TREE_TYPE (reg), reg, fold_convert (TREE_TYPE (reg), size_int (sav_scale))); t = build2 (POINTER_PLUS_EXPR, ptr_type_node, t, fold_convert (sizetype, u)); gimplify_assign (addr, t, pre_p); gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over)); gimple_seq_add_stmt (pre_p, gimple_build_label (lab_false)); /* ... Otherwise out of the overflow area. */ t = ovf; if (size < UNITS_PER_WORD) t = build2 (POINTER_PLUS_EXPR, ptr_type_node, t, size_int (UNITS_PER_WORD - size)); gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue); gimplify_assign (addr, t, pre_p); t = build2 (POINTER_PLUS_EXPR, ptr_type_node, t, size_int (size)); gimplify_assign (ovf, t, pre_p); gimple_seq_add_stmt (pre_p, gimple_build_label (lab_over)); /* Increment register save count. */ u = build2 (PREINCREMENT_EXPR, TREE_TYPE (reg), reg, fold_convert (TREE_TYPE (reg), size_int (n_reg))); gimplify_and_add (u, pre_p); if (indirect_p) { t = build_pointer_type_for_mode (build_pointer_type (type), ptr_mode, true); addr = fold_convert (t, addr); addr = build_va_arg_indirect_ref (addr); } else { t = build_pointer_type_for_mode (type, ptr_mode, true); addr = fold_convert (t, addr); } return build_va_arg_indirect_ref (addr); } /* Builtins. */ enum s390_builtin { S390_BUILTIN_THREAD_POINTER, S390_BUILTIN_SET_THREAD_POINTER, S390_BUILTIN_max }; static enum insn_code const code_for_builtin_64[S390_BUILTIN_max] = { CODE_FOR_get_tp_64, CODE_FOR_set_tp_64 }; static enum insn_code const code_for_builtin_31[S390_BUILTIN_max] = { CODE_FOR_get_tp_31, CODE_FOR_set_tp_31 }; static void s390_init_builtins (void) { tree ftype; ftype = build_function_type (ptr_type_node, void_list_node); add_builtin_function ("__builtin_thread_pointer", ftype, S390_BUILTIN_THREAD_POINTER, BUILT_IN_MD, NULL, NULL_TREE); ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); add_builtin_function ("__builtin_set_thread_pointer", ftype, S390_BUILTIN_SET_THREAD_POINTER, BUILT_IN_MD, NULL, NULL_TREE); } /* Expand an expression EXP that calls a built-in function, with result going to TARGET if that's convenient (and in mode MODE if that's convenient). SUBTARGET may be used as the target for computing one of EXP's operands. IGNORE is nonzero if the value is to be ignored. */ static rtx s390_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, int ignore ATTRIBUTE_UNUSED) { #define MAX_ARGS 2 enum insn_code const *code_for_builtin = TARGET_64BIT ? code_for_builtin_64 : code_for_builtin_31; tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); unsigned int fcode = DECL_FUNCTION_CODE (fndecl); enum insn_code icode; rtx op[MAX_ARGS], pat; int arity; bool nonvoid; tree arg; call_expr_arg_iterator iter; if (fcode >= S390_BUILTIN_max) internal_error ("bad builtin fcode"); icode = code_for_builtin[fcode]; if (icode == 0) internal_error ("bad builtin fcode"); nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node; arity = 0; FOR_EACH_CALL_EXPR_ARG (arg, iter, exp) { const struct insn_operand_data *insn_op; if (arg == error_mark_node) return NULL_RTX; if (arity > MAX_ARGS) return NULL_RTX; insn_op = &insn_data[icode].operand[arity + nonvoid]; op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, EXPAND_NORMAL); if (!(*insn_op->predicate) (op[arity], insn_op->mode)) op[arity] = copy_to_mode_reg (insn_op->mode, op[arity]); arity++; } if (nonvoid) { enum machine_mode tmode = insn_data[icode].operand[0].mode; if (!target || GET_MODE (target) != tmode || !(*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); } switch (arity) { case 0: pat = GEN_FCN (icode) (target); break; case 1: if (nonvoid) pat = GEN_FCN (icode) (target, op[0]); else pat = GEN_FCN (icode) (op[0]); break; case 2: pat = GEN_FCN (icode) (target, op[0], op[1]); break; default: gcc_unreachable (); } if (!pat) return NULL_RTX; emit_insn (pat); if (nonvoid) return target; else return const0_rtx; } /* Output assembly code for the trampoline template to stdio stream FILE. On S/390, we use gpr 1 internally in the trampoline code; gpr 0 is used to hold the static chain. */ static void s390_asm_trampoline_template (FILE *file) { rtx op[2]; op[0] = gen_rtx_REG (Pmode, 0); op[1] = gen_rtx_REG (Pmode, 1); if (TARGET_64BIT) { output_asm_insn ("basr\t%1,0", op); output_asm_insn ("lmg\t%0,%1,14(%1)", op); output_asm_insn ("br\t%1", op); ASM_OUTPUT_SKIP (file, (HOST_WIDE_INT)(TRAMPOLINE_SIZE - 10)); } else { output_asm_insn ("basr\t%1,0", op); output_asm_insn ("lm\t%0,%1,6(%1)", op); output_asm_insn ("br\t%1", op); ASM_OUTPUT_SKIP (file, (HOST_WIDE_INT)(TRAMPOLINE_SIZE - 8)); } } /* Emit RTL insns to initialize the variable parts of a trampoline. FNADDR is an RTX for the address of the function's pure code. CXT is an RTX for the static chain value for the function. */ static void s390_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt) { rtx fnaddr = XEXP (DECL_RTL (fndecl), 0); rtx mem; emit_block_move (m_tramp, assemble_trampoline_template (), GEN_INT (2*UNITS_PER_WORD), BLOCK_OP_NORMAL); mem = adjust_address (m_tramp, Pmode, 2*UNITS_PER_WORD); emit_move_insn (mem, cxt); mem = adjust_address (m_tramp, Pmode, 3*UNITS_PER_WORD); emit_move_insn (mem, fnaddr); } /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ void s390_function_profiler (FILE *file, int