URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [config/] [score/] [score7.c] - Rev 282
Compare with Previous | Blame | View Log
/* score7.c for Sunplus S+CORE processor Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc. Contributed by Sunnorth This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-attr.h" #include "recog.h" #include "toplev.h" #include "output.h" #include "tree.h" #include "function.h" #include "expr.h" #include "optabs.h" #include "flags.h" #include "reload.h" #include "tm_p.h" #include "ggc.h" #include "gstab.h" #include "hashtab.h" #include "debug.h" #include "target.h" #include "target-def.h" #include "integrate.h" #include "langhooks.h" #include "cfglayout.h" #include "score7.h" #include "df.h" #define BITSET_P(VALUE, BIT) (((VALUE) & (1L << (BIT))) != 0) #define INS_BUF_SZ 128 extern enum reg_class score_char_to_class[256]; static int score7_sdata_max; static char score7_ins[INS_BUF_SZ + 8]; /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points to the same object as SYMBOL. */ static int score7_offset_within_object_p (rtx symbol, HOST_WIDE_INT offset) { if (GET_CODE (symbol) != SYMBOL_REF) return 0; if (CONSTANT_POOL_ADDRESS_P (symbol) && offset >= 0 && offset < (int)GET_MODE_SIZE (get_pool_mode (symbol))) return 1; if (SYMBOL_REF_DECL (symbol) != 0 && offset >= 0 && offset < int_size_in_bytes (TREE_TYPE (SYMBOL_REF_DECL (symbol)))) return 1; return 0; } /* Split X into a base and a constant offset, storing them in *BASE and *OFFSET respectively. */ static void score7_split_const (rtx x, rtx *base, HOST_WIDE_INT *offset) { *offset = 0; if (GET_CODE (x) == CONST) x = XEXP (x, 0); if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT) { *offset += INTVAL (XEXP (x, 1)); x = XEXP (x, 0); } *base = x; } /* Classify symbol X, which must be a SYMBOL_REF or a LABEL_REF. */ static enum score_symbol_type score7_classify_symbol (rtx x) { if (GET_CODE (x) == LABEL_REF) return SYMBOL_GENERAL; gcc_assert (GET_CODE (x) == SYMBOL_REF); if (CONSTANT_POOL_ADDRESS_P (x)) { if (GET_MODE_SIZE (get_pool_mode (x)) <= SCORE7_SDATA_MAX) return SYMBOL_SMALL_DATA; return SYMBOL_GENERAL; } if (SYMBOL_REF_SMALL_P (x)) return SYMBOL_SMALL_DATA; return SYMBOL_GENERAL; } /* Return true if the current function must save REGNO. */ static int score7_save_reg_p (unsigned int regno) { /* Check call-saved registers. */ if (df_regs_ever_live_p (regno) && !call_used_regs[regno]) return 1; /* We need to save the old frame pointer before setting up a new one. */ if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) return 1; /* We need to save the incoming return address if it is ever clobbered within the function. */ if (regno == RA_REGNUM && df_regs_ever_live_p (regno)) return 1; return 0; } /* Return one word of double-word value OP, taking into account the fixed endianness of certain registers. HIGH_P is true to select the high part, false to select the low part. */ static rtx score7_subw (rtx op, int high_p) { unsigned int byte; enum machine_mode mode = GET_MODE (op); if (mode == VOIDmode) mode = DImode; byte = (TARGET_LITTLE_ENDIAN ? high_p : !high_p) ? UNITS_PER_WORD : 0; if (GET_CODE (op) == REG && REGNO (op) == HI_REGNUM) return gen_rtx_REG (SImode, high_p ? HI_REGNUM : LO_REGNUM); if (GET_CODE (op) == MEM) return adjust_address (op, SImode, byte); return simplify_gen_subreg (SImode, op, mode, byte); } static struct score7_frame_info * score7_cached_frame (void) { static struct score7_frame_info _frame_info; return &_frame_info; } /* Return the bytes needed to compute the frame pointer from the current stack pointer. SIZE is the size (in bytes) of the local variables. */ static struct score7_frame_info * score7_compute_frame_size (HOST_WIDE_INT size) { unsigned int regno; struct score7_frame_info *f = score7_cached_frame (); memset (f, 0, sizeof (struct score7_frame_info)); f->gp_reg_size = 0; f->mask = 0; f->var_size = SCORE7_STACK_ALIGN (size); f->args_size = crtl->outgoing_args_size; f->cprestore_size = flag_pic ? UNITS_PER_WORD : 0; if (f->var_size == 0 && current_function_is_leaf) f->args_size = f->cprestore_size = 0; if (f->args_size == 0 && cfun->calls_alloca) f->args_size = UNITS_PER_WORD; f->total_size = f->var_size + f->args_size + f->cprestore_size; for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) { if (score7_save_reg_p (regno)) { f->gp_reg_size += GET_MODE_SIZE (SImode); f->mask |= 1 << (regno - GP_REG_FIRST); } } if (crtl->calls_eh_return) { unsigned int i; for (i = 0;; ++i) { regno = EH_RETURN_DATA_REGNO (i); if (regno == INVALID_REGNUM) break; f->gp_reg_size += GET_MODE_SIZE (SImode); f->mask |= 1 << (regno - GP_REG_FIRST); } } f->total_size += f->gp_reg_size; f->num_gp = f->gp_reg_size / UNITS_PER_WORD; if (f->mask) { HOST_WIDE_INT offset; offset = (f->args_size + f->cprestore_size + f->var_size + f->gp_reg_size - GET_MODE_SIZE (SImode)); f->gp_sp_offset = offset; } else f->gp_sp_offset = 0; return f; } /* Return true if X is a valid base register for the given mode. Allow only hard registers if STRICT. */ static int score7_valid_base_register_p (rtx x, int strict) { if (!strict && GET_CODE (x) == SUBREG) x = SUBREG_REG (x); return (GET_CODE (x) == REG && score7_regno_mode_ok_for_base_p (REGNO (x), strict)); } /* Return true if X is a valid address for machine mode MODE. If it is, fill in INFO appropriately. STRICT is true if we should only accept hard base registers. */ static int score7_classify_address (struct score7_address_info *info, enum machine_mode mode, rtx x, int strict) { info->code = GET_CODE (x); switch (info->code) { case REG: case SUBREG: info->type = SCORE7_ADD_REG; info->reg = x; info->offset = const0_rtx; return score7_valid_base_register_p (info->reg, strict); case PLUS: info->type = SCORE7_ADD_REG; info->reg = XEXP (x, 0); info->offset = XEXP (x, 1); return (score7_valid_base_register_p (info->reg, strict) && GET_CODE (info->offset) == CONST_INT && IMM_IN_RANGE (INTVAL (info->offset), 15, 1)); case PRE_DEC: case POST_DEC: case PRE_INC: case POST_INC: if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (SImode)) return false; info->type = SCORE7_ADD_REG; info->reg = XEXP (x, 0); info->offset = GEN_INT (GET_MODE_SIZE (mode)); return score7_valid_base_register_p (info->reg, strict); case CONST_INT: info->type = SCORE7_ADD_CONST_INT; return IMM_IN_RANGE (INTVAL (x), 15, 1); case CONST: case LABEL_REF: case SYMBOL_REF: info->type = SCORE7_ADD_SYMBOLIC; return (score7_symbolic_constant_p (x, &info->symbol_type) && (info->symbol_type == SYMBOL_GENERAL || info->symbol_type == SYMBOL_SMALL_DATA)); default: return 0; } } bool score7_return_in_memory (tree type, tree fndecl ATTRIBUTE_UNUSED) { return ((TYPE_MODE (type) == BLKmode) || (int_size_in_bytes (type) > 2 * UNITS_PER_WORD) || (int_size_in_bytes (type) == -1)); } /* Return a legitimate address for REG + OFFSET. */ static rtx score7_add_offset (rtx reg, HOST_WIDE_INT offset) { if (!IMM_IN_RANGE (offset, 15, 1)) { reg = expand_simple_binop (GET_MODE (reg), PLUS, gen_int_mode (offset & 0xffffc000, GET_MODE (reg)), reg, NULL, 0, OPTAB_WIDEN); offset &= 0x3fff; } return plus_constant (reg, offset); } /* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text in order to avoid duplicating too much logic from elsewhere. */ void score7_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function) { rtx this_rtx, temp1, insn, fnaddr; /* Pretend to be a post-reload pass while generating rtl. */ reload_completed = 1; /* Mark the end of the (empty) prologue. */ emit_note (NOTE_INSN_PROLOGUE_END); /* We need two temporary registers in some cases. */ temp1 = gen_rtx_REG (Pmode, 8); /* Find out which register contains the "this" pointer. */ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)) this_rtx = gen_rtx_REG (Pmode, ARG_REG_FIRST + 1); else this_rtx = gen_rtx_REG (Pmode, ARG_REG_FIRST); /* Add DELTA to THIS_RTX. */ if (delta != 0) { rtx offset = GEN_INT (delta); if (!CONST_OK_FOR_LETTER_P (delta, 'L')) { emit_move_insn (temp1, offset); offset = temp1; } emit_insn (gen_add3_insn (this_rtx, this_rtx, offset)); } /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */ if (vcall_offset != 0) { rtx addr; /* Set TEMP1 to *THIS_RTX. */ emit_move_insn (temp1, gen_rtx_MEM (Pmode, this_rtx)); /* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */ addr = score7_add_offset (temp1, vcall_offset); /* Load the offset and add it to THIS_RTX. */ emit_move_insn (temp1, gen_rtx_MEM (Pmode, addr)); emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1)); } /* Jump to the target function. */ fnaddr = XEXP (DECL_RTL (function), 0); insn = emit_call_insn (gen_sibcall_internal_score7 (fnaddr, const0_rtx)); SIBLING_CALL_P (insn) = 1; /* Run just enough of rest_of_compilation. This sequence was "borrowed" from alpha.c. */ insn = get_insns (); insn_locators_alloc (); split_all_insns_noflow (); shorten_branches (insn); final_start_function (insn, file, 1); final (insn, file, 1); final_end_function (); /* Clean up the vars set above. Note that final_end_function resets the global pointer for us. */ reload_completed = 0; } /* Copy VALUE to a register and return that register. If new psuedos are allowed, copy it into a new register, otherwise use DEST. */ static rtx score7_force_temporary (rtx dest, rtx value) { if (can_create_pseudo_p ()) return force_reg (Pmode, value); else { emit_move_insn (copy_rtx (dest), value); return dest; } } /* Return a LO_SUM expression for ADDR. TEMP is as for score_force_temporary and is used to load the high part into a register. */ static rtx score7_split_symbol (rtx temp, rtx addr) { rtx high = score7_force_temporary (temp, gen_rtx_HIGH (Pmode, copy_rtx (addr))); return gen_rtx_LO_SUM (Pmode, high, addr); } /* This function is used to implement LEGITIMIZE_ADDRESS. If X can be legitimized in a way that the generic machinery might not expect, return the new address. */ rtx score7_legitimize_address (rtx x) { enum score_symbol_type symbol_type; if (score7_symbolic_constant_p (x, &symbol_type) && symbol_type == SYMBOL_GENERAL) return score7_split_symbol (0, x); if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT) { rtx reg = XEXP (x, 0); if (!score7_valid_base_register_p (reg, 0)) reg = copy_to_mode_reg (Pmode, reg); return score7_add_offset (reg, INTVAL (XEXP (x, 1))); } return x; } /* Fill INFO