labelno) { rtx op[7]; char label[128]; ASM_GENERATE_INTERNAL_LABEL (label, "LP", labelno); fprintf (file, "# function profiler \n"); op[0] = gen_rtx_REG (Pmode, RETURN_REGNUM); op[1] = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM); op[1] = gen_rtx_MEM (Pmode, plus_constant (op[1], UNITS_PER_WORD)); op[2] = gen_rtx_REG (Pmode, 1); op[3] = gen_rtx_SYMBOL_REF (Pmode, label); SYMBOL_REF_FLAGS (op[3]) = SYMBOL_FLAG_LOCAL; op[4] = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); if (flag_pic) { op[4] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op[4]), UNSPEC_PLT); op[4] = gen_rtx_CONST (Pmode, op[4]); } if (TARGET_64BIT) { output_asm_insn ("stg\t%0,%1", op); output_asm_insn ("larl\t%2,%3", op); output_asm_insn ("brasl\t%0,%4", op); output_asm_insn ("lg\t%0,%1", op); } else if (!flag_pic) { op[6] = gen_label_rtx (); output_asm_insn ("st\t%0,%1", op); output_asm_insn ("bras\t%2,%l6", op); output_asm_insn (".long\t%4", op); output_asm_insn (".long\t%3", op); targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[6])); output_asm_insn ("l\t%0,0(%2)", op); output_asm_insn ("l\t%2,4(%2)", op); output_asm_insn ("basr\t%0,%0", op); output_asm_insn ("l\t%0,%1", op); } else { op[5] = gen_label_rtx (); op[6] = gen_label_rtx (); output_asm_insn ("st\t%0,%1", op); output_asm_insn ("bras\t%2,%l6", op); targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[5])); output_asm_insn (".long\t%4-%l5", op); output_asm_insn (".long\t%3-%l5", op); targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[6])); output_asm_insn ("lr\t%0,%2", op); output_asm_insn ("a\t%0,0(%2)", op); output_asm_insn ("a\t%2,4(%2)", op); output_asm_insn ("basr\t%0,%0", op); output_asm_insn ("l\t%0,%1", op); } } /* Encode symbol attributes (local vs. global, tls model) of a SYMBOL_REF into its SYMBOL_REF_FLAGS. */ static void s390_encode_section_info (tree decl, rtx rtl, int first) { default_encode_section_info (decl, rtl, first); if (TREE_CODE (decl) == VAR_DECL) { /* If a variable has a forced alignment to < 2 bytes, mark it with SYMBOL_FLAG_ALIGN1 to prevent it from being used as LARL operand. */ if (DECL_USER_ALIGN (decl) && DECL_ALIGN (decl) < 16) SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_ALIGN1; if (!DECL_SIZE (decl) || !DECL_ALIGN (decl) || !host_integerp (DECL_SIZE (decl), 0) || (DECL_ALIGN (decl) <= 64 && DECL_ALIGN (decl) != tree_low_cst (DECL_SIZE (decl), 0))) SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_NOT_NATURALLY_ALIGNED; } /* Literal pool references don't have a decl so they are handled differently here. We rely on the information in the MEM_ALIGN entry to decide upon natural alignment. */ if (MEM_P (rtl) && GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF && TREE_CONSTANT_POOL_ADDRESS_P (XEXP (rtl, 0)) && (MEM_ALIGN (rtl) == 0 || GET_MODE_BITSIZE (GET_MODE (rtl)) == 0 || MEM_ALIGN (rtl) < GET_MODE_BITSIZE (GET_MODE (rtl)))) SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_NOT_NATURALLY_ALIGNED; } /* Output thunk to FILE that implements a C++ virtual function call (with multiple inheritance) to FUNCTION. The thunk adjusts the this pointer by DELTA, and unless VCALL_OFFSET is zero, applies an additional adjustment stored at VCALL_OFFSET in the vtable whose address is located at offset 0 relative to the resulting this pointer. */ static void s390_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function) { rtx op[10]; int nonlocal = 0; /* Make sure unwind info is emitted for the thunk if needed. */ final_start_function (emit_barrier (), file, 1); /* Operand 0 is the target function. */ op[0] = XEXP (DECL_RTL (function), 0); if (flag_pic && !SYMBOL_REF_LOCAL_P (op[0])) { nonlocal = 1; op[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op[0]), TARGET_64BIT ? UNSPEC_PLT : UNSPEC_GOT); op[0] = gen_rtx_CONST (Pmode, op[0]); } /* Operand 1 is the 'this' pointer. */ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)) op[1] = gen_rtx_REG (Pmode, 3); else op[1] = gen_rtx_REG (Pmode, 2); /* Operand 2 is the delta. */ op[2] = GEN_INT (delta); /* Operand 3 is the vcall_offset. */ op[3] = GEN_INT (vcall_offset); /* Operand 4 is the temporary register. */ op[4] = gen_rtx_REG (Pmode, 1); /* Operands 5 to 8 can be used as labels. */ op[5] = NULL_RTX; op[6] = NULL_RTX; op[7] = NULL_RTX; op[8] = NULL_RTX; /* Operand 9 can be used for temporary register. */ op[9] = NULL_RTX; /* Generate code. */ if (TARGET_64BIT) { /* Setup literal pool pointer if required. */ if ((!DISP_IN_RANGE (delta) && !CONST_OK_FOR_K (delta) && !CONST_OK_FOR_Os (delta)) || (!DISP_IN_RANGE (vcall_offset) && !CONST_OK_FOR_K (vcall_offset) && !CONST_OK_FOR_Os (vcall_offset))) { op[5] = gen_label_rtx (); output_asm_insn ("larl\t%4,%5", op); } /* Add DELTA to this pointer. */ if (delta) { if (CONST_OK_FOR_J (delta)) output_asm_insn ("la\t%1,%2(%1)", op); else if (DISP_IN_RANGE (delta)) output_asm_insn ("lay\t%1,%2(%1)", op); else if (CONST_OK_FOR_K (delta)) output_asm_insn ("aghi\t%1,%2", op); else if (CONST_OK_FOR_Os (delta)) output_asm_insn ("agfi\t%1,%2", op); else { op[6] = gen_label_rtx (); output_asm_insn ("agf\t%1,%6-%5(%4)", op); } } /* Perform vcall adjustment. */ if (vcall_offset) { if (DISP_IN_RANGE (vcall_offset)) { output_asm_insn ("lg\t%4,0(%1)", op); output_asm_insn ("ag\t%1,%3(%4)", op); } else if (CONST_OK_FOR_K (vcall_offset)) { output_asm_insn ("lghi\t%4,%3", op); output_asm_insn ("ag\t%4,0(%1)", op); output_asm_insn ("ag\t%1,0(%4)", op); } else if (CONST_OK_FOR_Os (vcall_offset)) { output_asm_insn ("lgfi\t%4,%3", op); output_asm_insn ("ag\t%4,0(%1)", op); output_asm_insn ("ag\t%1,0(%4)", op); } else { op[7] = gen_label_rtx (); output_asm_insn ("llgf\t%4,%7-%5(%4)", op); output_asm_insn ("ag\t%4,0(%1)", op); output_asm_insn ("ag\t%1,0(%4)", op); } } /* Jump to target. */ output_asm_insn ("jg\t%0", op); /* Output literal pool if required. */ if (op[5]) { output_asm_insn (".align\t4", op); targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[5])); } if (op[6]) { targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[6])); output_asm_insn (".long\t%2", op); } if (op[7]) { targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[7])); output_asm_insn (".long\t%3", op); } } else { /* Setup base pointer if required. */ if (!vcall_offset || (!DISP_IN_RANGE (delta) && !CONST_OK_FOR_K (delta) && !CONST_OK_FOR_Os (delta)) || (!DISP_IN_RANGE (delta) && !CONST_OK_FOR_K (vcall_offset) && !CONST_OK_FOR_Os (vcall_offset))) { op[5] = gen_label_rtx (); output_asm_insn ("basr\t%4,0", op); targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[5])); } /* Add DELTA to this pointer. */ if (delta) { if (CONST_OK_FOR_J (delta)) output_asm_insn ("la\t%1,%2(%1)", op); else if (DISP_IN_RANGE (delta)) output_asm_insn ("lay\t%1,%2(%1)", op); else if (CONST_OK_FOR_K (delta)) output_asm_insn ("ahi\t%1,%2", op); else if (CONST_OK_FOR_Os (delta)) output_asm_insn ("afi\t%1,%2", op); else { op[6] = gen_label_rtx (); output_asm_insn ("a\t%1,%6-%5(%4)", op); } } /* Perform vcall adjustment. */ if (vcall_offset) { if (CONST_OK_FOR_J (vcall_offset)) { output_asm_insn ("l\t%4,0(%1)", op); output_asm_insn ("a\t%1,%3(%4)", op); } else if (DISP_IN_RANGE (vcall_offset)) { output_asm_insn ("l\t%4,0(%1)", op); output_asm_insn ("ay\t%1,%3(%4)", op); } else if (CONST_OK_FOR_K (vcall_offset)) { output_asm_insn ("lhi\t%4,%3", op); output_asm_insn ("a\t%4,0(%1)", op); output_asm_insn ("a\t%1,0(%4)", op); } else if (CONST_OK_FOR_Os (vcall_offset)) { output_asm_insn ("iilf\t%4,%3", op); output_asm_insn ("a\t%4,0(%1)", op); output_asm_insn ("a\t%1,0(%4)", op); } else { op[7] = gen_label_rtx (); output_asm_insn ("l\t%4,%7-%5(%4)", op); output_asm_insn ("a\t%4,0(%1)", op); output_asm_insn ("a\t%1,0(%4)", op); } /* We had to clobber the base pointer register. Re-setup the base pointer (with a different base). */ op[5] = gen_label_rtx (); output_asm_insn ("basr\t%4,0", op); targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[5])); } /* Jump to target. */ op[8] = gen_label_rtx (); if (!flag_pic) output_asm_insn ("l\t%4,%8-%5(%4)", op); else if (!nonlocal) output_asm_insn ("a\t%4,%8-%5(%4)", op); /* We cannot call through .plt, since .plt requires %r12 loaded. */ else if (flag_pic == 1) { output_asm_insn ("a\t%4,%8-%5(%4)", op); output_asm_insn ("l\t%4,%0(%4)", op); } else if (flag_pic == 2) { op[9] = gen_rtx_REG (Pmode, 0); output_asm_insn ("l\t%9,%8-4-%5(%4)", op); output_asm_insn ("a\t%4,%8-%5(%4)", op); output_asm_insn ("ar\t%4,%9", op); output_asm_insn ("l\t%4,0(%4)", op); } output_asm_insn ("br\t%4", op); /* Output literal pool. */ output_asm_insn (".align\t4", op); if (nonlocal && flag_pic == 2) output_asm_insn (".long\t%0", op); if (nonlocal) { op[0] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); SYMBOL_REF_FLAGS (op[0]) = SYMBOL_FLAG_LOCAL; } targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[8])); if (!flag_pic) output_asm_insn (".long\t%0", op); else output_asm_insn (".long\t%0-%5", op); if (op[6]) { targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[6])); output_asm_insn (".long\t%2", op); } if (op[7]) { targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[7])); output_asm_insn (".long\t%3", op); } } final_end_function (); } static bool s390_valid_pointer_mode (enum machine_mode mode) { return (mode == SImode || (TARGET_64BIT && mode == DImode)); } /* Checks whether the given CALL_EXPR would use a caller saved register. This is used to decide whether sibling call optimization could be performed on the respective function call. */ static bool s390_call_saved_register_used (tree call_expr) { CUMULATIVE_ARGS cum; tree parameter; enum machine_mode mode; tree type; rtx parm_rtx; int reg, i; INIT_CUMULATIVE_ARGS (cum, NULL, NULL, 0, 0); for (i = 0; i < call_expr_nargs (call_expr); i++) { parameter = CALL_EXPR_ARG (call_expr, i); gcc_assert (parameter); /* For an undeclared variable passed as parameter we will get an ERROR_MARK node here. */ if (TREE_CODE (parameter) == ERROR_MARK) return true; type = TREE_TYPE (parameter); gcc_assert (type); mode = TYPE_MODE (type); gcc_assert (mode); if (pass_by_reference (&cum, mode, type, true)) { mode = Pmode; type = build_pointer_type (type); } parm_rtx = s390_function_arg (&cum, mode, type, 0); s390_function_arg_advance (&cum, mode, type, 0); if (parm_rtx && REG_P (parm_rtx)) { for (reg = 0; reg < HARD_REGNO_NREGS (REGNO (parm_rtx), GET_MODE (parm_rtx)); reg++) if (! call_used_regs[reg + REGNO (parm_rtx)]) return true; } } return