with information about a single argument. CUM is the cumulative state for earlier arguments. MODE is the mode of this argument and TYPE is its type (if known). NAMED is true if this is a named (fixed) argument rather than a variable one. */ static void score7_classify_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, int named, struct score7_arg_info *info) { int even_reg_p; unsigned int num_words, max_regs; even_reg_p = 0; if (GET_MODE_CLASS (mode) == MODE_INT || GET_MODE_CLASS (mode) == MODE_FLOAT) even_reg_p = (GET_MODE_SIZE (mode) > UNITS_PER_WORD); else if (type != NULL_TREE && TYPE_ALIGN (type) > BITS_PER_WORD && named) even_reg_p = 1; if (TARGET_MUST_PASS_IN_STACK (mode, type)) info->reg_offset = ARG_REG_NUM; else { info->reg_offset = cum->num_gprs; if (even_reg_p) info->reg_offset += info->reg_offset & 1; } if (mode == BLKmode) info->num_bytes = int_size_in_bytes (type); else info->num_bytes = GET_MODE_SIZE (mode); num_words = (info->num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; max_regs = ARG_REG_NUM - info->reg_offset; /* Partition the argument between registers and stack. */ info->reg_words = MIN (num_words, max_regs); info->stack_words = num_words - info->reg_words; /* The alignment applied to registers is also applied to stack arguments. */ if (info->stack_words) { info->stack_offset = cum->stack_words; if (even_reg_p) info->stack_offset += info->stack_offset & 1; } } /* Set up the stack and frame (if desired) for the function. */ void score7_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { const char *fnname; struct score7_frame_info *f = score7_cached_frame (); HOST_WIDE_INT tsize = f->total_size; fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); if (!flag_inhibit_size_directive) { fputs ("\t.ent\t", file); assemble_name (file, fnname); fputs ("\n", file); } assemble_name (file, fnname); fputs (":\n", file); if (!flag_inhibit_size_directive) { fprintf (file, "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s, %d\t\t" "# vars= " HOST_WIDE_INT_PRINT_DEC ", regs= %d" ", args= " HOST_WIDE_INT_PRINT_DEC ", gp= " HOST_WIDE_INT_PRINT_DEC "\n", (reg_names[(frame_pointer_needed) ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM]), tsize, reg_names[RA_REGNUM], current_function_is_leaf ? 1 : 0, f->var_size, f->num_gp, f->args_size, f->cprestore_size); fprintf(file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n", f->mask, (f->gp_sp_offset - f->total_size)); } } /* Do any necessary cleanup after a function to restore stack, frame, and regs. */ void score7_function_epilogue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { if (!flag_inhibit_size_directive) { const char *fnname; fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); fputs ("\t.end\t", file); assemble_name (file, fnname); fputs ("\n", file); } } /* Returns true if X contains a SYMBOL_REF. */ static bool score7_symbolic_expression_p (rtx x) { if (GET_CODE (x) == SYMBOL_REF) return true; if (GET_CODE (x) == CONST) return score7_symbolic_expression_p (XEXP (x, 0)); if (UNARY_P (x)) return score7_symbolic_expression_p (XEXP (x, 0)); if (ARITHMETIC_P (x)) return (score7_symbolic_expression_p (XEXP (x, 0)) || score7_symbolic_expression_p (XEXP (x, 1))); return false; } /* Choose the section to use for the constant rtx expression X that has mode MODE. */ section * score7_select_rtx_section (enum machine_mode mode, rtx x, unsigned HOST_WIDE_INT align) { if (GET_MODE_SIZE (mode) <= SCORE7_SDATA_MAX) return get_named_section (0, ".sdata", 0); else if (flag_pic && score7_symbolic_expression_p (x)) return get_named_section (0, ".data.rel.ro", 3); else return mergeable_constant_section (mode, align, 0); } /* Implement TARGET_IN_SMALL_DATA_P. */ bool score7_in_small_data_p (tree decl) { HOST_WIDE_INT size; if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL) return false; if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0) { const char *name; name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl)); if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0) return true; if (!DECL_EXTERNAL (decl)) return false; } size = int_size_in_bytes (TREE_TYPE (decl)); return (size > 0 && size <= SCORE7_SDATA_MAX); } /* Implement TARGET_ASM_FILE_START. */ void score7_asm_file_start (void) { default_file_start (); fprintf (asm_out_file, ASM_COMMENT_START "GCC for S+core %s \n", SCORE_GCC_VERSION); if (flag_pic) fprintf (asm_out_file, "\t.set pic\n"); } /* Implement TARGET_ASM_FILE_END. When using assembler macros, emit .externs for any small-data variables that turned out to be external. */ void score7_asm_file_end (void) { tree name_tree; struct extern_list *p; if (extern_head) { fputs ("\n", asm_out_file); for (p = extern_head; p != 0; p = p->next) { name_tree = get_identifier (p->name); if (!TREE_ASM_WRITTEN (name_tree) && TREE_SYMBOL_REFERENCED (name_tree)) { TREE_ASM_WRITTEN (name_tree) = 1; fputs ("\t.extern\t", asm_out_file); assemble_name (asm_out_file, p->name); fprintf (asm_out_file, ", %d\n", p->size); } } } } /* Implement OVERRIDE_OPTIONS macro. */ void score7_override_options (void) { flag_pic = false; if (!flag_pic) score7_sdata_max = g_switch_set ? g_switch_value : SCORE7_DEFAULT_SDATA_MAX; else { score7_sdata_max = 0; if (g_switch_set && (g_switch_value != 0)) warning (0, "-fPIC and -G are incompatible"); } score_char_to_class['d'] = G32_REGS; score_char_to_class['e'] = G16_REGS; score_char_to_class['t'] = T32_REGS; score_char_to_class['h'] = HI_REG; score_char_to_class['l'] = LO_REG; score_char_to_class['x'] = CE_REGS; score_char_to_class['q'] = CN_REG; score_char_to_class['y'] = LC_REG; score_char_to_class['z'] = SC_REG; score_char_to_class['a'] = SP_REGS; score_char_to_class['c'] = CR_REGS; } /* Implement REGNO_REG_CLASS macro. */ int score7_reg_class (int regno) { int c; gcc_assert (regno >= 0 && regno < FIRST_PSEUDO_REGISTER); if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM) return ALL_REGS; for (c = 0; c < N_REG_CLASSES; c++) if (TEST_HARD_REG_BIT (reg_class_contents[c], regno)) return c; return NO_REGS; } /* Implement PREFERRED_RELOAD_CLASS macro. */ enum reg_class score7_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, enum reg_class rclass) { if (reg_class_subset_p (G16_REGS, rclass)) return G16_REGS; if (reg_class_subset_p (G32_REGS, rclass)) return G32_REGS; return rclass; } /* Implement SECONDARY_INPUT_RELOAD_CLASS and SECONDARY_OUTPUT_RELOAD_CLASS macro. */ enum reg_class score7_secondary_reload_class (enum reg_class rclass, enum machine_mode mode ATTRIBUTE_UNUSED, rtx x) { int regno = -1; if (GET_CODE (x) == REG || GET_CODE(x) == SUBREG) regno = true_regnum (x); if (!GR_REG_CLASS_P (rclass)) return GP_REG_P (regno) ? NO_REGS : G32_REGS; return NO_REGS; } /* Implement CONST_OK_FOR_LETTER_P macro. */ /* imm constraints I imm16 << 16 J uimm5 K uimm16 L simm16 M uimm14 N simm14 */ int score7_const_ok_for_letter_p (HOST_WIDE_INT value, char c) { switch (c) { case 'I': return ((value & 0xffff) == 0); case 'J': return IMM_IN_RANGE (value, 5, 0); case 'K': return IMM_IN_RANGE (value, 16, 0); case 'L': return IMM_IN_RANGE (value, 16, 1); case 'M': return IMM_IN_RANGE (value, 14, 0); case 'N': return IMM_IN_RANGE (value, 14, 1); default : return 0; } } /* Implement EXTRA_CONSTRAINT macro. */ /* Z symbol_ref */ int score7_extra_constraint (rtx op, char c) { switch (c) { case 'Z': return GET_CODE (op) == SYMBOL_REF; default: gcc_unreachable (); } } /* Return truth value on whether or not a given hard register can support a given mode. */ int score7_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode) { int size = GET_MODE_SIZE (mode); enum mode_class mclass = GET_MODE_CLASS (mode); if (mclass == MODE_CC) return regno == CC_REGNUM; else if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM) return mclass == MODE_INT; else if (GP_REG_P (regno)) /* ((regno <= (GP_REG_LAST- HARD_REGNO_NREGS (dummy, mode)) + 1) */ return !(regno & 1) || (size <= UNITS_PER_WORD); else if (CE_REG_P (regno)) return (mclass == MODE_INT && ((size <= UNITS_PER_WORD) || (regno == CE_REG_FIRST && size == 2 * UNITS_PER_WORD))); else return (mclass == MODE_INT) && (size <= UNITS_PER_WORD); } /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer or argument pointer. TO is either the stack pointer or hard frame pointer. */ HOST_WIDE_INT score7_initial_elimination_offset (int from, int to ATTRIBUTE_UNUSED) { struct score7_frame_info *f = score7_compute_frame_size (get_frame_size ()); switch (from) { case ARG_POINTER_REGNUM: return f->total_size; case FRAME_POINTER_REGNUM: return 0; default: gcc_unreachable (); } } /* Implement FUNCTION_ARG_ADVANCE macro. */ void score7_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, int named) { struct score7_arg_info info; score7_classify_arg (cum, mode, type, named, &info); cum->num_gprs = info.reg_offset + info.reg_words; if (info.stack_words > 0) cum->stack_words = info.stack_offset + info.stack_words; cum->arg_number++; } /* Implement TARGET_ARG_PARTIAL_BYTES macro. */ int score7_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, bool named) { struct score7_arg_info info; score7_classify_arg (cum, mode, type, named, &info); return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0; } /* Implement FUNCTION_ARG macro. */ rtx score7_function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, int named) { struct score7_arg_info info; if (mode == VOIDmode || !named) return 0; score7_classify_arg (cum, mode, type, named, &info); if (info.reg_offset == ARG_REG_NUM) return 0; if (!info.stack_words) return gen_rtx_REG (mode, ARG_REG_FIRST + info.reg_offset); else { rtx ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words)); unsigned int i, part_offset = 0; for (i = 0; i < info.reg_words; i++) { rtx reg; reg = gen_rtx_REG (SImode, ARG_REG_FIRST + info.reg_offset + i); XVECEXP (ret, 0, i) = gen_rtx_EXPR_LIST (SImode, reg, GEN_INT (part_offset)); part_offset += UNITS_PER_WORD; } return ret; } } /* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls, VALTYPE is the return type and MODE is VOIDmode. For libcalls, VALTYPE is null and MODE is the mode of the return value. */ rtx score7_function_value (tree valtype, tree func, enum machine_mode mode) { if (valtype) { int unsignedp; mode = TYPE_MODE (valtype); unsignedp = TYPE_UNSIGNED (valtype); mode = promote_function_mode (valtype, mode, &unsignedp, func, 1); } return gen_rtx_REG (mode, RT_REGNUM); } /* Implement TARGET_ASM_TRAMPOLINE_TEMPLATE. */ void score7_asm_trampoline_template (FILE *f) { fprintf (f, "\t.set r1\n"); fprintf (f, "\tmv r31, r3\n"); fprintf (f, "\tbl nextinsn\n"); fprintf (f, "nextinsn:\n"); fprintf (f, "\tlw r1, [r3, 6*4-8]\n"); fprintf (f, "\tlw r23, [r3, 6*4-4]\n"); fprintf (f, "\tmv r3, r31\n"); fprintf (f, "\tbr! r1\n"); fprintf (f, "\tnop!