false; } /* Return true if the given call expression can be turned into a sibling call. DECL holds the declaration of the function to be called whereas EXP is the call expression itself. */ static bool s390_function_ok_for_sibcall (tree decl, tree exp) { /* The TPF epilogue uses register 1. */ if (TARGET_TPF_PROFILING) return false; /* The 31 bit PLT code uses register 12 (GOT pointer - caller saved) which would have to be restored before the sibcall. */ if (!TARGET_64BIT && flag_pic && decl && !targetm.binds_local_p (decl)) return false; /* Register 6 on s390 is available as an argument register but unfortunately "caller saved". This makes functions needing this register for arguments not suitable for sibcalls. */ return !s390_call_saved_register_used (exp); } /* Return the fixed registers used for condition codes. */ static bool s390_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) { *p1 = CC_REGNUM; *p2 = INVALID_REGNUM; return true; } /* This function is used by the call expanders of the machine description. It emits the call insn itself together with the necessary operations to adjust the target address and returns the emitted insn. ADDR_LOCATION is the target address rtx TLS_CALL the location of the thread-local symbol RESULT_REG the register where the result of the call should be stored RETADDR_REG the register where the return address should be stored If this parameter is NULL_RTX the call is considered to be a sibling call. */ rtx s390_emit_call (rtx addr_location, rtx tls_call, rtx result_reg, rtx retaddr_reg) { bool plt_call = false; rtx insn; rtx call; rtx clobber; rtvec vec; /* Direct function calls need special treatment. */ if (GET_CODE (addr_location) == SYMBOL_REF) { /* When calling a global routine in PIC mode, we must replace the symbol itself with the PLT stub. */ if (flag_pic && !SYMBOL_REF_LOCAL_P (addr_location)) { if (retaddr_reg != NULL_RTX) { addr_location = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr_location), UNSPEC_PLT); addr_location = gen_rtx_CONST (Pmode, addr_location); plt_call = true; } else /* For -fpic code the PLT entries might use r12 which is call-saved. Therefore we cannot do a sibcall when calling directly using a symbol ref. When reaching this point we decided (in s390_function_ok_for_sibcall) to do a sibcall for a function pointer but one of the optimizers was able to get rid of the function pointer by propagating the symbol ref into the call. This optimization is illegal for S/390 so we turn the direct call into a indirect call again. */ addr_location = force_reg (Pmode, addr_location); } /* Unless we can use the bras(l) insn, force the routine address into a register. */ if (!TARGET_SMALL_EXEC && !TARGET_CPU_ZARCH) { if (flag_pic) addr_location = legitimize_pic_address (addr_location, 0); else addr_location = force_reg (Pmode, addr_location); } } /* If it is already an indirect call or the code above moved the SYMBOL_REF to somewhere else make sure the address can be found in register 1. */ if (retaddr_reg == NULL_RTX && GET_CODE (addr_location) != SYMBOL_REF && !plt_call) { emit_move_insn (gen_rtx_REG (Pmode, SIBCALL_REGNUM), addr_location); addr_location = gen_rtx_REG (Pmode, SIBCALL_REGNUM); } addr_location = gen_rtx_MEM (QImode, addr_location); call = gen_rtx_CALL (VOIDmode, addr_location, const0_rtx); if (result_reg != NULL_RTX) call = gen_rtx_SET (VOIDmode, result_reg, call); if (retaddr_reg != NULL_RTX) { clobber = gen_rtx_CLOBBER (VOIDmode, retaddr_reg); if (tls_call != NULL_RTX) vec = gen_rtvec (3, call, clobber, gen_rtx_USE (VOIDmode, tls_call)); else vec = gen_rtvec (2, call, clobber); call = gen_rtx_PARALLEL (VOIDmode, vec); } insn = emit_call_insn (call); /* 31-bit PLT stubs and tls calls use the GOT register implicitly. */ if ((!TARGET_64BIT && plt_call) || tls_call != NULL_RTX) { /* s390_function_ok_for_sibcall should have denied sibcalls in this case. */ gcc_assert (retaddr_reg != NULL_RTX); use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx); } return insn; } /* Implement CONDITIONAL_REGISTER_USAGE. */ void s390_conditional_register_usage (void) { int i; if (flag_pic) { fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; } if (TARGET_CPU_ZARCH) { fixed_regs[BASE_REGNUM] = 0; call_used_regs[BASE_REGNUM] = 0; fixed_regs[RETURN_REGNUM] = 0; call_used_regs[RETURN_REGNUM] = 0; } if (TARGET_64BIT) { for (i = 24; i < 32; i++) call_used_regs[i] = call_really_used_regs[i] = 0; } else { for (i = 18; i < 20; i++) call_used_regs[i] = call_really_used_regs[i] = 0; } if (TARGET_SOFT_FLOAT) { for (i = 16; i < 32; i++) call_used_regs[i] = fixed_regs[i] = 1; } } /* Corresponding function to eh_return expander. */ static GTY(()) rtx s390_tpf_eh_return_symbol; void s390_emit_tpf_eh_return (rtx target) { rtx insn, reg; if (!s390_tpf_eh_return_symbol) s390_tpf_eh_return_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tpf_eh_return"); reg = gen_rtx_REG (Pmode, 2); emit_move_insn (reg, target); insn = s390_emit_call (s390_tpf_eh_return_symbol, NULL_RTX, reg, gen_rtx_REG (Pmode, RETURN_REGNUM)); use_reg (&CALL_INSN_FUNCTION_USAGE (insn), reg); emit_move_insn (EH_RETURN_HANDLER_RTX, reg); } /* Rework the prologue/epilogue to avoid saving/restoring registers unnecessarily. */ static void s390_optimize_prologue (void) { rtx insn, new_insn, next_insn; /* Do a final recompute of the frame-related data. */ s390_update_frame_layout (); /* If all special registers are in fact used, there's nothing we can do, so no point in walking the insn list. */ if (cfun_frame_layout.first_save_gpr <= BASE_REGNUM && cfun_frame_layout.last_save_gpr >= BASE_REGNUM && (TARGET_CPU_ZARCH || (cfun_frame_layout.first_save_gpr <= RETURN_REGNUM && cfun_frame_layout.last_save_gpr >= RETURN_REGNUM))) return; /* Search for prologue/epilogue insns and replace them. */ for (insn = get_insns (); insn; insn = next_insn) { int first, last, off; rtx set, base, offset; next_insn = NEXT_INSN (insn); if (GET_CODE (insn) != INSN) continue; if (GET_CODE (PATTERN (insn)) == PARALLEL && store_multiple_operation (PATTERN (insn), VOIDmode)) { set = XVECEXP (PATTERN (insn), 0, 0); first = REGNO (SET_SRC (set)); last = first + XVECLEN (PATTERN (insn), 0) - 1; offset = const0_rtx; base = eliminate_constant_term (XEXP (SET_DEST (set), 0), &offset); off = INTVAL (offset); if (GET_CODE (base) != REG || off < 0) continue; if (cfun_frame_layout.first_save_gpr != -1 && (cfun_frame_layout.first_save_gpr < first || cfun_frame_layout.last_save_gpr > last)) continue; if (REGNO (base) != STACK_POINTER_REGNUM && REGNO (base) != HARD_FRAME_POINTER_REGNUM) continue; if (first > BASE_REGNUM || last < BASE_REGNUM) continue; if (cfun_frame_layout.first_save_gpr != -1) { new_insn = save_gprs (base, off + (cfun_frame_layout.first_save_gpr - first) * UNITS_PER_WORD, cfun_frame_layout.first_save_gpr, cfun_frame_layout.last_save_gpr); new_insn = emit_insn_before (new_insn, insn); INSN_ADDRESSES_NEW (new_insn, -1); } remove_insn (insn); continue; } if (cfun_frame_layout.first_save_gpr == -1 && GET_CODE (PATTERN (insn)) == SET && GET_CODE (SET_SRC (PATTERN (insn))) == REG && (REGNO (SET_SRC (PATTERN (insn))) == BASE_REGNUM || (!TARGET_CPU_ZARCH && REGNO (SET_SRC (PATTERN (insn))) == RETURN_REGNUM)) && GET_CODE (SET_DEST (PATTERN (insn))) == MEM) { set = PATTERN (insn); first = REGNO (SET_SRC (set)); offset = const0_rtx; base = eliminate_constant_term (XEXP (SET_DEST (set), 0), &offset); off = INTVAL (offset); if (GET_CODE (base) != REG || off < 0) continue; if (REGNO (base) != STACK_POINTER_REGNUM && REGNO (base) != HARD_FRAME_POINTER_REGNUM) continue; remove_insn (insn); continue; } if (GET_CODE (PATTERN (insn)) == PARALLEL && load_multiple_operation (PATTERN (insn), VOIDmode)) { set = XVECEXP (PATTERN (insn), 0, 0); first = REGNO (SET_DEST (set)); last = first + XVECLEN (PATTERN (insn), 0) - 1; offset = const0_rtx; base = eliminate_constant_term (XEXP (SET_SRC (set), 0), &offset); off = INTVAL (offset); if (GET_CODE (base) != REG || off < 0) continue; if (cfun_frame_layout.first_restore_gpr != -1 && (cfun_frame_layout.first_restore_gpr < first || cfun_frame_layout.last_restore_gpr > last)) continue; if (REGNO (base) != STACK_POINTER_REGNUM && REGNO (base) != HARD_FRAME_POINTER_REGNUM) continue; if (first > BASE_REGNUM || last < BASE_REGNUM) continue; if (cfun_frame_layout.first_restore_gpr != -1) { new_insn = restore_gprs (base, off + (cfun_frame_layout.first_restore_gpr - first) * UNITS_PER_WORD, cfun_frame_layout.first_restore_gpr, cfun_frame_layout.last_restore_gpr); new_insn = emit_insn_before (new_insn, insn); INSN_ADDRESSES_NEW (new_insn, -1); } remove_insn (insn); continue; } if (cfun_frame_layout.first_restore_gpr == -1 && GET_CODE (PATTERN (insn)) == SET && GET_CODE (SET_DEST (PATTERN (insn))) == REG && (REGNO (SET_DEST (PATTERN (insn))) == BASE_REGNUM || (!TARGET_CPU_ZARCH && REGNO (SET_DEST (PATTERN (insn))) == RETURN_REGNUM)) && GET_CODE (SET_SRC (PATTERN (insn))) == MEM) { set = PATTERN (insn); first = REGNO (SET_DEST (set)); offset = const0_rtx; base = eliminate_constant_term (XEXP (SET_SRC (set), 0), &offset); off = INTVAL (offset); if (GET_CODE (base) != REG || off < 0) continue; if (REGNO (base) != STACK_POINTER_REGNUM && REGNO (base) != HARD_FRAME_POINTER_REGNUM) continue; remove_insn (insn); continue; } } } /* On z10 the dynamic branch prediction must see the backward jump in a window of 384 bytes. If not it falls back to the static prediction. This function rearranges the loop backward branch in a way which makes the static prediction always correct. The function returns true if it added an instruction. */ static bool s390_z10_fix_long_loop_prediction (rtx insn) { rtx set = single_set (insn); rtx code_label, label_ref, new_label; rtx uncond_jump; rtx cur_insn; rtx tmp; int distance; /* This will exclude branch on count and branch on index patterns since these are correctly statically predicted. */ if (!set || SET_DEST (set) != pc_rtx || GET_CODE (SET_SRC(set)) != IF_THEN_ELSE) return false; label_ref = (GET_CODE (XEXP (SET_SRC (set), 1)) == LABEL_REF ? XEXP (SET_SRC (set), 1) : XEXP (SET_SRC (set), 2)); gcc_assert (GET_CODE (label_ref) == LABEL_REF); code_label = XEXP (label_ref, 0); if (INSN_ADDRESSES (INSN_UID (code_label)) == -1 || INSN_ADDRESSES (INSN_UID (insn)) == -1 || (INSN_ADDRESSES (INSN_UID (insn)) - INSN_ADDRESSES (INSN_UID (code_label)) < Z10_PREDICT_DISTANCE)) return false; for (distance = 0, cur_insn = PREV_INSN (insn); distance < Z10_PREDICT_DISTANCE - 6; distance += get_attr_length (cur_insn), cur_insn = PREV_INSN (cur_insn)) if (!cur_insn || JUMP_P (cur_insn) || LABEL_P (cur_insn)) return false; new_label = gen_label_rtx (); uncond_jump = emit_jump_insn_after ( gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_LABEL_REF (VOIDmode, code_label)), insn); emit_label_after (new_label, uncond_jump); tmp = XEXP (SET_SRC (set), 1); XEXP (SET_SRC (set), 1) = XEXP (SET_SRC (set), 2); XEXP (SET_SRC (set), 2) = tmp; INSN_CODE (insn) = -1; XEXP (label_ref, 0) = new_label; JUMP_LABEL (insn) = new_label; JUMP_LABEL (uncond_jump) = code_label; return true; } /* Returns 1 if INSN reads the value of REG for purposes not related to addressing of memory, and 0 otherwise. */ static int s390_non_addr_reg_read_p (rtx reg, rtx insn) { return reg_referenced_p (reg, PATTERN (insn)) && !reg_used_in_mem_p (REGNO (reg), PATTERN (insn)); } /* Starting from INSN find_cond_jump looks downwards in the insn stream for a single jump insn which is the last user of the condition code set in INSN. */ static rtx find_cond_jump (rtx insn) { for (; insn; insn = NEXT_INSN (insn)) { rtx ite, cc; if (LABEL_P (insn)) break; if (!JUMP_P (insn)) { if (reg_mentioned_p (gen_rtx_REG (CCmode, CC_REGNUM), insn)) break; continue; } /* This will be triggered by a return. */ if (GET_CODE (PATTERN (insn)) != SET) break; gcc_assert (SET_DEST (PATTERN (insn)) == pc_rtx); ite = SET_SRC (PATTERN (insn)); if (GET_CODE (ite) != IF_THEN_ELSE) break; cc = XEXP (XEXP (ite, 0), 0); if (!REG_P (cc) || !CC_REGNO_P (REGNO (cc))) break; if (find_reg_note (insn, REG_DEAD, cc)) return insn; break; } return NULL_RTX; } /* Swap the condition in COND and the operands in OP0 and OP1 so that the semantics does not change. If NULL_RTX is passed as COND the function tries to find the conditional jump starting with INSN. */ static void s390_swap_cmp (rtx cond, rtx *op0, rtx *op1, rtx insn) { rtx tmp = *op0; if (cond == NULL_RTX) { rtx jump = find_cond_jump (NEXT_INSN (insn)); jump = jump ? single_set (jump) : NULL_RTX; if (jump == NULL_RTX) return; cond = XEXP (XEXP (jump, 1), 0); } *op0 = *op1; *op1 = tmp; PUT_CODE (cond, swap_condition (GET_CODE (cond))); } /* On z10, instructions of the compare-and-branch family have the property to access the register occurring as second operand with its bits complemented. If such a compare is grouped with a second instruction that accesses the same register non-complemented, and if that register's value is delivered via a bypass, then the pipeline recycles, thereby causing significant performance decline. This function locates such situations and exchanges the two operands of the compare. The function return true whenever it added an insn. */ static bool s390_z10_optimize_cmp (rtx insn) { rtx prev_insn, next_insn; bool insn_added_p = false; rtx cond, *op0, *op1; if (GET_CODE (PATTERN (insn)) == PARALLEL) { /* Handle compare and branch and branch on count instructions. */ rtx pattern = single_set (insn); if (!pattern || SET_DEST (pattern) != pc_rtx || GET_CODE (SET_SRC (pattern)) != IF_THEN_ELSE) return false; cond = XEXP (SET_SRC (pattern), 0); op0 = &XEXP (cond, 0); op1 = &XEXP (cond, 1); } else if (GET_CODE (PATTERN (insn)) == SET) { rtx src, dest; /* Handle normal compare instructions. */ src = SET_SRC (PATTERN (insn)); dest = SET_DEST (PATTERN (insn)); if (!REG_P (dest) || !CC_REGNO_P (REGNO (dest)) || GET_CODE (src) != COMPARE) return false; /* s390_swap_cmp will try to find the conditional jump when passing NULL_RTX as condition. */ cond = NULL_RTX; op0 = &XEXP (src, 0); op1 = &XEXP (src, 1); } else return false; if (!REG_P (*op0) || !REG_P (*op1)) return false; if (GET_MODE_CLASS (GET_MODE (*op0)) != MODE_INT) return false; /* Swap the COMPARE arguments and its mask if there is a conflicting access in the previous insn. */ prev_insn = prev_active_insn (insn); if (prev_insn != NULL_RTX && INSN_P (prev_insn) && reg_referenced_p (*op1, PATTERN (prev_insn))) s390_swap_cmp (cond, op0, op1, insn); /* Check if there is a conflict with the next insn. If there was no conflict with the previous insn, then swap the COMPARE arguments and its mask. If we already swapped the operands, or if swapping them would cause a conflict with the previous insn, issue a NOP after the COMPARE in order to separate the two instuctions. */ next_insn = next_active_insn (insn); if (next_insn != NULL_RTX && INSN_P (next_insn) && s390_non_addr_reg_read_p (*op1, next_insn)) { if (prev_insn != NULL_RTX && INSN_P (prev_insn) && s390_non_addr_reg_read_p (*op0, prev_insn)) { if (REGNO (*op1) == 0) emit_insn_after (gen_nop1 (), insn); else emit_insn_after (gen_nop (), insn); insn_added_p = true; } else s390_swap_cmp (cond, op0, op1, insn); } return insn_added_p; } /* Perform machine-dependent processing. */ static void s390_reorg (void) { bool pool_overflow = false; /* Make sure all splits have been performed; splits after machine_dependent_reorg might confuse insn length counts. */ split_all_insns_noflow (); /* Install the main literal pool and the associated base register load insns. In addition, there are two problematic situations we need to correct: - the literal pool might be > 4096 bytes in size, so that some of its