\n"); fprintf (f, "\t.set nor1\n"); } /* Implement TARGET_TRAMPOLINE_INIT. */ void score7_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) { #define FFCACHE "_flush_cache" #define CODE_SIZE (TRAMPOLINE_INSNS * UNITS_PER_WORD) rtx fnaddr = XEXP (DECL_RTL (fndecl), 0); rtx addr = XEXP (m_tramp, 0); rtx mem; emit_block_move (m_tramp, assemble_trampoline_template (), GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL); mem = adjust_address (m_tramp, SImode, CODE_SIZE); emit_move_insn (mem, fnaddr); mem = adjust_address (m_tramp, SImode, CODE_SIZE + GET_MODE_SIZE (SImode)); emit_move_insn (mem, chain_value); emit_library_call (gen_rtx_SYMBOL_REF (Pmode, FFCACHE), 0, VOIDmode, 2, addr, Pmode, GEN_INT (TRAMPOLINE_SIZE), SImode); #undef FFCACHE #undef CODE_SIZE } /* This function is used to implement REG_MODE_OK_FOR_BASE_P macro. */ int score7_regno_mode_ok_for_base_p (int regno, int strict) { if (regno >= FIRST_PSEUDO_REGISTER) { if (!strict) return 1; regno = reg_renumber[regno]; } if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM) return 1; return GP_REG_P (regno); } /* Implement TARGET_LEGITIMATE_ADDRESS_P macro. */ bool score7_legitimate_address_p (enum machine_mode mode, rtx x, bool strict) { struct score7_address_info addr; return score7_classify_address (&addr, mode, x, strict); } /* Return a number assessing the cost of moving a register in class FROM to class TO. */ int score7_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED, enum reg_class from, enum reg_class to) { if (GR_REG_CLASS_P (from)) { if (GR_REG_CLASS_P (to)) return 2; else if (SP_REG_CLASS_P (to)) return 4; else if (CP_REG_CLASS_P (to)) return 5; else if (CE_REG_CLASS_P (to)) return 6; } if (GR_REG_CLASS_P (to)) { if (GR_REG_CLASS_P (from)) return 2; else if (SP_REG_CLASS_P (from)) return 4; else if (CP_REG_CLASS_P (from)) return 5; else if (CE_REG_CLASS_P (from)) return 6; } return 12; } /* Return the number of instructions needed to load a symbol of the given type into a register. */ static int score7_symbol_insns (enum score_symbol_type type) { switch (type) { case SYMBOL_GENERAL: return 2; case SYMBOL_SMALL_DATA: return 1; } gcc_unreachable (); } /* Return the number of instructions needed to load or store a value of mode MODE at X. Return 0 if X isn't valid for MODE. */ static int score7_address_insns (rtx x, enum machine_mode mode) { struct score7_address_info addr; int factor; if (mode == BLKmode) factor = 1; else factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; if (score7_classify_address (&addr, mode, x, false)) switch (addr.type) { case SCORE7_ADD_REG: case SCORE7_ADD_CONST_INT: return factor; case SCORE7_ADD_SYMBOLIC: return factor * score7_symbol_insns (addr.symbol_type); } return 0; } /* Implement TARGET_RTX_COSTS macro. */ bool score7_rtx_costs (rtx x, int code, int outer_code, int *total, bool speed ATTRIBUTE_UNUSED) { enum machine_mode mode = GET_MODE (x); switch (code) { case CONST_INT: if (outer_code == SET) { if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I') || CONST_OK_FOR_LETTER_P (INTVAL (x), 'L')) *total = COSTS_N_INSNS (1); else *total = COSTS_N_INSNS (2); } else if (outer_code == PLUS || outer_code == MINUS) { if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'N')) *total = 0; else if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I') || CONST_OK_FOR_LETTER_P (INTVAL (x), 'L')) *total = 1; else *total = COSTS_N_INSNS (2); } else if (outer_code == AND || outer_code == IOR) { if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'M')) *total = 0; else if (CONST_OK_FOR_LETTER_P (INTVAL (x), 'I') || CONST_OK_FOR_LETTER_P (INTVAL (x), 'K')) *total = 1; else *total = COSTS_N_INSNS (2); } else { *total = 0; } return true; case CONST: case SYMBOL_REF: case LABEL_REF: case CONST_DOUBLE: *total = COSTS_N_INSNS (2); return true; case MEM: { /* If the address is legitimate, return the number of instructions it needs, otherwise use the default handling. */ int n = score7_address_insns (XEXP (x, 0), GET_MODE (x)); if (n > 0) { *total = COSTS_N_INSNS (n + 1); return true; } return false; } case FFS: *total = COSTS_N_INSNS (6); return true; case NOT: *total = COSTS_N_INSNS (1); return true; case AND: case IOR: case XOR: if (mode == DImode) { *total = COSTS_N_INSNS (2); return true; } return false; case ASHIFT: case ASHIFTRT: case LSHIFTRT: if (mode == DImode) { *total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT) ? 