elements cannot be directly accessed - a branch target might be > 64K away from the branch, so that it is not possible to use a PC-relative instruction. To fix those, we split the single literal pool into multiple pool chunks, reloading the pool base register at various points throughout the function to ensure it always points to the pool chunk the following code expects, and / or replace PC-relative branches by absolute branches. However, the two problems are interdependent: splitting the literal pool can move a branch further away from its target, causing the 64K limit to overflow, and on the other hand, replacing a PC-relative branch by an absolute branch means we need to put the branch target address into the literal pool, possibly causing it to overflow. So, we loop trying to fix up both problems until we manage to satisfy both conditions at the same time. Note that the loop is guaranteed to terminate as every pass of the loop strictly decreases the total number of PC-relative branches in the function. (This is not completely true as there might be branch-over-pool insns introduced by chunkify_start. Those never need to be split however.) */ for (;;) { struct constant_pool *pool = NULL; /* Collect the literal pool. */ if (!pool_overflow) { pool = s390_mainpool_start (); if (!pool) pool_overflow = true; } /* If literal pool overflowed, start to chunkify it. */ if (pool_overflow) pool = s390_chunkify_start (); /* Split out-of-range branches. If this has created new literal pool entries, cancel current chunk list and recompute it. zSeries machines have large branch instructions, so we never need to split a branch. */ if (!TARGET_CPU_ZARCH && s390_split_branches ()) { if (pool_overflow) s390_chunkify_cancel (pool); else s390_mainpool_cancel (pool); continue; } /* If we made it up to here, both conditions are satisfied. Finish up literal pool related changes. */ if (pool_overflow) s390_chunkify_finish (pool); else s390_mainpool_finish (pool); /* We're done splitting branches. */ cfun->machine->split_branches_pending_p = false; break; } /* Generate out-of-pool execute target insns. */ if (TARGET_CPU_ZARCH) { rtx insn, label, target; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { label = s390_execute_label (insn); if (!label) continue; gcc_assert (label != const0_rtx); target = emit_label (XEXP (label, 0)); INSN_ADDRESSES_NEW (target, -1); target = emit_insn (s390_execute_target (insn)); INSN_ADDRESSES_NEW (target, -1); } } /* Try to optimize prologue and epilogue further. */ s390_optimize_prologue (); /* Walk over the insns and do some z10 specific changes. */ if (s390_tune == PROCESSOR_2097_Z10) { rtx insn; bool insn_added_p = false; /* The insn lengths and addresses have to be up to date for the following manipulations. */ shorten_branches (get_insns ()); for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (!INSN_P (insn) || INSN_CODE (insn) <= 0) continue; if (JUMP_P (insn)) insn_added_p |= s390_z10_fix_long_loop_prediction (insn); if (GET_CODE (PATTERN (insn)) == PARALLEL || GET_CODE (PATTERN (insn)) == SET) insn_added_p |= s390_z10_optimize_cmp (insn); } /* Adjust branches if we added new instructions. */ if (insn_added_p) shorten_branches (get_insns ()); } } /* Return true if INSN is a fp load insn writing register REGNO. */ static inline bool s390_fpload_toreg (rtx insn, unsigned int regno) { rtx set; enum attr_type flag = s390_safe_attr_type (insn); if (flag != TYPE_FLOADSF && flag != TYPE_FLOADDF) return false; set = single_set (insn); if (set == NULL_RTX) return false; if (!REG_P (SET_DEST (set)) || !MEM_P (SET_SRC (set))) return false; if (REGNO (SET_DEST (set)) != regno) return false; return true; } /* This value describes the distance to be avoided between an aritmetic fp instruction and an fp load writing the same register. Z10_EARLYLOAD_DISTANCE - 1 as well as Z10_EARLYLOAD_DISTANCE + 1 is fine but the exact value has to be avoided. Otherwise the FP pipeline will throw an exception causing a major penalty. */ #define Z10_EARLYLOAD_DISTANCE 7 /* Rearrange the ready list in order to avoid the situation described for Z10_EARLYLOAD_DISTANCE. A problematic load instruction is moved to the very end of the ready list. */ static void s390_z10_prevent_earlyload_conflicts (rtx *ready, int *nready_p) { unsigned int regno; int nready = *nready_p; rtx tmp; int i; rtx insn; rtx set; enum attr_type flag; int distance; /* Skip DISTANCE - 1 active insns. */ for (insn = last_scheduled_insn, distance = Z10_EARLYLOAD_DISTANCE - 1; distance > 0 && insn != NULL_RTX; distance--, insn = prev_active_insn (insn)) if (CALL_P (insn) || JUMP_P (insn)) return; if (insn == NULL_RTX) return; set = single_set (insn); if (set == NULL_RTX || !REG_P (SET_DEST (set)) || GET_MODE_CLASS (GET_MODE (SET_DEST (set))) != MODE_FLOAT) return; flag = s390_safe_attr_type (insn); if (flag == TYPE_FLOADSF || flag == TYPE_FLOADDF) return; regno = REGNO (SET_DEST (set)); i = nready - 1; while (!s390_fpload_toreg (ready[i], regno) && i > 0) i--; if (!i) return; tmp = ready[i]; memmove (&ready[1], &ready[0], sizeof (rtx) * i); ready[0] = tmp; } /* This function is called via hook TARGET_SCHED_REORDER before issueing one insn from list READY which contains *NREADYP entries. For target z10 it reorders load instructions to avoid early load conflicts in the floating point pipeline */ static int s390_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED, rtx *ready, int *nreadyp, int clock ATTRIBUTE_UNUSED) { if (s390_tune == PROCESSOR_2097_Z10) if (reload_completed && *nreadyp > 1) s390_z10_prevent_earlyload_conflicts (ready, nreadyp); return s390_issue_rate (); } /* This function is called via hook TARGET_SCHED_VARIABLE_ISSUE after the scheduler has issued INSN. It stores the last issued insn into last_scheduled_insn in order to make it available for s390_sched_reorder. */ static int s390_sched_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED, rtx insn, int more) { last_scheduled_insn = insn; if (GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER) return more - 1; else return more; } static void s390_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED, int max_ready ATTRIBUTE_UNUSED) { last_scheduled_insn = NULL_RTX; } /* Initialize GCC target structure. */ #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t" #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t" #undef TARGET_ASM_INTEGER #define TARGET_ASM_INTEGER s390_assemble_integer #undef TARGET_ASM_OPEN_PAREN #define TARGET_ASM_OPEN_PAREN "" #undef TARGET_ASM_CLOSE_PAREN #define TARGET_ASM_CLOSE_PAREN "" #undef TARGET_DEFAULT_TARGET_FLAGS #define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | MASK_FUSED_MADD) #undef TARGET_HANDLE_OPTION #define TARGET_HANDLE_OPTION s390_handle_option #undef TARGET_ENCODE_SECTION_INFO #define TARGET_ENCODE_SECTION_INFO s390_encode_section_info #ifdef HAVE_AS_TLS #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS true #endif #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM s390_cannot_force_const_mem #undef TARGET_DELEGITIMIZE_ADDRESS #define TARGET_DELEGITIMIZE_ADDRESS s390_delegitimize_address #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS s390_legitimize_address #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY s390_return_in_memory #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS s390_init_builtins #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN s390_expand_builtin #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK s390_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true #undef TARGET_SCHED_ADJUST_PRIORITY #define TARGET_SCHED_ADJUST_PRIORITY s390_adjust_priority #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE s390_issue_rate #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD s390_first_cycle_multipass_dfa_lookahead #undef TARGET_SCHED_VARIABLE_ISSUE #define TARGET_SCHED_VARIABLE_ISSUE s390_sched_variable_issue #undef TARGET_SCHED_REORDER #define TARGET_SCHED_REORDER s390_sched_reorder #undef TARGET_SCHED_INIT #define TARGET_SCHED_INIT s390_sched_init #undef TARGET_CANNOT_COPY_INSN_P #define TARGET_CANNOT_COPY_INSN_P s390_cannot_copy_insn_p #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS s390_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST s390_address_cost #undef TARGET_MACHINE_DEPENDENT_REORG #define TARGET_MACHINE_DEPENDENT_REORG s390_reorg #undef TARGET_VALID_POINTER_MODE #define TARGET_VALID_POINTER_MODE s390_valid_pointer_mode #undef TARGET_BUILD_BUILTIN_VA_LIST #define TARGET_BUILD_BUILTIN_VA_LIST s390_build_builtin_va_list #undef TARGET_EXPAND_BUILTIN_VA_START #define TARGET_EXPAND_BUILTIN_VA_START s390_va_start #undef TARGET_GIMPLIFY_VA_ARG_EXPR #define TARGET_GIMPLIFY_VA_ARG_EXPR s390_gimplify_va_arg #undef TARGET_PROMOTE_FUNCTION_MODE #define TARGET_PROMOTE_FUNCTION_MODE s390_promote_function_mode #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE s390_pass_by_reference #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL s390_function_ok_for_sibcall #undef TARGET_FIXED_CONDITION_CODE_REGS #define TARGET_FIXED_CONDITION_CODE_REGS s390_fixed_condition_code_regs #undef TARGET_CC_MODES_COMPATIBLE #define TARGET_CC_MODES_COMPATIBLE s390_cc_modes_compatible #undef TARGET_INVALID_WITHIN_DOLOOP #define TARGET_INVALID_WITHIN_DOLOOP hook_constcharptr_const_rtx_null #ifdef HAVE_AS_TLS #undef TARGET_ASM_OUTPUT_DWARF_DTPREL #define TARGET_ASM_OUTPUT_DWARF_DTPREL s390_output_dwarf_dtprel #endif #ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING #undef TARGET_MANGLE_TYPE #define TARGET_MANGLE_TYPE s390_mangle_type #endif #undef TARGET_SCALAR_MODE_SUPPORTED_P #define TARGET_SCALAR_MODE_SUPPORTED_P s390_scalar_mode_supported_p #undef TARGET_SECONDARY_RELOAD #define TARGET_SECONDARY_RELOAD s390_secondary_reload #undef TARGET_LIBGCC_CMP_RETURN_MODE #define TARGET_LIBGCC_CMP_RETURN_MODE s390_libgcc_cmp_return_mode #undef TARGET_LIBGCC_SHIFT_COUNT_MODE #define TARGET_LIBGCC_SHIFT_COUNT_MODE s390_libgcc_shift_count_mode #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P s390_legitimate_address_p #undef TARGET_CAN_ELIMINATE #define TARGET_CAN_ELIMINATE s390_can_eliminate #undef TARGET_ASM_TRAMPOLINE_TEMPLATE #define TARGET_ASM_TRAMPOLINE_TEMPLATE s390_asm_trampoline_template #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT s390_trampoline_init struct gcc_target targetm = TARGET_INITIALIZER; #include "gt-s390.h"
Go to most recent revision | Compare with Previous | Blame | View Log