4 : 12); return true; } return false; case ABS: *total = COSTS_N_INSNS (4); return true; case PLUS: case MINUS: if (mode == DImode) { *total = COSTS_N_INSNS (4); return true; } *total = COSTS_N_INSNS (1); return true; case NEG: if (mode == DImode) { *total = COSTS_N_INSNS (4); return true; } return false; case MULT: *total = optimize_size ? COSTS_N_INSNS (2) : COSTS_N_INSNS (12); return true; case DIV: case MOD: case UDIV: case UMOD: *total = optimize_size ? COSTS_N_INSNS (2) : COSTS_N_INSNS (33); return true; case SIGN_EXTEND: case ZERO_EXTEND: switch (GET_MODE (XEXP (x, 0))) { case QImode: case HImode: if (GET_CODE (XEXP (x, 0)) == MEM) { *total = COSTS_N_INSNS (2); if (!TARGET_LITTLE_ENDIAN && side_effects_p (XEXP (XEXP (x, 0), 0))) *total = 100; } else *total = COSTS_N_INSNS (1); break; default: *total = COSTS_N_INSNS (1); break; } return true; default: return false; } } /* Implement TARGET_ADDRESS_COST macro. */ int score7_address_cost (rtx addr) { return score7_address_insns (addr, SImode); } /* Implement ASM_OUTPUT_EXTERNAL macro. */ int score7_output_external (FILE *file ATTRIBUTE_UNUSED, tree decl, const char *name) { register struct extern_list *p; if (score7_in_small_data_p (decl)) { p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list)); p->next = extern_head; p->name = name; p->size = int_size_in_bytes (TREE_TYPE (decl)); extern_head = p; } return 0; } /* Implement RETURN_ADDR_RTX. Note, we do not support moving back to a previous frame. */ rtx score7_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) { if (count != 0) return const0_rtx; return get_hard_reg_initial_val (Pmode, RA_REGNUM); } /* Implement PRINT_OPERAND macro. */ /* Score-specific operand codes: '[' print .set nor1 directive ']' print .set r1 directive 'U' print hi part of a CONST_INT rtx 'E' print log2(v) 'F' print log2(~v) 'D' print SFmode const double 'S' selectively print "!" if operand is 15bit instruction accessible 'V' print "v!" if operand is 15bit instruction accessible, or "lfh!" 'L' low part of DImode reg operand 'H' high part of DImode reg operand 'C' print part of opcode for a branch condition. */ void score7_print_operand (FILE *file, rtx op, int c) { enum rtx_code code = -1; if (!PRINT_OPERAND_PUNCT_VALID_P (c)) code = GET_CODE (op); if (c == '[') { fprintf (file, ".set r1\n"); } else if (c == ']') { fprintf (file, "\n\t.set nor1"); } else if (c == 'U') { gcc_assert (code == CONST_INT); fprintf (file, HOST_WIDE_INT_PRINT_HEX, (INTVAL (op) >> 16) & 0xffff); } else if (c == 'D') { if (GET_CODE (op) == CONST_DOUBLE) { rtx temp = gen_lowpart (SImode, op); gcc_assert (GET_MODE (op) == SFmode); fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (temp) & 0xffffffff); } else output_addr_const (file, op); } else if (c == 'S') { gcc_assert (code == REG); if (G16_REG_P (REGNO (op))) fprintf (file, "!"); } else if (c == 'V') { gcc_assert (code == REG); fprintf (file, G16_REG_P (REGNO (op)) ? "v!" : "lfh!"); } else if (c == 'C') { enum machine_mode mode = GET_MODE (XEXP (op, 0)); switch (code) { case EQ: fputs ("eq", file); break; case NE: fputs ("ne", file); break; case GT: fputs ("gt", file); break; case GE: fputs (mode != CCmode ? "pl" : "ge", file); break; case LT: fputs (mode != CCmode ? "mi" : "lt", file); break; case LE: fputs ("le", file); break; case GTU: fputs ("gtu", file); break; case GEU: fputs ("cs", file); break; case LTU: fputs ("cc", file); break; case LEU: fputs ("leu", file); break; default: output_operand_lossage ("invalid operand for code: '%c'", code); } } else if (c == 'E') { unsigned HOST_WIDE_INT i; unsigned HOST_WIDE_INT pow2mask = 1; unsigned HOST_WIDE_INT val; val = INTVAL (op); for (i = 0; i < 32; i++) { if (val == pow2mask) break; pow2mask <<= 1; } gcc_assert (i < 32); fprintf (file, HOST_WIDE_INT_PRINT_HEX, i); } else if (c == 'F') { unsigned HOST_WIDE_INT i; unsigned HOST_WIDE_INT pow2mask = 1; unsigned HOST_WIDE_INT val; val = ~INTVAL (op); for (i = 0; i < 32; i++) { if (val == pow2mask) break; pow2mask <<= 1; } gcc_assert (i < 32); fprintf (file, HOST_WIDE_INT_PRINT_HEX, i); } else if (code == REG) { int regnum = REGNO (op); if ((c == 'H' && !WORDS_BIG_ENDIAN) || (c == 'L' && WORDS_BIG_ENDIAN)) regnum ++; fprintf (file, "%s", reg_names[regnum]); } else { switch (code) { case MEM: score7_print_operand_address (file, op); break; default: output_addr_const (file, op); } } } /* Implement PRINT_OPERAND_ADDRESS macro. */ void score7_print_operand_address (FILE *file, rtx x) { struct score7_address_info addr; enum rtx_code code = GET_CODE (x); enum machine_mode mode = GET_MODE (x); if (code == MEM) x = XEXP (x, 0); if (score7_classify_address (&addr, mode, x, true)) { switch (addr.type) { case SCORE7_ADD_REG: { switch (addr.code) { case PRE_DEC: fprintf (file, "[%s,-%ld]+", reg_names[REGNO (addr.reg)], INTVAL (addr.offset)); break; case POST_DEC: fprintf (file, "[%s]+,-%ld", reg_names[REGNO (addr.reg)], INTVAL (addr.offset)); break; case PRE_INC: fprintf (file, "[%s, %ld]+", reg_names[REGNO (addr.reg)], INTVAL (addr.offset)); break; case POST_INC: fprintf (file, "[%s]+, %ld", reg_names[REGNO (addr.reg)], INTVAL (addr.offset)); break; default: if (INTVAL(addr.offset) == 0) fprintf(file, "[%s]", reg_names[REGNO (addr.reg)]); else fprintf(file, "[%s, %ld]", reg_names[REGNO (addr.reg)], INTVAL(addr.offset)); break; } } return; case SCORE7_ADD_CONST_INT: case SCORE7_ADD_SYMBOLIC: output_addr_const (file, x); return; } } print_rtl (stderr, x); gcc_unreachable (); } /* Implement SELECT_CC_MODE macro. */ enum machine_mode score7_select_cc_mode (enum rtx_code op, rtx x, rtx y) { if ((op == EQ || op == NE || op == LT || op == GE) && y == const0_rtx && GET_MODE (x) == SImode) { switch (GET_CODE (x)) { case PLUS: case MINUS: case NEG: case AND: case IOR: case XOR: case NOT: case ASHIFT: case LSHIFTRT: case ASHIFTRT: return CC_NZmode; case SIGN_EXTEND: case ZERO_EXTEND: case ROTATE: case ROTATERT: return (op == LT || op == GE) ? CC_Nmode : CCmode; default: return CCmode; } } if ((op == EQ || op == NE) && (GET_CODE (y) == NEG) && register_operand (XEXP (y, 0), SImode) && register_operand (x, SImode)) { return CC_NZmode; } return CCmode; } /* Generate the prologue instructions for entry into a S+core function. */ void score7_prologue (void) { #define EMIT_PL(_rtx) RTX_FRAME_RELATED_P (_rtx) = 1 struct score7_frame_info *f = score7_compute_frame_size (get_frame_size ()); HOST_WIDE_INT size; int regno; size = f->total_size - f->gp_reg_size; if (flag_pic) emit_insn (gen_cpload_score7 ()); for (regno = (int) GP_REG_LAST; regno >= (int) GP_REG_FIRST; regno--) { if (BITSET_P (f->mask, regno - GP_REG_FIRST)) { rtx mem = gen_rtx_MEM (SImode, gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)); rtx reg = gen_rtx_REG (SImode, regno); if (!crtl->calls_eh_return) MEM_READONLY_P (mem) = 1; EMIT_PL (emit_insn (gen_pushsi_score7 (mem, reg))); } } if (size > 0) { rtx insn; if (CONST_OK_FOR_LETTER_P (-size, 'L')) EMIT_PL (emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-size)))); else { EMIT_PL (emit_move_insn (gen_rtx_REG (Pmode, SCORE7_PROLOGUE_TEMP_REGNUM), GEN_INT (size))); EMIT_PL (emit_insn (gen_sub3_insn (stack_pointer_rtx, stack_pointer_rtx, gen_rtx_REG (Pmode, SCORE7_PROLOGUE_TEMP_REGNUM)))); } insn = get_last_insn (); REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, -size)), REG_NOTES (insn)); } if (frame_pointer_needed) EMIT_PL (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx)); if (flag_pic && f->cprestore_size) { if (frame_pointer_needed) emit_insn (gen_cprestore_use_fp_score7 (GEN_INT (size - f->cprestore_size))); else emit_insn (gen_cprestore_use_sp_score7 (GEN_INT (size - f->cprestore_size))); } #undef EMIT_PL } /* Generate the epilogue instructions in a S+core function. */ void score7_epilogue (int sibcall_p) { struct score7_frame_info *f = score7_compute_frame_size (get_frame_size ()); HOST_WIDE_INT size; int regno; rtx base; size = f->total_size - f->gp_reg_size; if (!frame_pointer_needed) base = stack_pointer_rtx; else base = hard_frame_pointer_rtx; if (size) { if (CONST_OK_FOR_LETTER_P (size, 'L')) emit_insn (gen_add3_insn (base, base, GEN_INT (size))); else { emit_move_insn (gen_rtx_REG (Pmode, SCORE7_EPILOGUE_TEMP_REGNUM), GEN_INT (size)); emit_insn (gen_add3_insn (base, base, gen_rtx_REG (Pmode, SCORE7_EPILOGUE_TEMP_REGNUM))); } } if (base != stack_pointer_rtx) emit_move_insn (stack_pointer_rtx, base); if (crtl->calls_eh_return) emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, EH_RETURN_STACKADJ_RTX)); for (regno = (int) GP_REG_FIRST; regno <= (int) GP_REG_LAST; regno++) { if (BITSET_P (f->mask, regno - GP_REG_FIRST)) { rtx mem = gen_rtx_MEM (SImode, gen_rtx_POST_INC (SImode, stack_pointer_rtx)); rtx reg = gen_rtx_REG (SImode, regno); if (!crtl->calls_eh_return) MEM_READONLY_P (mem) = 1; emit_insn (gen_popsi_score7 (reg, mem)); } } if (!sibcall_p) emit_jump_insn (gen_return_internal_score7 (gen_rtx_REG (Pmode, RA_REGNUM))); } /* Return true if X is a symbolic constant that can be calculated in the same way as a bare symbol. If it is, store the type of the symbol in *SYMBOL_TYPE. */ int score7_symbolic_constant_p (rtx x, enum score_symbol_type *symbol_type) { HOST_WIDE_INT offset; score7_split_const (x, &x, &offset); if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) *symbol_type = score7_classify_symbol (x); else return 0; if (offset == 0) return 1; /* if offset > 15bit, must reload */ if (!IMM_IN_RANGE (offset, 15, 1)) return 0; switch (*symbol_type) { case SYMBOL_GENERAL: return 1; case SYMBOL_SMALL_DATA: return score7_offset_within_object_p (x, offset); } gcc_unreachable (); } void score7_movsicc (rtx *ops) { enum machine_mode mode; mode = score7_select_cc_mode (GET_CODE (ops[1]), ops[2], ops[3]); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_REG (mode, CC_REGNUM), gen_rtx_COMPARE (mode, XEXP (ops[1], 0), XEXP (ops[1], 1)))); } /* Call and sibcall pattern all need call this function. */ void score7_call (rtx *ops, bool sib) { rtx addr = XEXP (ops[0], 0); if (!call_insn_operand (addr, VOIDmode)) { rtx oaddr = addr; addr = gen_reg_rtx (Pmode); gen_move_insn (addr, oaddr); } if (sib) emit_call_insn (gen_sibcall_internal_score7 (addr, ops[1])); else emit_call_insn (gen_call_internal_score7 (addr, ops[1])); } /* Call value and sibcall value pattern all need call this function. */ void score7_call_value (rtx *ops, bool sib) { rtx result = ops[0]; rtx addr = XEXP (ops[1], 0); rtx arg = ops[2]; if (!call_insn_operand (addr, VOIDmode)) { rtx oaddr = addr; addr = gen_reg_rtx (Pmode); gen_move_insn (addr, oaddr); } if (sib) emit_call_insn (gen_sibcall_value_internal_score7 (result, addr, arg)); else emit_call_insn (gen_call_value_internal_score7 (result, addr, arg)); } /* Machine Split */ void score7_movdi (rtx *ops) { rtx dst = ops[0]; rtx src = ops[1]; rtx dst0 = score7_subw (dst, 0); rtx dst1 = score7_subw (dst, 1); rtx src0 = score7_subw (src, 0); rtx src1 = score7_subw (src, 1); if (GET_CODE (dst0) == REG && reg_overlap_mentioned_p (dst0, src)) { emit_move_insn (dst1, src1); emit_move_insn (dst0, src0); } else { emit_move_insn (dst0, src0); emit_move_insn (dst1, src1); } } void score7_zero_extract_andi (rtx *ops) { if (INTVAL (ops[1]) == 1 && const_uimm5 (ops[2], SImode)) emit_insn (gen_zero_extract_bittst_score7 (ops[0], ops[2])); else { unsigned HOST_WIDE_INT mask; mask = (0xffffffffU & ((1U << INTVAL (ops[1])) - 1U)); mask = mask << INTVAL (ops[2]); emit_insn (gen_andsi3_cmp_score7 (ops[3], ops[0], gen_int_mode (mask, SImode))); } } /* Check addr could be present as PRE/POST mode. */ static bool score7_pindex_mem (rtx addr) { if (GET_CODE (addr) == MEM) { switch (GET_CODE (XEXP (addr, 0))) { case PRE_DEC: case POST_DEC: case PRE_INC: case POST_INC: return true; default: break; } } return false; } /* Output asm code for ld/sw insn. */ static int score7_pr_addr_post (rtx *ops, int idata, int iaddr, char *ip, enum score_mem_unit unit) { struct score7_address_info ai; gcc_assert (GET_CODE (ops[idata]) == REG); gcc_assert (score7_classify_address (&ai, SImode, XEXP (ops[iaddr], 0), true)); if (!score7_pindex_mem (ops[iaddr]) && ai.type == SCORE7_ADD_REG && GET_CODE (ai.offset) == CONST_INT && G16_REG_P (REGNO (ops[idata])) && G16_REG_P (REGNO (ai.reg))) { if (INTVAL (ai.offset) == 0) { ops[iaddr] = ai.reg; return snprintf (ip, INS_BUF_SZ, "!\t%%%d, [%%%d]", idata, iaddr); } if (REGNO (ai.reg) == HARD_FRAME_POINTER_REGNUM) { HOST_WIDE_INT offset = INTVAL (ai.offset); if (SCORE_ALIGN_UNIT (offset, unit) && CONST_OK_FOR_LETTER_P (offset >> unit, 'J')) { ops[iaddr] = ai.offset; return snprintf (ip, INS_BUF_SZ, "p!\t%%%d, %%c%d", idata, iaddr); } } } return snprintf (ip, INS_BUF_SZ, "\t%%%d, %%a%d", idata, iaddr); } /* Output asm insn for load. */ const char * score7_linsn (rtx *ops, enum score_mem_unit unit, bool sign) { const char *pre_ins[] = {"lbu", "lhu", "lw", "??", "lb", "lh", "lw", "??"}; char *ip; strcpy (score7_ins, pre_ins[(sign ? 4 : 0) + unit]); ip = score7_ins + strlen (score7_ins); if ((!sign && unit != SCORE_HWORD) || (sign && unit != SCORE_BYTE)) score7_pr_addr_post (ops, 0, 1, ip, unit); else snprintf (ip, INS_BUF_SZ, "\t%%0, %%a1"); return score7_ins; } /* Output asm insn for store. */ const char * score7_sinsn (rtx *ops, enum score_mem_unit unit) { const char *pre_ins[] = {"sb", "sh", "sw"}; char *ip; strcpy (score7_ins, pre_ins[unit]); ip = score7_ins + strlen (score7_ins); score7_pr_addr_post (ops, 1, 0, ip, unit); return score7_ins; } /* Output asm insn for load immediate. */ const char * score7_limm (rtx *ops) { HOST_WIDE_INT v; gcc_assert (GET_CODE (ops[0]) == REG); gcc_assert (GET_CODE (ops[1]) == CONST_INT); v = INTVAL (ops[1]); if (G16_REG_P (REGNO (ops[0])) && IMM_IN_RANGE (v, 8, 0)) return "ldiu!\t%0, %c1"; else if (IMM_IN_RANGE (v, 16, 1)) return "ldi\t%0, %c1"; else if ((v & 0xffff) == 0) return "ldis\t%0, %U1"; else return "li\t%0, %c1"; } /* Output asm insn for move. */ const char * score7_move (rtx *ops) { gcc_assert (GET_CODE (ops[0]) == REG); gcc_assert (GET_CODE (ops[1]) == REG); if (G16_REG_P (REGNO (ops[0]))) { if (G16_REG_P (REGNO (ops[1]))) return "mv!\t%0, %1"; else return "mlfh!\t%0, %1"; } else if (G16_REG_P (REGNO (ops[1]))) return "mhfl!\t%0, %1"; else return "mv\t%0, %1"; } /* Generate add insn. */ const char * score7_select_add_imm (rtx *ops, bool set_cc) { HOST_WIDE_INT v = INTVAL (ops[2]); gcc_assert (GET_CODE (ops[2]) == CONST_INT); gcc_assert (REGNO (ops[0]) == REGNO (ops[1])); if (set_cc && G16_REG_P (REGNO (ops[0]))) { if (v > 0 && IMM_IS_POW_OF_2 ((unsigned HOST_WIDE_INT) v, 0, 15)) { ops[2] = GEN_INT (ffs (v) - 1); return "addei!\t%0, %c2"; } if (v < 0 && IMM_IS_POW_OF_2 ((unsigned HOST_WIDE_INT) (-v), 0, 15)) { ops[2] = GEN_INT (ffs (-v) - 1); return "subei!\t%0, %c2"; } } if (set_cc) return "addi.c\t%0, %c2"; else return "addi\t%0, %c2"; } /* Output arith insn. */ const char * score7_select (rtx *ops, const char *inst_pre, bool commu, const char *letter, bool set_cc) { gcc_assert (GET_CODE (ops[0]) == REG); gcc_assert (GET_CODE (ops[1]) == REG); if (set_cc && G16_REG_P (REGNO (ops[0])) && (GET_CODE (ops[2]) == REG ? G16_REG_P (REGNO (ops[2])) : 1) && REGNO (ops[0]) == REGNO (ops[1])) { snprintf (score7_ins, INS_BUF_SZ, "%s!\t%%0, %%%s2", inst_pre, letter); return score7_ins; } if (commu && set_cc && G16_REG_P (REGNO (ops[0])) && G16_REG_P (REGNO (ops[1])) && REGNO (ops[0]) == REGNO (ops[2])) { gcc_assert (GET_CODE (ops[2]) == REG); snprintf (score7_ins, INS_BUF_SZ, "%s!\t%%0, %%%s1", inst_pre, letter); return score7_ins; } if (set_cc) snprintf (score7_ins, INS_BUF_SZ, "%s.c\t%%0, %%1, %%%s2", inst_pre, letter); else snprintf (score7_ins, INS_BUF_SZ, "%s\t%%0, %%1, %%%s2", inst_pre, letter); return score7_ins; }